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Abstract 

Background  Visceral leishmaniasis (VL) is a debilitating and—without treatment—fatal parasitic disease which bur-
dens the most impoverished communities in northeastern India. Control and ultimately, elimination of VL depends 
heavily on prompt case detection. However, a proportion of VL cases remain undiagnosed many months after symp-
tom onset. Delay to diagnosis increases the chance of onward transmission, and poses a risk of resurgence in popula-
tions with waning immunity. We analysed the spatial variation of delayed diagnosis of VL in Bihar, India and aimed 
to understand the potential driving factors of these delays.

Methods  The spatial distribution of time to diagnosis was explored using a Bayesian hierarchical model fit to 4270 
geo-located cases notified between January 2018 and July 2019 through routine surveillance. Days between symp-
toms meeting clinical criteria (14-day fever) and diagnosis were assumed to be Poisson-distributed, adjusting for indi-
vidual- and village-level characteristics. Residual variance was modelled with an explicit spatial structure. Cumulative 
delays were estimated under different scenarios of active case detection coverage.

Results  The 4270 cases analysed were found to be prone to excessive delays in areas outside existing endemic ‘hot 
spots’. After accounting for differences associated with age, HIV status and mode of detection (active versus passive 
surveillance), cases diagnosed within recently affected (≥ 1 case reported in the previous year) blocks and villages 
experienced shorter delays on average (by 13% [2.9–21.7%] (95% credible interval) and 7% [1.3–13.1%], respectively) 
than those in non-recently-affected areas.

Conclusions  Delays to VL diagnosis when incidence is low could influence whether transmission of the disease 
could be interrupted or resurges. Prioritising and narrowing surveillance to high-burden areas may increase the likeli-
hood of excessive delays in diagnosis in peripheral areas. Active surveillance driven by observed incidence may lead 
to missing the risk posed by as-yet-undiagnosed cases in low-endemic areas, and such surveillance could be insuf-
ficient for achieving and sustaining elimination.
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Background
Visceral leishmaniasis (also known as “kala-azar”) is a 
highly fatal neglected tropical disease caused by the pro-
tozoan parasite Leishmania donovani, transmitted to 
humans through the bite of female sandflies [1]. Cases in 
India account for a significant proportion of the global 
burden, and intensified efforts to eliminate the disease 
have been in place since the beginning of the twenty-
first century [2, 3]. In the absence of a licensed vaccine, 
control of VL depends on prompt detection and treat-
ment of cases through recognition of clinical symptoms 
or screening in affected areas. Early symptoms of VL are 
non-specific (including fever, fatigue and weight loss) 
and, especially where VL awareness is low, misdiagnosis 
is common. As a result, those afflicted may go undetected 
for several months or in extreme cases, undetected for 
years, despite the presence of active detection measures. 
Evidence suggests that longer time to diagnosis is asso-
ciated with increased mortality risk [4] and undetected 
cases serve as reservoirs of infection in their community, 
allowing transmission to persist and forming a barrier to 
achieving and sustaining elimination [5].

An improved programme of active case detection 
(ACD) [6] was initiated in India between 2016–2017 
and its efficacy in reducing overall time to diagnosis has 
been demonstrated. However, a non-negligible propor-
tion of cases are diagnosed several months after onset of 
symptoms. A study by Dubey and colleagues [7] reported 
that during the first 19 months of improved ACD in the 
Indian state of Bihar, 66% of diagnosed cases reported 
onset of symptoms greater than 30 days prior to diagno-
sis, and 10.5% greater than 90  days prior. Le Rutte and 
colleagues [8] estimated in 2017 that elimination of VL 
in the Indian sub-continent could be achieved by 2020 
with sufficient coverage of vector control, ‘provided 
that the average onset-to-treatment (OT) time does not 
exceed 40 days’. The persistence of this minority of cases 
with long delays to diagnosis therefore deserves further 
investigation.

Barriers to diagnosis of VL have been previously inves-
tigated in several studies. VL burden is broadly associated 
with the most socially and economically disadvantaged 
communities in India [9] and, despite government com-
pensation for expenditure to access VL diagnosis and 
treatment, patient costs remain an important barrier 
[10]. Mondal and colleagues [11] screened households in 
villages sampled from endemic districts in Bangladesh, 
India and Nepal, finding a high proportion of undiag-
nosed cases in districts not well-served by health care 
facilities and a lower proportion in districts with greater 
availability of VL care (i.e. districts considered affected/
endemic in which the elimination programme is active).

