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data: methodological and reporting considerations
Defining measures of kidney function in
observational studies using routine health care
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The availability of electronic health records and access to a
large number of routine measurements of serum creatinine
and urinary albumin enhance the possibilities for
epidemiologic research in kidney disease. However, the
frequency of health care use and laboratory testing is
determined by health status and indication, imposing
certain challenges when identifying patients with kidney
injury or disease, when using markers of kidney function as
covariates, or when evaluating kidney outcomes.
Depending on the specific research question, this may
influence the interpretation, generalizability, and/or
validity of study results. This review illustrates the
heterogeneity of working definitions of kidney disease in
the scientific literature and discusses advantages and
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limitations of the most commonly used approaches using 3
examples. We summarize ways to identify and overcome
possible biases and conclude by proposing a framework for
reporting definitions of exposures and outcomes in studies
of kidney disease using routinely collected health care data.
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R outinely collected health care data from registries,
electronic health records, and claims databases are
increasingly used for research purposes. The avail-

ability of laboratory-based kidney function markers, such as
serum creatinine and albuminuria, in these data sources in-
creases the opportunities for research in kidney disease.
Carefully conducted epidemiologic studies are critical to
address the burden, incidence, and prevalence of kidney
disease, and to identify mechanisms of action, optimal miti-
gation/treatment strategies, and gaps in health care pro-
cesses that collectively have the potential to improve care
and, ultimately, outcomes.
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Using routinely collected health care data poses specific
challenges when defining chronic kidney disease (CKD),1

acute kidney injury (AKI),2 the recently proposed entity,
acute kidney disease (AKI that is still evolving),3 and CKD
progression. There are ongoing initiatives to harmonize ef-
forts for establishing diagnoses of CKD, AKI, and acute kid-
ney disease,4 identify reproducible and valid end points in
clinical trials,5–7 and define outcomes that are important to
people living with kidney disease.8 However, concurrent ef-
forts to harmonize definitions in epidemiologic studies that
rely on routine clinical data have been lacking.

The aim of this review is to highlight potential challenges
of working definitions of measurements of kidney health in
studies of routine care. We start by discussing general issues
when working with routine care data: routine care data
sources may be fragmented and capture sicker patients. We
then discuss pros and cons of the most commonly used
definitions and suggest ways to identify and overcome po-
tential biases introduced by using these definitions
(Table 1).9–14 Throughout the article, we use 3 exemplar
research questions as illustration. We specifically focus on the
following causal questions, for which biases (confounding,
selection bias, and measurement bias) are well defined:
(i) What is the causal effect of receiving a CKD diagnosis on

mortality risk in older patients with 2 estimated
glomerular filtration rate (eGFR) values <60 ml/min per
1.73 m2 >3 months apart?

(ii) Among people with CKD, what is the causal effect of
initiating sodium-glucose cotransporter-2 inhibitors
versus dipeptidyl peptidase 4 inhibitors on the risk of
CKD progression, heart failure admissions, and all-cause
mortality?

(iii) After AKI, what is the causal effect of stopping versus
continuing renin-angiotensin system inhibitors (RASi)
on the risk of recurrent AKI?

We will not cover cohort studies with prospective
recruitment and follow-up: considerations for this research
design are different from those when using routinely collected
data. We conclude by proposing a framework for consensus
efforts on reporting definitions of exposures and outcomes in
observational studies addressing kidney disease using
routinely collected data.

General issues when working with routine care data
Data fragmentation affects who is captured and followed

up. In many countries, routinely collected health care data
are captured in disjointed software systems, which are not
necessarily integrated.15 For instance, laboratory information
may be only captured in a specific clinical setting,16 such as
ambulatory care, or in hospitals, leading to fragmentation of
information and follow-up in the data set. Other databases
may include patients on enrollment in an insurance plan (e.g.,
in the United States), or when they become aged 65 years
(e.g., Medicare in the United States and Ontario Drug Ben-
efits): when this happens, data before cohort entry are usually
not available. Similarly, patients may exit the database when
54
they move to another general practitioner, or when switching
from insurance, not contributing further to the database.17

Commonly used health care databases in kidney research
are summarized in Supplementary Table S1 and Figure 1.18,19

The completeness of the data capture may influence the
interpretation, generalizability, and internal validity of study
results.20 For instance, when studying the causal effect of
initiating sodium-glucose cotransporter-2 inhibitors versus
dipeptidyl peptidase 4 inhibitors on CKD progression in
claims data sources (question 2), unavailability of data before
enrollment may lead to misclassification of conditions, and
this may bias effect estimates (information bias).21 Further-
more, selection bias due to informative censoring22 will occur
when using data sources in which patients with advanced
kidney disease get referred from primary care to secondary
care and are not followed up thereafter, because those
developing advanced kidney disease will drop out from the
database.

Sicker patients have more tests on file than healthy patients.
Routinely collected health care data do not capture a random
sample of the population, but a subgroup of patients who
interact with the health care system. As an example, the
Stockholm CREAtinine Measurements (SCREAM) cohort in
Sweden described that during 2006 to 2011 roughly 67% of the
Stockholm population underwent creatinine testing at least
once.23 This nongeneralizability is unlikely to be important for
studies that focus on drug effectiveness and safety (such as
questions 2 and 3), because the target population for such
studies is usually the population eligible for receiving these
drugs (i.e., those interacting with the health care system), and
not the complete population. However, if the interest would lie
in the estimation of the CKD prevalence in Stockholm, the
investigator would need to account for the fact that healthier
individuals are underrepresented in the data set.24

The presence and frequency of a certain laboratory
measurement reflect aspects of disease (e.g., albuminuria
testing in routine care is mainly directed to specific pop-
ulations [people with diabetes, hypertension, pregnancy,
and known CKD]).25–27 For question 2, it would be useful
to include albuminuria as a potential confounder, but the
issue of missing data must be addressed. Excluding in-
dividuals without these data may have 2 consequences.
First, the cohort may not be similar anymore to the target
population, because sicker subgroups are oversampled,
which may affect generalizability of study findings (e.g., the
medication may be more beneficial in the study population
because it oversampled patients with macroalbuminuria, for
whom the absolute benefit is larger). It is therefore good
practice to report how representative the study population
is compared with the target population (e.g., by comparing
baseline characteristics or incidence of outcomes).28 Com-
plete case analysis can lead to bias when data are not
missing completely at random (Table 1), although several
exceptions exist.29 We caution against the uncritical use of
multiple imputation methods using electronic health data
as they can worsen bias if the models are misspecified.29–32
Kidney International (2023) 103, 53–69



Table 1 | Glossary of terminology associated with bias and examples of research questions

Bias Definition

1. What is the causal effect of receiving a
CKD diagnosis on mortality risk in older
patients with 2 eGFR values <60 ml/min

per 1.73 m2 >3 months apart?

2. Among people with CKD, what is the causal effect of initiating
SGLT2i vs. DPP4i on the risk of CKD progression, heart failure

admissions, and all-cause mortality?

3. After AKI, what is the causal effect of
stopping vs. continuing RASi on the risk of

recurrent AKI?

