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ABSTRACT
Background: Multiple environmental and genetic factors play a role in the pathogenesis of atopic eczema (AE). We aimed to 
investigate gene–environment interactions (G × E) to improve understanding of the pathophysiology.
Methods: We analysed data from 16 European studies to test for interaction between the 24 most significant AE- associated loci 
identified from genome- wide association studies and 18 early- life environmental factors. We tested for replication using a further 
10 studies and in vitro modeling to independently assess findings.
Results: The discovery analysis (including 25,339 individuals) showed suggestive evidence for interaction (p < 0.05) be-
tween seven environmental factors (antibiotic use, cat ownership, dog ownership, breastfeeding, elder sibling, smoking and 
washing practices) and at least one established variant for AE, 14 interactions in total. In the replication analysis (254,532 
individuals) dog exposure × rs10214237 (on chromosome 5p13.2 near IL7R) was nominally significant (ORinteraction = 0.91 
[0.83–0.99] p = 0.025), with a risk effect of the T allele observed only in those not exposed to dogs. A similar interaction 
with rs10214237 was observed for siblings in the discovery analysis (ORinteraction = 0.84 [0.75–0.94] p = 0.003), but replication 
analysis was under- powered (ORinteraction = 1.09 [0.82–1.46]). rs10214237 homozygous risk genotype is associated with lower 
IL- 7R expression in human keratinocytes, and dog exposure modelled in vitro showed a differential response according to 
rs10214237 genotype.
Conclusion: Interaction analysis and functional assessment provide preliminary evidence that early- life dog exposure may 
modify the genetic effect of rs10214237 on AE via IL7R, supporting observational epidemiology showing a protective effect for 
dog ownership. The lack of evidence for other G × E studied here implies only weak effects are likely to occur.

1   |   Background

Atopic eczema (AE, synonymous with atopic dermatitis or 
eczema [1]) is a chronic inflammatory skin and systemic 
condition affecting approximately 20% of children and 10% 
of adults in high- income countries. Eczema is the dermato-
sis that contributes the greatest number of disability- adjusted 
life years worldwide [2] and co- morbid conditions, including 
asthma and allergies, obesity, cardiovascular disease, anxiety 
and depression, add substantially to the social, academic, oc-
cupational and financial impact [3]. Atopic eczema is a herita-
ble trait [4] but the rapid rise in prevalence in industrialised 
areas over the past 30 years [3, 5] illustrates the importance of 
environmental factors in aetiology. A greater understanding 
of environmental effects in driving pathology could facilitate 
disease prevention.

The European Academy of Allergy and Clinical Immunology 
published an umbrella review of systematic reviews and iden-
tified a lack of research in eczema genetic epidemiology and 
environmental effects [6]. The investigation of environmental 
factors using observational epidemiology is inherently chal-
lenging in the context of AE because of multiple confounding 
factors and possible reverse causation [7]. Genetic studies, how-
ever, have made substantial progress in defining mechanisms in 
eczema predisposition and pathogenesis, including skin barrier 
dysfunction and aberrant immune response [8]. The evidence of 
individual variation in susceptibility to environmental allergens 
and irritants supports the concept of gene–environment inter-
action (G × E) [9] playing a role in AE. Loss- of- function variants 
in FLG, encoding the skin barrier protein filaggrin, have been 
implicated [10] but studies lack statistical power. Knowledge of 
genetic risk may provide an opportunity to identify key environ-
mental effects and clarify important disease biology.

We aimed to investigate evidence of interaction between the most 
highly significant AE risk loci defined by genome- wide association 

studies [11] and environmental risk factors defined by previous lit-
erature [7, 10] and of importance to patients and carers [12]. We 
used early- life environmental exposures (in utero and up to the 
first 24 months of life) to minimize reverse causation. G × E was 
tested in large cohorts from European populations, in discovery 
and replication phases, and mechanistic assessment was carried 
out in vitro using a skin keratinocyte model to validate interactions.

