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Abstract 

Bioelectrical impedance analysis (BIA) is commonly used as a lower-cost measure-

ment of body composition as compared to dual-energy X-ray absorptiometry (DXA) in 

large-scale epidemiological studies. However, existing equations for body composi-

tion based on BIA measures may not generalize well to all populations. We combined 

BIA measurements (TANITA BC-418) with skinfold thickness, body circumferences, 

and grip strength to develop equations to predict six DXA-measured body compo-

sition parameters in a cohort of Indian adults using machine learning techniques. 

The participants were split into training (80%, 1297 males and 1133 females) and 

testing (20%, 318 males and 289 females) data to develop and validate the perfor-

mance of equations for total body fat mass (kg), total body lean mass (kg), total body 

fat percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and total 

appendicular lean mass (kg), separately for males and females. Our novel equations 

outperformed existing equations for each of these body composition parameters. 

For example, the mean absolute error for total body fat mass was 1.808 kg for males 

and 2.054 kg for females using the TANITA’s built-in estimation algorithm, 2.105 kg 

for males and 2.995 kg for females using Durnin-Womersley equations, and 0.935 kg 

for males and 0.976 kg for females using our novel equations. Our findings demon-

strate that supplementing body composition estimates from BIA devices with simple 

anthropometric measures can greatly improve the validity of BIA-measured body 

composition in South Asians. This approach could be extended to other BIA devices 

and populations to improve the performance of BIA devices. Our equations are made 

available for use by other researchers.
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Author summary

Bioelectrical Impedance Analysis, or BIA, is a popular technology for estimating 
the amount of fat and lean mass in the body. BIA scales are low-cost and porta-
ble, meaning they are commonly used in clinical weight monitoring and in  
large-scale research studies in place of more accurate but more expensive 
whole-body DXA scans. However, BIA technology was developed mostly in 
Western populations and relies on assumptions about body shape, size and 
composition that may not apply to all populations globally. We investigated 
whether addition of simple body measurements such as waist circumference and 
skinfold thickness could improve the accuracy of BIA measurements in an Indian 
population. We applied machine learning methods to a large dataset from India 
with simple body measurements and whole-body DXA scans to find the most in-
formative combinations of measures. Our resulting models were able to estimate 
body fat and lean mass in Indians over twice as accurately as BIA scales alone, 
suggesting that this could be a valuable approach to improve body composition 
estimation from other BIA devices and in other under-represented populations. 
Our equations are available via a web application for researchers to use.

Background

Measurements of body composition, such as body fat percentage, can provide 
meaningful health-related insights. Total body fat and intra-abdominal fat have been 
previously associated with metabolic syndrome [1], while lean body mass can be 
protective against chronic diseases and age-related adverse conditions [2,3]. Further, 
there is some evidence that these relationships are particularly pronounced in adults 
of Indian and South Asian ethnicities [1,2], underscoring the importance of accurately 
recording these body composition metrics in large-scale, international epidemio-
logical studies. We note that the construct of ‘ethnicity’ is used in this manuscript to 
refer to people who have a shared ancestral region of origin, and may share certain 
traditions, diets, and values; we do not presume that any such differences are genetic 
in nature, or that broad ethnic groupings referred to here (e.g., Indian or European) 
represent a single ethnic or cultural group.

Bioelectrical impedance analysis (BIA) is commonly used as a feasible, lower-cost 
measurement of body composition in population-based studies as compared to 
dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI) [4]. 
Commercially and clinically available BIA devices, such as TANITA body composition 
analyzers, utilize inbuilt equations to estimate total and segmental lean and fat mass 
from a combination of body segment impedance values, sex, height, and weight 
[5]. However, these prediction equations were generally developed and validated in 
predominately European ethnic populations and may not generalize to other ethnic 
groups [6,7]. Generalizability to Asian Indians is a particular concern, because of a 
body composition characterized by higher abdominal and visceral adiposity and lower 
lean mass in this population [8–11]. A study of 200 healthy Asian Indian individuals 
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found that in-built equations based on white ethnic populations from a TANITA analyzer underestimated total body fat 
percentage by 8.3%, or by 5.4% when using equations fit based on individuals of Japanese ethnicity, compared with DXA- 
derived values [12]. A study of 39 Indian adults found that BIA methods underestimated fat mass as compared to 
four-compartment model, suggesting population-specific equations are needed [13]. Another study of healthy Indian adult 
men found that existing BIA equations tended to underestimate body fat compared with deuterium oxide dilution as a 
reference method [14], while studies among Indian children have reported both under- and over- estimation of body fat 
percentage as compared to DXA-derived values [15–17].

