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 a b s t r a c t

Cost-effectiveness analyses (CEA) typically involve comparing the effectiveness and costs of one or more in-
terventions compared to the standard of care, in order to determine which intervention should be optimally 
implemented to maximise population health within the constraints of the healthcare budget. Traditionally, cost-
effectiveness evaluations are expressed using incremental cost-effectiveness ratios (ICERs), which are compared 
with a fixed willingness-to-pay (WTP) threshold. Due to the inherent uncertainty in intervention costs and the 
overall burden of disease, particularly with regard to diseases in populations that are difficult to study, it becomes 
important to consider uncertainty quantification while estimating ICERs.
To tackle the challenges of uncertainty quantification in CEA, we propose an alternative paradigm utilizing the 
Linear Wasserstein framework combined with Linear Discriminant Analysis (LDA) using a demonstrative example 
of lymphatic filariasis (LF). This approach uses geometric embeddings of the overall costs for treatment and 
surveillance, disability-adjusted life-years (DALYs) averted for morbidity by quantifying the burden of disease 
due to the years lived with disability, and probabilities of local elimination over a time-horizon of 20 years 
to evaluate the cost-effectiveness of lowering the stopping thresholds for post-surveillance determination of LF 
elimination as a public health problem. Our findings suggest that reducing the stopping threshold from < 1% 
to < 0.5% microfilaria (mf) prevalence for adults aged 20 years and above, under various treatment coverages 
and baseline prevalences, is cost-effective. When validated on 20% of test data, for 65% treatment coverage, a 
government expenditure of WTP ranging from $500 to $3000 per 1% increase in local elimination probability 
justifies the switch to the lower threshold as cost-effective.
Stochastic model simulations often lead to parameter and structural uncertainty in CEA. Uncertainty may impact 
the decisions taken, and this study underscores the necessity of better uncertainty quantification techniques 
within CEA for making informed decisions.
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1.  Introduction

1.1.  Health economics motivation

Global health systems face enormous challenges due to the rising de-
mand for healthcare services and the finite resources available to them. 
While other factors, such as equity may play a role, a common aim for 
governments is to maximise overall population health within the con-
straints of the available healthcare budget. Planning, managing, and as-
sessing health systems heavily rely on economic factors. The best use 
of limited resources is guided by health economic analyses, which pro-
vide cohesive techniques for evaluating the cost-effectiveness of health 
interventions.

The economic evaluation of health interventions is typically based 
on the outcomes and costs of the interventions. Depending on how the 
outcomes and interventions are evaluated, one of the main methodolo-
gies used is the cost-effectiveness analysis (CEA). This is an economic 
evaluation technique in which two or more health interventions are 
compared in terms of incremental costs and incremental effects relative 
to the standard of care, with the cost-effectiveness expressed using the 
incremental cost-effectiveness ratio (ICER) - a measure that divides the 
incremental costs by the incremental effects. Most countries that regu-
larly use CEA to guide policy decisions around the implementation and 
reimbursement of interventions specify in their health-economic guide-
lines that cost-utility analyses should be used, where the denominator of 
the ICER is expressed in quality-adjusted life-years (QALYs) or disability-
adjusted life-years (DALYs). The latter is more frequently used in low- 
and middle-income countries (LMICs). Given the focus on LMICs in this 
paper, DALYs will be used, from here onwards.

The interpretation of the ICER depends on where it lies on the cost-
effectiveness plane (refer to Fig. 1 in Griffin et al., 2020). If the new 
intervention is more effective and saves money compared to the stan-
dard of care (south-east quadrant), or if the new intervention is less 
effective and more costly compared to the standard of care (north-west 
quadrant), the ICER is negative and interpretation is simple. In the for-
mer case, the new intervention should clearly be adopted from a cost-
effectiveness point of view, whereas in the latter case, the intervention 
is clearly worse and should not be adopted.

To determine whether an intervention is likely to improve overall 
population health within healthcare budget constraints, the ICER can be 
compared with a cost-effectiveness threshold in situations where the in-
tervention is more costly and more effective (north-east quadrant) or less 
costly and less effective (south-west quadrant). Assuming the decision-
maker indeed wants to maximise overall population health, a symmet-
rical threshold should be applied to both quadrants, whereby interven-
tions that are more effective and more costly should remain below the 
threshold, and interventions that are less effective and less costly should 
remain above the threshold.

If a new intervention costs more per DALY avoided than the health-
care it displaces, then health opportunity costs exceed health benefits, 
and implementing the new intervention would be expected to lead to 
an overall reduction in population health, measured in DALYs. Theo-
retically, the cost-effectiveness threshold (Chi et al., 2020; Turner et al., 
2021; Ochalek et al., 2018) should reflect the point at which this occurs. 
Thus, given the available budget, interventions that are more costly and 
more effective with an ICER below the threshold are expected to im-
prove overall population health, while similar interventions with an 
ICER above the threshold are expected to worsen overall population 
health.

Characterising uncertainty is crucial in CEA, particularly when eval-
uating the need for additional evidence. Value of Information (VoI) 
analysis (Jackson et al., 2022, 2019) enhances CEA by quantifying the 
benefit of reducing uncertainty in decision-making. In health decision-
analytic models, VoI assesses the potential benefit of obtaining addi-
tional data aimed at reducing uncertainty in key parameters influenc-
ing decision uncertainty. Two key uncertainties are model input values 

and model structure. VoI analyses in the literature typically focus only 
on parameter uncertainty and completely ignore model structure uncer-
tainty. These models are typically law-driven due to a lack of long-term 
data. To quantify input uncertainty, a probability distribution for true 
input values is propagated through the model using Monte Carlo sam-
pling, known as probabilistic sensitivity analysis (PSA) (Claxton et al., 
2005; Strong et al., 2015). However, PSA only addresses input uncer-
tainty, not structural uncertainty, which is harder to quantify and re-
quires judgments about the model’s real-life representation.

Despite its potential, VoI analysis (Wilson, 2015) is constrained by 
structural uncertainties, which are rarely quantified in model-based 
analyses. Not quantifying structural uncertainty implies that the model 
is a perfect representation of real-world processes and relationships. 
While VoI analysis for structural uncertainty using model selection and 
model averaging has been explored previously (Strong and Oakley, 
2014; Bojke et al., 2009), methods in this area are still underdeveloped. 
Addressing these limitations is essential to fully leverage VoI analysis in 
making informed and effective healthcare policy decisions.

1.2.  Theoretical background on lymphatic filariasis

Lymphatic filariasis (LF), a debilitating neglected tropical disease 
caused by parasitic worms transmitted through mosquitoes, affects 
about 882 million people across 44 countries (World Health Organiza-
tion, 2011). In 2000, the World Health Organization (WHO) launched 
the Global Program to Eliminate Lymphatic Filariasis (GPELF), aiming 
to eradicate LF as a public health problem (EPHP) in 73 endemic nations 
by 2020 (World Health Organization, 2023). By 2025, 21 countries, 
including Brazil and Timor-Leste, were validated as having achieved 
EPHP, with 14 others under surveillance after halting large-scale treat-
ment (World Health Organization, 2023, 2011).

The primary intervention involves annual mass drug administration 
(MDA) for at least five years in affected areas, employing drug combi-
nations such as diethylcarbamazine (DEC) + albendazole (DA) or al-
bendazole + ivermectin (IA) (World Health Organization, 2011). Some 
areas also utilize a triple combination ivermectin + DEC + albendazole 
(IDA) (King et al., 2018; Irvine et al., 2017). To assess MDA impact and 
determine if infection levels have dropped below stopping thresholds, 
the WHO recommends epidemiological monitoring surveys and trans-
mission assessment surveys (TAS). The TAS uses blood smears samples, 
typically surveying children aged 5 years and above for microfilariae 
(mf) prevalence (World Health Organization, 2011). The current MDA 
guidelines advise a minimum of 5 rounds of treatment before a pre-TAS 
is used to determine whether a first full TAS should be conducted, known 
as TAS-1. MDA can be stopped if TAS-1 is passed. Two subsequent sur-
veys must also be passed before EPHP can be validated, TAS-2 and TAS-
3, each within 2–3 years of the previous assessment (see Fig. 1(A) in 
Antony Oliver et al., 2024).

However, focusing solely on children may underestimate mf preva-
lence, potentially missing ongoing transmission as adults may have 
higher mf prevalence. This paper proposes to improve the sensitivity 
of TAS to evaluate mf prevalence in adults, targeting < 0.5% mf preva-
lence. The TAS sample size typically involves randomly sampling ap-
proximately 30 sites with 40–60 adults per site to replicate the charac-
teristics of an evaluation unit (EU). Achieving and sustaining WHO goals 
necessitates effective surveillance, identifying new cases post-EPHP tar-
get attainment. Intensive surveillance thresholds (< 2% antigenemia 
(Ag), < 1% mf) may still be inadequate, especially in areas with Culex
transmission vectors (Antony Oliver et al., 2024; Davis et al., 2019). 
Mathematical and biological theories (May, 1991) propose a transmis-
sion breakpoint influenced by local transmission conditions and biolog-
ical factors, in helminth infections such as LF, which depend on sex-
ual reproduction of the parasites, where low worm burdens diminish 
onward transmission, potentially leading to disease extinction in deter-
ministic scenarios. Studies, have suggested that the breakpoint might 
be substantially lower than 1% mf prevalence (Gambhir and Michael, 
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2008; Michael and Singh, 2015). Stochastic extinction can still occur 
above this breakpoint but with a lower probability (Davis et al., 2019). 
If MDA is halted after reaching the breakpoint, the low-level remaining 
transmission will diminish gradually taking a longer time for LF extinc-
tion.