2   |   Methods

2.1   |   Genetic and Environmental Factors

Genetic risk loci were defined by the 24 top hits at each locus 
identified in European- ancestry AE genome- wide association 
studies [11, 13] and coded for the risk- increasing allele as effect 
allele (File  S1). FLG null genotype was coded as presence/ab-
sence (0/1) of any of the loss- of- function variants prevalent in 
the white European population (R501X, 2282del4, R2447X, 
S3247X as previously reported [11, 14]).

Environmental exposures in utero or up to 24 months of age 
were selected on the basis of our literature review [10] and in 
discussion with representatives from a national eczema sup-
port group [12]. Data was available to allow analysis of 18 en-
vironmental effects: pet ownership for cat and dog separately; 
house dust mite exposure (at birth or 1 year); washing practices 
(at 6 months or 2 years); cigarette smoking within the household 
(in utero or up to 2 years); antibiotic use (6 or 12 months); envi-
ronmental pollution (PM10 or at 5 months); breast feeding (ever 
and duration); mode of delivery; and presence of older siblings. 
These are listed in Files S2 and S3, with details of their defini-
tion and coding.

G × E effects showing a nominally significant interaction in 
the discovery and replication analyses were taken forward for 
in vitro modeling.
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2.2   |   Population Cohorts

Sixteen population- based cohorts from people of European ances-
try (N = 25,339) were included in the discovery analysis and a fur-
ther 10 European population- based cohorts in the replication stage 
(N = 254,532), giving a maximum total of 279,871 (maxN) in the 
final meta- analysis (File S4). AE was defined by parental report 
or doctor diagnosis for those who had ‘ever had eczema’. Further 
details on the phenotype definitions can be found in File S2.

Each cohort has ethical approval for the sharing of anony-
mised data from study participants, with their written informed 
consent.

2.3   |   Statistical Genetic Analysis

To test for G × E, a statistical model was fitted to include the 
main effect of each genetic variant upon eczema (G) (extracted 
from Paternoster et al. [11]), the main effect of the environmen-
tal factor upon eczema (E), and the product of the genetic effect 
and the environmental effect (G × E). Logistic regression models 
were applied to identify the main effect of each environmental 
factor (models M1–M4, File S5), and to test for interaction be-
tween the exposure and each SNP while adjusting for sex (mod-
els I1–I3, File S5). Sensitivity analyses were performed adjusting 
for family history of atopic disease (asthma, eczema or hay fever) 
and parental education as a proxy for socioeconomic status 
(models S1–S3, File S5).

Analyses were conducted separately within each cohort and 
then combined by fixed- effects meta- analysis. Genetic data was 
imputed separately for each cohort, detailed in File S2.

2.4   |   Power Calculation

Posthoc estimates of statistical power were calculated in Quanto 
(version 1.2.4). These were informed by effect size estimates 
from the discovery analyses or previously published studies, as-
suming a case- to- control ratio of 1:3 and α = 0.004 in replication 
analyses (0.05/14 for multiple testing of 14 gene–environment 
pairs) (File S6).

2.5   |   Review of In Silico Data for Genetic Variants

Variants showing statistical evidence of G × E were investigated 
using available data from previous publications [11, 13], the 
NHGRI- EBI GWAS Catalogue (https:// www. ebi. ac. uk/ gwas/ ), 
LDLink (version 5.6.6), the Genome Aggregation Database (gno-
mAD v4.1.0, https:// gnomad. broad insti tute. org/ ), UCSC 
Genome Browser (https:// genome. ucsc. edu/ ), Open Targets 
(https:// www. opent argets. org/ ), GTEx Portal (https:// www. 
gtexp ortal. org/ home/ ) and the Human Protein Atlas [15, 16].

2.6   |   Keratinocyte Culture and Gene Expression

Full details are provided in File  S7. In brief, primary human 
keratinocytes were isolated from normal human skin samples 

and genotyped for rs10214237 using KASP (LGC Genomics, 
Teddington, England). IL7R mRNA expression was quantified 
in 34 keratinocyte samples (3 of C:C genotype, 15 T:C and 16 
T:T) using RT- qPCR. Fold changes in gene expression were de-
rived via the 2(−Delta Delta C[T]) method, using EF1A as the 
reference gene.

