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Abstract

Surface polysaccharides are common antigens in priority pathogens and therefore attractive targets for novel control strategies 
such as vaccines, monoclonal antibody and phage therapies. Distinct serotypes correspond to diverse polysaccharide struc-
tures that are encoded by distinct biosynthesis gene clusters; e.g. the Klebsiella pneumoniae species complex (KpSC) K- and 
O- loci encode the synthesis machinery for the capsule (K) and outer- lipopolysaccharides (O), respectively. We previously pre-
sented Kaptive and Kaptive 2, programmes to identify K- and O- loci directly from KpSC genome assemblies (later adapted for 
Acinetobacter baumannii), enabling sero- epidemiological analyses to guide vaccine and phage therapy development. However, 
for some KpSC genome collections, Kaptive (v≤2) was unable to type a high proportion of K- loci. Here, we identify the cause of 
this issue as assembly fragmentation and present a new version of Kaptive (v3) to circumvent this problem, reduce process-
ing times and simplify output interpretation. We compared the performance of Kaptive v2 and Kaptive v3 for typing genome 
assemblies generated from subsampled Illumina read sets (decrements of 10× depth), for which a corresponding high- quality 
completed genome was also available to determine the ‘true’ loci (n=549 KpSC, n=198 A. baumannii). Both versions of Kaptive 
showed high rates of agreement to the matched true locus amongst ‘typeable’ locus calls (≥96% for ≥20× read depth), but 
Kaptive v3 was more sensitive, particularly for low- depth assemblies (at <40× depth, v3 ranged 0.85–1 vs v2 0.09–0.94) and/
or typing KpSC K- loci (e.g. 0.97 vs 0.82 for non- subsampled assemblies). Overall, Kaptive v3 was also associated with a higher 
rate of optimal outcomes; i.e. loci matching those in the reference database were correctly typed, and genuine novel loci were 
reported as untypeable (73–98% for v3 vs 7–77% for v2 for KpSC K- loci). Kaptive v3 was >1 order of magnitude faster than 
Kaptive v2, making it easy to analyse thousands of assemblies on a desktop computer, facilitating broadly accessible in silico 
serotyping that is both accurate and sensitive. The Kaptive v3 source code is freely available on GitHub (https://github.com/ 
klebgenomics/Kaptive), and has been implemented in Kaptive Web (https://kaptive-web.erc.monash.edu/).

Impact Statement

Klebsiella pneumoniae and Acinetobacter baumannii are leading causes of healthcare- associated infections and pose a signifi-
cant threat to public health due to increasing rates of antimicrobial resistance. The development of alternative therapies, such 
as vaccines, phage therapy and monoclonal antibodies, is crucial to combat these pathogens. These therapies often target 
surface polysaccharides, such as the capsule and lipopolysaccharide (LPS), which exhibit substantial structural and antigenic 
diversity. We previously developed Kaptive, a tool for typing capsule and LPS loci from genome sequences, enabling researchers 
to investigate the diversity and epidemiology of these antigens. However, limitations in handling fragmented assemblies have 
hindered accurate typing in a significant proportion of genomes. In this manuscript, we present Kaptive 3, which overcomes 
these limitations through a novel gene- first approach, enabling accurate and sensitive typing even with highly fragmented 
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DATA SUMMARY
The updated code for Kaptive 3 is available at https://github.com/klebgenomics/Kaptive. All supplementary data is available from 
https://doi.org/10.6084/m9.figshare.28357046.v1.

INTRODUCTION
Bacterial surface polysaccharides such as capsules and lipopolysaccharides (LPSs) play a key role in protection from host immune 
systems, phagocytosis, bacteriophage predation and desiccation [1, 2]. Many act as primary phage receptors and are highly 
immunogenic, making them major targets for vaccines, phage and monoclonal antibody therapies. However, therapeutic design 
is complicated by broad structural diversities that result in differential phage susceptibility and a wide variety of immunologically 
distinct serotypes [3–5].

Glycoconjugate vaccines that target a subset of known serogroups/serotypes have played a pivotal role in preventing pneumococcal 
and meningococcal infections, providing an exemplar for the effective use of multi- valent formulations [6]. With the growing 
burden of antimicrobial resistance, there is increasing interest in the development of novel control strategies targeting other 
species, particularly priority pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii [7–9]. However, there is a 
lack of broadly accessible serological typing schemes to support therapeutic design.

In the K. pneumoniae Species Complex (KpSC), capsule (K) and outer- LPS (O) antigens are produced through biosynthetic 
pathways encoded by corresponding K- and O- locus gene clusters [10, 11]. Similarly, in A. baumannii, the capsule (K) and 
outer- core (OC) antigens are encoded by the K- and OC- loci, respectively. Each locus comprises a set of conserved export and 
assembly machinery genes, along with a unique set of glycosidic linkage and modification genes that result in unique polysac-
charide structures. Therefore, K- and O/OC- types can be predicted directly from the gene content of the cluster [12–14]. With 
this knowledge and the continued growth of whole- genome sequencing, we have new opportunities to investigate capsule and 
LPS diversity and epidemiology and prioritize polysaccharide variants for novel control strategies [15].