This suggests a need for better methods to estimate body composition in Asian Indian populations [18]. We are aware 
of one study that developed a novel BIA-based equation to predict DXA-derived body fat among young adult Indian 
males [19], and another that developed lean body mass equations in people of Indian Asian ethnicity living in New Zea-
land [18], but both had relatively small samples. Furthermore, no Indian-specific equations are available for estimation 
of central body fat, which may be particularly relevant for understanding cardiometabolic risks in Indian adults. Although 
BIA is now the predominant low-cost method for measuring body composition in research and clinical settings, other 
popular approaches include equations based on anthropometric measures such as the Durnin-Womersley equations 
which use skinfold measurements [20]. Although there is evidence that these equations perform less well in Asian (and 
other non-white) ethnic groups compared with white populations [21], this indicates that using anthropometric measures 
in addition to BIA could potentially improve body composition estimation through recalibration of BIA estimates to specific 
populations [22].

We aimed to develop novel algorithms to estimate DXA-derived fat and lean mass for an adult Indian population, and 
in doing so establish whether simple anthropometric measures can improve the accuracy of BIA in an under-represented 
ethnic group. We conducted a cross-sectional study of 3037 adults in a community setting in India, who underwent 
assessment by whole-body DXA scan (the reference) alongside BIA (using TANITA BC-418) and various anthropometric 
measurements. We used the BIA-based default predictions as a performance baseline, and then incorporated additional 
predictors from the TANITA output alongside anthropometric measures related to body stature, adiposity, and muscularity, 
using machine learning approaches to explore non-linearities and identify the most parsimonious model, finally evaluating 
the accuracy of each against DXA-derived measures.

Methods

Study population

The present analysis makes use of data from the third wave of follow-up in the Andhra Pradesh Children and Parents 
Study (APCAPS), 2010–12. Details of the APCAPS have been published previously [23], but in brief the third wave sam-
ple includes all living children born in a defined area of Ranga Reddy district in 1987–90, and their siblings and parents, 
who agreed to take part in the study, and of whom a random subset were invited for DXA scanning in addition to under-
going anthropometric measurements and BIA. The APCAPS third wave follow-up study was conducted according to the 
guidelines laid down in the Declaration of Helsinki and all procedures involving human participants were approved by 
ethics committees of the Indian Council of Medical Research - National Institute of Nutrition, India (reference number: 
A2-2009), the Public Health Foundation of India, India (reference number 52/10), and the London School of Hygiene and 
Tropical Medicine, UK (reference number: 6471). Written informed consent was obtained from all participants (or wit-
nessed thumbprint if illiterate).