2.7   |   In Vitro Analysis for rs10214237 × Dog 
Interaction

Human keratinocytes comprise the outermost layer of skin and 
can therefore represent the first line of interaction in an aller-
gen encounter in utero or early life. To further investigate the 
effect of dog exposure in early life, primary normal human ke-
ratinocytes were exposed to clinical- grade dog epithelial extract, 
a standardized reagent used for allergy testing in the clinic [17]. 
Methods are described in full in File  S7. Briefly, gene expres-
sion was quantified using RT- qPCR, and cytokine, chemokine, 
and receptor expression was quantified using an ELISA array. 
Experiments were replicated using keratinocytes from a mini-
mum of five independent donors. Gene ontology, network and 
pathway analyses were conducted using STRING v12.0.

3   |   Results

Our analysis investigated the interaction between 24 vari-
ants identified in European GWAS studies [11, 13] and 18 
environmental exposures selected through literature review 
(described in Section  2). We first assessed the observational 
association (of environmental effects) followed by testing for 
interaction effect (of environmental and genetic risk factors) in 
the discovery cohorts; next, the nominally significant findings 
and those with a priori evidence were tested for replication in 
available larger cohorts.

3.1   |   Discovery Analysis

Meta- analyses of between 1084 and 22,263 participants (numbers 
dependent on exposure, File S4) showed strong evidence for anti-
biotic use increasing the risk of AE (in utero p = 0.004, at 6 months 
p = 0.001 and at 12 months p = 6 × 10−4); weaker evidence was 
found for a protective effect of dog ownership (p = 0.03), a protec-
tive effect of childhood smoke exposure (p = 0.038) and a risk effect 
of NO2 levels (p = 0.035) (M1 models, File S8). Little or no evidence 
(p > 0.05) was found for effects of caesarean delivery, cat owner-
ship, breastfeeding, elder siblings, in utero smoke exposure, wash-
ing practices at 6 months and 2 years, PM10 exposure, and house 
dust mite exposure at birth or 1 year (M1 models, File S8).

Of the 432 interactions tested (between 24 genetic variants and 
18 environmental exposures), we found 14 nominally significant 
(pint < 0.05) interactions, but no interactions passed multiple test-
ing correction (Figure 1; Table 1). Of the nominally significant in-
teractions, eight indicated a higher genetic risk in the presence of 
the exposure (OR > 1) and 6 indicated a higher genetic risk in the 
unexposed stratum (OR < 1). Of the 18 environmental exposures 
tested, the two with the strongest evidence for interaction with 
FLG null variants were exposure to tobacco smoke between 0 and 
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2 years (pint = 0.018) and washing practices during the same period 
(pint = 0.045). There was little evidence (p > 0.05) for interactions 
between FLG null variants and other tested exposures, though 
confidence intervals for some interaction estimates were wide 
(File S8). Notably, there was little evidence for interaction between 
FLG null variants and cat exposure (p = 0.36), with strong effects 
of FLG in both the unexposed and exposed strata.

Sensitivity analyses, additionally adjusting for family history 
of AE and socioeconomic status, supported the main analyses 
(File  S8), but many of the sensitivity analyses were based on 
much smaller sample sizes because of the requirement for data 
on additional covariates. There was little evidence of heteroge-
neity between cohorts (smallest phet = 0.01) amongst the 14 re-
ported interactions.

3.2   |   Replication Analysis

Fourteen G × E interactions with nominal evidence were tested for 
replication. Additionally, exposures previously reported to interact 

with FLG null variants (cat, siblings and breast- feeding [10]) were 
included in the replication analysis, making a total of 19 G × E in-
teractions (8 exposures and 10 genetic variants) (File S9).