Rahman and colleagues [12] interviewed VL patients in 
Bangladesh and found logistical barriers to prompt diag-
nosis such as remoteness of the health centre, wet sea-
son transport limitations and limited availability of rapid 
diagnostic tests in the area. This was combined with lack 
of understanding due to illiteracy, lack of recent inci-
dence and preference for first consulting more local tra-
ditional healers. In Bihar there is also widespread use of 
private and informal health practitioners which can cause 
additional delays [13].

The same study by Dubey and colleagues [7] explored 
patient characteristics associated with longer delays 
between symptom onset and diagnosis among all cases 
of VL diagnosed between January 2018 and June 2019. It 
was concluded that younger age and detection via active 
surveillance were associated with shorter delays, while 
male sex and HIV positivity were associated with longer 
delays.

What has not been considered in previous literature is 
where geographically individuals are experiencing exces-
sive delays, in relation to each other and in relation to the 
activities of the control programme. Control and sur-
veillance of VL in Bihar is targeted according to recently 
observed incidence [14], resulting in a spatially-varying 
intensity of intervention. This work aims to investigate 
the spatial distribution of delays in diagnosis and under-
stand some of its potential driving factors in the State of 
Bihar, India.

Methods
Data sources
This work is based on secondary analysis of data from 
reported cases in Bihar state, India, that were collated 
for a previous study [7] to evaluate active case detection 
measures. Case reports of individuals diagnosed between 
January 01, 2018 and July 31, 2019 (N = 5030) were cross-
referenced with suspect case registers over the same 
period in order to identify the route of detection for each 
patient as active (via targeted surveillance) or passive 
(self-referral). For details as to how suspect case registers 
were compiled, please refer to the primary publication by 
Dubey et al. [7].

Individuals are only formally suspected for VL and 
hence eligible for confirmatory testing after suffering at 
least 14  days of irregular fever, due to the low specific-
ity of the recommended rapid diagnostic test (RK39) [6, 
15]. Our primary outcome was therefore defined as the 
reported duration of fever prior to diagnosis beyond the 
minimum threshold of 14  days, hereafter referred to as 
“diagnosis delay”. This was considered theoretically avoid-
able delay within the diagnostic guidelines at the time [6]. 
Cases diagnosed within 14 days of fever onset were not 
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considered to be comparable to the rest of the population 
and excluded.

Village locations
The Bihar Technical Support Programme coordinated the 
collection of location data for every village with at least 
one case reported to the Kala-Azar Management Infor-
mation System (KAMIS) up to December 2018. A master 
list of all villages in the state was compiled and, as part 
of routine monitoring and follow-up of reported cases, 
field teams were instructed to collect GPS coordinates of 
each village centre. These data are held within KAMIS by 
the National Vector Borne Disease Control Programme 
(NVBDCP), who are responsible for all routine surveil-
lance data. The reported cases described above were 
linked to their resident village and corresponding GPS 
location via a unique village identifier.

Health facility access
Capacity for diagnosis and treatment of VL is not con-
sistent across all health facilities in Bihar, as treatment 
centres were originally established to be near the most 
affected villages [16] (Additional file 1: Fig. S1A). A tool 
developed by The Malaria Atlas Project was used to 
estimate minimal travel time between villages and the 
available diagnosis and treatment facilities by relative 
‘accessibility’ [17], accounting for distance and ease of 
travel (Additional file 1: Fig. S1B).

Missing data
A complete case analysis was performed, with exclusion 
of individuals with any missing covariate value or without 
a linked GPS location. The exclusion process is illustrated 
in Additional file 1: Fig. S2. Missingness across all varia-
bles is summarised and presented in Table S1 and a com-
parison is drawn between the distribution (median and 
interquartile range) of diagnostic delays before and after 
exclusion due to missingness. A comparison of individu-
als excluded due to fever duration < 14  days is also pre-
sented in Additional file 1: Table S2.

Baseline model structure
Reported diagnosis delay (in days) for each case,Yi , is 
assumed to be Poisson-distributed with mean�i , with 
independent and identically distributed observation-level 
random effects (OLRE) to account for overdispersion 
[18]. The model is fitted within a Bayesian framework 
using the Integrated Nested Laplace Approximation 
(INLA) approach [19].