We previously reported 134 unique K- loci from KpSC genomes and developed Kaptive, a tool to rapidly type K- loci from bacterial 
genome assemblies [16]. Since Kaptive’s release, 52 additional KpSC K- loci have been reported [17], as well as an O- locus database 
[18], plus K- and OC- locus databases for A. baumannii [19] (distributed via GitHub alongside the Kaptive code at https://github. 
com/klebgenomics/Kaptive). Kaptive- compatible Vibrio parahaemolyticus K- and O- locus databases are hosted in a third- party 
repository [20], and a mixture of partial and complete databases has been described for other organisms [21–25]. In Kaptive 
v0.4.0, we implemented logic to account for modification of the KpSC O2 antigen based on specific genes outside of the O- locus 
[17]. This logic was generalized in Kaptive v2, when we added an explicit phenotype prediction column in the Kaptive output. 
It was later extended to the A. baumannii K- locus database after the finding that the presence of a phage- encoded Wzy protein 
resulted in altered polysaccharide structures [17, 26].

The Kaptive v≤2 algorithm has two main steps. First, blastn is used to align the full- length reference locus nt sequences against 
the input assembly contigs, and the best- match reference is chosen as the one with the highest overall alignment coverage. Then, 
tblastn is used to align translated protein sequences from each reference against the input assembly, mark genes inside and 
outside of the assembly locus region and report any expected genes that are missing and/or any unexpected genes that are present 
(i.e. genes that are not present in the best- match reference). tblastn is additionally used to search for genes outside the locus 
that are known to impact phenotype.

Kaptive v≤2 report six- tier confidence scores (Table S1, available in the online Supplementary Material) that were developed 
based on the logic of locus definitions and our working experiences with KpSC draft genome assemblies; however, no systematic 
testing was completed. The scores penalize missing and extra genes within the locus region of the assembly and fragmented loci 
(on the basis that we cannot be sure that we have detected the full complement of genes that may be present on other assembly 
contigs or erroneously missing from the assembly). These scores were intended to guide users with interpretation and follow- up 
investigations appropriate to their specific use case; however, in practice, we have observed that most users either simply follow our 
baseline recommendation to exclude ‘low’ and ‘none’ confidence scores or ignore the confidence scores entirely. Additionally, some 
datasets have a high rate of ‘low’ and ‘none’ confidence scores, rendering large amounts of data unusable for sero- epidemiological 
analysis, e.g. 36.8% (n=121/329) in a study of invasive KpSC isolates from South and South East Asia and 32.6% (n=84/258) in 
a study of K. pneumoniae neonatal sepsis isolates from seven distinct countries [27, 28].

assemblies. Additionally, Kaptive 3 offers significant speed improvements, facilitating large- scale analyses on readily available 
computers. These advancements will enhance sero- epidemiological surveillance, inform the design of novel control strategies 
and promote broader accessibility to genomic data for researchers and public health professionals worldwide.

https://github.com/klebgenomics/Kaptive
https://doi.org/10.6084/m9.figshare.28357046.v1
https://github.com/klebgenomics/Kaptive
https://github.com/klebgenomics/Kaptive
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Here, we show that low Kaptive v≤2 confidence scores are driven by assembly fragmentation, which often results from a failure 
to incorporate low- GC regions of the K- locus into Illumina sequencing libraries. We present an updated version of Kaptive (v3), 
with several performance enhancements and a simplified confidence scoring system to address the limitations associated with 
fragmented assemblies. We also perform a systematic comparison and show that Kaptive v3 is highly accurate, more sensitive 
and faster than Kaptive v2.

METHODS
Kaptive v3 specifications
Kaptive v3 is a Python application (v3.9) that builds upon the existing open- source code developed for Kaptive v≤2 [16, 17] 
(available at https://github.com/klebgenomics/Kaptive). Whilst the prior versions used a combination of blastn and tblastn 
[29] for sequence search, Kaptive v3 uses minimap2 [30] to search for gene nt sequences, of which a non- overlapping subset 
is translated and pairwise aligned to the respective references with Biopython (v1.83) [31]. We chose to remove the blast+ 
dependency because it is comparatively slow, and some versions are subject to random crashes during multi- threaded tblastn. 
DNA features viewer [32] is used to optionally generate locus images.