Exposure: receiving a CKD diagnosis vs.
not receiving a CKD diagnosis

Outcome: mortality
Population: people aged ‡65 yr with 2
eGFR values <60 ml/min per 1.73 m2 >3

months apart

Exposure: SGLT2i vs. DPP4i
Outcomes: CKD progression, heart failure admissions,

and all-cause mortality
Population: people with CKD

Exposure: stopping vs. continuing RASi
Outcome: recurrent AKI

Population: people with AKI

Example of how bias
arises Potential solution Example of how bias arises Potential solution

Example of how bias
arises

Potential
solution

Selection
bias

Bias in the estimated
association or effect of
an exposure on an
outcome that arises from
the procedures used to
select individuals into
the study or the analysis.

It arises when
conditioning on a
common effect.
Examples of selection
bias include depletion of
susceptibles (or survivor
bias), prevalent user bias
(those who did not
tolerate drug use or died
are excluded at baseline),
informative censoring or
loss to follow up, and
missing data.

Collider bias is a special
case of selection bias
where the analysis
conditions (either by
statistical adjustment or
restriction of the study
population) on a collider
(a variable that is
affected by 2 other
variables [e.g., exposure
or outcome or related
variables, which then
introduce a spurious
association]).

1. Assessing the
relationship between
CKD diagnosis and
mortality in routinely
collected health care
data implicitly
restricts to the subset
of people with 2
eGFR measurements.
As both eGFR level
and health status
influence availability
of test results in the
study, collider bias is
introduced
(Supplementary
Figure S1A).

2. When follow-up is
started from the
second
measurement,
depletion of
susceptibles may
lead to selection bias
due to 2 colliders
(Supplementary
Figure S1B).

1. Conduct study in a
setting/population
where kidney
function is measured
in everybody at
baseline (e.g., by
restricting to a
certain
subpopulation).

2. Selection bias due
to depletion of
susceptibles may be
small when the
window between 2
measurements is
short and low-risk
populations are
studied.

1. Loss to follow-up or dropout
that is differential with respect
to the exposure leads to
selection bias (e.g., this occurs
when data are fragmented [only
primary care data are available]
and more people in the DPP4i
arm are lost to follow-up as they
transition to specialized care).
Differential dropout due to
death also biases estimation of
kidney function slopes
(Supplementary Figure S1C).

2. Missing data: excluding
individuals without eGFR or
UACR measurements introduces
selection bias when the
missingness depends on the
exposure (either directly or
indirectly) and health status
(Supplementary Figure S1D).

1. Loss to follow-up or dropout can
be handled using inverse
probability of censoring weighting
or by using joint models, which
explicitly model the dropout
process and longitudinal outcome
simultaneously through shared
random effects.

2. Provide clarity as to who the
population with available
measurements (eGFR/UACR
measurements) was and do not
extrapolate further. Multiple
imputation can be attempted but
may be misspecified.

Studying recurrent
events is susceptible to
selection bias when prior
treatment influences the
risk of AKI9

(Supplementary
Figure S1E).

Adjusting for
prior treatment,
or restricting to
people who have
not been treated
previously,
removes the
selection bias.

(Continued on following page)
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Table 1 | (Continued) Glossary of terminology associated with bias and examples of research questions

Bias Definition

1. What is the causal effect of receiving a
CKD diagnosis on mortality risk in older
patients with 2 eGFR values <60 ml/min

per 1.73 m2 >3 months apart?

2. Among people with CKD, what is the causal effect of initiating
SGLT2i vs. DPP4i on the risk of CKD progression, heart failure

admissions, and all-cause mortality?

3. After AKI, what is the causal effect of
stopping vs. continuing RASi on the risk of

recurrent AKI?

Exposure: receiving a CKD diagnosis vs.
not receiving a CKD diagnosis

Outcome: mortality
Population: people aged ‡65 yr with 2
eGFR values <60 ml/min per 1.73 m2 >3

months apart

Exposure: SGLT2i vs. DPP4i
Outcomes: CKD progression, heart failure admissions,

and all-cause mortality
Population: people with CKD

Exposure: stopping vs. continuing RASi
Outcome: recurrent AKI

Population: people with AKI

Example of how bias
arises Potential solution Example of how bias arises Potential solution

Example of how bias
arises

Potential
solution

Information
bias

Bias in an estimate
arising from
measurement errors or
misclassification (the
erroneous classification
of an individual, a value,
or an attribute into a
category other than that
to which it should be
assigned).

Immortal time bias:
immortal time is
introduced if follow-
up is started at the
moment eGFR
decreases to <60 ml/
min per 1.73 m2, but
patients who receive
a CKD diagnosis later
during follow-up are
classified into the
CKD diagnosis group.
Immortal time bias
can be considered a
form of
misclassification
because unexposed
person-time is
incorrectly
considered exposed
person-time.

Causal study designs,
such as clone-censor-
weight or sequential
trials, appropriately
align the start of
follow-up with the
start of exposure and
mitigate immortal
time bias.

1. More kidney function
measurements are taken during
follow-up in the DPP4i arm,
leading to differential
measurement error in the
outcome. CKD progression is
therefore more likely to be
picked up in the DPP4i arm,
biasing the effect estimates.

2. Admissions of patients with
advanced CKD who have
volume overload but normal
cardiac function on
echocardiography are miscoded
as admissions with heart failure.

3. Classifying transient
decreases in GFR as CKD
progression leads to bias in the
estimation of the incidence rate
of the outcome and of the
absolute risk differences.

1. To detect differential outcome
ascertainment bias, the number of
kidney function measurements can
be compared between exposure
groups. More kidney function
measurements in 1 exposure group
than the other point toward
differential outcome ascertainment
bias. Differential outcome
ascertainment bias is unlikely to
occur for hard end points that do
not depend on testing, such as
kidney replacement therapy.

2. Perform validation study of heart
failure codes for population with
CKD to quantify whether this bias is
common or rare. The obtained
sensitivity and specificity can be
used in quantitative bias analyses to
provide adjusted effect estimates.

3. Identifying sustained declines in
eGFR by using a linear mixed model
helps to appropriately classify
transient decreases in GFR as
nonevent.

1. Using diagnosis codes
to ascertain AKI may miss
many AKI events (high
specificity and low
sensitivity), 10–13 leading
to an underestimate of
the incidence rate and
bias in absolute risk
differences

2. Differential outcome
ascertainment may occur
if more creatinine
measurements are
performed during follow-
up in 1 exposure group
and hospitalizations
without a baseline
creatinine measurement
are not considered for
AKI events.

Clearly report the
definition used.
Use different
definitions to
assess their
influence on
point estimates.

To detect
differential
outcome
ascertainment
bias, the number
of kidney
function
measurements
can be compared
between
exposure groups.

Confounding
bias

Bias of the estimated
effect of an exposure on
an outcome because of
the presence of common
causes of the exposure
and the outcome.