In this work, we aim to provide the first detailed model simulations 
of reducing the TAS stopping threshold in LF from < 1% to < 0.5% mf 
prevalence in a sample of adults aged 20 years and above. This facilitates 
the understanding of the different trade-offs between additional rounds 
of MDA treatment and rebounds that apply to the design of surveillance 
strategies. In this context, modelling can help us to understand how 
adjusting the threshold used in TAS impacts decisions about the stop 
of interventions and at what cost. For many settings, a reduction in the 
threshold increases the probability of elimination, decreases the number 
of treatment rounds required, and reduces costs. Importantly, however, 
in certain circumstances (e.g., when coverage is lower), lower thresholds 
can imply an increase in the number of rounds of treatment required to 
reach that threshold (with increased costs) but help mitigate chronic 
conditions (such as lymphoedema and hydrocele) and result in longer 
sustained elimination with fewer future rebounds.

To investigate the issues outlined above, here we use mathematical 
models of the transmission dynamics of LF as a case study to assess the 
potential implications of modifying the threshold for TAS. The paper 
addresses a key question: What are the potential trade-offs encountered 
in uncertainty quantification of cost-effectiveness analysis on lowering 
the stopping threshold for TAS in adults aged 20 years and above from an 
economic, epidemiological and mathematical perspective? In this paper, 
we restrict to lowering the stopping threshold from < 1% mf prevalence 
to < 0.5% mf prevalence for a sample of adults motivated by the work 
in Antony Oliver et al. (2024) and Davis et al. (2019). Importantly, we 
focus on areas with Culex mosquitoes as the major transmission vector 
using IA drug combinations for potential comparisons.

1.3.  Contributions

The primary contribution of this work revolves around the charac-
terisation of uncertainty within the health-economic decision model de-
signed to understand the transmission dynamics of LF. This is achieved 
through the integration of the Linear Wasserstein Framework with 
Principal Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA). This methodology offers better performance in high-dimensional 
scenarios while maintaining computational efficiency. To address the 
fundamental question of interest, the study investigates the following 
three specific sub-questions, each of which contributes to advancing our 
understanding:

1. What is the interplay between the dynamics of infection on DALY 
burden and elimination? In Section 5 we show the monotonic be-
haviour of the DALY burden and probability of elimination for dif-
ferent stopping thresholds, baseline mf prevalences and MDA cover-
ages.

2. What are the dynamics of the costs both pre and post-MDA surveil-
lance when the stopping threshold is lowered? In Section 5 we ex-
plain the trade-off illustrated in the observed non-monotonic be-
haviour of the costs for different stopping thresholds, baseline preva-
lences and MDA coverages.

3. If lower stopping thresholds are required for elimination of trans-
mission, then are we realistically able to measure them using cur-
rent tools? In order to circumvent issues related to the ICERs to ad-
dress this question using the CEA framework in Section 2, we in-
stead adopt a linear formulation of the Expected Incremental Net-
Monetary Benefit (EINMB) metric for fixed country-level WTP val-
ues as recommended by several studies (Pichon-Riviere et al., 2023; 
Vallejo-Torres et al., 2023) for DALYs averted and approximate the 
range of WTP for probability of elimination (due to lack of data) in 
order to align with the goals of GPELF. We also extend the analysis to 

quantify uncertainty with every additional sample size using Value of
Information Analysis (VoI) with the help of the Expected Value of 
Sample Size (EVSI) metric for the optimum WTP values per DALY 
averted and unit increase in the probability of elimination for dif-
ferent baseline prevalences of lower stopping thresholds. Finally, we 
propose an alternate paradigm, the Linear Wasserstein Framework in 
Section 3 that might help us resolve some of the proposed limitations, 
particularly around structural uncertainty of the CEA framework.

Addressing these questions will help to assess whether lower thresholds 
have the potential to assist programmes in achieving LF local elimina-
tion goals and how such decisions impact programme costs aligning with 
the GPELF objectives.

1.4.  Outline of the paper

We begin in Section 2 by summarizing the theoretical framework 
for CEA. In addition, we prescribe an alternative paradigm that circum-
vents structural uncertainties of CEA using the Linear Wasserstein frame-
work in Section 3. The numerical implementation is then described in 
Section 4 and tested in Section 5. Finally, we discuss our findings and 
present our conclusions in Section 6. For the reader’s convenience we 
have provided a list of key terminologies used in the manuscript in Table 
C.17 (refer to Appendix C for more details, including additional results 
on the necessary outcomes and the transmission model).

2.  Value of information (VoI) analysis

Decision-making under uncertainty involves selecting from various 
strategies based on incomplete information. A risk-neutral decision-
maker would typically choose the strategy that maximizes the expected 
payoff. However, uncertainty introduces the potential for adverse out-
comes, as the expected payoff may not always materialize in practice. 
In this context, the VoI analysis is framed from the perspective of a risk-
neutral decision-maker, using the outcomes to identify the strategy with 
the highest expected payoff given current knowledge. VoI analysis helps 
determine whether further evidence is necessary to reduce uncertainty 
and improve decision making.

In this section, we outline key concepts of uncertainty analysis within 
the CEA framework. We extend the net monetary benefit (NMB) ap-
proach to account for resource implications, while aligning with GPELF 
goals by incorporating probability of elimination (Antillon et al., 2021).

2.1.  Notation and basic concepts

Health economic decision-making aims to determine the optimal in-
tervention (policy or strategy) considering the costs and health impacts 
of various clinical outcomes with respect to the 𝑘 uncertain parameters 
𝜽 = {𝜃1,… , 𝜃𝑘}. A key metric is the Incremental Cost-Effectiveness Ra-
tio (ICER), defined as the ratio of the difference in costs (Δ𝐶(𝜽)) to the 
difference in health impacts (Δ𝐸(𝜽)) between two strategies: 

ICER =
Δ𝐶(𝜽)
Δ𝐸(𝜽)

, (1)

Here, we use a cost-utility analysis, where health impacts (Δ𝐸(𝜽)) are 
expressed in disability-adjusted life years (ΔDALYs(𝜽)) averted by quan-
tifying overall disease burden due to morbidity and mortality. In the cur-
rent analyses, we only include effects on morbidity (e.g., lymphoedema, 
hydrocele) as we assume the intervention has no impact on mortality. 
For our analysis, the health impacts will consider both DALYs averted 
and the probability of elimination. Importantly, within the context of 
this paper, we note that the uncertain parameters 𝜽 (as listed in Table 
C.16 in the Appendix) include MDA coverages (equivalently, relating to 
MDA and TAS), vector-to-host ratio, bite risk aggregation parameter and 
other population characteristics. These parameters are the main drivers 
of the uncertainty induced in the costs, DALYs averted and probability 
of elimination. They are not selected arbitrarily as they are informed by 
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law-based principles and prior knowledge of the factors that contribute 
to the epidemiological dynamics (see Irvine et al., 2016; Davis et al., 
2019 for more details).

Formally, a strategy is considered cost-effective if the ICER does not 
exceed the health planner’s WTP per DALY averted (WTPDALY), 

ICER =
Δ𝐶(𝜽)

ΔDALYs(𝜽)
≤WTPDALY. (2)

The net-benefit framework circumvents issues with ICERs by not hav-
ing to deal with extended dominance (when one intervention is less 
cost-effective than a combination of two or more interventions) by trans-
forming the ICER into a linear additive form, known as the net-monetary 
benefit (NMB). In particular, 
Δ𝐶(𝜽) ≤WTPDALY ⋅ ΔDALYs(𝜽) ⟹

0 ≤WTPDALY ⋅ ΔDALYs(𝜽) − Δ𝐶(𝜽) = NMB(𝜽,WTPDALY).
(3)

By using NMB, which relies on single monetary values rather than ra-
tios, the framework simplifies the evaluation of multiple interventions, 
regardless of which quadrant of the cost-effectiveness plane the ICER 
lies in. The uncertainty about the “true” unknown values of 𝜽 is rep-
resented by the joint probability distribution, ℙ. Given a Monte Carlo 
sample of 𝑁 iterates of 𝜽, a strategy is preferred over the comparator if 
the expected incremental NMB (EINMB) exceeds zero: 

0 ≤ 𝔼𝜽(NMB(𝜽,WTPDALY)) ≈
1
𝑁

𝑁
∑

𝑖=1
NMB(𝜽𝑖,WTPDALY). (4)

where for 𝑖 = {1, 2,… , 𝑁} we have that 𝜽𝑖
iid∼ ℙ. We now extend this 

framework to multi-strategy decision analysis between 𝑆 strategies 
where we recall that a decision maker is faced with a set of mutually ex-
clusive decision options, indexed 𝑠 = {1,… , 𝑆}. Next, it is assumed that 
a decision model, denoted NMB predicts the utility for strategy 𝑠 given 
𝑁 iterates of the uncertain parameters 𝜽(𝑠)𝑖 . With current knowledge, the 
best that a risk-neutral decision maker can do is to choose the decision 
option that gives the highest expected utility. The utility associated with 
this option is: 

max
𝑠={1,2,…,𝑆}

𝔼𝜽(𝑠)
(

NMB
(

𝜽(𝑠),WTPDALY
))

≈ max
𝑠={1,2,…,𝑆}

1
𝑁

𝑁
∑

𝑖=1

(

NMB
(

𝜽(𝑠)𝑖 ,WTPDALY
))

.
(5)

where the 𝔼𝜽(𝑠) (⋅) represents the expectation (mean) taken with respect 
to ℙ𝑠, the distribution of 𝑖th iteration of 𝜽(𝑠)𝑖  for each strategy 𝑠. We also 
include benefits related to the probability of elimination of LF, aligning 
with GPELF goals using WTP per unit increase in probability of elimi-
nation (WTPElimination). The NMB is reformulated as: 
NMB

(

𝜽(𝑠),WTPDALY,WTPElimination
)

= 100 ⋅WTPElimination × Δ𝕀Elimination(𝜽(𝑠))