We additionally refactored the Kaptive source code from a single command- line interface (CLI) script into a more efficient, 
user- friendly Python package with an API, allowing Kaptive to be imported as a module and used in other programmes. The 
main mode of operation, in silico serotyping of genome assemblies, is executed by the ‘typing pipeline’ and implemented via the 
‘assembly’ CLI mode. Kaptive databases are parsed from GenBank files into database objects, which hold the sequence information 
in memory. These objects have formatting methods allowing them to be converted into other biological text formats (e.g. nt or 
protein sequence fasta files), implemented via the ‘extract’ CLI mode. The new ‘convert’ CLI mode allows the conversion of the 
typing results in JavaScript Object Notation (JSON) format (now using the more efficient JSON line format) into other biological 
text formats to facilitate downstream investigations.

The new locus typing approach is described in detail in Results. The Kaptive v3 source code is published under GNU General 
Public License v3.0 and available at https://github.com/klebgenomics/Kaptive. It has been implemented in the web- based graphical 
user interface tools Kaptive Web v1.3.0 (https://kaptive-web.erc.monash.edu/) and Pathogenwatch (https://pathogen.watch/) for 
K- and O/OC- locus typing of KpSC and A. baumannii. It has also been implemented in the CLI tool Kleborate v3 (https://github. 
com/klebgenomics/kleborate), and the Bactopia CLI pipeline [33], for KpSC K- and O- locus typing.

Test dataset
To test the accuracy of Kaptive v3 locus typing from draft genome sequences, we sourced collections of high- quality completed 
genome assemblies (i.e. circularized via hybrid assembly) with corresponding short reads, to generate a dataset where we could 
compare locus calls from draft short- read- based assemblies to ‘ground- truth’ locus calls derived from the matched completed 
genome. We utilized 549 diverse KpSC genomes representing clinical and gut carriage isolates collected from humans and animals 
in Norway [34]. For A. baumannii, we compiled a collection of 198 completed genomes deposited in the National Center for 
Biotechnology Information (NCBI) Assembly database, which had corresponding paired- end Illumina reads deposited in the 
SRA database (Table S2). All high- quality completed assemblies were annotated with Bakta v1.9.2 [35], and preliminary K-, 
O- and OC- loci were assigned using the best blastn coverage approach implemented in Kaptive v2.0.9 [17, 19, 36]. The loci 
were extracted from the corresponding Bakta GenBank annotations and visually inspected with Clinker v0.0.29 [37] to confirm 
ground- truth calls. As per the locus definition rules, loci were confirmed as the best match if they comprised the complete set of 
genes present in the reference locus and no additional genes (excluding transposases and ignoring pseudogenes). Distinct genes 
were defined based on the species- specific translated sequence identity thresholds: 82.5% for KpSC and 85% for A. baumannii 
[16, 19]. Loci with ≥1 polysaccharide- specific gene missing and/or ≥1 additional gene (excluding transposases) compared with 
the best- match reference were marked as novel. Loci with ≥1 insertion sequences (IS), but which otherwise contained the same 
gene set as the best- match reference, were marked as IS variants. Loci that were missing ≥1 core assembly machinery gene but 
otherwise contained the same gene set as the best- match reference were marked as deletion variants (presumed to represent 
isolates that are unable to produce and/or export the relevant polysaccharide).

The finalized KpSC ground- truth collections captured 96 distinct K- loci (plus 9 genomes with novel loci, 7 with deletion and 79 
with IS variants) and 11 distinct O- loci (plus 10 genomes with novel, 1 deletion and 16 IS variants). The A. baumannii ground- truth 
collection captured 45 distinct K- loci (plus 2 genomes with novel and 14 IS variants) and 13 distinct OC- loci (plus 1 genome 
with a novel locus and 41 IS variants).

We next generated increasingly fragmented or ‘low- quality’ draft assemblies for each genome by randomly subsampling the 
corresponding Illumina short reads from 100× to 10× mean read depth in decrements of 10 with Rasusa v0.7.1 [38] (using index 
files generated with Samtools v1.9 [39]) and assembling them with Unicycler v0.5.0, with the ‘--depth_filter’ flag set to 0. For the 
549 KpSC genomes, we obtained the following draft assemblies: n=161, 100× depth; n=176, 90×; n=167, 80×; n=200, 70×; n=230, 

https://github.com/klebgenomics/Kaptive
https://github.com/klebgenomics/Kaptive
https://kaptive-web.erc.monash.edu/
https://pathogen.watch/
https://github.com/klebgenomics/kleborate
https://github.com/klebgenomics/kleborate
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60×; n=223, 50×; n=442, 40×; and n=549 (all genomes) at 30×, 20×, 10× and without subsampling. Note that these sample sizes 
were constrained by the estimated read depths of the non- subsampled data. For the 198 A. baumannii genomes, we obtained 
n=198 draft assemblies for all subsampling depths and without subsampling.