Many risk factors for
receiving a CKD
diagnosis are also risk
factors for all-cause
mortality. For
instance, physicians
may give a coded
CKD diagnosis to
sicker patients who
have more
comorbidities and a
lower eGFR.

Measuring and
appropriately
adjusting for all
confounders.
Alternatively, quasi-
experimental designs,
such as regression
discontinuity, can be
used to study the
effect of receiving a
CKD diagnosis on
outcomes by using a
“threshold” (i.e., the
probability to receive

SGLT2i are more likely to be
prescribed in people with CKD
(study population) but with
prescriptions depending on
kidney function itself, and also
in people with atherosclerotic
cardiovascular disease, or heart
failure.
Corresponding diagnosis codes
(which often have high
specificity but low sensitivity)
may lead to residual
confounding.

Measure and adjust for all
confounders. Whenever available,
adjust for measurements of kidney
function, such as eGFR and UACR,
and metrics of heart failure/volume
overload at baseline (e.g., LVEF and
NT-proBNP). Be aware of
fragmentation of data.
Negative or positive control
outcomes can be used to detect and
adjust for residual confounding.
Quantitative bias analysis can be used
to assess the influence of residual
confounding on effect estimates.

The severity of AKI may
be an important
confounder because it
will influence the
decision of whether to
stop RASi and is
associated with the
likelihood of having a
repeated AKI.

Adjust for the
severity of AKI,
taking into
account the
magnitude of
creatinine
elevations as well
as whether
kidney
replacement
therapy was
needed.
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Laboratory testing may also be influenced by external
factors, such as financial incentivization. For instance, there
was a notable increase in serum creatinine testing among
patients with diabetes attending primary care in the United
Kingdom following the implementation of the Quality and
Outcomes Framework in 2004.33

Considerations when using CKD as exposure or population
Various algorithms have been used to identify persons with
CKD in health care databases34: Table 2 describes those most
commonly used, along with identified merits and caveats.
Figure 2 graphically shows an example of how different al-
gorithms may identify the same patient at different points
during the disease course. This means that for research
question 2, different CKD populations will be identified,
depending on the definition used, which affects generaliz-
ability and interpretation of study results.

Diagnostic coding of CKD. In settings without laboratory
data, diagnosis codes (e.g., International Classification of Dis-
eases, Ninth Revision [ICD-9] or International Classification of
Disease, Tenth Revision [ICD-10]) are commonly used to
identify patients with CKD.34 Diagnostic codes have high
specificity for CKD, and can detect patients with structural
abnormalities not recognized by laboratory-based algo-
rithms.33–35 However, relying on recorded clinical diagnoses
of CKD often fails to identify a large proportion of patients
with CKD due to limited awareness of kidney disease,
meaning a low sensitivity.36,37 The consequences of using
diagnostic codes to identify patients with CKD also depends
on coding practices: increasing awareness resulting from
system changes, such as automatic eGFR, can lead to changes
in the completeness of data over time.38 In studies with
cohort identification periods spanning many years, underly-
ing morbidity or severity of diagnosed CKD in selected pa-
tients may vary over time.39–42 For questions 1 and 2, studies
should therefore take account of calendar year and health
provider (e.g., different general practitioners in the United
Kingdom) to address temporal and health provider variation
in CKD identification, which is likely nonrandom, and
potentially associated with health outcomes. We suggest using
the term “diagnosed CKD” when detection is limited to In-
ternational Classification of Diseases codes.

For question 1, “What is the causal effect of receiving a
CKD diagnosis on mortality risk in older patients with 2
eGFR values <60 ml/min per 1.73 m2 >3 months apart?,”
receiving a CKD diagnosis is the exposure, but not the pop-
ulation. Those who have biochemical evidence for a CKD
diagnosis but have no formal diagnosis on file are the com-
parison group.

Laboratory variables and equations to estimate glomerular
filtration rate. The laboratory assay used for quantifying
serum or plasma creatinine, and its traceability to the isotope-
dilution mass spectrometry international standard, as well as
the equation used for estimating glomerular filtration rate
should be clearly reported in research.43 Researchers need to
be aware that eGFR may not reflect true kidney function; and
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Availability of laboratory test results and coded diagnoses

Availability of coded diagnoses for CKD, AKI, and KRT

For example:
• SCREAM
• Danish databases
• Canadian provincial databases
• US Veterans Affairs
• Kaiser Permanente databases
• Thailand electronic health records

For example:
• UK CPRD
• SIDIAP database
• Dutch primary care data

For example:
• Some HMO databases
• Some disease (e.g., diabetes)
  registries
• MIDNET in Japan

For example:
• US Medicare and commercial
  databases
• Taiwan NHI database
• Korean NHI databases
• NDB in Japan

Integrated heath care
databases

Primary care−based
databases

Hospital-based
databases

Administrative claims
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Figure 1 | Overview of different routinely collected health care databases used in kidney disease research, illustrating data
fragmentation. AKI, acute kidney injury; CKD, chronic kidney disease; CPRD, Clinical Practice Research Datalink; HMO, health maintenance
organization; KRT, kidney replacement therapy; MIDNET, Medical Information Database NETwork; NDB, National Database of Health Insurance
Claims and Specific Health Checkups of Japan; NHI, National Health Insurance; SCREAM, Stockholm CREAtinine Measurements; SIDIAP,
Information System for Research in Primary Care in Catalonia, Spain.
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depending on the study question, this can lead to bias. An
additional issue, if the data are available, is the type of health
care encounter in which the test took place (i.e., outpatient vs.
inpatient creatinine test). We note that eGFR equations have
not been validated when kidney function is not stable.

Consequences of using the chronicity criterion. Kidney
Disease: Improving Global Outcomes (KDIGO) developed a
consensus definition for diagnosing CKD in clinical practice.1

This definition is based on the presence of reduced eGFR or
albuminuria for at least 3 months or structural abnormalities
of the kidneys, and requires repeated testing, if the first
screening result of eGFR or albuminuria is abnormal.
Ensuring chronicity is essential in establishing a CKD diag-
nosis and has become routine worldwide. This approach has
also frequently been applied in observational studies evalu-
ating the incidence, prevalence, risk factors, and outcomes of
CKD.44–47 However, requiring 2 consecutive eGFR measure-
ments 3 months apart in routinely collected data can lead to a
selective population, because it requires that the patient is sick
enough to seek health care twice or be recalled for a confir-
matory test, which may vary between clinicians and based on
patient characteristics. Furthermore, if the time for the
diagnosis of CKD is defined by the second low eGFR beyond
58
3 months, the identification with CKD will be delayed at least
3 months. In a recent study, using the definition for CKD of 2
eGFR measurements of <60 ml/min per 1.73 m2 at least 90
days apart (with no upper limit) resulted in a “delay,” with
more than half of patients being recognized as having CKD
>1 year after the first low eGFR (median, 13 months
[interquartile range, 6–35 months]).37