Data collection

A portable TANITA bioelectrical impedance analyzer (model BC-418 M57NA, TANITA) was used to measure segmental 
impedance values. To take a measurement, researchers entered the participant’s age, sex, and height into the TANITA 
machine, then requested participants to stand up straight on the weighing platform in bare feet (with feet in contact with 
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the lower electrodes), while holding onto the hand grips (with hands in contact with the upper electrodes) until a complete 
impedance reading shows on the display. To reduce measurement variability, readings were taken immediately following 
a urinary void, and in the morning following an overnight fast. Within-day coefficients of variation for TANITA measures 
were <1%, while the coefficients of variation for measures repeated at 1 month (in a 5% repeatability subsample) were 
<5%. Height was measured twice to the nearest 1 mm using a portable stadiometer (Leicester height measure), circum-
ferences (hip, waist, calf, head, chest inhaling, chest exhaling, mid arm) were measured twice to the nearest 1 mm using a 
non-stretch metallic tape measure, skinfolds (tricep, bicep, subscapular, suprailiac, calf) were measured three times to the 
nearest 0.2 mm using Holtain caliper, and grip strength was measured in kg four times using Lafayette 78010 hand-held 
dynamometer; the average of each of these measurements were used as a single value in analysis. DXA body composi-
tion values were measured from full-body scans using a Hologic Discovery A device with Hologic spine phantom 14855 
used as a phantom. The participants were instructed to lay supine with their arms resting by their sides. Standard Hologic 
software defined the head, trunk, legs, and arms. DXA L1‐L4 regions were defined by marking the region from the mid-
point of the T12 and L1 vertebrae to the midpoint of the L4 and L5 vertebrae in Hologic software [24]. The total mass, fat 
mass, and fat percentage were computed within this bounded region for each participant. Definition of the L1-L4 region 
was performed twice for each participant, and the average of these repeated values was used. This body segment has 
been used in previous studies as a more valid measure of abdominal fat than trunk fat, since the trunk includes additional 
body regions such as the chest and pelvis as well as the abdomen [25,26].

Data preparation and statistical analysis

Participants were removed from the dataset if they had any missing data or if any of their measurement values were 
judged to be implausible suggesting machine or data entry error (see S1 File) for a list of the criteria applied). To 
account for potential bias/overfitting, the dataset was then split into training and testing groups by randomly selecting 
rows with 80% of individuals used to fit models and the other 20% used to validate the performance of the models. We 
explored use of the Least Absolute Selection and Shrinkage Operator (LASSO), random forest, and XGBoost  
algorithms for developing our prediction equations, as these represent popular parametric (LASSO) and non- 
parametric, tree-based (random forest, XGBoost) machine learning algorithms. The LASSO model provides the ben-
efit of automatic feature selection, while random forest and XGBoost allow for more flexible modelling of non-linear 
relationships between predictors. The models were fit separately by sex, with the lambda value of the LASSO model, 
the mtry value of the random forest model, and the max depth, eta, and gamma parameters of the XGBoost model 
were tuned in the training data using 10-fold cross validation for each outcome. These algorithms were each used to 
fit models predicting 6 different DXA-derived outcomes: total body fat (kg), total body lean mass (kg), total body fat 
percentage (%), trunk fat percentage (%), L1-L4 fat percentage (%), and appendicular lean mass (kg). These six mea-
sures were selected as the focus of this paper as they are commonly reported in published research. For complete-
ness, models to predict other measures estimated by the DXA machine (trunk fat mass (kg), trunk lean mass (kg), 
L1-L4 fat mass (kg), L1-L4 lean mass (kg), appendicular fat mass (kg), and appendicular fat mass percentage (%)) 
were computed in the same way.

The TANITA BC-418 device provides several outputs for the defined body segments of full body, trunk, left arm, right 
arm, left leg, and right leg. The following measurements as displayed in the TANITA output were used as predictors for 
each of these segments unless indicated otherwise: segment fat mass, segment fat-free mass, segment muscle mass (all 
but full body), segment fat percentage, segment impedance. Additionally, body weight, BMI, and total body water were 
used as predictors. Additional covariates included to potentially improve the predictive performance of the equations were 
age, standing height, calf circumference, head circumference, exhalation chest circumference, waist circumference, hip 
circumference, arm circumference, tricep skinfold, bicep skinfold, subscapular skinfold, suprailiac skinfold, calf skinfold, 
dominant hand grip strength, and non-dominant hand grip strength.
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Certain data transformations and interactions were pre-specified for inclusion in the models if deemed to be relevant by 
the researchers based on review of the literature and potential utility in measuring muscle mass. These interactions and 
transformations were waist-to-hip ratio, waist-to-height ratio, chest-to-waist ratio, calf-to-height ratio, height-squared-to- 
impedance ratio for each impedance value, fat mass index (FMI), lean mass index (LMI), body shape index (BSI), cor-
rected arm muscle area (CAMA), logarithm of the sum of skinfolds, and the product of age and dominant hand grip 
strength. Additionally, we originally included squared terms for each input variable to account for non-linear associations 
with the outcome and included additional speculative interaction terms to account for complex relationships between 
predictors. However, the inclusion of these terms did not result in considerable performance improvements, and in some 
cases worsened model performance due to overfitting. To maintain parsimony while still including potentially meaningful 
interactions, we used the reduced set of interaction terms described above in the present analysis.