Dog exposure and rs1041237 showed evidence for interaction 
(pint = 0.025, Table 1). In an analysis stratified by dog exposure, 
the T allele increases the risk of atopic eczema (OR = 1.14, 95% 
CI 1.08–1.22), but only amongst those who are not exposed to 
a dog in the family home. In individuals who are exposed to a 
dog in early life, this variant appears to have little or no effect 
(OR = 0.99, 95% CI 0.93–1.05, Figure 2).

Availability of environmental data for replication varied, with 
many of our attempted replications of interactions being insuffi-
ciently powered to be conclusive. Washing practices (0–2 years) 
and antibiotic use in utero interactions had only 3% and 4% 
power, respectively (File S6). The tobacco exposure in utero in-
teraction had only 11% power, and the sibling interactions had 
8%–37% power (dependent on variant). The breast- feeding du-
ration interaction had 4% power in the replication phase, and 
so we extended the replication analysis to ‘ever breastfed’ to 

FIGURE 1    |    Heatmap to summarise results of interaction analyses. Strength of colour indicates beta in which blue is positive and red is a negative 
direction of effect; diameter of circle indicates sample size; 14 nominally significant interactions (pint < 0.05) are highlighted with black outline; one 
association was reported in only one cohort, so it was not pursued further.
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FIGURE 2    |     Legend on next page.
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increase the power to 56%. The interactions with dog, cat and 
tobacco smoke exposure 0–2 years were all sufficiently powered 
(88%, 72%–88% and 99%, respectively). The previously reported 
interactions between FLG null mutations and cat, siblings, and 
ever breastfed had 99% power, based on their previously re-
ported interaction effects (File S6).

3.3   |   In Silico Follow- Up of rs10214237

rs10214237 is an intergenic variant (T>C) on chromosome 
5p13.2; an association with AE was identified by genome- wide 
association study (GWAS) [11] in which IL7R was prioritized 
as the likely causal gene based on evidence including eQTL co-
localization in macrophages and monocytes [13, 18]. The top 
single nucleotide variant (SNV) at this locus in a more recent 
GWAS meta- analysis [13] is rs10214273, but this variant is in 
complete linkage disequilibrium with rs10214237 in European 
populations (R2 = 1, LDLink version 5.6.6, LDPair tool). Global 
population data from gnomAD shows ancestral differences 
in allele frequency, with rs10214237 being more frequent in 
European and South Asian populations (MAF 0.28 and 0.20, 
respectively) compared to African people (MAF 0.07) (1KG 
data accessed 10 Jan 2025).

rs10214237 is within a region of open chromatin in keratinocytes 
and fibroblasts, but not the lymphoblastoid cell line GM12878 
(UCSC Genome Browser 6 Feb and 27 Nov 2024). Open Targets 
V2G analyses confirm IL7R as the most likely gene affected by 
this SNV based on pQTL, sQTL and eQTL (6 Feb and 27 Nov 
2024). GTEx data show that the expression of IL7R is higher 
with T:T genotype in whole blood and cultured fibroblasts, and 
in our newly generated data, we show that individuals with the 
T:T genotype have slightly higher IL7R mRNA expression in pri-
mary human keratinocytes than those with the C:C genotype 
(File S10). Single cell data from the Human Protein Atlas [15, 16] 
confirm that IL- 7R is expressed at the protein level in human 
keratinocytes, in addition to circulating immune cells.

3.4   |   In Vitro Testing of the Effects of Dog Allergen 
on Human Keratinocytes

Dog allergen exposure stimulated an up- regulation in CXCL8 
(IL- 8), CSF2, CCL2 and TNF mRNA, but the atopy- related cyto-
kines IL33 and TSLP mRNA were down- regulated (Figure 3A). 
Network analysis of the proteins encoded by the upregulated 
transcripts showed significant enrichment for IL- 10 signalling 
(Figure  3B, Reactome pathway FDR 7.71e- 08) which plays a 
suppressive role in contact dermatitis and atopic eczema [19]. To 
test the keratinocyte response more broadly, we used an ELISA 
panel of 64 cytokines, chemokines and receptors (File S11). This 
confirmed the signature of increased IL- 10 signalling (File S11).