+WTPDALY × ΔDALYs(𝜽(𝑠)) − Δ𝐶(𝜽(𝑠)),

(6)

where we use the symbol Δ to denote the difference in costs, DALYs 
averted, and probability of elimination between the strategy being eval-
uated and the comparator. In the context of this work, the comparator 
chosen is the outcomes related to the dynamics of the stopping thresh-
old < 1% mf prevalence for 5–10% baseline prevalences in a sample of 
children. The choice of this comparator is motivated from the current 
stopping threshold adopted by the WHO to declare LF as EPHP. Here, 
Δ𝕀Elimination is 1 if only one strategy achieves elimination, and 0 other-
wise. Analogous to the traditional NMB, the strategy that ought to be 
implemented is indicated by, 

max
𝑠={1,2,…,𝑆}

𝔼𝜽(𝑠)
(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

. (7)

Simultaneously, the framework also allows for a probabilistic interpre-
tation of cost effectiveness. The probability that a strategy 𝑠 ∈ {1,… , 𝑆}

is cost-effective (CE), given the uncertain parameters 𝜽(𝑠)𝑖 , is expressed 
by: 

ℙ(𝑠 is CE) = 1
𝑁

𝑁
∑

𝑖=1
𝕄(𝜽(𝑠)𝑖 ), (8)

where 

𝕄(𝜽(𝑠)𝑖 ) =

{

1  if 𝑠 = arg max
𝑠∈1∶𝑆

NMB
(

𝜽(𝑠)𝑖 ,WTPDALY,WTPElimination
)

0 Otherwise 
(9)

The framework therefore presents a measure of uncertainty by the pro-
portion of samples where the strategy has the highest NMB of all strate-
gies.

In general terms, the Expected Value of Perfect Information (EVPI) 
(Brennan et al., 2007) is the expected value of learning, with certainty, 
the “true” values of all model parameters 𝜽(𝑠) (i.e., eliminating all param-
eter uncertainty). It represents the maximum amount a decision-maker 
would be willing to pay for perfect information to avoid the potential 
losses associated with uncertainty. EVPI is defined as,
EVPI = 𝔼𝜽(𝑠)

(

max
𝑠={1,2,…,𝑆}

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

− max
𝑠={1,2,…,𝑆}

𝔼𝜽(𝑠)
(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

. (10)

The expected value of acquiring new information about a subset of 
parameters of interest is used to identify the parameters that are impor-
tant in driving the decision uncertainty. Here, the vector of parameters 
can be split in two components 𝜽(𝑠) = (𝝓(𝑠),𝝍 (𝑠)), where 𝝓(𝑠) is the sub-
vector of parameters of interest (i.e., those that could be investigated 
further) and 𝝍 (𝑠) are the remaining “nuisance” parameters. Therefore, 
the decision option is selected based on the one that maximizes expected 
utility, conditional on the values 𝝓(𝑠). This has utility: 

max
𝑠={1,2,…,𝑆}

𝔼𝝍 (𝑠)
|𝝓(𝑠)

(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

. (11)

where 𝔼𝝍 (𝑠)
|𝝓(𝑠)  denote the expectation taken with respect to the distribu-

tion of 𝝍 (𝑠)
|𝝓(𝑠). This gives the value of learning 𝝓(𝑠) with no uncertainty. 

Of course, we will never be in the position to completely eliminate the 
uncertainty on 𝝓(𝑠), so we then average over its current probability dis-
tribution while also subtracting the value of the current optimal decision 
to calculate the Expected Value of Partial Perfect Information (EVPPI)
(Brennan et al., 2007; Strong et al., 2015; Heath et al., 2016). The eco-
nomic value of eliminating all uncertainty about 𝝓(𝑠) (assuming risk neu-
trality) is equal to the EVPPI which is given by:
EVPPI = 𝔼𝝓(𝑠)

(

max
𝑠={1,2,…,𝑆}

𝔼𝝍 (𝑠)
|𝝓(𝑠)

(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
)))

− max
𝑠={1,2,…,𝑆}

𝔼𝜽(𝑠)
(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

. (12)

Expected Value of Sample Information (EVSI) (Heath et al., 2019) 
measures the value of collecting additional data 𝜽̃(𝑠) to inform 𝝓(𝑠), as-
suming 𝜽̃(𝑠) directly updates 𝝓(𝑠) and is independent of 𝝍 (𝑠)

|𝝓(𝑠). More 
formally, it is the value of acquiring information through sampling or ad-
ditional data collection to reduce uncertainty in decision-making. EVSI 
is bounded above by EVPPI. If data 𝜽̃(𝑠) were observed as 𝑥̃(𝑠), it would 
update distribution of 𝝓(𝑠) for each strategy 𝑠, impacting the net ben-
efit distribution for each treatment. EVSI is the average value over all 
possible data sets:
EVSI = 𝔼

𝜽̃(𝑠)
(

max
𝑠={1,2,…,𝑆}

𝔼
𝜽(𝑠)|𝜽̃(𝑠)

(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
)))

− max
𝑠={1,2,…,𝑆}

𝔼𝜽(𝑠)
(

NMB
(

𝜽(𝑠),WTPDALY,WTPElimination
))

. (13)

where 𝔼
𝜽(𝑠)|𝜽̃(𝑠)

 denotes the expectation over the posterior distribution of 
𝜽(𝑠) given data 𝜽̃(𝑠).

In this paper, we estimate EVSI computationally using the nested 
Monte Carlo method based on “Moment Matching” (Heath et al., 2019). 
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This approach enhances computational efficiency by reducing nested 
Monte Carlo error and improving the approximation of the posterior 
sample distribution through Moment Matching (see Algorithm 1 in Ap-
pendix A for details). Several alternative methods in literature exist, in-
cluding Importance Sampling (IS), regression techniques, the Gaussian 
approximation method, and Integrated Nested Laplace Approximation 
(INLA) (see Table 3 in Kunst et al., 2020 for comparison of the different 
methods). However, we choose Moment Matching (Heath et al., 2016) 
for its better computational efficiency in estimating EVSI (see Table 2 in 
Heath et al., 2020 which reports the computational time for EVSI eval-
uation in three case studies). It is particularly beneficial when the data 
does not have an easily identifiable sufficient statistic, but the model it-
self remains computationally efficient. Although INLA is highly efficient 
for Bayesian inference—particularly in latent Gaussian models where 
it leverages dimensionality reduction by treating PSA simulations as a 
‘spatial problem’. This method could be more efficient than the Moment 
Matching method in health economic models with a small number of un-
derlying parameters but with a longer computational time. Therefore, 
Moment Matching provides a more practical balance between accuracy 
and efficiency for our EVSI estimation needs.

2.2.  Fundamental issues implementing EVSI using moment matching

There are several challenges that arise when evaluating the EVSI 
metric defined in (13) using Moment Matching:

1. Assumptions on Distributions: Implementing EVSI using the 
moment-matching method (see Algorithm 1 in Appendix A) involves 
approximating the distribution of the sample information using mo-
ments (mean, variance, etc.). This can introduce errors, especially if 
the true distribution of the sample information is not well approxi-
mated by these moments.

2. Dependence on Prior Information: The quality of EVSI estimates 
using Moment Matching depends heavily on the prior information 
available. Poor or inaccurate priors can lead to misleading EVSI es-
timates.

3. Implementation Challenges: Moment Matching is accurate and effi-
cient when the health economic model has a low computation time 
but becomes increasingly infeasible as the model runtime increases 
and can be inaccurate when the sample size is less than 10.

4. Requires Accurate EVPPI Estimation: Moment Matching is more ac-
curate for studies that have significant impact on the underlying un-
certainty in the decision-analytic model, i.e., the EVPPI of 𝝓(𝑠) for 
each strategy 𝑠 ∈ {1,… , 𝑆} needs to be high compared to the value 
of reducing all model uncertainty (i.e., EVPI), ideally greater than 
40% (Heath et al., 2019).

While Moment Matching can be a useful tool for approximating EVSI, 
these limitations must be carefully considered and addressed to ensure 
accurate and reliable health economic decision-making.

3.  Linear wasserstein framework

This section introduces an alternative methodology to evaluate 
EINMB and EVSI defined in Section 2 by assessing the cost-effectiveness 
of different strategies using the Linear Wasserstein Framework, also re-
ferred to as “Linear Optimal Transport” (LOT), originally formulated 
in Wang et al. (2013). Wasserstein-like distances serve as metrics on 
probability measures, quantifying the minimum cost required to trans-
port mass between two distributions, typically using the 𝑝th power of 
the Euclidean distance. While Wasserstein distances are commonly used 
to model translational shifts, the framework can be extended to in-
corporate more complex deformations, such as rotations and scalings, 
by adjusting the cost function. A key challenge with Wasserstein dis-
tances is their high computational cost and the limited availability of 
off-the-shelf data analysis tools. The linearization of optimal transport 

addresses these issues by mapping 𝑃 ∶ (𝑋) → ℝ𝑘 (for some 𝑘) such that 
the Wasserstein distance in (𝑋) is well approximated by the Euclidean 
distance in ℝ𝑘. This transformation enables the use of standard data 
analysis techniques, including dimensionality reduction, classification, 
and modelling, within the Euclidean space.

3.1.  Notations

We define some of the commonly used notations in the Linear 
Wasserstein Framework. We denote the space of probability measures 
on X as (X). Let X, Y ⊆ ℝ𝑑 with 𝜇 ∈ (X) and 𝜈 ∈ (Y).