Illumina read coverage and GC content
We used Biopython (v1.83) to determine the GC content of K and O-/OC- locus gene ORFs for each of the complete genomes from 
the Bakta GenBank annotations, along with the GC content of their respective chromosome. Here, we define GC as (ΣG+ΣC)/
sequence length and GC difference as |gene GC–chromosome GC| where chromosome GC is ~0.57 for KpSC [40] and ~0.39 for 
A. baumannii. To label each gene as core or variable, we clustered the translated aa sequences for each locus database using the 
MMSeqs2 (v15- 6f452) ‘easy- cluster’ command [41]. We defined core and variable genes as those belonging to clusters represented 
in ≥75% and <75% reference loci, respectively. We mapped the Illumina short reads to the corresponding completed genome 
assemblies with minimap2 (v2.2.0) [30] using the parameters ‘-c -x sr’. The resulting Pairwise mApping Format alignments were 
converted to Browser Extensible Data format with the paftools ‘splice2bed’ command (see minimap2), and read coverage was 
calculated with the bedtools (v2.31.0) ‘coverage’ command [42] using the Bakta GFF annotation files.

Kaptive performance comparisons and benchmarking
We compared the typing performance of Kaptive v2.0.9 and Kaptive v3.0.0.b5 for all assembly types. We defined agreement as 
the percentage of correct and typeable (true positive) calls and sensitivity as true positive/(true positive+false negative), where 
false negatives were defined as correct but untypeable calls. Typeable loci were defined as those with confidence score ‘typeable’ 
(Kaptive v3) and any of ‘good’, ‘high’, ‘very high’ or ‘perfect’ (Kaptive v2). We report the rates of typeability (regardless of agree-
ment), agreement and sensitivity across both Kaptive versions. We do not report specificity or accuracy as per the standard 
statistical definitions due to the difficulty in defining true negative outcomes: whilst an incorrect call marked as ‘untypeable’ could 
be considered a true negative outcome, the vast majority do not represent a bona fide true negative because there are very few 
genuine novel (untypeable) loci in the test datasets. As a consequence, we observed a high number of incorrect and ‘untypeable’ 
calls for assemblies that harbour loci represented in the reference database that should therefore be typeable. These calls resulted 
in inflated true- negative counts and misleading specificity/accuracy estimates. Therefore, we instead report the rate of optimum 
outcomes as the sum of the percentages: (i) of assemblies harbouring a locus with a true match in the reference database, which 
were reported correctly and marked as ‘typeable’, and (ii) of assemblies harbouring a genuine novel locus, reported as ‘untypeable.’

Finally, we benchmarked runtime performance between Kaptive v2.0.9 and Kaptive v3.0.0.b5 on a desktop computer with a single 
ARM Apple M2 8 Core CPU. Runtime was measured using the ‘time’ utility (Zsh built- in) across both the K- and O-/OC- locus 
databases for each completed KpSC and A. baumannii assembly (n=1,494) using the following commands: ‘kaptive assembly 
<db> <assembly> -o /dev/null’ for Kaptive 3 and ‘python  kaptive. py -k<db> -a <assembly> --threads 8 -o /dev/null’ for Kaptive 2. 
Both versions used 8 threads for alignment (noting that Kaptive 3 will automatically default to the maximum number of available 
CPUs or cap out at 32), and the Kaptive v2 assembly blast+ databases were cleared after each run so that database construction 
time was included in each benchmark.

Python v3.10 and R v4.4.1 were used for scripts and statistical analyses unless otherwise stated.

RESULTS
Illumina sequence coverage influences locus fragmentation and Kaptive v2 typeability
We explored the Kaptive v2 calls of short- read draft assemblies (no read subsampling), excluding those harbouring novel/deletion 
variants as determined by inspection of the complete genome sequence (considered the ground truth). For KpSC K- loci, we found 
that 25% (n=134/533) were assigned confidence ‘low’ or ‘none’ and would therefore be considered ‘untypeable’, whereas only 2% 
of O- loci (n=12/538) had these confidence values. For A. baumannii, 8% (n=15/196) and 4% (n=7/197) K- and OC- loci were 
assigned these values, respectively. We also noted that many of the KpSC K- loci (48%, n=257/533) were fragmented over contigs 
and a similar number (48%, n=254/533) were lacking one or more expected genes, with both events usually co- occurring in 
the same assemblies. However, amongst the KpSC O- loci and A. baumannii K/OC- loci, ≤25% were fragmented and/or missing 
genes, respectively.