Performance was compared in the 20% held-out testing data based on mean absolute error (MAE), mean average 
percentage error (MAPE), and root mean squared error (RMSE). RMSE was used to provide comparison to existing stud-
ies, while MAE and MAPE were utilized due to their interpretability. The built-in TANITA estimates for each outcome alone 
were used as a performance baseline. Since TANITA does not define the L1-L4 region, TANITA trunk values were used 
as the performance baseline for this outcome. Further, we compared the performance of our models to previously derived 
prediction equations by Kulkarni et al for use in Indian populations for the total body lean mass and appendicular lean 
mass outcomes [22] and to Durnin-Womersley equations for total body fat outcomes [20]. To provide further context for 
these evaluation metrics, we also estimated a ‘null’ or ‘baseline’ scenario by randomly permuting the DXA-based outcome 
values before splitting the data and evaluating model performance on these randomly permuted datasets (100 datasets 
were generated for total fat mass and 25 for the other outcomes due to computational burden).

As a post hoc sensitivity analysis, to understand which factors were contributing most to improved estimation of the 
new models, models were fit using the LASSO algorithm with only the full set of TANITA inputs and relevant transforma-
tions, full set of TANITA inputs along with one of the three sets of additional anthropometric variables and their transforma-
tions (skinfolds, circumferences, and grip strength), all circumferences alone, all circumferences and skinfolds and their 
transformations, and for comparison a full linear model containing all 63 covariates.

All analyses were completed using R software version 4.2.0.

Results

The selection of study participants is described in a flowchart (Fig 1). The application of inclusion criteria resulted in a 
sample size of 1615 males and 1422 females (training dataset of 1297 males and 1133 females and validation dataset of 
318 males and 289 females). Individuals who did not participate in the DXA study within APCAPS 3rd follow-up tended to 
be younger on average than individuals who had DXA measurements available (34 years old and 38 years old, respec-
tively), though BMI was similar in the two groups (mean 20.7 kg/m2 and 20.6 kg/m2, respectively). The characteristics of 
our final study cohort are described in Table 1. Males and females were of similar age (37 years and 38 years old on 
average, respectively, in both training and test datasets) and with similar BMI (approximately 20–21 kg/m2 in all groups). 
Within the same sex, the average value of each mass outcome (total body fat mass, total body lean mass, appendicular 
lean mass) did not differ by more than 0.51 kg between training and test datasets.
The LASSO models achieved the best performance in the testing data for most of the 6 outcome-sex combinations (Table 
2). Exceptions to this were for prediction of trunk fat percentage in males (MAE of 2.094% by LASSO vs MAE of 2.090% 
by XGBoost), L1-L4 fat percentage in males (MAE of 2.401% by LASSO vs MAE of 2.369% by random forest), total body 
fat percentage in females (MAE of 2.165% by LASSO vs MAE of 2.104% by random forest), and trunk fat percentage in 
females (MAE of 2.721% by LASSO vs MAE of 2.622% by random forest). Despite occasional performance gains by the 
random forest and XGBoost algorithms, we ultimately favor the LASSO algorithm for its comparative interpretability and 
ease of application to future data. We also noted that the LASSO algorithm performed similarly on the training compared 
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with testing datasets (S2 File), whereas random forest and XGBoost algorithms performed markedly better on the training 
set across all outcomes, indicating overfitting, and further supporting robustness of the LASSO algorithm. Stratification of 
the test set by age (<40 vs 40 + years) indicated that the LASSO model performed well regardless of age, although perfor-
mance was slightly superior in the younger group (S3 File).