Definition 1. Let 𝜇 ∈ (X) and 𝑇 ∶ X→ Y be a measurable map, the 
pushforward of 𝜇 by 𝑇 , denoted as 𝑇#𝜇 is the measure 𝜈 defined by, 
𝜈(𝐵) = 𝜇(𝑇 −1(𝐵)). (14)

for all measurable set 𝐵 ⊆ Y. 
Definition 2. We define Π(𝜇, 𝜈) between measures 𝜇 and 𝜈 to be the 
set of probability measures (couplings) on the product space (X × Y)
whose first marginal is 𝜇 and the second marginal is 𝜈. For any transport 
map 𝑇 : X → Y, there exists an associated transport plan 𝜋 such that, 
𝜋 = (Id × 𝑇 )#𝜇. (15)

where Id denotes the identity map. We recall that if 𝑃 X ∶ X × Y → X and 
𝑃 Y ∶ X × Y→ Y are the canonical projections, then the marginals are 
𝑃 X# 𝜋 = 𝜇 and 𝑃 Y# 𝜋 = 𝜈. 

3.2.  Optimal transport formulations

The Monge formulation (Villani, 2021) would be to find the transport 
map 𝑇  satisfying (14), given the probability measures 𝜇 ∈ (X) and 𝜈 ∈
(Y). The objective function would be minimising 𝕄(𝜇, 𝜈), where 

𝕄(𝜇, 𝜈) ∶= inf
𝑇 ∶𝑇#𝜇=𝜈 ∫𝑋

|𝑥 − 𝑇 (𝑥)|2d𝜇(𝑥). (16)

We call any 𝑇  which satisfies 𝑇#𝜇 = 𝜈 a transport map and the minimizer 
of the optimisation problem in (16) as the optimal transport map 𝑇 ∗. It 
is often difficult to handle the non-convex optimisation problem in (16) 
due to its non-linearity in 𝑇 .

The Kantorovich formulation (Villani, 2021) would be to minimise the 
objective function 𝕂(𝜇, 𝜈), given the probability measures 𝜇 ∈ (X) and 
𝜈 ∈ (Y), where 

𝕂(𝜇, 𝜈) ∶= inf
𝜋∈Π(𝜇,𝜈)∫𝑋×𝑌

|𝑥 − 𝑦|2d𝜋(𝑥, 𝑦). (17)

The minimizer of (17) is the optimal transport plan 𝜋∗. In this sense, 
the Kantorovich formulation in (17) can viewed as a relaxation of the 
Monge formulation. Moreover, in cases where the probability measures 
are discrete we find that the Monge formulation is ill-posed as the trans-
port maps may not exist. This motivates the modified formulation in
(17) which describes the amount of mass 𝜋(𝑥, 𝑦) that can be transported 
from 𝑥 to multiple positions at 𝑦.

3.3.  Wasserstein distances

Let X = Y = ℝ𝑑 . This allows us to define the 2-Wasserstein distance 
(Villani, 2021), which is the minimum transportation cost between the 
probability measures 𝜇 ∈ (X) and 𝜈 ∈ (Y), as 

𝑑W2 (𝜇, 𝜈) = inf
𝜋∈Π(𝜇,𝜈)

(

∫𝑋×𝑌
|𝑥 − 𝑦|2d𝜋(𝑥, 𝑦)

)
1
2
. (18)

We note that the construction can be generalized to any power 𝑝 ∈ [1,∞)
where an additional bound on the 𝑝th moments of the probability mea-
sures needs to be imposed, so as to guarantee a finite transport cost.

The 𝑑W2  distances are advantageous for Lagrangian modeling due 
to their simplicity, metric properties (like symmetry), existence of 
geodesics, Riemannian structure and theoretical benefits like existence 
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Fig. 1. The Linear Wasserstein framework embeds measures in the tangent 
space of a fixed reference 𝜎. As a consequence, the Euclidean distance between 
the non-negative measures 𝜇 and 𝜈 is an approximation for the 2-Wasserstein 
distance 𝑑W2 (𝜇, 𝜈). This figure is computed using ParaView.

of optimal transport maps and plans. However, they require the inputs to 
be probability measures, are computationally expensive, are distances 
defined on the same metric space and lack off-the-shelf data analysis 
tools. We therefore opt for the Linear Wasserstein Framework, which re-
duces the computational expense and allows for off-the-shelf Euclidean 
data analysis tools.

3.4.  Linear wasserstein framework

The Linear Wassertein framework introduced by Wang et al. (2013), 
illustrated in Fig. 1, has several applications in biomedical imaging, 
analysis of 2-D point cloud data (Basu et al., 2014; Ozolek et al., 
2014), telescopic and facial expressions (Kolouri and Rohde, 2015; 
Kolouri et al., 2017). The term “linear” refers to the (Euclidean) vec-
tor space structure that one gains after approximation. Heuristically, in-
stead of computing the geodesic distance on the manifold we compute 
a ‘projection’ of the manifold to the tangent plane at a (fixed) refer-
ence measure and then compute the distances on the tangent plane. 
This is the main reason we use the term linear when naming the
distance.

To discuss the Linear Wasserstein framework in the continuous set-
ting we consider a domain X ⊆ ℝ𝑑 that is a bounded, convex and closed 
subset of ℝ𝑑 with a non-empty interior, alongside the probability mea-
sures 𝜇𝑖 ∈ (X) for all 𝑖 ∈ {1, 2,… , 𝑁} and a fixed reference 𝜎 ∈ (X). 
The optimal transport map 𝑇 ∗

𝑖  between 𝜎 and 𝜇𝑖 satisfies, 

𝑑W2 (𝜇𝑖, 𝜎) =
(

∫X
|𝑥 − 𝑇 ∗

𝑖 (𝑥)|
2d𝜎(𝑥)

)
1
2

(19)

where 𝑇 ∗
𝑖 #𝜎 = 𝜇𝑖. This provides the basis to formally introduce the linear 

Wasserstein distance for two measures say 𝜇1 and 𝜇2. 

𝑑LW2 (𝜇1, 𝜇2; 𝜎) =
(

∫X
|𝑇 ∗

1 (𝑥) − 𝑇 ∗
2 (𝑥)|

2d𝜎(𝑥)
)

1
2
. (20)

This enables us to compute the linear embeddings in the form of projec-
tions 𝑃 ∶ (X) → 𝑇𝜎(X) onto tangent space. This can be expressed as, 

𝑃 (𝜇𝑖) = 𝑇 ∗
𝑖 − Id, (21)

Equivalently, we relate the Linear Wasserstein distance 𝑑LW2  to 2-
Wasserstein distance 𝑑W2  in Eq. (19) between any two measures 𝜇1, 𝜇2
relative to 𝜎. This can be expressed as follows, 
𝑑W2 (𝜇1, 𝜇2; 𝜎) = ||𝑃 (𝜇1) − 𝑃 (𝜇2)||L2(𝜎)= 𝑑LW2 (𝜇1, 𝜇2; 𝜎). (22)

Remark 1. This implies that the maps 𝑃 (𝜇𝑖) form the linear embed-
dings in the form of projections from the 2-Wasserstein space to a L2
(Euclidean) space, thereby preserving the optimal transport distance be-
tween 𝜇𝑖 and 𝜎. It is assumed that 𝑑LW2 (𝜇1, 𝜇2; 𝜎) ≈ 𝑑W2 (𝜇1, 𝜇2) and the 
approximation depends on the curvature of the Wasserstein space and 
in general the linear Wasserstein distance is not equivalent (in terms of 
metric equivalence) to the Wasserstein space. However, when there is 
some special structure, such as when the measures are all translations or 

shearings then one gets established bounds (Moosmüller and Cloninger, 
2023) like 𝑐𝑑LW2 (𝜇1, 𝜇2; 𝜎) ≤ 𝑑W2 (𝜇1, 𝜇2) ≤ 𝐶𝑑LW2 (𝜇1, 𝜇2; 𝜎) where 𝑐, 𝐶
are some positive constants, independent of 𝜇1 and 𝜇2. 

3.5.  Advantages of using the linear wasserstein framework

The linear optimal transport (LOT) framework offers an alternative 
approach to the calculation of the Expected Value of Sample Informa-
tion (EVSI), addressing several limitations associated with the Moment 
Matching method as outlined below:
1. Approximation Accuracy: Unlike Moment Matching, which approxi-
mates the distribution using moments, LOT directly operates on the 
full distribution of the data by leveraging probability measures. This 
results in more accurate representations of the underlying distribu-
tions, thereby reducing approximation errors. According to ISPOR’s 
recommendations (Rothery et al., 2020), uncertainty in input param-
eters should be represented using probability distributions, with any 
dependencies between parameters captured by a joint, correlated 
distribution. LOT facilitates the propagation of uncertainty from the 
transmission model input parameters to the transmission model out-
puts by representing them as a point cloud (a discrete set of points 
in space), thereby quantifying the structural uncertainty more com-
prehensively.

2. Handling High Dimensions: LOT distance is often more robust in 
high dimension compared to other well-known metrics on measure 
spaces, such as Jensen-Shannon and Kullback-Leibler divergence. 
The reason for this is due to the fact there is no underlying assump-
tion that requires measures to be absolutely continuous (often rare 
in high-dimensions). In particular, it is often informative to project 
to a lower dimensional subspace where off-the-shelf data analysis 
tools can be employed (see 4 below; technically, this follows from 
the well-known manifold hypothesis (Fefferman et al., 2016)).

3. Computational Efficiency: Evaluating pairwise approximate dis-
tances between 𝑁 samples using LOT requires solving only 𝑁 op-
timal transport problems (to compute maps 𝑃 (𝜇𝑖) for all samples), 
compared to the 𝑂(𝑁2) complexity required for computing exact 
pairwise Wasserstein distances.

4. Off-the-shelf Data Analysis Tools: LOT distance benefits from the Eu-
clidean space where standard (off-the-shelf) techniques for cluster-
ing, classification, regression, and dimensionality reduction such as 
PCA can be easily performed.

By directly addressing the distribution of sample information and lever-
aging efficient optimization techniques, the LOT framework provides 
a robust and scalable uncertainty quantification tool to calculate cost-
effectiveness analysis. This circumvents many of the limitations asso-
ciated with Moment Matching, leading to more accurate and reliable 
decision-making.