Most of the missing K- locus genes in the Illumina- only (non- subsampled) KpSC assemblies were involved in sugar processing 
(n=923/1,088, 85%). These genes had a mean absolute GC difference of 0.19 (where GC difference is defined as the GC of a gene 
minus the GC value for the chromosome). This mean absolute difference was over double the mean absolute GC difference of 
missing genes in the O- locus (0.08) (Fig. S1a and Table S3). We speculated that these genes may be missing or fragmented in the 
assemblies due to GC- dependent sequencing dropout, i.e. when a region of a genome is not captured in the Illumina read data 
because its GC content differs substantially from the genome mean value for which the library preparation protocol is optimized. 
We therefore tested for an association between GC difference and Illumina sequencing coverage of all K- locus genes stratified 
by their prevalence amongst K- loci (core vs variable) and the library preparation kit (Nextera Flex vs Nextera XT). There was a 
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significant association for Illumina reads prepared with the Nextera XT kit (P<0.001, W=825,411.5; using a Wilcoxon rank sum 
test with continuity correction), which was not apparent for those prepared with the newer Nextera Flex kit (P=0.212) (Fig. 1). The 
impact was greatest for variable genes, i.e. the capsule- specific sugar processing genes (Fig. 1), which are known to be associated 
with comparatively greater GC divergence from the chromosome [16].

Similar GC content- dependent coverage bias has been reported previously for sequencing libraries prepared with the Nextera XT 
kit due to the variation in tagmentation site cleavage efficiency [43]. This bias likely results in the non- amplification of K- locus 
gDNA during Illumina library preparation and subsequent data loss during sequencing. This data loss perturbs De Bruijn 
graph- based assembly in this region of the chromosome, resulting in K- loci that are ‘broken’ over contigs (i.e. fragmented into 
multiple pieces), fuelling the low K- locus typeability for KpSC. Notably, absolute GC differences were much lower for KpSC O 
and A. baumannii K-/OC- locus genes (Fig. S1a), and there was comparatively minimal sequencing dropout (Fig. S1b). This loss 
of locus sequence is reflected in low blastn alignment coverage to the reference locus sequences, which biases the selection of 
shorter loci by the Kaptive v≤2 algorithm such as KL107 and ultimately results in an inaccurate call.

Locus typing with Kaptive v3
To overcome the typeability issues resulting from fragmented assemblies, Kaptive 3 uses a two- stage gene- first locus scoring 
algorithm (Fig. 2). As loci are defined based on distinct gene content, we sought to maximize the information entropy of each 
locus by first aligning the respective sets of genes to input contigs and subsequently ranking each locus. This gene- first method also 
sought to overcome the coverage bias we observed for previous versions of Kaptive in fragmented loci due to the loss of sequence.

In the first stage, minimap2 is used to align all genes from all reference loci to the input assembly contig sequences. A score is 
calculated for each locus by summing the specified alignment metric for all of the corresponding genes (either alignment score, 
number of matching bases, number of aligned bases or query length). The alignment scores are weighted by the specified weighting 
metric (number of genes found, number of genes expected, proportion of genes found or total length of each reference locus), and 
each locus is ranked (Fig. 2a). The default alignment and weighting metrics are ‘alignment score’ and ‘proportion of genes found’ 
selected as those that resulted in the highest proportion of locus calls matching the ground truth for the test dataset (Table S4).

In the second stage, the full- length nt sequences of the top- ranking reference loci are fully aligned to the assembly, and the best- 
match locus is identified based on the best alignment score (Fig. 2b). This second step provides coordinates of the locus within the 
assembly and allows Kaptive to distinguish between closely related loci with highly similar gene content such as OCL1 and OCL9 
in A. baumannii, which differ by the presence of a single gene [36]. The number of top- ranking loci fully aligned to the assembly 

Fig. 1. Illumina sequencing coverage vs absolute GC difference from the chromosome. K- locus genes from matched completed KpSC assemblies are 
stratified by the library preparation chemistry and coloured by prevalence amongst reference loci, as indicated. Core genes represent those encoding 
the conserved synthesis and export machinery; variable genes are those involved in sugar processing and antigenic variation.



6

Stanton et al., Microbial Genomics 2025;11:001428

can be specified by the user using the ‘--n- best’ parameter, with a default of 2 (based on observations of pairs of highly similar A. 
baumannii loci; however, for databases without pairs of similar loci, this can be set to 1 to simply retrieve the coordinates of the 
best locus from the first stage; or for databases with groups of highly similar loci, the parameter can be increased).

Once the best- match reference locus has been identified, the original gene alignments are culled to remove overlapping alignments 
corresponding to orthologous genes from different reference loci, with a preference to retain those associated with the best- match 
locus. The nt sequences of the remaining gene alignments are extracted from the input assembly, and if the gene coordinates 
overlap the full- length reference locus alignment coordinates, the gene is annotated as part of the locus. Each gene nt sequence 
is translated and aligned to the respective reference locus protein using the Smith–Waterman algorithm to determine variation 
in aa space [44]. Protein identity and coverage compared with the references are reported in the Kaptive output.