Our novel equations, as well as the other equations previously developed by Kulkarni et al in an Indian population, 
performed substantially better than the built-in TANITA estimates and Durnin-Womersley equations (Table 3), and 3–4 
times better than the ‘baseline’ scenario of randomly permuted datasets (S4 File). For 5 out of the 12 outcome-sex 

Fig 1. Flow-chart for inclusion in the present analysis.

https://doi.org/10.1371/journal.pdig.0000671.g001

Table 1. Description of the sample. 

Training – Females 
(n = 1133)

Test – Females (n = 289) Training – Males (n = 1297) Test – Males (n = 318)

Age (years) 38.17 (11.7) 39.05 (11.3) 37.15 (15.5) 36.68 (15.5)

Standing height (cm) 151.68 (5.89) 151.20 (6.05) 164.26 (6.67) 164.27 (7.01)

Weight (kg) 48.57 (9.20) 48.39 (9.48) 55.46 (10.53) 54.46 (11.42)

BMI (kg/m^2) 21.14 (3.71) 21.22 (3.85) 20.55 (3.43) 20.15 (3.72)

DXA Total body fat mass 
(kg)

15.61 (5.21) 15.46 (5.25) 10.68 (4.98) 10.26 (5.17)

DXA Total body lean mass 
(kg)

32.03 (4.56) 32.00 (4.95) 43.52 (6.41) 43.01 (7.13)

DXA Total body fat percent-
age (%)

30.92 (5.55) 30.73 (5.72) 18.25 (5.64) 17.74 (5.67)

DXA Trunk fat percentage 
(%)

27.02 (6.98) 26.95 (7.16) 16.84 (6.56) 16.09 (6.52)

DXA L1-L4 fat percentage 
(%)

25.80 (7.71) 25.75 (7.92) 18.57 (7.69) 17.83 (7.64)

DXA Appendicular lean 
mass (kg)

13.11 (2.01) 13.01 (2.25) 19.18 (2.95) 19.04 (3.36)

All values presented as mean (SD)

https://doi.org/10.1371/journal.pdig.0000671.t001

https://doi.org/10.1371/journal.pdig.0000671.g001
https://doi.org/10.1371/journal.pdig.0000671.t001
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pairs, the mean absolute error of our best equation was less than half that of the TANITA built-in estimate or 
Durnin-Womersley equation. For example, mean absolute error for total body fat mass was 1.808 kg for males and 
2.054 kg for females using TANITA estimation, 2.105 kg for males and 2.995 kg for females using Durnin- 
Womersley equations, 1.240 kg for males and 1.061 kg for females using our novel equation with just TANITA values, 
and 0.935 kg for males and 0.976 kg for females using our novel equation with TANITA, skinfolds, circumferences, 
and grip strength. The mean absolute error for a subset of the LASSO equations (TANITA predictors only, TANITA and 
skinfold as predictors, and full set of predictors), TANITA built-in estimates, and existing equations as compared to the 
DXA values are presented in Table 3. In all instances, the best performance in the test data was achieved by our novel 
equations (built using LASSO algorithm) including all measurements, that is TANITA, circumferences, skinfolds, and 
grip strength. These equations, which were based on between 14 and 31 selected features, performed similarly or bet-
ter than a full regression equation based on all 63 features (S5 File). When exploring which features added the most 
value, we noted that similar performance was sometimes achieved through inclusion of only TANITA and skinfolds. 
The combination of TANITA and circumferences or TANITA and grip strength provided limited improvements upon the 
use of TANITA predictors alone.

Bland-Altman plots were used to compare predictive performance of our full LASSO equations to that of the TANITA 
default outputs (Fig 2). Overall, there do not appear to be clear systematic errors in the predictions resulting from 
our equations, though total fat percentage in women and trunk fat percentage in both men and women may be fre-
quently overestimated by our models among individuals with lower trunk fat percentage. Further, our equations may 

Table 2. Mean Absolute Error (compared with DXA-based measurement) for different prediction algorithms using all predictors in test data, 
and additional performance metrics for best model (n = 289 female, 318 male). 