Next, using primary human keratinocytes of known rs10214237 
genotype and focusing on CXCL8 (IL- 8), CCL2 and IL- 6 as 

molecules of relevance to IL- 7R signalling in epithelial cells, we 
investigated the effect of dog allergen exposure, with and with-
out IL- 7 stimulation (Figure 3C–E). There was no difference in 
expression levels after IL- 7 stimulation, but on stimulation with 
dog extract (or IL- 7 plus dog extract), keratinocytes of the T:T 
genotype (homozygous for the eczema- risk allele) showed a 
greater response than the C:C genotype.

This work is preliminary and requires further mechanistic 
investigation in a larger number of samples, but these obser-
vations provide a possible mechanistic explanation for the 
finding that the T allele at rs10214237 increases risk for atopic 
eczema. The T:T genotype shows greater IL- 7R mRNA expres-
sion, but in the context of dog exposure, the risk effect is over-
shadowed by an increase in cytokines and chemokines in the 
IL- 10 pathway that suppress eczema to a greater extent in T:T 
than C:C individuals.

4   |   Discussion

4.1   |   Large, Systematic Study of G × E in 
Atopic Eczema

Our collaborative work represents the largest and most com-
prehensive analysis to date investigating G × E in AE, using a 
systematic approach focused on the most significant genetic loci 
and selected environmental factors. We first meta- analyzed data 
from available observational studies to test for association and 
then applied interaction analysis to investigate G × E. Statistical 
power remains a limiting factor and the nominal significance 
level (p < 0.05 without correction for multiple testing) means 
cautious interpretation is needed. We have identified important 
negative results as well as one interaction with functional vali-
dation in vitro and others that warrant further follow- up.

A variety of sources provide evidence that G × E plays a role in 
the aetiology of AE. These include rapidly rising prevalence 
[5], clinical observation [4], epidemiological studies [10], and 
in vitro analyses demonstrating molecular effects that include 
aryl hydrocarbon receptor signalling [20]. Some authors have 
even stated that ‘atopic eczema is an environmental disease’ 
[21]. Our meta- analysis of observational associations provides 
evidence that early- life exposure to antibiotics and NO2 lev-
els associates with an increased risk of AE, whilst early- life 
exposure to dog or tobacco smoke is associated with a lower 
risk of AE in the populations studied. However, these associ-
ations may be affected by bias through confounding and re-
verse causation.

4.2   |   Genotype- Specific Effects of Early- Life Dog 
Exposure

Statistical interaction analysis indicates that early- life dog ex-
posure may modify the genetic effect of rs10214237. Functional 

FIGURE 2    |    Forest plot showing interaction of dog exposure with rs1041237 in (A) unexposed and (B) exposed strata. Interaction analysis for 
discovery (N = 18,045), replication (N = 47,185) and combined meta- analysis (total N = 65,230) show the T allele of rs1041237 increases the risk of 
atopic eczema only amongst those who are not exposed to a dog in the family home. Full names and study cohort descriptions are given in File S2.
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genetic analyses show an effect mediated via the gene IL7R, 
which encodes the alpha- subunit of the IL- 7 receptor. Rs10214237 
T:T genotype was associated with an increased risk of atopic ec-
zema in the population as a whole and in the sub- population 
without dog exposure (Figure 2) consistent with the T:T geno-
type showing slightly greater IL7R mRNA expression (File S10). 
The IL- 7 receptor is a heterodimer composed of IL7R- alpha and 
IL2R- gamma. It is expressed in multiple cell types and tissues, 
including T- cells, NK- cells, glandular, and stratified epithelial 
cells (data from Human Protein Atlas [15, 16]). IL7R- alpha also 
contributes to a heteromeric complex with the thymic stromal 
lymphopoietin (TSLP) receptor, but our experimental work to 
test TSLP as an alternative ligand in keratinocytes was not infor-
mative (data not shown) likely in part because the TSLPR is only 
very lowly expressed in keratinocytes [16, 22].