3.6.  Decision making with uncertainty

Uncertainty quantification (UQ) is integral to decision-making but 
remains challenging due to the inherent trade-off between expressiv-
ity and computational tractability. Traditional methods, such as Monte 
Carlo (MC) simulations and Gaussian Process Regression (GPR), exhibit 
fundamental limitations when addressing distributional uncertainty, 
where the underlying probability distribution is unknown or subject to 
shifts. MC-based techniques rely on random sampling, incurring signifi-
cant computational costs, especially in high-dimensional settings where 
the curse of dimensionality leads to slow convergence (Wahba, 1990; 
Williams and Rasmussen, 1996). Meanwhile, GPR (Stevenson et al., 
2004) assumes smooth function priors, restricting its ability to model 
abrupt changes or heavy-tailed distributions, which are prevalent in 
real-world applications. These limitations hinder the accurate quantifi-
cation of uncertainty when probability distributions evolve dynamically 
over time.
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The Linear Wasserstein Framework (also called LOT) provides a nu-
anced approach that extends beyond conventional UQ techniques by 
leveraging the underlying geometry of the probability distributions. Un-
like Latin Hypercube Sampling (LHS) (McKay, 1992), which relies on 
uniform stratification and may struggle with multimodal or heavy-tailed 
distributions, LOT directly captures the geometric structure of probabil-
ity distributions, making it particularly suitable for uncertainty propaga-
tion in systems with non-linear interactions. In contrast to Polynomial 
Chaos Expansion (PCE) (Xiu and Karniadakis, 2002), which approxi-
mates uncertainty through polynomial bases that deteriorate in high di-
mensions, LOT circumvents such approximations by preserving full dis-
tributional information through transport-based embeddings. This dis-
tinction enables LOT to remain robust even in scenarios characterised 
by non-Gaussian distributions.

Unlike Copula-based models (Nelsen, 2006), which capture depen-
dency structures but fail to quantify distributional distances, LOT explic-
itly preserves the full statistical geometry of uncertainty. This also sets 
LOT apart from Linear Noise Approximation (LNA) (Fintzi et al., 2022; 
Swallow et al., 2024), which relies on local linearization and fails to cap-
ture non-Gaussian dynamics, as well as quantile emulation (Semochkina 
et al., 2025), which estimates specific quantiles rather than the complete 
probabilistic structure. Furthermore, while Bayesian Network Models 
(BNMs) (Pearl, 1988) enable probabilistic reasoning within structured 
graphical models, their inference becomes computationally intractable 
in high dimensions. In contrast, LOT facilitates efficient computation 
in high-dimensional settings by leveraging its linear structure and Eu-
clidean geometry.

In health economics, quantifying uncertainty is crucial for under-
standing its impact on decision-making. The LOT method offers a re-
fined approach for this process, as illustrated in Algorithms 2 and 3 in 
Appendix A. This method involves computing the projections defined in
(21) and applying Principal Component Analysis (PCA). The rationale 
behind using PCA is to reduce the dimensionality of the projections, 
which helps prevent issues like singularity in the within-class scatter 
matrix when performing LDA. This is especially important because the 
number of training samples is much smaller than the feature space di-
mension. By reducing the dimensionality, we ensure that the within-
class variance is well-defined, allowing for a meaningful comparison 
with the dimensionality reduction technique employed in LOT. The PCA 
components are then used as feature vectors to train the LDA, which 
classifies the different strategies (e.g., baseline prevalence for < 0.5% 
stopping threshold) based on the decision boundary (hyperplane) de-
termined by the LDA. We say that a baseline prevalence (for each stop-
ping threshold evaluated) is cost-effective if the test data lies below the 
decision boundary (hyperplane). We recall that the WTPDALY are ob-
tained from data for 80% MDA coverage, but no such data is available 
for WTPElimination at 65% MDA coverage so we estimate it using the 
decision boundary.

Next, we extend the same procedure by incorporating bootstrapping 
to obtain additional projections of the transport maps. This resampling 
ensures that uncertainty in the input parameters can be propagated to 
the outcomes and thereby impact the classification performance (util-
ity). Here, utility directly measures the model’s performance, and an in-
crease in utility indicates that the added data is enhancing the model’s 
reliability, which is valuable for making optimal decisions. The EVSI is 
then calculated to assess the added utility of incorporating more data 
through bootstrapping compared to the current dataset (baseline using 
a sample size of 𝑁 = 500 independent draws in the transmission model 
and training the outcomes onto a LDA (20:80 - train:test split ratio)). The 
goal is to understand how additional data (captured via different boot-
strapped sample size 𝑀 = 500, 1000, 1500 draws) improves the classifica-
tion of various baseline prevalences using the different epidemiological 
outcomes under < 0.5% stopping threshold with LDA (by increasing the 
train:test split ratio from 20:80 to 80:20). Unlike traditional methods 
like Moment Matching, which may overlook complex uncertainties, we 
expect the LOT projections to capture the inherent structural uncertain-

ties. This offers decision-makers a more comprehensive, distribution-
aware view of how uncertainty impacts classification accuracy, leading 
to more informed and robust policy decisions.

4.  Methods

We utilize the stochastic TRANSFIL model (Irvine et al., 2015) with 
parameters previously estimated (Irvine et al., 2016; Stolk et al., 2018) 
to represent transmission by Culex mosquitoes (for more details on the 
parameters we refer Table C.16 in Appendix C). The model simulates the 
health impacts of LF and incorporates MDA effects, based on simulated 
target coverage, systematic non-adherence, and drug efficacy (Dyson 
et al., 2017). We excluded other interventions, such as vector control, 
for this study. We modelled closed populations (i.e., no migration, only 
births and deaths) of 100,000-50,000 people, reflecting the population 
size for an EU in standard TAS as per WHO guidelines (World Health 
Organization, 2011) and an exponential age distribution. The detection 
parameters were fitted using Bayesian MCMC to data from Malindi, 
Kenya, Colombo, Gampaha and Sri Lanka (Irvine et al., 2016). MDAs 
were simulated at 65% and 80% coverage. Systematic non-adherence 
was included by calculating individual treatment probabilities based on 
coverage and between-round correlation, parameterized with data from 
Leogane, Haiti, and Egypt (Dyson et al., 2017).

The model also simulates health impacts of lymphoedema, hydro-
cele, and acute adenolymphangitis (ADL) using published methods. 
Morbidity due to lymphoedema and hydrocele was modelled using a 
non-linear functional relationship of infection and morbidity for sub-
Saharan Africa (Van der Werf et al., 2003). The model assumes morbid-
ity occurs after accruing a certain cumulative worm burden. ADL inci-
dence was estimated twice per year in 70% of hydrocele patients and 
four times annually in 95% of lymphoedema patients (Chu et al., 2010). 
Prevalence was converted using published disability weights (Network, 
2020). Side-effects of MDA were not considered, despite reports of 13% 
feeling unwell post-MDA, as these effects were deemed minor (Willis 
et al., 2020). Mental illness was also excluded due to lack of accurate 
data, despite its recognized burden in LF (Ton et al., 2015; Koschorke 
et al., 2022).

For WHO-prescribed starting and stopping decisions (World Health 
Organization, 2011), we considered TAS survey samples from 30 sites 
per EU. Baseline prevalences were sampled from a normal distribu-
tion with means of 5–10%, 10–20%, or 20–30%, representing differ-
ent strategies in our decision analytic model. In each site, we sampled 
40–60 adults aged 20 years and above to evaluate TAS. If mf-positive 
adults were below the stopping threshold MDA was halted until the next 
survey; otherwise, it continued. We iterated this algorithm 1000 times 
and reported mean baseline prevalences. Cost simulations considered 
TAS ($12,494.75 Brady et al., 2017) and MDA rounds ($7640.92 Stolk 
et al., 2013) over a 20-year horizon, with discounting included. We note 
that for MDA restarts, the costs of the MDA and TAS are doubled.

For cost-effectiveness analysis, using the Expected Incremental Net 
Monetary Benefit (EINMB) metric, we used < 1% mf prevalence with 
5–10% baseline prevalence in children (aged 5 years and above) as the 
comparator. We simulated transmission dynamics and morbidity asso-
ciated with LF, including DALY burden for 30 sites and a TAS-like sur-
vey across those sites. We investigated different MDA coverages (65% 
and 80%) and different baseline LF prevalences. We evaluated WTPDALY
for DALYs averted, reflecting opportunity costs and adjusted for pur-
chasing power parity (Turner et al., 2019) using $500 (Ghana), $2500 
(Congo) and $5000 (Southern Africa) based on the provided country-
specific percentage of GDP per capita estimate that underlies the DALY- 
4 estimation method by multiplying the total per individual DALY value 
times a specific proportion of the GDP per capita (Ochalek et al., 2018) 
for LMIC and WTPElimination per unit increase in local elimination rang-
ing from $0 to $10,000 (Antillon et al., 2021). The evaluation was per-
formed for five different stopping thresholds (0.5%, 1%, 2%, and 5%) 
using Culex vector, although the primary focus was < 0.5% stopping 
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threshold. The analysis included samples of children, adults, and the 
entire eligible population, with prime focus on adults. For each scenario 
(different combinations of baseline prevalences and MDA coverages), 
the impact of the stopping threshold was analysed using a model-based 
approach, which assessed transmission dynamics, health outcomes and 
economic impacts. To address our key questions we focus on the adult 
age-group where we utilize the following inputs for the health-economic 
decision model:

1. Probability of elimination (Stolk et al., 2022), i.e., the probability of 
achieving local elimination within 20 years post-MDA if mf preva-
lence in a sample size of <1700 adults aged 20 years and above was 
below the stopping threshold.

2. Health impact evaluation through DALYs averted for morbidity by 
quantifying the overall disease burden due to lymphoedema, hydro-
cele and ADL by the years lived with disability. In this context, we 
assume that the years of life lost due to premature death is zero as 
death due to LF is rare.