When answering research question 1, care should be taken
to appropriately align the start of follow-up with the start of
the exposure to prevent immortal time bias or depletion of
susceptibles bias.48 If follow-up is started at the time eGFR
decreases below 60 ml/min per 1.73 m2, but patients receive a
diagnosis of CKD only later during follow-up, immortal time
will be introduced.49–51 Patients in the CKD diagnosis group
cannot die during the period between eGFR <60 ml/min per
1.73 m2 and the CKD diagnosis. After all, they would have
been assigned to the “no CKD diagnosis” group if they had
died during this period. This gives an artificial survival
advantage to the CKD diagnosis group. If receiving a CKD
diagnosis truly has a causal effect (either beneficial or
harmful) on mortality, and follow-up is started some period
after patients received a CKD diagnosis, “depletion of sus-
ceptibles” bias is introduced,52 which is a form of selection or
Kidney International (2023) 103, 53–69



Table 2 | Advantages and disadvantages of different definitions of CKD used in previous studies based on routinely collected
data

Definition Advantages Disadvantages

Diagnosis codes - High specificity, because clinically
verified

- Usually available in data sources
without laboratory measurements
(e.g., claims databases)

- May pick up structural changes
that are not picked up by eGFR
and/or albuminuria definitions

- Low sensitivity
- Considerable delay in identification
- Sensitive to changes in testing and coding practices
- Misclassification influenced by coding practices and pur-
pose (e.g., reimbursement, pay for performance, and
documentation in routine practice)

Single eGFR <60 ml/min per 1.73 m2

Single UACR >30 mg/g
- High sensitivity
- Minimal delay in identification

- Sensitive to changes in testing practices
- Loss of information associated with dichotomizing the
outcome by a certain threshold

- Lacks confirmation of chronicity
- May identify AKI or AKD instead of CKD
- Testing for albuminuria is less frequent and may vary be-
tween specific patient groups; selected patient groups
tested for UACR will be overrepresented

Two eGFRs <60 ml/min per 1.73 m2

and/or 2 UACRs >30 mg/g at least 90
d apart

- Ensures chronicity
- In accordance with guidelines
- Acknowledges the criteria of kid-
ney damage

- Delay/missed identification (requires regular testing in
study population)

- Sensitive to changes in testing practices
- May identify patients with 2 episodes of AKI or dehydration.
Additional condition “no eGFR >60 ml/min per 1.73 m2 or
UACR <30 mg/g during the CKD-defining period of at least
90 d” could minimize the risk of including such patients

- A time limit (e.g., no more than 365 d apart) may need to be
defined to target well-observed patients with CKD, in return
for higher risk of missing patients with infrequent tests

- Baseline for follow-up can only start at second measure-
ment, resulting in survivor bias

- Testing for albuminuria is less frequent and may vary be-
tween specific patient groups; selected patient groups
tested for UACR will be overrepresented

AKD, acute kidney disease; AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; UACR, urine albumin–to–creatinine ratio.
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survivorship bias (Table 1). Analyses will need to use
appropriate statistical methods (e.g., time-dependent expo-
sure variables) or comparison groups (e.g., allowing for the
same period of “run-in” immortal time for the non-CKD
cohort) to align the start of follow-up and start of exposure
to prevent immortal time bias and depletion of susceptibles
bias.16,48,53,54

Adding albuminuria to eGFR to classify CKD. Most obser-
vational studies identify CKD cases on the basis of eGFR
only.55 At least a fifth of the populations with CKD remain
understudied and uncharacterized because they have CKD
category G1 and G2 and require either A2 or greater urine
albumin–to–creatinine ratio (UACR) or other signs of renal
damage (e.g., structural kidney disease) for identification.56,57

Recent initiatives have been taken to improve patient identi-
fication in routine databases by developing conversion for-
mulas between urinary protein-creatinine ratio or urinary
dipstick protein to UACR.58,59 However, even these tests are
not universally performed, and even if such conversion is
introduced, the tests are not fully comparable. Notably, urine
dipstick analysis, which measures protein, but not creatinine,
has generally high false-negative rates, and can also have a
high false-positive rate in the general community setting
when compared with more quantitative tests.60 Finally, re-
searchers have used different strategies for classification of
Kidney International (2023) 103, 53–69
CKD (e.g., the least severe, the most severe, the most recent,
or the mean or median of eGFR or UACR level during the
period used to define CKD).61,62 Being transparent about and
justifying the chosen definition are essential for the reader to
understand the study’s strengths, limitations, generalizability,
and likely reproducibility.

Defining CKD progression
There is ample heterogeneity in how CKD progression is
defined in epidemiologic studies, including both claims-
related end points (kidney replacement therapy [KRT]53 or
death attributed to CKD63), time to laboratory-based per-
centages of eGFR decline relative to baseline (typically 30%,
40%, 50%, or 57%),64 time to doubling of serum creatinine,65

eGFR values below a certain threshold (e.g., incident <60
or <15 ml/min per 1.73 m2),66 diagnostic coding for CKD,67

longitudinal eGFR decline, and combinations of these in a
composite outcome. Table 3 lists some of the methods used to
define CKD progression and discusses pros and cons. The
same challenges that apply to CKD ascertainment also apply
herein. Because of space limitations, we will not discuss
definitions of albuminuria progression, which can be ascer-
tained by transition to a different “A” category or changes in
continuous UACR over time. As explained earlier, the capacity
to detect these outcomes depends on the type of testing
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Figure 2 | The algorithm used to identify chronic kidney disease (CKD) influences when patients are included in the study. This is an
example of a patient with recorded estimated glomerular filtration rate (eGFR) and urine albumin–to–creatinine ratio (UACR) tests and hospital
diagnoses (dx; top), and common algorithms that would recognize the patients as having CKD based on the recordings (below). In this case
example, there is a 5-year time gap between identification of CKD by the first and the last defining algorithm, during which the patients need
to survive.

r ev i ew JJ Carrero et al.: Measures of kidney function in routine health data
(categories of albuminuria by dipstick or continuous albu-
minuria concentration by UACR) and frequency of testing
and is limited by the fact that testing tends to be directed
toward people at higher risk.

Kidney replacement therapy. KRT has historically been the
preferred outcome for observational studies, because it is
assumed that the incidence of KRT is not affected by the
frequency of laboratory testing or health care use, and it is
clearly an outcome of great importance to patients.8 Thus,
bias due to differential outcome ascertainment is unlikely to
occur when using KRT.68 However, KRT is not the same as
eGFR <15 ml/min per 1.73 m2—many, especially older, pa-
tients with CKD G5 survive for a prolonged period without
requiring dialysis, or choose not to have dialysis, either
temporarily or as an enduring decision (which in clinical
practice is sometimes termed conservative care). Hence, those
who access KRT are a selected group of patients, and,
depending on health system funding of KRT, may not
represent the population burden of people most severely
affected by kidney disease. Ascertainment of KRT episodes in
administrative data requires algorithms to identify the date of
the first chronic dialysis. Alternatively, data sources in selected
countries often have linkages with national KRT registries.
Finally, a potential disadvantage is that evaluating risks of
KRT may require large sample size and long follow-up for
sufficient power in low-risk populations.