Our detailed work in vitro focused on human epidermal kera-
tinocytes as the earliest tissue to encounter dog allergen in the 

initiation of atopic disease, in utero or early infancy. We have 
shown evidence that keratinocytes display a direct response 
to dog allergen exposure, with down- regulation of IL- 33 and 
TSLP mRNA (both inducers of type 2 immune responses in 
atopy [23, 24]) and upregulation of a network of genes encoding 
chemokines and cytokines of IL- 10 signaling (Reactome path-
way HAS- 6783783), contributing to the suppression of atopic 
inflammation [19]. This is consistent with observational epi-
demiology showing an apparent protective effect of dog expo-
sure early in life [25, 26]. Gene ontology analysis of the same 
network indicates a role in cellular response to lipopolysaccha-
ride (GO:0071222), likely to reflect a response to gram- negative 
components of the canine microbiome.

The proposed interaction with genotype was investigated using 
keratinocytes of known rs10214237 genotype. This is prelimi-
nary mechanistic work and further, more detailed investigations 
are required. However, our analyses indicate a trend in which 

FIGURE 3    |    In vitro testing of the effects of dog allergen on primary human keratinocytes. (A) Dog allergen exposure stimulated a reduction in 
IL33 and TSLP mRNA but upregulation of CXCL8 (IL- 8), CSF2, CCL2, and TNF; negative indicates keratinocyte media with dog allergen carrier solu-
tion; 5–12 donor isolates shown, bars represent SEM one- way ANOVA, Dunnett post hoc test compared to negative control, **p < 0.01, ***p < 0.001, 
****p < 0.0001. (B) IL- 10 signaling was the most significantly enriched Reactome pathway (4 out of 45 genes/proteins, FDR 7.71e- 08). (C–E) Effects of 
IL- 7 and dog allergen stimulation on primary human keratinocytes with different rs10214237 genotypes in which T is the eczema risk allele; graphs 
represent the mean fold change in cytokine mRNA expression relative to the housekeeping gene EF1A, from four keratinocyte isolates with T:T gen-
otype and two keratinocyte isolates from donors of C:C genotype; untreated indicates keratinocyte media only and negative is keratinocyte media 
with dog allergen carrier solution; BSA as 0.0002% included for as carrier protein for recombinant Il- 7; two- way ANOVA with Dunnett's post hoc test, 
compared to the negative control, bars represent SEM, *p < 0.05, **p < 0.01.
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the T:T cells show a greater increase in IL- 10 signaling in re-
sponse to dog allergen exposure than C:C. This is consistent 
with the suppression of atopic eczema risk on a population level 
in the dog- exposed T:T individuals, while non- dog- exposed T:T 
individuals remain at risk of disease. The precise mechanistic 
pathways remain to be defined, but the interaction between 
rs10214237 and dog exposure in AE risk is analogous to the 
17q21 × dog interaction previously demonstrated in asthma, in 
which the risk of persistent wheeze is attenuated by dog own-
ership [27]. There is also an interesting parallel in the interac-
tion of rs10214237 with exposure to older siblings, in which the 
older sibling abrogates the risk effect for rs10214237. We spec-
ulate that this may be related to the increased microbial expo-
sure experienced by an infant with older siblings (or a dog) in 
the household. There is evidence of shared skin and gut micro-
biomes between humans and their pets [28], but it could also 
reflect lifestyle choices of dog- owning families and these hy-
potheses require further testing.