Outcome (Sex) Random Forest 
Mean absolute error

XGBoost Mean 
absolute error

LASSO Mean abso-
lute error

LASSO Root Mean 
Squared Error

LASSO Mean Absolute 
Percentage Error

Total body fat mass 
(kg) – M

1.057 1.013 0.935 1.19 10.06%

Total body fat mass 
(kg) - F

1.014 1.052 0.976 1.26 6.94%

Total body lean mass 
(kg) - M

1.311 1.378 1.177 1.52 2.76%

Total body lean mass 
(kg) - F

1.308 1.357 1.222 1.55 3.85%

Total body fat per-
centage (%) - M

1.746 1.804 1.668 2.10 9.87%

Total body fat per-
centage (%) - F

2.104 2.125 2.165 2.73 7.44%

Trunk fat percentage 
(%) - M

2.121 2.090 2.094 2.62 13.81%

Trunk fat percentage 
(%) - F

2.622 2.652 2.721 3.42 11.15%

L1-L4 fat percentage 
(%) - M

2.369 2.417 2.401 2.99 14.92%

L1-L4 fat percentage 
(%) - F

2.971 2.970 2.929 3.75 12.41%

Appendicular lean 
mass (kg) - M

0.900 0.853 0.782 1.04 4.18%

Appendicular lean 
mass (kg) - F

0.833 0.860 0.790 1.00 6.17%

M is male; F is female.

https://doi.org/10.1371/journal.pdig.0000671.t002

https://doi.org/10.1371/journal.pdig.0000671.t002
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underestimate appendicular lean mass among women with higher appendicular lean mass. The TANITA device appears to 
frequently underpredict the fat mass of women with lower body fat mass.

The coefficients for each outcome-sex pair in the LASSO model with all sets of predictors are provided in the S6 File. 
Performance metrics for additional body composition metrics (e.g., appendicular fat mass) which were not the focus of this 
manuscript are provided in S7 File. The 1st and 99th percentiles of each predictor in the training data are provided in S8 
File. All LASSO equations can be used through an interactive application designed by the authors and hosted on GitHub 
(see data sharing statement).

Discussion

We have developed and validated the performance of a novel set of equations to predict six different clinically important 
DXA-derived body composition metrics in Indian adults from low-cost BIA plus anthropometric measures. In all cases our 
novel equations performed substantially better than BIA estimates or anthropometric equations developed in other ethnic 
groups, reducing mean errors by over 50%. Of the anthropometric measures added (circumferences, grip strength and 

Table 3. Mean Absolute Error (compared with DXA-based measurement) for the different prediction models in test data (n = 289 female, 318 
male). 

Mean absolute error compared with DXA measurement

Outcome (Sex) TANITA Built-in 
estimate alone

Existing skinfold/ 
anthrop-ometric 
equation

All TANITA LASSO All TANITA + Skin-
folds LASSO

All TANITA + Grip 
strength + circum-
ferences + skinfolds 
LASSO (I.e., Full 
LASSO)

Total body fat mass 
(kg) - M

1.808a 2.105f 1.240 1.003 0.935

Total body fat mass 
(kg) - F

2.054a 2.995f 1.061 1.016 0.976

Total body lean mass 
(kg) - M

2.782b 1.746g 1.401 1.230 1.177

Total body lean mass 
(kg) - F

2.670b 1.402g 1.276 1.234 1.222

Total body fat percent-
age (%) - M

3.242c 3.646f 2.202 1.801 1.668

Total body fat percent-
age (%) - F

4.256c 5.656f 2.298 2.193 2.165

Trunk fat percentage 
(%) - M

3.479d --- 2.574 2.298 2.094

Trunk fat percentage 
(%) - F

5.837d --- 2.922 2.823 2.721

L1-L4 fat percentage 
(%) - M

3.883d --- 2.859 2.596 2.401

L1-L4 fat percentage 
(%) - F

5.494d --- 3.184 3.081 2.929

Appenciular lean mass 
(kg) - M

1.778e 0.972g 0.926 0.826 0.782

Appendicular lean 
mass (kg) - F

1.548e 0.888g 0.811 0.804 0.790

M is male; F is female. a: TANITA fat mass; b: TANITA fat-free mass; c: TANITA total body fat percentage; d: TANITA trunk fat percentage; e: Sum of 
TANITA right arm fat-free mass, left arm fat-free mass, right leg fat-free mass, left leg fat-free mass; f: Durnin-Womersley skinfold equations; g: Kulkarni 
et al Indian-calibrated anthropometric equations.