Formally,

where

with a penalised-complexity hyperprior [20] set on 
the standard deviation σ , such that P [σ > 1] = 0.01 . 
This penalises deviation from the simplest case in which 
the standard deviation is equal to 0 (i.e. constant) and 
specifies that the variance of these random effects is not 
expected to be greater than 1. Priors for all parameters/
hyperparameters are described in Additional file 1: Sup-
plementary methods A.

Covariates
Covariates at both individual and village level were con-
sidered within three domains: patient, village risk aware-
ness and village accessibility. Characteristics of the 
patient included age (standardised), sex (male/female), 
HIV status (positive/negative at diagnosis), marginalised 
caste status (scheduled caste or tribe/other), previous 
treatment for VL or post-kala azar dermal leishmania-
sis (PKDL) (yes/no), occupation (none/unskilled/skilled/
self-employed or salaried) and route of detection (ACD 
or passive/self-reported). Village characteristics were 
defined under two domains. Block endemicity (endemic/
non-endemic), targeting of indoor-residual spraying (IRS) 
(yes/no) and village incidence of VL (non-zero/zero) in 
the previous year (2017) were considered indicators of 
‘risk awareness’ in the local population. Estimated travel 
time (minutes) to the nearest diagnostic or treatment 
facility and diagnosis during the rainy season (June–Sep-
tember) were defined under the domain of ‘accessibility’.

Both ACD and IRS are incidence-targeted interven-
tions, triggered by incidence during the last 3  years. As 
such, these variables are expected to be to some extent 
correlated with 2017 village incidence. Estimated covari-
ate effects are presented as risk ratios (RRs) with 95% 
credible intervals (CrI).

Variable selection
The association of each covariate with observed delay was 
explored through univariately within the baseline model 
structure. Multivariate models were then fit for each 
domain in turn, and significant covariates selected based 
on the adjusted coefficients’ 95% CrI. A full model was then 
fit to include the selected covariates in all three domains.

Yi ∼ Po(�i)

log �i = βo + xi

xi ∼ N (0, σ)
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Spatial analysis
The correlation between delays experienced in nearby 
villages was modelled with a spatially-structured ran-
dom field over the GPS locations for all villages, using 
the INLA-SPDE approach for estimation [21, 22]. This 
approach approximates a spatially-continuous field via sto-
chastic partial differential equations (SPDE) across a tri-
angular mesh (Additional file  1: Supplementary methods 
B). A prior structure which penalises complexity was also 
assumed for the hyperparameters of this component (range 
and standard deviation). A range of prior specifications for 
the SPDE model were explored to assess sensitivity to this 
choice and are illustrated in Additional file 1: Fig. S3.

A spatial field was initially added to the baseline, OLRE-
only model, to characterise the spatial pattern in the 
absence of the explanatory power of the covariates. Each 
covariate domain was then reintroduced in turn and 
finally in combination, resulting in the following structure:

where  cj(i) are individual-level covariate values for 
case i, ck(vi) are village level covariate values for the vil-
lage vi of case i, s(vi) is the spatial random field and xi the 
OLRE.

The contribution of each domain of covariates in 
explaining the spatial pattern of delays was explored via 
the percentage change in mean absolute value (MAV) 
across the fitted spatial field when each covariate domain 
was reintroduced. The percentage change in MAV of the 
OLRE was also calculated to assess the contribution of 
each in explaining the non-spatially-structured residual 
variation.

Model assessment
The value of including both covariates and an explicit 
spatial structure was assessed via Widely Applicable 
(also known as Watanabe-Akaike) Information Crite-
rion (WAIC) and leave-one-out (LOO) cross-validation 
[23], relative to the baseline OLRE-only model. Model 
predictions were compared on the logarithmic score 
(logs) [24] and on the Brier score [25] for classification 
of delays greater than 30  days. Spatial and non-spatial 
cross-validation approaches were compared to assess the 
contribution of the spatial random field to prediction (see 
Additional file 1: Supplementary methods C).

It is common for self-reported duration data to exhibit 
‘heaping’, in which individuals show a preference for cer-
tain (usually rounded) intervals of time, and there has 
been suggestion that this behaviour may bias parameter 
estimates [26]. As a sensitivity analysis, the final model 
was therefore refitted with a binary outcome of delay 

log �i =

j

βjcj(i)+

k

βkck(υi)+ s(υi)+ xi

exceeding 30  days, to assess the robustness of inferred 
covariate effects. Specifically,

where

Final model prediction
The expected extent of excessive delays from the selected 
model were mapped over all affected districts. Predic-
tions were calculated for a fine grid of points across the 
area, reflecting the expected delay for an arbitrary indi-
vidual at that location, otherwise comparable on all 
covariates. The posterior distribution is summarised by a 
mean and an exceedance probability with a threshold of 
30 days and plotted to form a smooth map. In particular, 
regions in which the predicted exceedance probability is 
above 0.5 (i.e. where delay longer than 30  days is more 
probable than delay within 30 days) are highlighted.