Laboratory-based definition of CKD progression. Most
studies use composite outcomes that incorporate creatinine-
or eGFR-based definitions. As discussed above, the frequency,
indication, and location of testing may pose a risk for dif-
ferential outcome ascertainment. For question 2, this differ-
ential outcome ascertainment occurs when there are more
creatinine measurements in the dipeptidyl peptidase 4 in-
hibitor arm than in the sodium-glucose cotransporter-2 in-
hibitor arm. The current consensus is to consider a 30% to
40% glomerular filtration rate decline as a surrogate end
60
point for kidney failure for clinical trials of CKD progres-
sion,69,70 and these are also often applied in observational
studies. Finally, these surrogate outcomes are chosen with the
idea of reflecting a clinically important event, but the
dichotomization comes at the expense of loss of information
and loss of power.71

Sustained declines of eGFR over time. Figure 3 illustrates
the trajectory of outpatient eGFR measurements over time
from selected participants in the SCREAM project. It can be
easily observed that in some cases, reaching a certain
threshold does not necessarily align with the behavior of the
rest of kidney function measurements throughout the pa-
tient’s journey. Nonrenal determinants of eGFR, intense pe-
riods of disease and testing, or even an AKI episode may
falsely be identified as a doubling of creatinine or as a 30%
eGFR decline from baseline. For instance, the incidence rate
of CKD progression may be overestimated in question 2,
when only 1 measurement below a certain threshold is
required to be considered as the occurrence of an outcome.

A confirmation measurement (i.e., a decline in eGFR that
is sustained over time) will improve the positive predictive
value of the outcome, at a cost. How the scientific literature
addresses this is variable, and often not reported. The con-
siderations around confirmation, mentioned earlier in the
indentation patients with CKD, apply herein; requiring the
presence of consecutive measurements of a similar magnitude
or relative eGFR reduction depends on health care access and
testing,72 and is not possible in the case of death.

In practice, researchers sometimes fit a linear regression
line through the eGFR measurements that are available per
individual to confirm a sustained decline and ascertain when
a certain eGFR threshold is reached.73,74 However, linear
regression cannot be estimated well if only few measurements
are available, and often patients with only 1 eGFR measure-
ment during follow-up are excluded.74 Furthermore, people
may drop out owing to KRTor death. A better alternative is to
Kidney International (2023) 103, 53–69



Table 3 | Advantages and disadvantages of different definitions of CKD progression when using routinely collected health care
data

Definition Advantages Disadvantages

Diagnosis codes for
more severe CKD
stages

- High specificity, because clinically verified
- Available in settings without laboratory data

- Low sensitivity
- Considerable delay in identification (codes may not be updated regularly
to reflect kidney function change)

- Changes as coding practices/incentives change
- Dependent on physician awareness, likely to be highest in patients who
seek care more often

- May distort measures of inequality if a particular group is less likely to be
diagnosed (e.g., women and ethnic minorities).

Initiation of KRT - Hard end point and of great importance to
patients

- Strongly related to cost of care
- Low likelihood of differential outcome
ascertainment

- May not be available without linkage to national registry
- Subject to clinical judgement/practice variation
- National registry may not capture all acute dialysis starters (typically only
KRT rates for 90-d survivors are reported)

- Will only capture those who are offered and elect to undergo dialysis/
transplantation

- Not valid in settings where economic inequalities and absence of funding
make KRT unaffordable to many patients

- In low-risk populations, too few events, resulting in underpowered study
- In view of high competing mortality, less informative for early prevention
efforts

eGFR <15 ml/min
per 1.73 m2

without
confirmation

- Better proxy for kidney failure than KRT
- Many patients with this level of kidney function
will present to health services because of
symptoms

- To distinguish new decline from undetected long-standing CKD, this can only
be used in a population who undergoes repeated kidney function testing

- Depends on who has access to test (setting and funding)
- Susceptible to measurement error
- May identify AKI instead of CKD
- Interpretation in terms of cost implications/health burden can be different
from the interpretation of KRT, particularly at older age

eGFR <15 ml/min
per 1.73 m2 with
confirmation

- Better proxy for kidney failure than KRT
- Includes conservative care
- Applies in LMIC, where KRT may not be available
or universally accessible

- To define an incident event, this requires a population that undergoes
repeated kidney function testing and depends on who has access to test
(setting and funding).

- Competing mortality (high risk of death after first eGFR <15ml/min per
1.73 m2).

- Interpretation in terms of cost implications/health burden can be different
from the interpretation of KRT, particularly at older age

Time to % eGFR
decline (30%, 40%,
50%, or 57%)
without
confirmation

- More power and greater relevance for early
prevention at higher CKD GFR stages

- Larger eGFR declines better surrogate measure
for kidney failure

- May identify AKI instead of CKD
- Susceptible to measurement error
- Some events are transient because of eGFR fluctuations
- Loss of information associated with dichotomizing the outcome by a
certain threshold

Time to % eGFR
decline (30%, 40%,
50%, or 57%) with
confirmation

- More power and greater relevance for early
prevention at higher CKD GFR stages

- Larger eGFR declines better proxy for kidney
failure

- More robust to transient changes in eGFR

- Same as above and also:
- Delay in identification or failure to identify in case of death
- Immortal time
- Informative visit process as timing to next test driven by patient charac-
teristics/comorbidity status

Linear interpolation
and smoothing of
eGFR slopes with
linear regression

- Uses all measurements, so less sensitive to AKI or
measurement error

- Easy to implement
- May be accurate when using prospective data
with no dropout and at least 3 measurements
per person

- Performance likely to be worse than linear mixed models in routinely
collected data because of few measurements and dropout

- If only few measurements are available, the slope cannot be estimated
well and hence the time point of crossing the threshold cannot be pre-
cisely determined

- Patients with only 1 measurement during follow-up are excluded
- Gives biased estimates in the case of dropout due to kidney failure with
replacement therapy or death

Longitudinal eGFR
decline with linear
mixed model

- Superior performance to linear regression
- Uses all measurements, so less sensitive to AKI or
measurement error

- Can account for data missing at random
- Can include patients with only 1 measurement
or few measurements

- Fitted model can be used to ascertain when a
certain decline threshold was reached (sustained
decline)

- Reasons for repeated testing can bias coefficients associated with random
effects (severe bias only when all measurements are irregular); explicit
modeling assumptions required to address competing mortality and
informative censoring in joint models

- Assumes linear eGFR decline, but the linearity assumptions can be relaxed
by including appropriate transformations of time in the model.