https://doi.org/10.1371/journal.pdig.0000671.t003

https://doi.org/10.1371/journal.pdig.0000671.t003
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Fig 2. Bland-Altman Plots comparing the LASSO with all variables and TANITA Equivalent Measure alone to DXA values. 

https://doi.org/10.1371/journal.pdig.0000671.g002

https://doi.org/10.1371/journal.pdig.0000671.g002
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skinfold thicknesses), skinfold thicknesses made the largest contribution to improved estimation, especially among males. 
This demonstrates that although BIA measures may be inaccurate for Asian Indian populations, they can be recalibrated 
successfully with the addition of simple anthropometric measures. Our equations will be useful for improving body compo-
sition estimation in large-scale studies in India, and our approach could be adapted for re-calibration of other BIA devices 
and for other under-represented ethnic groups.

While we identified several studies validating existing body composition metrics for use in Indian populations, our study 
represents one of only a few studies developing novel equations to predict DXA-derived values for use with Indian adults. 
While Dasgupta et al provided similar equations with lower reported RMSE than our study, their study sample consisted 
only of 117 males aged 18–22 years old [19]. As such, the generalizability of these equations may be more limited than 
the novel equations presented in the current work, which we developed using a training sample of more than 1000 men 
and women of a wide age range, the largest population-based DXA dataset including both men and women available in 
India to our knowledge. Grover et al developed equations to predict DXA-derived fat mass and fat-free mass using BIA, 
circumferences, and skinfolds separately in a clinical population of 302 adults with cirrhosis but did not present equations 
using a combination of all factors [27]. Equations previously developed by our group for lean mass used skinfolds and 
waist circumference but did not explore the addition of BIA values into predictive equations [22]. Although the performance 
for appendicular lean mass was within 0.1 kg of our equations using TANITA only, this is somewhat expected as they used 
data from some of the same individuals. Prior development of equations for fat-free mass based on a sample of Black and 
White individuals by Sun et al reported RMSE of 3.9 kg for males and 2.9 kg for females [6], while the equations devel-
oped by Rush et al for estimating fat-free mass in an Asian Indian population report an RMSE of 2.13 in the study sample 
[18]. The RMSE for our LASSO-based equations predicting total lean mass were 1.5 kg for males and 1.6 kg for females, 
indicating superior performance than previous attempts. To our knowledge, the current work represents the introduction 
of the first set of validated BIA-based equations to predict trunk-specific body composition outcomes for Indian adult men 
and women, which is timely considering concern around increased central adiposity in this population. Interestingly, our 
equations calibrated for this Indian population performed better than the device-generated BIA measures perform against 
DXA in recent validation studies in white and east Asian populations (in whom the devices’ in-built equations were devel-
oped) [28–30], raising the possibility that skinfolds and other anthropometric measures could be useful in improving body 
composition estimation from BIA in all contexts.

Though we have demonstrated improved performance from the TANITA output in estimating lean mass in both the 
full body and appendicular regions, it is unsurprising that the TANITA outputs have a noticeable systematic error. This 
is because the TANITA uses a two-compartment model to predict fat-free mass, combining both lean mass and skeletal 
mass into a single measure, whereas the DXA-derived outcome specifically uses a three-compartment model to measure 
lean mass as distinct from skeletal mass. Additionally, the TANITA provides no direct measure of L1-L4 fat mass as the 
device cannot detect this body segment, while the TANITA trunk segment includes the mass of the head, while the DXA 
includes the head as a separate body segment. These observed systematic errors may explain the performance issues 
of the TANITA observed in our study, though they also emphasize the relevance of the current work. Those interested in 
measuring lean mass without skeletal mass using TANITA now have a method of doing so despite its use of a two- 
compartment model.