Impact of ACD
To explore the potential impact of extending or restrict-
ing ACD across endemic and non-endemic regions of 
Bihar, hypothetical delays were predicted under two sce-
narios of ACD coverage among the individuals in this 
study (0% and 100%). Predicted days of delay where either 
no or all cases were detected via ACD were compared to 
the expected delays with ACD as originally observed. 
The difference in terms of total person-days of delay was 
stratified by the endemicity of the block and summarised 
over 10,000 posterior samples to capture uncertainty.

Software
All analyses were performed in R version 4.1.2 (2021–11-
01). The code written to produce this analysis is available 
at https://​github.​com/​esnig​hting​ale/​vl-​spati​al-​diagn​osis-​
delay [27].

Results
Data cleaning
Of 5030 patients diagnosed with VL between Jan 01, 
2018, and July 31, 2019, 649 residents of villages with no 
known GPS location and one with an assumed errone-
ous GPS location substantially (> 10 km) beyond the state 
boundary were excluded. Two patients were removed 
from KAMIS due to recognition of an error therefore 
were also excluded. A further 84 were excluded due 
to missing HIV status, caste status, occupation or VL/
PKDL treatment history. HIV status had the greatest 

Zi ∼ Bernoulli(pi)
logit(pi) =

∑
j

βjcj(i)+
∑
k

βkck(υi)+ s(υi)+ xi

Zi = (Yi > 30).

https://github.com/esnightingale/vl-spatial-diagnosis-delay
https://github.com/esnightingale/vl-spatial-diagnosis-delay


Page 5 of 13Nightingale et al. BMC Global and Public Health            (2025) 3:51 	

proportion of missingness at 1.3%. Excluding incomplete 
observations had negligible impact on the distribution of 
delays, with equal means (31  days) and quartile ranges 
(11–44 days) before and after exclusion (Additional file 1: 
Table S1).

Twenty four cases (0.5%) reported fever duration less 
than 14 days. Overall, patients diagnosed with less than 
14  days of fever were younger, less likely to be female, 
more likely to reside in VL-endemic blocks and closer in 
travel time to diagnostic and treatment facilities (Addi-
tional file 1: Table S2).

Descriptive summary
Four thousand two hundred seventy VL patients diag-
nosed within the study period and with complete covari-
ate information and linked to a GPS-located village were 
included for analysis. These had reported duration of 
fever ranging from 14 to 510  days at the point of diag-
nosis, with evidence of heaping at rounded time intervals 

(discrete number of weeks/months) (Fig. 1A). Over time, 
there is a slight downward shift in the proportion of val-
ues from 31 to 90  days to less than 30  days, but a per-
sistence in the proportion greater than 90 days (Fig. 1B). 
The geographic spread of diagnosis delay for included 
patients—by village location and aggregated to block—is 
illustrated in Fig. 1C, D.

Males on average experienced slightly longer delays 
than females (31.9  days versus 30  days); however, the 
proportion of these that extended beyond 30  days did 
not differ by sex. An increase in the average and vari-
ability of delays is also observed across age groups. 
Average delays experienced by individuals living 
with HIV were substantially longer than those with 
negative or non-reported HIV status (30  days versus 
55  days). Detection via active surveillance, residence 
in VL-endemic blocks and residence in villages with 
recent VL incidence and IRS-targeting all resulted in 
shorter delays on average and a smaller proportion of 

Fig. 1  A Distribution of reported days from onset of fever to diagnosis for all initially included cases. The dashed line marks the 14-day criteria 
for diagnosis. Note the visible heaping in reported duration, indicating a preference for 30-day intervals. B illustrates how the proportion of cases 
experiencing excessive delays varies by month of diagnosis. C and D illustrate the geographic distribution of reported diagnosis delays, according 
to GPS location of resident village (in days of "delay" beyond 14-day fever duration) and by resident block (as a percentage of cases with delay 
greater than 30 days)
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delays greater than 30  days. A descriptive summary 
of characteristics of included patients is presented in 
Table 1, and an illustration of the full correlation matrix 
between all considered covariates is shown in Addi-
tional file 1: Fig. S4 (Table 2).