3. Costs due to MDA rounds and TAS.

We primarily focus on two major tasks - (a) Compute the cost-
effectiveness of lowering the stopping threshold to < 0.5% mf preva-
lence in adults, (b) Evaluate the uncertainty in total costs, DALYs averted 
and/or probability of elimination for the different strategies (baseline 
prevalences 5–10%,10-20% and 20–30%) corresponding to the stop-
ping threshold < 0.5% mf prevalence in adults. We note to address (a) 
from the CEA framework we use the EINMB metric (see Section 2) with 
fixed country-specific WTPDALY and vary across an approximate range 
of WTPElimination due to non-availability of data. Analogously, to ad-
dress (a) using LOT framework in conjunction with PCA and LDA we 
classify the different baseline prevalences for the stopping threshold 
< 0.5% mf prevalence in adults. To address (b) from the VoI frame-
work we use the EVSI metric (see Section 2) which is implemented us-
ing Moment Matching method (see Algorithm 1 in Appendix A). Due 
to the above-mentioned challenges in implementing Moment Matching 
(see Section 2.2) we alternatively use the LOT framework in conjunc-
tion with PCA and LDA (see Section 3). The comparator chosen is the 
parameter values related to stopping threshold < 1% mf prevalence in 
children for the 5–10% baseline prevalences.

We briefly outline the LOT approach used in addressing the above 
two tasks as follows:

1. Data Generation (see line 1 in Algorithms 2 and 3): Let 𝑁 = 1000
be the number of iterations, 𝑇 = 20 × 12 = 240 (months) be the num-
ber of time steps, and choose the strategy

𝑠 =

⎧

⎪

⎨

⎪

⎩

1 if baseline prevalence 5–10%
2 if baseline prevalence 10–20%
3 if baseline prevalence 20–30%

Now, for each 𝑖 = {1,… , 𝑁} and 𝑠 = {1, 2, 3} we consider the follow-
ing:
(a) Sample the model parameters 𝜽(𝑠)𝑖 = (𝜃(𝑠)𝑖1 ,… , 𝜃(𝑠)𝑖𝑘 ) using the trans-

mission model TRANSFIL (Irvine et al., 2015) with parameters 
previously estimated (Irvine et al., 2016; Stolk et al., 2018) to 
represent transmission by Culex mosquitoes (for more details 
we refer Table C.16 in Appendix C). The labels are denoted as 
{𝑦𝑖}𝑁𝑖=1 ∈ 𝑠.

(b) Run the model for 𝑁 = 1000 iterations with the suitable choice 
of the parameters 𝜽(𝑠)𝑖  to obtain a vector of the average (over 
the population) for the possible outcomes of interest for stopping 
threshold < 0.5%. In short, we denote 𝑐(𝑠)𝑖 ∈ ℝ𝑇  as an observation 
of the average cost 𝐶(𝜽(𝑠)𝑖 ) ∈ ℝ𝑇 , 𝑎(𝑠)𝑖  as an observation of the av-
erage DALYs(𝜽(𝑠)𝑖 ) ∈ ℝ𝑇 , and 𝑒𝑖 as an observation of the average 
probability of elimination 𝕀Elimination(𝜽(𝑠)𝑖 ).

(c) Construct the probability measure

𝜇(𝑠)
𝑖 = 1

𝑇

𝑇
∑

𝑗=1
𝛿(

𝑐(𝑠)𝑖𝑗 ,𝑎(𝑠)𝑖𝑗 ,𝑒(𝑠)𝑖𝑗

) ∈ (ℝ3).

(d) Similarly, construct the reference measure

𝜎 = 1
𝑇

𝑇
∑

𝑗=1
𝛿(𝑐𝑖𝑗 ,𝑎̂𝑖𝑗 ,𝑒𝑖𝑗

) ∈ (ℝ3),

such that 𝑐𝑖 ∈ ℝ𝑇  is an observation of the average (over popu-
lation) cost 𝐶(𝜽̂𝑖), 𝑎̂𝑖 ∈ ℝ𝑇  is an observation of the average (over 
population) DALYs(𝜽̂𝑖), and 𝑒𝑖 ∈ ℝ𝑇  is an observation of the aver-
age probability of elimination 𝕀Elimination(𝜽̂𝑖) where 𝜽̂𝑖 represents 
the uncertain parameter values for the 𝑖th point cloud, which are 
associated with the 5–10% baseline prevalence and correspond 
to the stopping threshold < 1% mf prevalence in children.

2. Computation of LOT embeddings (see Step 1 in Algorithms 2 and 
3): Secondly, we compute the projections 𝑃 (𝜇(𝑠)

𝑖 ) ∈ ℝ3𝑇  as defined 
in (21) for each measure 𝜇(𝑠)

𝑖  relative to the reference 𝜎 as defined 
above.

3. Dimensionality Reduction using PCA (see Step 2 in Algorithms 
2 and 3): Thirdly, using these projections, we apply PCA to the LOT 
embeddings (projections) to extract the top 𝑝 = 15 eigenvectors that 
capture the principal variations in the distributions of the outcomes.

4. Classification using LDA (see Step 3 in Algorithms 2 and 3):
The projected eigenvectors obtained from PCA serve as training fea-
ture vectors, denoted as {X𝑖}𝐿𝑖=1, where 𝐿 ∈ {0.2𝑁, 0.4𝑁, 0.6𝑁, 0.8𝑁}
is the size of the training dataset. This approximately corresponds 
to the incremental costs and incremental DALYs averted and/or 
probability of elimination. The three classes of baseline prevalences 
(5–10%, 10–20%, and 20–30%) are used as training labels (strate-
gies), denoted as {𝑦𝑖}𝐿𝑖=1. These feature vectors and labels are then 
used as inputs for LDA to classify the remaining (unseen) test 
dataset into the different baseline prevalences for < 0.5% stopping
threshold.

5. Compute EINMB, account for the uncertainty in the outcomes 
and estimate WTPElimination for 65% MDA coverage (see Step 4–5 
in Algorithm 2 and Step 4 in Algorithm 3): To compare with the 
EINMB within the CEA framework we represent the scatter plots 
recording the mean estimate of test data classified into the different 
baseline prevalence and provide the confidence ellipses to account 
for the uncertainty in the classification predictions. We note that for 
80% MDA coverage we use the fixed (plotted as hyperplane using 
data) WTPDALY as chosen above and for 65% MDA coverage we es-
timate the decision boundary from LDA (plotted as hyperplane) as 
the WTPElimination (see Algorithm 2 in Appendix A for more details).

6. Compute EVSI (see Step 5–6 in Algorithm 3): To define an equiv-
alent notion of the EVSI, we extend the proposed algorithm by in-
corporating additional samples through bootstrapping. We compute 
the projections for the bootstrapped samples that are subsequently 
reduced to a lower-dimensional representation using PCA, followed 
by classification using LDA. Within this framework, we define a util-
ity function based on model performance, quantifying the number 
of correctly classified instances across predicted class labels.

As a baseline, we consider 𝑁 = 500 independent draws in the 
transmission model and perform steps 1–4, training an LDA classi-
fier (using a 20:80 train:test split ratio). To evaluate the effect of ad-
ditional information, we generate bootstrapped samples of increas-
ing sizes (500, 1000, and 1500 draws), and repeat steps 1–4, pro-
gressively adjusting the train:test split ratio from 20:80 to 80:20. 
The EVSI is then computed as the difference between the expected 
utility obtained from the augmented bootstrapped samples and that 
from the original baseline sample. This formulation provides a prin-
cipled way to assess the value of acquiring additional information, 
allowing the evaluation of whether the proposed strategy (base-
line prevalence) yields a measurable improvement in predictive
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performance. For implementation details, refer to Algorithm 3 in Ap-
pendix A.

5.  Results

The impact of MDA on the interruption of LF transmission and reduc-
tion of the disease burden using DALYs is dependent on the threshold 
criteria defined for passing the TAS, as illustrated in the example of a 
setting with a baseline prevalence of 5–10% and 80% MDA coverage 
of a single population size of 1000 for 10 simulations (Fig. 2).

In Fig. 3 (circles) replicating the characteristics of an EU, we find 
that the probability for local elimination at 5–10% baseline prevalence 
with 80% MDA coverage and a threshold of < 0.5% mf prevalence was 
89.2% (≥5 years), 91.8% (≥20 years), and 90.72% (entire eligible pop-
ulation). For a threshold of < 1% mf prevalence, it was 80.05%, 83.8%, 
and 81.76%, respectively. Lowering the threshold increases the prob-
ability for local elimination across different age-groups. These trends 
follow across different baseline prevalences, and MDA coverages (refer 
B.2, B.3, and B.4 in Appendix B).

Additionally in Fig. 3 (triangles), a lower threshold results in fewer 
MDA rounds (7 MDA rounds or more) and surveys (4 surveys or more) 
due to reduced probability of restarting after stopping. However, for the 
lowest baseline prevalence, restarting MDA is unlikely for any threshold 
for children and adults, with slightly higher costs for the lower threshold 
due to extra standard MDA rounds (5 MDA rounds) needed. For the en-
tire eligible population, higher thresholds for low baseline levels result 
in increased costs, primarily due to the potential need for MDA restarts, 
where random events have a greater influence on transmission dynam-

ics (Collyer et al., 2020). In general, more restarts occur at higher base-
line prevalences and lower MDA coverage for all thresholds due to the 
stochastic nature of the model dynamics accounting for higher trans-
mission and increased treatment rounds to achieve elimination (refer 
Tables B.5, B.6 and B.7, in Appendix B).

Fig. 3 (squares) shows mean DALYs averted across different thresh-
olds for 80% MDA coverage. Lowering the threshold results in more 
DALYs averted due to a small change in the morbidity prevalence. 
Trends are similar for 65% MDA coverage. The limited change in the 
incidence of DALY burden drops dramatically as average worm burdens 
drop, so most morbidity prevalence is due to historic infection, before 
the MDA.