Extra- locus genes, i.e. genes outside of the K-, O- and OC- loci that are known to impact polysaccharide phenotypes, are detected 
and reported as described above. Additionally, we have implemented a new phenotypic prediction logic, which updates the 
predicted polysaccharide type based on the final intact gene content of the locus, using known phenotype- genotype patterns 
from the literature, e.g. truncation of the WcaJ or WbaP initiating glycosyltransferase proteins encoded by KpSC K- loci results 
in a capsule- null (acapsular) phenotype [45]. Files containing the specific logic for each species and locus can be found in the 
Kaptive reference database directory in the Kaptive git repository and are further described in the Kaptive database documentation 
(https://kaptive.readthedocs.io/en/latest/Databases.html).

Kaptive v3 confidence scores
We redefined Kaptive’s confidence criteria with consideration of the locus definition rules (i.e. that each locus represents a unique 
set of genes defined at a given minimum translated identity threshold) and to optimize the balance of correct vs incorrect (un)
typeable calls, especially for highly fragmented assemblies (Table 1 and Fig. S2). We also sought to make the confidence calls 
easier to interpret and have simplified the confidence tiers to explicitly state ‘typeable’ or ‘untypeable’.

Kaptive v3 is highly sensitive and accurate
Kaptive v3 reported a typeable result for a greater number of assemblies than Kaptive v2 for all databases and assembly types 
(Fig. S3 and Table S5). Amongst the assemblies that were classified as ‘typeable’, per cent agreement was high for both Kaptive v2 
and v3 (Fig. 3 and Table S5); i.e. the vast majority of results were reported as the correct locus (≥91% for all databases and read 

Fig. 2. Overview of the Kaptive 3 locus scoring algorithm stages. (a) Reference locus genes are aligned to input assembly contigs with minimap2, and 
alignment metrics are summed, weighted and ranked. The default alignment and scoring metrics are shown; alignment score and proportion of locus 
genes were found, respectively. Shading indicates genes with (dark) vs without (light) alignments. (b) The full nt sequences of the top- ranking loci from 
the first stage are aligned to the contigs to achieve further resolution and determine the locus coordinates in the input assembly.

https://kaptive.readthedocs.io/en/latest/Databases.html
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depths and ≥96% for read depths >20×). Misidentified loci primarily comprised IS variants and a minority of genuinely novel 
loci that were not represented in the reference databases (see Supplementary Results). Amongst assemblies that were classified as 
‘untypeable,’ rates of agreement were varied; i.e. many of the reported best- match loci did not match the ground truth, particularly 
for Kaptive v2 (see Supplementary Results, Fig. S4 and Table S5). In such instances, the ‘untypeable’ classification is appropriate, 
although the overall outcome is sub- optimal (see below).

Sensitivity reflects the proportion of assemblies carrying true matches to loci in the reference database that are correctly identified 
and reported as ‘typeable.’ Consistent with the differences in typeability, sensitivity was notably higher for Kaptive v3 than for 
Kaptive v2, particularly for low- depth assemblies (<40× depth, sensitivity range 0.85–1 for Kaptive v3 and 0.09–0.94 for Kaptive 
v2) and for KpSC K- loci (e.g. 0.97 vs 0.82 for the non- subsampled draft assemblies for Kaptive v3 and v2, respectively), whereas 
the differences for the other databases were more modest (e.g. 0.99–1 vs 0.95–0.98 difference for the non- subsampled draft 
assemblies) (Fig. 4 and Table S5).

Fig. 3. Per cent agreement amongst ‘typeable’ Kaptive locus calls. Data are stratified by species (rows), database (columns) and assembly subsampling 
group and coloured by Kaptive version as indicated. Assembly subsampling groups are arranged on the X- axis in descending order of subsampling 
read depth, starting with the complete (hybrid) and non- subsampled Illumina- only assemblies and then subsampling the Illumina- only reads at the 
stated increments.

Table 1. Kaptive 3 confidence score definition. When a locus is identified in a single contiguous piece within the input assembly, we apply strict criteria 
to define it as a ‘typeable’ match to the reference locus; i.e. it contains the same set of genes (note that pseudogenes are counted here). When a locus 
is not contiguous in the input assembly, we allow greater flexibility to account for sequencing dropout and misalignment of partial gene sequences.

Confidence Fragmented No. of Genes below identity 
threshold

Expected genes found (%) No. of Extra genes

Typeable No 0 100 0

Or if locus is fragmented

Yes 0 ≥50 ≤1

Untypeable Does not meet the above criteria
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A minority of genomes in our test dataset harboured K- and O-/OC- loci that were novel, which we consider genuinely untypeable. 
For A. baumannii, there was a single novel OC- locus and two novel K- loci, which were correctly reported as untypeable by both 
versions of Kaptive. For KpSC genomes, there were nine carrying novel K- loci and ten with novel O- loci. Kaptive v2 reported 
between 0 and 2 of these loci typeable for each database, whilst Kaptive v3 reported 0–2 typeable K- and 0–3 typeable O- loci, 
suggesting that Kaptive v3 is slightly more likely to mistype a genuine novel locus (see Supplementary Results for further details).