Variable selection
Among patient-specific covariates, age, HIV status and 
detection by ACD were found to be associated with 
length of delay (estimated RRs and 95% CrI of 1.14 
[1.13,1.15], 1.54 [1.31, 1.81] and 0.74 [0.69, 0.79] in uni-
variate analyses, respectively; Fig. 2). No clear associa-
tion was found for caste status or VL/PKDL treatment 
history, with the direction of effect switching between 
univariate and multivariate analyses.

Within the “risk awareness” domain, block endemicity 
and non-zero village incidence in the previous year were 
associated with shorter delays. Estimated RRs for these 
two covariates were very similar in univariate analyses 
(0.85 [0.80, 0.91] and 0.86 [0.80, 0.91], respectively), sug-
gesting that they may capture some of the same variation. 
Although IRS targeting had a negative effect in univari-
ate analysis, this was lost when accounting for the other 
covariates in the domain (adjusted RR 0.99 [0.91, 1.07]).

Within the “access” domain, no clear univariate asso-
ciations were found. When travel time was combined with 
season in multivariate analyses, time to treatment facil-
ity (in minutes) had a borderline positive association with 
delay (1.02 [0.99, 1.05]). For completeness, this covariate was 
selected for comparison of all three domains in later analyses.

Table 1  Descriptive summary of characteristics of 4270 VL patients included in the analysis

Variable N Delay, mean (SD) Delay > 30 days,N 
(%)

Sex Female 1829 30 (34.4) 623 (34)

Male 2441 31.9 (41.2) 814 (33)

Age (years)  < 13 years 1154 25.9 (30.4) 327 (28)

13–25 years 1056 27 (32) 303 (29)

26–42 years 1031 35.4 (43.1) 392 (38)

 > 42 years 1029 36.6 (45.8) 415 (40)

Scheduled caste or tribe No 2778 32.1 (40.7) 958 (34)

Yes 1492 29.2 (33.9) 479 (32)

Occupation Unemployed 2506 29.9 (35.8) 818 (33)

Unskilled 1213 32 (41.1) 421 (35)

Skilled 272 33.5 (37.4) 99 (36)

Self-employed/salaried 279 34.7 (48.8) 99 (35)

HIV status Negative 4112 30.1 (36.1) 1356 (33)

Positive 158 55.1 (73.7) 81 (51)

Previous VL/PKDL treatment No 3896 30.8 (37.3) 1308 (34)

Yes 374 34.2 (48.7) 129 (34)

Detection route Passive (self-report) 2557 35.2 (41.6) 1004 (39)

Active 1713 24.8 (32.3) 433 (25)

Block endemic in 2017 No 2332 34.4 (43.8) 847 (36)

Yes 1938 27 (30.4) 590 (30)

Village IRS targeted in 2017 No 993 33.8 (42.1) 359 (36)

Yes 3277 30.2 (37.3) 1078 (33)

Village incidence > 0 in 2017 No 1929 34.5 (42.9) 726 (38)

Yes 2341 28.2 (34.2) 711 (30)

Travel time to nearest diagnosis facility  < 15 min 2662 31.1 (37.3) 910 (34)

15–30 min 1299 31.2 (41.6) 421 (32)

 > 30 min 309 30.7 (34) 106 (34)

Travel time to nearest treatment facility  < 15 min 1619 29.6 (34.9) 545 (34)

15–30 min 1812 32.2 (41.4) 620 (34)

 > 30 min 839 31.5 (38.4) 272 (32)
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Spatial analysis and final model
Incorporating an explicit spatial structure in the residuals 
alongside the chosen covariates yields the lowest WAIC 
out of all models compared (Table  2). Gains on out of 
sample prediction are also evident, with respect to both 
log score and Brier score on predicting exceedance of 
30 days.

The estimated covariate effects from the final, spatial 
model were consistent with those from the non-spatial 
model (Fig. S5). Being aged one standard deviation (SD) 
above the mean of 28 years and being HIV positive were 
associated with a 13% (95% CrI [9.3–16.0%]) and 28% 
[9.2–49.4%] increase in delay, respectively. Diagnosis via 
active rather than passive case detection was associated 
with a 22% [17.9–26.8%] reduction in delay. In terms of 
local awareness of VL, patients residing in blocks con-
sidered endemic and villages with non-zero incidence in 
the year prior to diagnosis experienced 13% [2.9–21.7%] 
and 7% [1.3–13.1%] shorter delays, respectively, after 
adjusting for the sources of individual level variation 
described above. The final model gave some indication of 
an increase in delay with longer travel time to a treatment 
facility however the evidence for this remained weak.