To evaluate costs, health impact, and monetization benefits of lo-
cal elimination, we use expected incremental net monetary benefit 
(EINMB). Higher EINMB indicates optimal cost-effectiveness at a given 
WTPDALY. Our findings (Fig. 4a) show that at 80% coverage, switch-
ing to a lower threshold is cost-effective across all baseline prevalences, 
keeping costs per DALY averted below national WTP thresholds (posi-
tive EINMB). Variability in results is due to demographic factors such as 
age, treatment strategy, and population growth (Stone et al., 2016). At 
65% coverage (Fig. 4b), more rounds and surveys suggest switching to a 
lower threshold is cost-effective based on WTP per 1% increase in local 
elimination probability, aligning with GPELF goals (refer Tables B.8, B.9 
in Appendix B). For WTPs of approximately $4200, $3000, and $1000 
per 1% increase in local elimination for different baseline prevalence, 
switching is recommended (Fig. 4b, black solid line).

Health economic decision-analytic models are used to estimate the 
expected net benefits of competing decision options. The true values of 
the input parameters of such models are rarely known with certainty, 

Fig. 2. Simplified timeline plots for a single population of size 1000 for 10 simulations illustrating the model-predicted temporal trends in mf prevalence (solid red 
lines), DALY burden are computed as the morbidity prevalence of lymphoedema, hydrocele and acute adenolymphangitis (dashed blue lines) times the disability 
weights (Network, 2020) and cumulative wormburden (dotted green lines) for 5–10% mf prevalence using (a) < 0.5%, (b) < 1%, (c) < 2% and (d) < 5% as the 
stopping threshold criteria for TAS with 80% MDA coverage for a sample of adults.
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Fig. 3. Epidemiological outcomes of an eligible population post-surveillance for different MDA stopping thresholds and TAS corresponding to 5–10% baseline 
prevalence and 80% MDA coverage. Outcomes are represented by different symbols: probability of elimination (circles), mean cost (triangles), and mean DALYs 
averted (squares) and sampled for three age-groups: (A) children over 5 years old, (B) adults over 20 years old, and (C) random sampling across all age groups. The 
minimum number of MDA rounds and TAS required to achieve elimination of infection are represented with varying shades: white for standard treatment (5 MDA 
rounds and 3 TAS), light grey for moderate treatment (at least 7 MDA rounds and 4 TAS), and dark grey for extensive treatment (7 MDA rounds with restarts and 5 
TAS). A restart indicates infection resurgence, requiring additional MDA rounds and TAS to verify elimination. Here, we represent the mean outcomes by randomly 
sampling approximately 30 sites with 40–60 people stratified by age per site to replicate the characteristics of an evaluation unit (EU, < 500,000 people). Note that 
costs and DALYs averted are normalized to the same scale for improved visualization in the plots.

Fig. 4. a. EINMB based on the WTP for range of DALY averted for morbidity: $500 (green), $2500 (red), $5000 (blue) for 5–10% (circles) , 10–20% (triangles) and 
20–30% (squares) baseline prevalence for a sample of adults. b. EINMB based on the WTP for 1% increase in probability of elimination from $0-$10,000 and the 
WTPDALY: $500 (green), $2500 (red), $5000 (blue) for sample of adults for (i) 5–10% - circles (ii) 10–20% - triangles (iii) 20–30% - squares baseline prevalences 
comparing < 0.5% threshold in a sample of adults with respect to < 1% threshold of mf prevalence in children (comparator). The confidence ellipses account for the 
95% confidence interval obtained from 1000 random draws of costs, DALYs averted and probability of elimination using Monte Carlo simulations. Note: In Figure 
b. the intersection of the different coloured lines with the black solid lines gives the optimal WTPElimination.
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Fig. 5. EVSI estimated using the Moment Matching method, for three baseline prevalence ranges: (a) 5–10% with WTPDALY =$500, (b) 10–20% with 
WTPDALY =$2500, and (c) 20–30% with WTPDALY =$5000 by varying the number of iterations (sample size) used in the transmission model (equivalently, the 
epidemiological outcomes used as inputs in the health-economic decision model). The EVSI quantifies the value of reducing uncertainty when lowering the stopping 
threshold for TAS to < 0.5% mf prevalence in a sample of adults. Estimates are shown across a range of WTPElimination, assuming 65% MDA coverage.

Table 1 
Comparison of the EVSI per person and computational time for different number of independent iterations (sample sizes) used in the trans-
mission model for post-MDA surveillance. The epidemiological outcomes of the transmission model are evaluated using Moment Matching 
(MM), Nested Monte Carlo (MC), and LOT+PCA+LDA (80:20 train:test split) methods to obtain EVSI per person. The results are based on 
the dynamics for < 0.5% stopping threshold with 65% MDA coverage across different baseline prevalence.
    
Baseline prevalence WTPDALY,WTPElimination

 Sample size (500)  Sample size (1000)  Sample size (1500)
  MC  MM  LOT+LDA  MC  MM  LOT+LDA  MC  MM  LOT+LDA 
  EVSI per Person
  5–10%  $500, $3000  280  255  260  310  290  295  325  310  320  
  10–20%  $2500, $2000  220  190  197  270  245  252  290  267  280  
  20–30%  $5000, $500  185  152  160  200  172  180  215  185  198  
 Computational Time

  5–10%  $500, $3000 >8h ≈2min ≈1min >8h ≈2min ≈1min >8h ≈2min ≈1min  
  10–20%  $2500, $2000 >8h ≈2min ≈1min >8h ≈2min ≈1min >8h ≈2min ≈1min  
  20–30%  $5000, $500 >8h ≈2min ≈1min >8h ≈2min ≈1min >8h ≈2min ≈1min  

and it is often useful to quantify the value to the decision maker of 
reducing uncertainty by collecting new data. In the context of under-
standing how to measure the baseline prevalence for < 0.5% stopping 
threshold with precision, we need a handle to quantify the uncertainty 
arising from the costs due to MDA rounds and surveys alongside the 
DALY averted and the unit increase in probability of elimination. In this 
light, the value of the proposed research design for every additional 
sample size can be quantified by the EVSI metric as defined in Sec-
tion 2. In Fig. 5(a), the EVSI reaches its maximum at a WTPElimination
of approximately $2500–$3000 for a baseline prevalence of 5–10%. In 
contrast, in Fig. 5(b), the EVSI peaks at a lower WTPElimination of around 
$1500–$2000 for a baseline prevalence of 10–20%. Finally, in Fig. 5(c), 
the peak EVSI occurs at an even lower WTPElimination of approximately 
$500–$1000 for baseline prevalence levels of 20–30%. This pattern in-
dicates that the value of additional information as measured by EVSI is 
greatest at lower prevalence levels and lower stopping thresholds, where 
it plays a more critical role in reducing uncertainty in MDA stopping de-
cisions.

Additionally, in Table 1, we find that Moment Matching is much 
faster than the benchmark nested Monte–Carlo method, which con-
verges to the same EVSI at larger sample sizes (relative difference 
is much lower for 5–10% baseline prevalence than 20–30% baseline 
prevalence as expected due to additional benefits at lower baseline 
prevalence). Fig. 5 demonstrates the theoretically expected trend in the 
relationship between EVSI and sample size. As sample size increases, 
the EVSI (shown by the dark blue lines) rises and gradually converges 
toward the EVPPI (represented by the thick dark blue line just below 
the EVPI), as described in Section 2. This convergence reflects the no-
tion that larger studies yield more valuable information. In the limit, the 

value of this information approaches the maximum possible gain from 
resolving the uncertainty: specifically, the uncertainty about achieving 
elimination for different baseline prevalence at the stopping threshold 
< 0.5% mf prevalence.

In order to further test the robustness of the MDA stopping decision 
based on the cost-effectiveness of lower stopping threshold (< 0.5% mf 
prevalence in adults), we rely on the Linear Wasserstein Framework in 
conjunction with PCA and LDA. In Fig. 6 a, we find that the scattergram 
of the test data (incremental costs to incremental DALYs averted) for 
80% MDA coverage show that the lower stopping thresholds (< 0.5%) 
for different baseline prevalences (represented as circles, triangles and 
squares) are cost-effective using the fixed country-specific WTPDALY
ranging from $500-$5,000. Each symbol represents the mean incremen-
tal costs to incremental DALYs averted alongside the confidence ellipses 
to account for the uncertainty in the distributions to obtain a standard-
ized comparison to the EINMB metric in Fig. 4a. Likewise, in Fig. 6b. 
we find that the scattergram of the test data (incremental costs with in-
cremental DALYs averted in addition to the probability of elimination) 
for 65% MDA coverage shows that the < 0.5% stopping thresholds for 
different baseline prevalences are cost-effective with a narrower esti-
mated WTPElimination per unit increase in the probability of elimination 
from $500-$3000. Similarly, each symbol here represents the mean in-
cremental costs to the incremental probability of elimination alongside 
the confidence ellipses accounting for uncertainty to obtain a standard-
ized comparison with the EINMB metric in Fig. 4b. We note that the re-
sults illustrated in Fig. 6a and b were calculated using Algorithms 2 and 
3 (in Supplementary Appendix A) with the training sample size 80% and 
stopping thresholds < 0.5% mf prevalence in adults for different base-
line prevalence. For the trade-off between the different combinations of 
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Fig. 6. A summary figure illustrating the variations in the cost-effectiveness of the < 0.5% stopping threshold for TAS using the Linear Wasserstein framework. 
The LOT embeddings are projected into a lower-dimensional space using PCA, where the first and second variations correspond to the most important features 
(namely, incremental total costs and incremental DALYs averted). The feature vector is composed of the ratio of incremental costs to incremental DALYs averted for 
morbidity with fixed WTPDALY for morbidity given by $500 (green), $2500 (red), $5000 (blue). This reduced feature vector is then classified using LDA, with the plots 
demonstrated for an 80:20 train-test split. The baseline prevalence represented as circles (5–10%), triangles (10–20%), and squares (20–30%), are used as labels 
for classification corresponding to the < 0.5% stopping threshold. a. Scatter plot of incremental costs versus incremental DALYs averted for 80% MDA coverage 
using fixed WTPDALY for morbidity. b. Scatter plot of incremental costs versus incremental unit increase in probability of elimination for 65% MDA coverage using 
(estimated) WTPElimination per unit elimination and (fixed) WTPDALY. c. EVSI per person for the (estimated) WTPElimination per unit elimination and (fixed) WTPDALY for 
morbidity with varying number of independent iterations (sample size) used in the transmission model. The ellipses estimated from the covariance matrix and the 
mean vectors of each baseline prevalence (class labels) denote the 95% confidence intervals accounting for the uncertainty and variability within the distribution 
of each class. Each symbol represents the mean of the test data (incremental costs to incremental DALYs averted or probability of elimination) classified by their 
respective baseline prevalences.

baseline prevalence and the values of WTPDALY, WTPElimination, we refer 
to Table B.10 and Table B.11 in Supplementary Appendix B.