In order to incorporate all possible outcomes into a single measure of typing performance, we calculated the percentage of assem-
blies reported with the optimum outcome, which we defined as an assembly harbouring a locus with a true match in the reference 
database, reported correctly and marked as ‘typeable’, or an assembly harbouring a genuine novel locus, reported as ‘untypeable.’ 
We consider this value as a proxy for overall ‘accuracy’. Whilst both versions of Kaptive performed well for completed genomes 
(≥97% optimum outcomes for all databases), Kaptive v3 notably outperformed v2 at low assembly depths and more generally for 
draft assemblies typed with the KpSC K- locus database, where the percentage of optimum outcomes ranged from 7 to 77% for 
Kaptive v2 and 73 to 98% for Kaptive v3 (Fig. 5 and Table S5). This superior performance is primarily driven by the improvements 
to sensitivity, wherein Kaptive v3 is able to correctly type fragmented genome assemblies that were considered untypeable by 
Kaptive v2 (and also commonly misidentified). Importantly, ≥90% of all Kaptive v3 results for all assembly depths >20× (which is 
below the standard minimum depth recommendations for Illumina genome sequencing) were considered as optimum outcomes.

To demonstrate how these improvements in sensitivity and accuracy may impact the results of genomic surveillance studies, 
we returned to two KpSC genome datasets for which Kaptive v2 had yielded a high number of ‘untypeable’ calls. Kaptive v3 
resulted in a notable increase in useable data, with ‘untypeable’ calls dropping from 36.8% (n=121/329) to 2.7% (n=9/329) 
for invasive KpSC isolates from South and South East Asia [28] and 32.6% (n=84/258) to 1.9% (n=5/258) for neonatal sepsis 
isolates [27]. As may be expected, the improvements in typeability resulted in changes to the raw counts for individual loci, 
with the most extreme example being that Kaptive v2 identified n=0 typable KL64 amongst the invasive isolate collection, whilst 
Kaptive v3 identified n=15 typeable KL64 (Fig. S5). However, the vast majority of loci retained similar relative rank within the 
data (noting that it is difficult to make robust conclusions about rankings with modest sample sizes such as these and without 
using statistical prevalence estimates). The impact on counts and relative ranks was far greater when confidence scores were 

Fig. 4. Sensitivity of Kaptive locus calls. Data are stratified by species (rows), database (columns) and assembly subsampling group and coloured by 
Kaptive version as indicated. Assembly subsampling groups are arranged on the X- axis in descending order of subsampling read depth, starting with 
the complete (hybrid) and non- subsampled Illumina- only assemblies and then subsampling the Illumina- only reads at the stated increments.
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ignored, with erroneous KL107 calls ranked fourth and first, respectively, when each of the collections was typed with Kaptive 
v2 and almost entirely disappearing when the collections were typed with Kaptive v3. Again, this highlights the need to exclude 
‘untypeable’ calls.

Kaptive v3 is faster than Kaptive v2
Across all databases in the benchmark, Kaptive v3 outperformed Kaptive v2 in both system and user space, with a mean system 
time of 0.1±0.02 vs 0.8±0.5 s and mean user time of 1.2±0.5 vs 48±45 s (Fig. 6 and Table S6). Time in user space reflects the external 
subprocesses performing the alignments and demonstrates the advantages of using minimap2 over both blastn and tblastn, 
whereas the decrease in system space reflects the small optimizations made to the Kaptive codebase to improve elapsed runtime 
across a large dataset.

Kaptive v3 also outperformed Kaptive v2 in terms of mean total CPU time for KpSC K- locus (1.3±0.2 vs 23.4±5.2 s) and O- locus 
(0.7±0.1 vs 10.3±1.1 s) databases and for A. baumannii K- locus (1.0±0.1 vs 28.5±9.0 s) and OC- locus (0.6±0.03 vs 9.3±7.3 s) 
databases (Table S6). The runs using the larger K- locus databases (for both species) took the longest time to execute regardless 
of version, especially in user space, suggesting that execution time scales with the number of alignments performed by the 
respective alignment software.

Importantly, when considering total elapsed CPU time, Kaptive v3 was >1 order of magnitude faster than Kaptive 2 for the 
KpSC K- locus (18×) and O- locus (14×) databases and for the A. baumannii K- locus (16×) and OC- locus (27×) databases. 
This is particularly beneficial when analysing large (>1,000 genomes) datasets. Whilst this performance improvement may 
be negated on large, distributed compute clusters (where hundreds of jobs can be run in parallel), such resources remain 
inaccessible to many around the world, who can now directly benefit from large- scale genomic sero- epidemiology on their 
desktop computers.