The fitted spatial effect had a posterior range (the 
approximate distance beyond which correlation falls 
below 0.1) of 47 km (95% CrI [26–84 km]), and a stand-
ard deviation of 0.32 [0.23–0.42]. The SD of the OLRE 
decreased from 0.99 [0.97–1.01] in the null model to 
0.96 [0.94–0.99] in the non-spatial model, and finally to 
0.93 [0.90–0.95] in the final, spatial model, as more of 
the residual variance could be explained by other com-
ponents. In a sensitivity analysis, converting to a binary 
outcome to compensate for heaping did not substantially 
alter the inferred relative effects of the covariates (Addi-
tional file 1: Fig. S6).

Figure  3A illustrates the spatial pattern of diagno-
sis delays estimated from the final model, assuming 

diagnosed cases are comparable on all factors apart 
from location. Figure  3B translates these projections to 
exceedance probabilities, mapping the estimated prob-
ability of observing delay greater than 30 days at any loca-
tion. Less opaque areas indicate where the probability 
is close to 0.5 and hence exceedance of 30  days is least 
certain. The pattern highlights regions in the north west 
(across Siwan, Gopalganj and Paschim Champaran dis-
tricts), north east at the Nepal border (Supaul and Araria 
districts), and further south (Patna, Vaishali and Munger) 
across which delays are on average expected to be longer 
than 30 days. It also flags more focal regions of possible 
concern around Saraiya (Muzaffarpur district), Kalyan-
pur (Samastipur) and Sonbarsa (Sitamarhi) blocks. This 
pattern differs from that observed in total incidence 
(Fig. 3C); the cluster of higher incidence blocks between 
the Ghaghara and Gandak rivers northwest of Patna is 
not reflected by a comparable cluster in the distribution 
of diagnosis delays.

The map of predicted exceedance probabilities is illus-
trated in Additional file 1: Fig. S7A, showing the varying 
strength of evidence for an increased risk of excessive 
delays. An alternative to Fig. 3 with a more stringent cut-
off probability of 0.75 is presented in Additional file  1: 
Fig. S7B, to highlight the regions with the highest prob-
ability of excessive delays.

Impact of ACD
In total over all observations, predicted total person-
days of delay was reduced by just under 15% when ACD 
coverage was increased to 100% of cases, equating to a 
reduction of 7.7 (98% CrI [5.5–9.8]) days per case among 
those originally detected by passive case detection (PCD) 
(Fig.  4). This reflects a reduction of 8.7 [6.2–11.0] days 
per reassigned case in non-endemic blocks, compared to 
only 6.7 [4.8–8.6] days in endemic blocks. By increasing 
ACD detection from its current value of 40.1% to 100%, 

Table 2  Model comparison on within-sample and out-of-sample fit. The minimum of each metric is shaded in grey. The difference in 
WAIC (ΔWAIC) between each model value and the minimum is presented as opposed to the absolute value

Model Within-sample Out-of-sample
(random CV)

Out-of-sample
(spatial CV)

ΔWAIC Brier score Log score Brier score Log score

A (Baseline) Non-spatial,
no covariates

8.8 0.2102 3.9780 0.3544 4.1384

B Non-spatial,
all covariates

4.4 0.2181 3.9361 0.3090 4.0596

C Spatial,
no covariates

2.9 0.1943 3.9333 0.3223 4.1559

D
(Final)

Spatial,
all covariates

0 0.2065 3.9051 0.2370 3.9058
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the overall average estimated delay decreased by 4.6 days, 
from 31.5 to 26.9. See Table  S4 for a full summary of 
estimates.

Conversely, in the complete absence of ACD (0% of 
cases), estimated total person-days of delay increased 
by around 9%—an average difference of 7 [4.6–9.6] 
days per case among those originally detected by ACD. 

The difference between endemic and non-endemic 
blocks is also clear in this scenario, with a greater 
increase observed in endemic blocks (7 [4.6–9.6] 
days per reassigned case) than in non-endemic blocks 
(6.3  days per reassigned case). In the absence of any 
ACD, the average estimated delay for all VL cases 
increased by 2.8 days.