Progression of
albuminuria

- Part of KDIGO CKD definition
- Often assessed in clinical trials
- Formulas have been developed to convert uri-
nary PCR or dipstick measurements to ACR

- Substantial bias by reasons for urine testing
- High variability of albuminuria introduces substantial measurement error
(difficult to interpret small changes at the individual level)

ACR, albumin-to-creatinine ratio; AKI, acute kidney injury; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; GFR, glomerular filtration rate; KDIGO, Kidney
Disease: Improving Global Outcome; KRT, kidney replacement therapy; LMIC, low- and middle-income countries; PCR, protein-to-creatinine ratio.
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Figure 3 | Plots of outpatient estimated glomerular filtration
rate (eGFR) or creatinine measurements from 3 individuals in
the Stockholm Creatinine Measurements database. (a) The red
line depicts an eGFR <15 ml/min per 1.73 m2. This individual has
many measurements during follow-up. At 25 months, there are
many low eGFR measurements, which may represent acute illness
or an acute kidney injury (AKI). Identifying simply a decline of
>30% from baseline as study outcome would misclassify this AKI as
a chronic kidney disease (CKD) progression event, leading to a
biased estimate of the incidence of CKD progression in the study
population. (b) The individual has many creatinine measurements
after baseline, with 1 creatinine measurement surpassing the
threshold of doubling of serum creatinine (red line). However, this
likely does not reflect a “true” doubling of serum creatinine. Note
that the y-axis suggests serum creatinine (umol/L). (c) The
individual has 10 eGFR measurements, with 1 measurement below
the threshold of 30% eGFR decline. On the basis of the global
information that we have for this patient, it seems a random
observation possibly influenced by disease or hydration status.
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use a linear mixed model with random intercepts and
slopes.74–76 The use of random effects allows for “borrowing”
of information across individuals. These models increase
stability for patients for whom only few measurements are
available and can include information from individuals with
only 1 follow-up eGFR assessment. Furthermore, under
certain conditions, mixed models can even handle informa-
tive missingness if the predictors of missingness are included
as covariates in the model.77 It is recommended to add the
baseline eGFR value to the outcome vector. Linearity as-
sumptions can be easily relaxed by including appropriate
transformations of time in the model, such as quadratic terms
or splines. The fitted mixed model can then be used to
ascertain when a certain decline threshold was reached. In this
definition, reaching the interpolated threshold will be sus-
tained over time, and may identify outcomes that theoretically
occurred earlier, during a period when laboratory testing was
not frequent. One can easily see how interpolation with
smoothing of the eGFR slope can also serve to improve the
identification of patients with “confirmed” CKD.

Considerations for choosing AKI definitions
The scientific literature reports varying algorithms to define
AKI in health care databases (Table 4).78 Below, we summa-
rize common features of these definitions that require
attention as they can affect the generalizability or validity of
study findings. We illustrate this using our third example
question: “After AKI, what is the causal effect of stopping
versus continuing renin-angiotensin system inhibitors on the
risk of recurrent AKI?”79 For this particular research question,
the inception episode of AKI defines the population of in-
terest, the next episode is the outcome of interest, and history
of AKI before inception could be used as a covariate to adjust
for confounding. Most of the considerations discussed below
likely also apply when evaluating the newly defined entity of
acute kidney disease,3,4 but few studies to date have explored
acute kidney disease in health care databases.80

Diagnostic coding of AKI. Hospital-recorded AKI di-
agnoses are often included in health care databases and
coded with International Classification of Diseases codes, and
these are often used to identify AKI populations, as an
outcome or as a covariate. Although the specificity of the
hospital-recorded diagnoses is high (>95%), the coding is
incomplete and may only identify a quarter to a third of all
AKI episodes identified by changes in serum creatinine,10–13

even fewer when considering all cases, including those
defined by oliguria.13 The reason for coding (e.g., reim-
bursement, pay for performance, or documentation in
routine practice) may also impact the validity of codes. For
our specific example, using AKI diagnosis codes will lead to
a selective population of more severe AKI cases, which may
impact the generalizability of results: findings may not be
necessarily generalized to the complete AKI population,
and would also include more severe AKI cases (i.e., stage 3
AKIs are more likely to lead to a diagnostic code compared
with stage 1 AKI).
Kidney International (2023) 103, 53–69



Table 4 | Advantages and disadvantages of different definitions of AKI used in previous studies based on routine care data

Definition Advantages Disadvantages

Diagnosis codes - Available in settings without laboratory registries
- High specificity for severe AKI and AKI requiring
dialysis

- Low sensitivity for AKI, especially for less severe stages
- Quality of coding relies on the specific health care setting, changes
in diagnostic criteria, and coding practices over time

- AKI during elective admissions is less likely to be captured
compared with admissions where AKI was the reason for
hospitalization78

- Misclassification influenced by coding practices and purpose (e.g.,
reimbursement, pay for performance, and documentation in
routine practice)

KDIGO serum
creatinine criteria

- Possible to separate AKI from prevalent CKD
when a valid baseline serum creatinine is
available

- When definitions are harmonized, comparable
standardized incidence rates of AKI across pop-
ulations, allowing for direct comparison between
studies

- Inpatient tests cannot distinguish AKI from preexisting CKD
- Outpatient tests may be missing
- Choice of numerous baseline serum creatinine definitions
- Sensitive to changes in testing practices

KDIGO urine output
criteria

- Research indicates that short- and long-term risk
of death or KRT is greatest when patients meet
both serum creatinine and urine output criteria
for AKI

- Seldom captured in administrative data, and rarely available
outside the ICU

AKI, acute kidney injury; CKD, chronic kidney disease; ICU, intensive care unit; KDIGO, Kidney Disease: Improving Global Outcomes; KRT, kidney replacement therapy.

JJ Carrero et al.: Measures of kidney function in routine health data r ev i ew
When AKI is the outcome, using AKI diagnoses may
impact the validity of findings. Whether bias occurs depends
on the specificity and sensitivity of the outcome definition, as
well as whether the interest lies in relative or absolute risks.
When the specificity is high (i.e., the probability of not having
AKI among those who truly do not have AKI equals 1 for
both the exposed and unexposed), as is the case when using
AKI diagnoses, relative risk estimates will not be biased, even
if the sensitivity is low (i.e., probability of recorded AKI
among those who truly have AKI).81 However, absolute risk
estimates will be biased, leading to an underestimation of the
absolute risk difference of all AKI cases. As discussed earlier in
the section on CKD progression, bias will also occur if the
measurement error in the outcome is differential with respect
to the exposure (e.g., in question 3, this will occur if physi-
cians suspect that RASi use causes recurrent AKI and there-
fore monitor patients who continue RASi more closely than
patients who stop RASi).82 Such differential measurement
error across exposure groups may be less likely for severe AKI
(as ascertained by diagnosis codes), because these will be
recorded regardless of exposure status.

When history of AKI is a confounder, as in the example
question 3, using diagnosis codes may lead to residual con-
founding.21 Whenever a patient had an AKI that was not
severe enough to be coded, this measurement error leads to
residual confounding when the prescriber was aware of the
history of AKI, and bases his/her prescribing decision (stop-
ping vs. continuing RASi) on this.

Defining AKI cases by urine output. The 2012 KDIGO
classification of AKI is currently widely used for both clinical
and research purposes.2 Using these criteria fully (i.e.,
considering both changes in serum creatinine and urine
output) is recommended in clinical practice, because short-
and long-term risk of death and KRT is greatest when patients
Kidney International (2023) 103, 53–69
meet both criteria.83 However, this level of detail (e.g., hourly
urine output) is not easily accessible in many routine health
care databases, limiting their use in epidemiologic studies.84,85

In most electronic health care records, urine output and
point-of-care creatinine measurements are added to the
electronic health records as unstructured text, which will
hamper accurate extraction, although this problem may be
mitigated by using natural language processing to extract and
classify this information from unstructured texts. The same
considerations regarding generalizability and bias as discussed
above for AKI diagnosis codes apply for urine output.