Furthermore, in Table 1, we compare the EVSI values obtained using 
LOT alongside the benchmark methods: Moment Matching and nested 
Monte Carlo for different baseline prevalence at < 0.5% stopping thresh-
old. We find that the LOT method is much faster than the other two, al-
though both converge to the standard EVSI (evaluated by Monte Carlo) 
at larger sample sizes for all baseline prevalence. Fig. 6c presents the 
EVSI per person for varying number of independent iterations (sample 
size) used in the transmission model, alongside the estimated optimal 
WTPElimination (see Algorithm 3 for details). This figure highlights how 
the additional information obtained through bootstrapping, reflected 
in different sample sizes, impacts EVSI estimation. A key insight from 
the figure is that EVSI tends to increase when baseline prevalence is 
lower for the stopping threshold of < 0.5% in adults. This indicates that 
at lower prevalence levels, decision-makers may be willing to allocate 
a higher WTPElimination, as the value of additional information (repre-
sented by larger sample sizes) strengthens the case for further research. 
This rise in EVSI underscores the increased benefits of elimination, in-
cluding more DALYs averted for lower baseline prevalence, as illus-
trated in Fig. 3. In summary, when baseline prevalence is low for stop-
ping threshold < 0.5%, the potential health and economic advantages of 
elimination become more significant, making the investment in further 
data collection even more valuable. Consequently, in Tables B.12 and 
B.13, B.14, B.15 (refer to Supplementary Appendix B), we present the 
classification error to accurately predict the baseline prevalences (class 
labels) for < 0.5% stopping threshold, which decreases as the training 
sample sizes increase. This improvement enhances the power of the util-
ity function, which reflects the additive benefits gained with lowering 
the baseline prevalence for < 0.5% stopping threshold, as indicated by 
the EVSI metric. This effect is achieved by training the LDA classifier 
with different fractions of the sample sizes, demonstrating that larger 
training datasets for the lower baseline prevalence lead to more accu-
rate classifications and thus greater potential benefits from additional 
data.

6.  Discussion

The probability of local elimination is determined by stopping 
thresholds, which are crucial for many disease control policies. That 
being said, it would be worthwhile to examine the effects of a lower 
threshold on overall program costs, as well as whether it increases the 
likelihood of local elimination. The application of such a lower thresh-
old in China (World Health Organization Regional Office for the West-
ern Pacific and Control of Lymphatic Filariasis in China Editorial Board, 
2003), and its significance in effective LF control, serves as examples 
of the potential advantages of a lower threshold, which this study high-
lights. However, the GPELF can use this example to gather crucial data 
to establish standards for assessing whether MDA has successfully re-
duced infection prevalence to a point where recrudescence is unlikely 
to occur.

As we reduce the mf prevalence threshold from < 1% to < 0.5%, 
the likelihood of local elimination increases, according to our analysis 
of the effects of various stopping thresholds for TAS across 30 sites. A 
lower threshold reduces both DALY burden and the probability of pro-
grammatic restart, despite requiring more rounds. Employing the de-
fined EINMB metric for CEA reveals that switching to a lower threshold 
is economical at 80% MDA coverage. However, for 65% MDA cover-
age, extra benefits are needed, such as utilizing the WTPElimination per 
unit increase for elimination. The limited amount of data, especially on 
systematic non-adherence, WTPElimination and wider disease impacts like 
mental illness, is the reason for the conservative morbidity estimates 
(Ton et al., 2015; Koschorke et al., 2022).

The expanded use of CEA in healthcare faces several challenges. 
First, decision-makers must account for social concerns like prioritiz-
ing the sick and reducing health disparities by integrating more social 
concerns into CEA techniques. Second, current CEA practices, which 
are focused on evaluating new strategies or technologies, often over-
look signs of resource misallocation. Third, assessing the broad range 
of interventions needed for CEA to improve allocative efficiency can be 
prohibitively expensive and time-consuming. Additionally, many CEA 
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studies produce context-specific results, limiting their applicability to 
different populations. Progress towards providing timely, affordable in-
formation on the costs and effects of various interventions remains lim-
ited, particularly for LMICs (Turner et al., 2021; World Health Organi-
zation et al., 2003). A key limitation of uncertainty analysis within the 
CEA framework is the inherent circularity when we utilize the TRANSFIL 
model for obtaining our epidemiological outcomes (such as costs, DALYs 
averted, and probability of elimination). The model incorporates the un-
certain parameters 𝜽, and their impact on the outcome is directly dic-
tated by its underlying dynamics. However, the identification of these 
key parameters 𝜽 and the selection of an optimal strategy rely on the 
same foundational knowledge that informs the model itself, which is 
usually gauged from prior knowledge.

On the other hand, the Linear Wasserstein Framework, despite being 
mathematically rigorous, has its own limitations. Firstly, the framework 
makes several modelling assumptions. Namely, that the distance should 
be proportional to the cost of translations. This can make the distance 
sensitive to outliers. Secondly, the Linear Wasserstein distance is also an 
approximation of the Wasserstein distance, and this approximation may 
deteriorate depending on the local curvature. Thirdly, the Monge formu-
lation is ill-posed when the probability measures are discrete, and the 
transport maps may not exist. To avoid this degeneracy, we need to con-
sider an equal number of time steps (𝑇 = 240 (months)) for each proba-
bility measure 𝜇(𝑠)

𝑖  for the different baseline prevalences (classes/labels). 
We note that if this is not assumed, it may disproportionately affect the 
robustness of the results, if an imbalance in masses exists. Fourthly, to 
simplify the computation, we select the reference measure 𝜎 as the distri-
bution corresponding to a 5–10% baseline prevalence at < 1% stopping 
threshold in children. While it would be ideal to use 𝜎(𝑠) with various 
combinations of baseline prevalences at the < 1% stopping threshold, 
doing so would significantly increase computational complexity. Addi-
tionally, the projections computed in this manner would belong to dif-
ferent linear spaces which would not allow for a fair comparison. A 
further extension to this framework could be to generate future projec-
tions of the model simulations for different baseline prevalences using 
fewer runs to save the computational power of the TRANSFIL model 
from a Bayesian perspective (Park and Thorpe, 2018) or use state-of-
the-art methods such as graph-based semi-supervised methods (Calder 
et al., 2020) that can leverage the advantages of this geometric embed-
ding when very little information on the data is provided, so that it can 
learn the geometry of the underlying point cloud data effectively.

Our study assumes constant survey implementation costs, exclud-
ing potential out-of-pocket expenses and future cost changes (Sawers 
and Stillwaggon, 2020). Despite challenges in estimating precise costs 
for MDA and TAS due to incomplete records and data access issues, 
simulations help in understanding the TAS threshold’s impact on stop-
ping MDA. A limitation in this study is the exclusion of vector control 
benefits, which remain debated. While some studies suggest combined 
MDA and vector control benefits in low endemic regions, others find 
no added advantage over MDA alone, upon which further research is 
needed. Another major limitation is that our modelling study relies on 
Culex vector due to its increased efficiency in transmission. Although 
the direct implication of Culex species in the transmission of LF in West 
and Central Africa is still not well documented (Samy et al., 2016; Ap-
pawu et al., 2001), in East Africa, Culex species particularly Cx. quinque-
fasciatus is known to have a major role in LF transmission (Derua et al., 
2017; Mwakitalu et al., 2013). With a changing climate, associated with 
increased traffic between East and West African countries and rapid ex-
pansion of this species in urban settings, it is becoming crucial to assess 
the role of Culex species in the transmission of diseases like LF. We also 
restrict our analysis to the IA drug, but studies (Turner et al., 2024) for 
oncho have found that IA may not lead to elimination of transmission 
(EoT) in all endemic areas, and moxidectin-based strategies could ac-
celerate progress toward EoT and reduce programmatic delivery costs 
compared with ivermectin-based strategies. We also acknowledge the 
benefits of the three-drug combination IDA, but it presents specific chal-

lenges in implementing the survey design, which could result in reduc-
tions in mf prevalence. However, further evidence is needed to confirm 
this, as noted in (Stolk et al., 2018).

Despite these drawbacks, our research emphasizes how important 
it is to choose the right framework for uncertainty quantification when 
making decisions, especially when it comes to disease interventions, par-
ticularly LF. It is also essential to comprehend the dynamics of local 
elimination post-threshold crossing and how it interacts with LF inter-
ventions. Our research indicates that although there is a long transient 
phase involved in the path to LF local elimination post-MDA surveil-
lance, lower thresholds may help programs achieve their objectives. In 
addition, we also propose the need for a better framework to quantify 
the uncertainty inherent in the model parameters to analyse the cost-
effectiveness of lowering the stopping threshold in LF.
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