Fig. 2  Coefficient estimates (with 95% CrI) obtained from non-spatial model fits: univariate, multivariate within each covariate domain 
and multivariate with selected covariates from all domains. Selected covariates are also highlighted in bold on the y-axis. Note that domain models 
were fit to include either travel time to diagnosis or to treatment facility—but not both—due to collinearity in these covariates (closest diagnosis 
facility may also be closest treatment facility). The domain coefficient for diagnosis season is therefore estimated twice, albeit with negligible 
difference
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Discussion
In any disease elimination setting, a new set of challenges 
arises as incidence is suppressed to very low numbers. 
The effort required to detect each individual case grows 
rapidly, yet it is at this stage—when immunity and atten-
tion are potentially waning—that prompt detection is 
crucial to avoid resurgence. Sparsity of incidence across 
a broad geographic area prompts focussing attention 
and resources on specific areas considered to be most at 
risk based on recent observed data. However, this reac-
tive approach may have unintended consequences for the 
observation of incidence, biasing surveillance because of 
feedback between case detection and detection effort. 
This work highlights a geographic pattern (with a range 
of around 50  km) to the villages in which cases experi-
ence the longest delays; diagnoses across the region south 
of the Ganges river are more likely to experience exces-
sive (> 30 days) delays than not, while the strongest evi-
dence for excessive delays is restricted to only a few focal 
areas. Our findings motivate further investigation to 
understand what drives this pattern.

Currently, areas of concern are identified for inter-
vention according to recent observed incidence. How-
ever, ACD could be more effective if guided not only by 
incidence but by where delays are longest or most prob-
lematic for transmission. In all model fits, ACD was 
found to be strongly related to the time taken to obtain 
a diagnosis, associated with greater than 20% shorter 
delay on average than PCD. We estimated that if all 
cases in this study had been detected actively, the total 
person-days of delay accumulated during this period 
may have been reduced by nearly 15%. This translated 
to a reduction of 5  days per case in recently endemic 
blocks versus 4.2 in recently non-endemic, suggesting 
that gains from active detection in terms of person-
days of delay avoided may be greater across recently 
non-endemic than endemic blocks. Characterising this 

spatial variation offers guidance to areas in which there 
is greatest scope to reduce delays—and hence reduce 
transmission risk—through increased coverage of 
active surveillance.

The inferred relationship between the length of delay 
and recent incidence in the region could reflect the 
impact of waning awareness and detection effort in 
areas which have not been recently affected. This con-
curs with previous work investigating variation in seek-
ing of and access to VL diagnosis. A study conducted in 
2019 in Nepal compared samples of districts included 
and excluded from the national control programme and 
found increased delays in care-seeking among patients in 
non-programme districts [28]. Awareness and attitudes 
around VL have been evaluated in various settings, with 
one study concluding that this may affect the likelihood 
of treatment-seeking through appropriate channels [29] 
and another finding understanding to be lacking even 
among individuals having experienced VL in their house-
hold [30]. The possibility should be considered that both 
the benefit of ACD and promptness of independent care-
seeking may wane as we move closer to elimination.

Focusing attention on areas considered “high risk” 
from recently observed incidence may risk delaying diag-
nosis and treatment among the few cases which arise in 
low-endemic areas. This could be a concern since recent 
evidence has arisen of increasing, sporadic incidence of 
VL beyond the main endemic regions [31]. A study in 
Vaishali district by Kumar and colleagues [32] suggested 
the need to extend active efforts of vector control, case 
detection and community engagement to non-endemic 
but high-risk villages peripheral to hotspot areas. How-
ever, the authors conceded that there are substantial eco-
nomic barriers to applying this intensive approach.

ACD is laborious and the cost severely limits its via-
bility in areas with no recently reported cases. Yet, Dial 
and colleagues [33] make the case that bolstering efforts 

Fig. 3  A Model-estimated spatial variation in delay, assuming that cases are comparable on all factors except location. B Probability of these 
predicted delays exceeding 30 days, categorised to highlight where probability is greater than (yellow) or less than (black) 0.5. The opacity of colour 
reflects distance of the estimate from 0.5, i.e. the strength of the classification. C Observed total block-level incidence per 10,000. Note: Estimates are 
not mapped for districts within which no cases were observed during the period of the study
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in meso-endemic and low-endemic districts may prove 
to be cost-effective in the long term. We found evidence 
that ACD may have greater scope for reducing delay in 
low-endemic areas. As communities from low-endemic 
areas lack awareness to promptly recognise symptoms 
and self-refer, it provides further justification for main-
taining robust surveillance in such areas. However, it 
should be considered whether there is a more economical 
approach to active surveillance than its current form. A 
cost assessment could, for example, be made of a strategy 
not to intensively detect cases but to intensively increase 
awareness outside the assumed endemic areas (aware-
ness of the disease, its diagnosis/treatment and of PKDL).