AKI based on creatinine. Although creatinine measure-
ments are preferred to diagnosis codes, certain challenges
arise when using routinely collected data sources. The
KDIGO criteria for diagnosis of AKI in clinical practice refer
to a relative increase in serum or plasma creatinine of $1.5,
known or presumed to have occurred within the prior 7 days,
or an absolute increase of $0.3 mg/dl ($26.5 mmol/l) within
48 hours. To avoid the influence of acute illness, outpatient
serum creatinine tests are preferred sources to establish the
baseline creatinine. Ideally, serum creatinine would need to
have been measured within 7 days before AKI onset for
detection of AKI.62 However, this is seldom the case, except
for situations such as planned surgeries. Researchers are then
left with the option of applying different windows to identify
prior serum creatinine measurements to define as to who had
AKI.62,86–89 Nevertheless, for a proportion of patients, a
creatinine test within the specified period will be lacking.

A recent scoping review confirmed a lack of consistency in
how KDIGO definitions for AKI were used in epidemiologic
studies; for instance, the window to ascertain the baseline
creatinine ranged from 0 days to more than a year before the
AKI.More concerning, however, was the absence of description
of the process used in 33% of the identified studies.85
63
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If >1 eligible creatinine test is available per patient, it is
unclear whether the preferred approach would be to select the
most recent serum creatinine,86,90,91 the median,92,93 or the
mean,94 of all eligible tests, or to model the slope of creatinine
and select its intersection with the 7-day period of interest.
In 1 study, the mean outpatient serum creatinine measured
in the year before hospitalization most closely approxi-
mated nephrologist-adjudicated “baseline” serum creatinine
values.62

Because of lack of testing, most studies in the literature
(71%) opt to exclude individuals who lack a baseline
creatinine test.85 Strategies used in previous literature to
estimate baseline serum creatinine, when not measured,
include simple or multiple imputation, using the serum
creatinine at admission,95 assuming an eGFR of 75 ml/min
per 1.73 m2,96 or using a post-AKI nadir value.97 Studies
comparing these approaches suggest that multiple imputa-
tion is superior to simple imputation or assuming an eGFR
of 75 ml/min per 1.73 m2.98 Using a nadir serum creatinine
during hospitalization as baseline may lead to incorrect
detection of AKI, because serum creatinine in the inpatient
setting is influenced by nonrenal factors, such as fluid
accumulation and loss of muscle mass.99,100 Using the first
serum creatinine on admission could result in AKI episodes
being missed if serum creatinine was already elevated on
admission. However, time lag between a kidney insult (due
to an acute illness) and serum creatinine elevation should be
acknowledged: it may take up to 48 to 72 hours after the
kidney insult happened for creatinine to increase.101 Indeed,
a US study showed that the first inpatient serum creatinine
was not higher than the most recent outpatient serum
creatinine in a large proportion of hospitalized patients with
AKI.62 However, this may vary by cause of hospitalization.
For example, in health systems with rapid admission for an
acute ST-elevation myocardial infarction within hours of
onset of chest pain, serum creatinine elevation would be
only visible after admission. However, for admissions with
infections and other conditions that gradually develop over
several days, serum creatinine may be already elevated on
admission.

Box 1 summarizes recommendations for clearly reporting
the time frame for eligible baseline creatinine values and the
rationale for doing so, how missing baseline creatinine values
are handled, and the method chosen to select the baseline
eGFR when there are multiple eligible values within the
defining window, with reference to a recent consensus by a
Delphi panel composed of nephrologists and epidemiologists
with experience in AKI research.85 A recent study showed that
harmonizing AKI definitions across 4 population-based da-
tabases produced comparable standardized incidence rates
of AKI.102

Moving forward: toward more robust estimations
The longitudinal analysis of routinely collected health care
data relies on the assumption that the timing and frequency of
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the measurement of longitudinal outcomes should be inde-
pendent of the value of the outcome itself.103–105 Under-
standing the extent to which this assumption is violated is
important; patients will visit the physician when they have
been feeling ill and hence have worse biomarker values; pa-
tients with comorbidities are likely to have more health care
visits than patients without comorbidities. It becomes
apparent that observations and outcomes are dependent, and
thus missing laboratory tests are not completely at random.
This has been referred to as “informative presence,” or
alternatively, “informative visit process,” “dynamic observa-
tion plans,”106 or “outcome-dependent visits” and is an aspect
often ignored in research practice and can be considered a
form of information bias.107,108

Relatively simple analyses can be performed to assess the
magnitude of effects owing to informative visits in the data
set. First, when the data set contains information on whether
a visit is scheduled or unscheduled, the longitudinal eGFR
slope can be calculated separately for scheduled and un-
scheduled visits. A substantial difference between slopes is
suggestive of an informative visit process.105 Second, one can
calculate the correlation between a subject’s eGFR value at a
certain time point and the time between this measurement
and the next, for all measurements.105 Alternatively, the
number of visits can be compared between individuals with a
high or low eGFR. Third, when comparing 2 different in-
terventions (e.g., question 2, dipeptidyl peptidase 4 inhibitors
vs. sodium-glucose cotransporter-2 inhibitors), differential
outcome ascertainment may be assessed by comparing the
proportion of individuals with at least 1 creatinine measure-
ment, the rate of creatinine testing during periods of treat-
ment,109,110 or the average time gap between tests. Finally,
recurrent events models (such as the Andersen-Gill model)
could be used to quantify the association between study
covariates and the rate of observation.111 Overall, simply
reporting the number of visits per patient, gaps between visits,
and potential predictors of visit time can give the reader an
indication of the extent of irregularity and its
informativeness.107

Some strategies may serve to mitigate the bias introduced
by outcome-dependent visits; applying an active comparator
design might yield a reference group with similar observation
and dropout patterns, as described elsewhere, provided that
testing rates are similar.112–114 Bias can be attenuated when a
certain proportion of the sample contains noninformative,
regularly planned visits.77,104,105,115,116 In many cohorts, at
least part of the visits will be regular. If information is
available on whether visits are planned or unplanned, the
analysis could be restricted to preplanned visits to yield a
cohort of subjects where the information process is inde-
pendent of disease severity. Another option is to restrict the
analytical sample to a population with an indication for
regular kidney function monitoring (e.g., patients with dia-
betes),33 at the expense of the external validity or generaliz-
ability of the study findings. The large sample sizes of health
Kidney International (2023) 103, 53–69



Box 1 | Reporting recommendations when studying AKI/
AKD

1. Studies should describe the intended target population (all patients
with AKI? only diagnosed/severe AKI?), and whether study results
are generalizable to that target population.

2. Studies should clarify how populations with/without baseline
creatinine results differ (sample size, characteristics, and setting of
testing [i.e., outpatient vs. inpatient results]), and the timing of the
baseline creatinine relative to the AKI precipitating event.