Fig. 5. Percentage of optimal outcomes for Kaptive calls. Data are stratified by species (rows), database (columns) and assembly subsampling group 
and coloured by Kaptive version as indicated. Assembly subsampling groups are arranged on the X- axis in descending order of subsampling read 
depth, starting with the complete (hybrid) and non- subsampled Illumina- only assemblies and then subsampling the Illumina- only reads at the stated 
increments.
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DISCUSSION
We identified key issues for in silico antigen typing with Kaptive and addressed them in a new version that is highly sensitive, 
accurate and much faster than previous versions. Notably, Kaptive v3 has higher sensitivity and results in a greater number of 
optimum outcomes for fragmented polysaccharide synthesis loci, facilitating accurate data extraction from many more genomes. 
The impact is greatest for genomes harbouring loci that are subject to sequencing dropout due to GC divergence compared with 
the host chromosome (for which sequence library preparation protocols are usually optimized). These include the KpSC K- locus 
(a major target for sero- epidemiological analyses to inform vaccine design) [8] and are anticipated to include loci in other closely 
related organisms, e.g. other Klebsiella species as well as the major pathogens Escherichia coli and Enterobacter spp. that have 
similar chromosomal GC content and are known to share orthologous polysaccharide synthesis genes [2].

We acknowledge that assembly fragmentation can be circumvented using long- read sequencing platforms such as Oxford Nano-
pore Technology’s (ONT) MinION or GridION devices, which are rapidly growing in popularity. However, we anticipate that it will 
be many years before these technologies become ubiquitous in research and public health laboratories, necessitating the Kaptive 
updates presented here. Additionally, until the recent release of ONT’s R10 sequencing chemistry, KpSC ONT- only assemblies had 
high rates of sequence error and untypeable Kaptive v≤2 calls due to missing genes as a result of tblastn mis- translation [46].

Kaptive v3’s user execution time is considerably lower than Kaptive v2, due to the replacement of blast+ alignment subproc-
esses with Minimap2. The time- savings can also be attributed to a reduction in the number of alignments performed, with only 
the top- scoring loci fully aligned to the input assembly and the best- match locus genes compared (via translation and pairwise 
protein alignment) in Kaptive v3. In contrast, all loci were previously aligned via blastn, and gene content was assessed with 
tblastn in Kaptive v≤2.

Fig. 6. Kaptive typing speed. The three columns show system, user and total CPU time in seconds (log10 scaled), and the rows represent results for 
KpSC and A. baumannii completed assemblies stratified by database. Points represent the runtime in seconds on each assembly and are coloured by 
Kaptive version as indicated.



11

Stanton et al., Microbial Genomics 2025;11:001428

The ability to accurately type fragmented draft assemblies, alongside a realistic execution time for large genome collections on 
a personal computer, facilitates broader accessibility and greater data usability. There are currently 72,191 KpSC and 32,068 
A. baumannii assemblies hosted on the NCBI genome database, which is increasing daily (accessed 25 September 2024). This 
exponential increase in the size of publicly available datasets acts as a bottleneck for downstream analysis, and even a limiting 
factor for those without the compute resources to perform analysis at this scale. To further aid accessibility, including for 
bioinformatics- naïve users, Kaptive 3 is implemented in Kaptive Web, and the pathogen surveillance platform Pathogenwatch, 
enabling thousands of users around the world to perform in silico antigen typing on KpSC and A. baumannii genome assemblies 
without high- performance computing resources [18, 47]. The updated command- line implementation can be used to type other 
organisms, e.g. with third- party or custom databases [20, 48].

We will continue to develop new Kaptive- compatible databases for other species of interest and welcome similar efforts 
from other teams. We performed our systematic typing performance assessments only for the Kaptive databases distributed 
directly with the Kaptive code; however, we expect similar performance for other databases that comprise loci distinguished 
by their gene content at a fixed translated sequence identity threshold and that capture the majority of loci present in the 
bacterial population of interest (note ≤1.8% of genomes in our test datasets carried novel loci). Accuracy may vary for 
less complete databases and/or populations wherein a high number of isolates are expected to carry novel loci that may be 
mistyped as reference loci (Supplementary Results). In these cases, we recommend that users manually inspect the Kaptive 
output and perform confirmatory investigations for fragmented loci as well as those that are reported with large length 
discrepancies compared with the best- match reference (i.e. which may contain novel polysaccharide processing genes that 
are not present in the reference database).

Finally, we would like to highlight that the accuracy estimates presented here reflect Kaptive’s capacity to detect genetic loci only. 
These estimates do not necessarily reflect phenotypic predictive accuracy, which is a function of locus detection and knowledge 
about the relationship between genotype and phenotype. Efforts to estimate phenotypic predictive accuracy for KpSC capsule 
(K) types are currently underway and will be reported elsewhere. Ongoing work will support continued improvements for both 
locus and phenotype prediction.
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