If the past decade of efforts continues to be success-
ful and incidence declines to near-negligible levels in 
many districts, our findings suggest that this may result 
in longer delays for the few remaining cases. Medley and 
colleagues [34] suggest that prompt diagnosis may be key 
for India to follow the examples of Nepal and Bangla-
desh in achieving elimination as a public health problem, 
but there is scope for further investigation of the conse-
quence of delays among few cases on risk of outbreaks 
and resurgence. Key epidemiological features ought to be 
carefully and regularly monitored as programme objec-
tives are achieved, generating feedback with which to 
periodically update procedures.

Our study has some limitations. Self-reported symp-
tom durations are prone to bias; the raw data exhibit 

heaping at rounded time intervals and literature suggests 
that this behaviour can bias parameter estimates [26]. 
However, refitting the final model for a binary outcome 
only reduced the precision of estimates rather than alter-
ing the estimated effects. The subset of observations not 
linkable to GPS locations or with other missing char-
acteristics could also bias the observed spatial pattern 
of delays or estimated covariate effects. Moreover, the 
grouping of individual observations by village could mask 
or dilute important associations. It is the intention of 
KAMIS data managers that, going forward, each patient’s 
data would be linked to an individual household location 
as opposed to only the village centre. The increased iden-
tifiability of these data would, however, need to be care-
fully navigated to take advantage of this finer information 
for the purposes of surveillance and analysis.

Our interpretation of ACD impact assumes no unob-
served confounding in estimation of the interven-
tion’s effect. ACD is triggered by incidence in the last 
12  months [14]; therefore, this is a strong candidate for 
confounding but is adjusted for with block and village 
level indicators in the model. A more rigorous analysis 
of ACD specifically, which considered assumed causal 
relationships between covariates in more detail, may bet-
ter pinpoint where and in which populations its benefit 
might be greatest relative to the cost.

This analysis only describes the behaviour of sympto-
matic infection among detected cases. The observed delay 

Fig. 4  Change in expected diagnosis delay under different ACD coverage scenarios, stratified by recent block endemicity. The baseline is taken 
as the expected delay under the actual coverage observed in this population. Estimates are shown as average days per case in total and average 
days per case for which detection route was reassigned under the scenario (i.e. those originally ACD in the 0% scenario, and those originally PCD 
in the 100% scenario). Point estimates are medians and intervals are 98% credible intervals over 10,000 posterior samples
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data may under-represent the upper tail of the distribu-
tion since presence in the dataset is conditional on hav-
ing recognisable symptoms and obtaining a diagnosis at 
all. The majority of infections with Leishmania donovani 
are asymptomatic and resolve without intervention [35], 
yet xenodiagnostic evidence suggests that asymptomatic 
individuals do not contribute substantially to transmis-
sion [36]. If poorer detection of symptomatic cases overall 
corresponds with less prompt diagnosis as observed here, 
the absence of as-yet-undetected cases from the analysis 
could render our results conservative and suggest that 
inferred areas of longer delay could reflect an even greater 
problem in practice. Also excluded are cases of PKDL, 
a more poorly-reported secondary form of leishmania 
infection which may contribute increasingly to transmis-
sion as VL incidence declines [37]. Delays to diagnosis 
of PKDL are usually longer than for VL, yet may exhibit 
similar spatial patterns since detection of PKDL can be a 
by-product of VL surveillance.

Conclusions
Reduction of avoidable delays to diagnosis and treatment 
is a key objective in the pursuit of visceral leishmania-
sis elimination across the Indian subcontinent. Previ-
ous work has identified some groups at risk of delayed 
care-seeking, but we demonstrate that heterogeneity 
remains in the promptness of diagnosis across the state. 
This spatial variation may in part be explained by differ-
ences in risk awareness because of recent VL incidence 
in the community. Evidence suggests that returns on 
active detection may vary between regions at different 
stages of elimination, and we suggest that further math-
ematical modelling may clarify how delays could perpet-
uate transmission in low incidence areas. The efficacy of 
ACD in reducing delays is clear, yet its intensity and geo-
graphic extent may need to be reassessed as the region 
approaches elimination.
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