Our work is not without limitations. Not all participants from APCAPS attended the clinic for DXA measurements due 
to funding limitations or travel distance to the clinic. The participants who did not attend DXA clinics tended to be younger 
than the participants who did attend the clinics, suggesting there could be systematic differences between those included 
and those not included due to missing measurements, though no significant difference was found in BMI between the 
individuals with and without DXA measurements. These equations are not recommended for estimating body composi-
tion among pregnant women since these women were not included in the sample used for the present development and 
validation of equations. The validity of these equations in the presence of values outside the range of the training data 
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is also unclear. The training dataset mostly consisted of low-BMI individuals (99th percentile for BMI in both men and 
women ≈ 31 kg/m2). Further, the 99th percentile for age in our data is 67 years in men and 61 years in women. Therefore, 
predictions may not be suitable for adults with obesity as defined by BMI > 30 kg/m2 and those older than the study sam-
ple, and we recommend interpreting model predictions with caution in such cases.

Beyond the limitations related to the distribution of variables and selection into the DXA study, limitations to interpreta-
tion of results also arise from the use of an internal, rather than external, validation dataset. Our participants are largely 
from peri-urban areas in southeastern India, and it is unclear how well these equations will perform in other populations 
in India and in the diaspora, as India is an ethnically and culturally diverse country. Additionally, most participants in the 
APCAPS cohort were between 18–30 or 40–55 years old, meaning that individuals 30–40 years old were underrepre-
sented in the dataset. Because of these limitations, future work is needed to validate these equations in other Indian 
cohorts and among adults of Indian ethnicity living outside of India. Further, while prior research has shown that DXA is a 
good substitute for MRI-derived measures of abdominal fat in Indian populations, some researchers still favor use of MRI 
as a gold standard for abdominal fat, since DXA may tend to overestimate fat mass in leaner individuals [24].

Finally, future validation work is crucial to assess the validity of these equations when deriving BIA estimates from 
other devices. The present study made use of the TANITA BC-418 device, which is no longer manufactured having been 
replaced by newer models such as the MC-780U (although older devices such as the BC-418 are still in circulation, espe-
cially in low-resource settings where new devices may be less affordable). This newer model has been described by the 
manufacturer as a direct replacement and provides the same 50KHz measurement frequency, suggesting our equations 
could be used across both devices. Further, the additional measures provided by the new model, such as measurement of 
impedance using additional frequency values, may present opportunities for development of equations using an expanded 
set of inputs in the future. Additionally, validation work is needed to assess the performance of these equations when 
using BIA-based inputs from manufacturers other than TANITA in case of systematic differences between devices. It is the 
authors’ expectation that the equations will perform well with inputs from any BIA device that can provide segmental esti-
mates, as the underlying approach to impedance estimation is similar, and studies have reported high correspondence in 
body composition estimates across manufacturers, although some studies have suggested estimates from Omron devices 
and InBody BIA devices may differ from other manufacturers [31,32]. There are many commercially available BIA device 
manufacturers for which updated models are frequently released; our extensive data-driven analyses of a large dataset 
provide an approach which could be used to improve calibration of existing and new devices. We believe that BIA device 
manufacturers will be very interested in these findings as a means to improve the accuracy of their devices for populations 
with distinct body phenotypes. We note that our equations are not suitable for use with BIA devices which provide only full-
body measurements, as information about the separate body segments are required as input.

Conclusions

In summary, we have used machine learning-based approaches to develop equations capable of markedly improving 
body composition estimation for Indian adults. The inputs to our equations are measures from a commercial BIA device 
plus simple anthropometric measurements, and thus have potential to be used in large-scale research studies, or in 
primary/community care settings where advanced body scanning devices are not available. This serves as a proof of 
principal for other populations for whom in-built equations in BIA devices perform poorly (such as other non-white ethnic 
groups). We have made our equations openly available so that they can be used by the wider research community and 
contribute to improved understanding of the role of body composition in disease risk in the Indian population [33].
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