4.3   |   Lack of Evidence for Previously Reported 
FLG × Environment Effects

In our previous systematic review focusing on gene–envi-
ronment interactions with FLG null mutations [10] we found 
some published evidence for FLG × environment interactions 
with exposures including early- life cat ownership, older sib-
lings, water hardness, phthalate exposure and prolonged 
breastfeeding from the small number of previous studies. The 
lack of replication of the FLG × cat ownership interaction in 
the large, well- powered study reported here and another re-
cent meta- analysis [29] represents an important null finding. 
Two small birth cohort studies [30, 31] (n = 379 and n = 503) 
reported p values for interaction < 0.01 with evidence for in-
creased risks of AE in those with FLG null mutations exposed 
to cat in early life, but the evidence for these G × E interactions 
came from small numbers of individuals (n = 5 in one study 
[30]) with FLG mutation, cat exposure, and development of 
AE. We had very good power (99%) for the interaction magni-
tude previously reported (ORint = 11) [30] and 80% for an inter-
action as small as ORint = 1.26, suggesting very little evidence 
in our data for FLG × cat interaction. We found little evidence 
for FLG × breastfeeding, consistent with our systematic re-
view [10], where studies reported no evidence for interactions 
with breastfeeding, although an FLG × breastfeeding duration 
interaction was reported from the Isle of Wight cohort [32]. 
Here, our post hoc power calculation (File  S6) showed ade-
quate power (99%) for the FLG × breastfed- ever interaction, 
but low power (< 1%) for FLG × breastfeeding duration analy-
ses, which may explain the discrepancy.

4.4   |   Limitations

The discovery analysis used selected SNVs to represent known 
eczema risk loci, rather than conducting a genome- wide inter-
action analysis. This restricted approach is needed because of 
power constraints even in large population datasets, and it has 
been shown to be effective in other traits [33]. A post hoc esti-
mation of statistical power (File S6) showed that our replication 
sample sizes were insufficient for some interactions. Therefore, 

where replication results do not meet our pre- specified signifi-
cance threshold, it is not possible to definitively exclude an in-
teraction, but we report the interaction effect sizes for which 
we had good statistical power, to demonstrate the magnitude 
of interactions that are unlikely to exist, given our null results 
(File  S6). Furthermore, by focusing on selected SNVs within 
the known AE risk loci, we acknowledge that there may be loci 
in which an effect is only apparent in the context of interaction 
with an environmental exposure. These would not be detected 
by our analysis strategy, and genome- wide interaction analysis 
should be considered in future work if far larger sample sizes 
than those used here become available. The prospective col-
lection of detailed environmental data is challenging, and the 
availability of relevant information has limited our analyses. A 
specific example is the recording of washing practices, quanti-
fied by frequency of bathing but lacking important details such 
as the type of wash product used.

An important limitation to this work is the use of European 
cohort data including people of predominantly white ancestry; 
this reflects the current sparsity of diverse ancestries in popu-
lation genetic studies of sufficient size to carry out these analy-
ses. The observed differences in allele frequency of rs10214237 
in African compared to European and South Asian populations 
illustrate the limited transferability of this variant effect across 
populations, although other population- specific variants in 
the same locus may contribute to similar mechanistic effects. 
International efforts are on- going to address this limitation [34], 
and future G × E studies are needed to investigate population- 
specific environmental effects. More detailed sub- phenotyping 
of AE may, in the future, reveal that more specific genetic 
and environmental drivers exist in distinct ancestral or sub- 
phenotype groups.

4.5   |   Conclusions

We report observational evidence for an association of AE with 
exposure to antibiotics, NO2, and tobacco smoke in early life, 
but the precise nature and mechanisms of action of these en-
vironmental factors on atopic skin inflammation remain un-
clear. We detected an observational association between early 
life dog exposure and reduction in prevalence of AE, in keeping 
with previous reports. Further interaction analysis and func-
tional assessments provide evidence that dog exposure reduces 
the genetic risk effect of rs10214237 in a pathway via IL7R and 
possibly IL- 10, to suppress skin inflammation. There may be an 
equivalent interaction effect with siblings, but this is not possi-
ble to model in vitro. The lack of statistical evidence for other 
G × E explored in this analysis suggests that only weak inter-
actions are likely to exist, indicating that on a population level 
the interactions tested and found to be null are unlikely to have 
important contributions to AE pathogenesis. Future, larger lon-
gitudinal studies should therefore focus on alternative mecha-
nistic investigations.
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