3. Studies should clearly report the AKI definition used (e.g., whether
0.3 mg/dl increase over 48 hours is included [required for full
alignment with the KDIGO AKI definition], whether staging criteria
for stages 1, 2, and 3 are used, and whether urine output criteria
were included).

4. Studies should clarify the definition of a baseline creatinine if
multiple baseline creatinine results were available (e.g., was the
mean of measurements used or the latest measurement? were
measurements <7 days before AKI discarded?).

5. Studies should clearly report what was done whenever baseline
results were not available. If studies impute missing baseline
creatinine tests, they should specify methods used and discuss the
implications of this imputation on study findings.

AKD, acute kidney disease; AKI, acute kidney injury; KDIGO, Kidney Disease:
Improving Global Outcomes.

Box 2 | Key points a causal study should consider
discussing when using routinely collected health care
data to study populations with CKD or CKD progression
as an outcome

- Investigate and discuss to what extent study results are generalizable
to the target population in the context of the definition used to
identify populations with CKD (e.g., based on diagnosis codes, eGFR
measurements, and UACR measurements).

- Investigate and discuss the potential for differential outcome
ascertainment (e.g., check whether more kidney function measure-
ments are performed in 1 exposure group).

- Investigate the impact of exposure misclassification in the context of
the definition used (diagnosis codes and eGFR based on serum
creatinine).

- Discuss the key potential confounders of the exposure-outcome
relationship, and discuss potential residual confounding (e.g.,
owing to disease severity or misclassification). Investigate the pres-
ence of residual confounding through positive or negative control
outcomes, and its impact with quantitative bias analysis.

- When using eGFR measurements to classify CKD, discuss how mul-
tiple measurements are handled (mean, median, and most recent).

- When using eGFR or UACR as adjustment variables for confounding,
discuss how patients with missing data were handled (complete case
analysis, multiple imputation, and weighting). Discuss the possibility
for selection bias when a complete case analysis is performed, also in
light of the pattern of missingness and the proportion of patients
with missing data.

- What are the data sources from which kidney function information
for individuals was obtained? Does the chosen database adequately
capture all kidney function measurements? Discuss consequences of
data fragmentation on study results, including loss to follow-up.

- The use of a diagram is recommended to illustrate key aspects of the
study design(s), including study entry, exposure, confirmation of
exposure, comparison groups, lag and observation periods, and co-
variate definitions as relevant.

CKD, chronic pkidney disease; eGFR, estimated glomerular filtration rate; UACR,
urine albumin–to–creatinine ratio.
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care data sets often allow for this type of selection, while still
retaining power. Comparing results across different health
systems with different testing indications is also helpful.

Alternatively, various methods have been proposed to
accommodate an informative observation process or dropout
in the study, such as, for example, due to referral to specialist
care not covered by the database studied103,117; herein, we will
discuss briefly approaches based on inverse probability
weighting and approaches that aim to fully model the
different processes. Methods based on inverse probability
weighting rely on the idea of weighting each observation by
the inverse probability of each measurement to be recorded or
for the inverse probability of nondropout from the study;
consequently, this approach creates a pseudopopulation in
which the observation or the dropout process is static (rather
than dynamic); that is, the process is completely at random
and can, therefore, be ignored.106,118,119 This can be imple-
mented in practice using standard, off-the-shelf statistical
software, or using user-contributed packages, such as the
IrregLong package in R.120

Furthermore, it is possible to fully model the observation
and/or dropout process within the joint longitudinal-
survival modeling framework.77,121–123 Joint models
consist of 2 “submodels”: 1 to model the survival outcome
(i.e., the observation/dropout process), and the other to
model the longitudinal outcome (i.e., the longitudinal
kidney function measurements). A survival model is used to
model the survival outcome, and a linear mixed model is
used for the longitudinal outcome. The submodels are
generally linked via shared random effects and estimated
Kidney International (2023) 103, 53–69
jointly. Focusing on dropout, the joint modeling approach
can accommodate informative truncation of longitudinal
trajectories due to dropout (e.g., death). Similar to linear
mixed models, the baseline value should be part of the
outcome vector as it contributes to estimating the mea-
surement error. Compared with the inverse probability
weighting approach, the joint modeling approach has the
advantage of explicitly modeling all the processes of inter-
est, allowing joint inference on the different aspects of the
problem under study. However, this approach has the
disadvantage of being more computationally intensive,
limiting its applicability (especially with large data sets) as
well as needing to specify the shared random effects
correctly; the joint modeling approach can be implemented
using readily available statistical software in R and Stata
(e.g., the merlin package124).

Future directions
Observational research of kidney disease has made great strides
with studies including larger populations, more sophisticated
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analytic methods, individual-level meta-analysis, and sensi-
tivity analyses to help gauge the validity of the results. However,
as shown in this review, the field will benefit from more
transparent and structured reporting, and thoughtful
acknowledgement and discussion of potential biases.

Given that the suitability of each data set will depend on
the research question and local structural factors, it may not
be possible to impose a single strict definition that suits all
studies that use routine health care data. However, validation
studies are helpful within specific health systems to investigate
the local sensitivity and specificity of these definitions. We
advocate for concerted efforts to encourage improved
reporting practices for routinely collected data on kidney
exposures and outcomes.

The REporting of studies Conducted using Observational
Routinely collected health Data for PharmacoEpidemiology
(RECORD-PE) guidelines were produced as part of an in-
ternational collaboration to improve such practice, building
on the existing Strengthening the Reporting of Observational
Studies in Epidemiology and RECORD guidelines.17 We
encourage researchers and editors of scientific journals to use
this template to guide reporting of definitions of kidney ex-
posures and outcomes (Supplementary Table S2). Key infor-
mation that an article should address is outlined in Box 2.

Several specific approaches that are referred to are worth
highlighting:
� Study design diagrams may serve to effectively illustrate
algorithms used to define exposure or outcome for kidney
function (including any sensitivity analyses).125

� Sensitivity analyses can be used to examine the assumptions
underlying the chosen analytical approaches.

� Triangulation approaches to address biases can enhance
causal inference.126 This necessitates analyses in a range of
settings and the integration of results from several ap-
proaches, each prone to their own different and unrelated
sources of potential bias, to qualitatively determine and
explicitly articulate the strength of evidence; examples
include cross-context comparisons, such as different study
populations, which would be expected to introduce their
own inherent biases.

� Use of directed acyclic graph is recommended to consider
bias, such as selection bias, and confounding.127

� Open working methods mandate open sharing of all anal-
ysis codes to encourage a culture of external review, reuse,
and collaboration using a given source of data.128 Similar
approaches could be used for other large routinely collected
data in other settings to enhance transparency and repli-
cation of analyses to enhance trust in research findings.
In conclusion, the perfect definition of kidney exposures,

covariates, or outcomes using routinely collected data de-
pends on the research question and availability of data, but
clearer and more transparent reporting of these decisions in
observational research is necessary to move the field forward.
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