Reduced Genetic Diversity of Key Fertility and Vector Competency Related Genes in Anopheles gambiae s.l. Across Sub-Saharan Africa

Fatoumata Seck ; Mouhamadou Fadel Diop ORCID logo ; Karim Mané ; Amadou Diallo ORCID logo ; Idrissa Dieng ORCID logo ; Moussa Namountougou ; Abdoulaye Diabate ; Alfred Amambua-Ngwa ORCID logo ; Ibrahima Dia ORCID logo ; Benoit Sessinou Assogba ; (2025) Reduced Genetic Diversity of Key Fertility and Vector Competency Related Genes in Anopheles gambiae s.l. Across Sub-Saharan Africa. Genes, 16 (5). p. 543. ISSN 2073-4425 DOI: 10.3390/genes16050543
Copy

Background: Insecticide resistance challenges the vector control efforts towards malaria elimination and proving the development of complementary tools. Targeting the genes that are involved in mosquito fertility and susceptibility to Plasmodium with small molecule inhibitors has been a promising alternative to curb the vector population and drive the transmission down. However, such an approach would require a comprehensive knowledge of the genetic diversity of the targeted genes to ensure the broad efficacy of new tools across the natural vector populations. Methods: Four fertility and parasite susceptibility genes were identified from a systematic review of the literature. The Single Nucleotide Polymorphisms (SNPs) found within the regions spanned by these four genes, genotyped across 2784 wild-caught Anopheles gambiae s.l. from 19 sub-Saharan African (SSA) countries, were extracted from the whole genome SNP data of the Ag1000G project (Ag3.0). The population genetic analysis on gene-specific data included the determination of the population structure, estimation of the differentiation level between the populations, evaluation of the linkage between the non-synonymous SNPs (nsSNPs), and a few statistical tests. Results: As potential targets for small molecule inhibitors to reduce malaria transmission, our set of four genes associated with Anopheles fertility and their susceptibility to Plasmodium comprises the mating-induced stimulator of oogenesis protein (MISO, AGAP002620), Vitellogenin (Vg, AGAP004203), Lipophorin (Lp, AGAP001826), and Haem-peroxidase 15 (HPX15, AGAP013327). The analyses performed on these potential targets of small inhibitor molecules revealed that the genes are conserved within SSA populations of An. gambiae s.l. The overall low Fst values and low clustering of principal component analysis between species indicated low genetic differentiation at all the genes (MISO, Vg, Lp and HPX15). The low nucleotide diversity (>0.10), negative Tajima’s D values, and heterozygosity analysis provided ecological insights into the purifying selection that acts to remove deleterious mutations, maintaining genetic diversity at low levels within the populations. None of MISO nsSNPs were identified in linkage disequilibrium, whereas a few weakly linked nsSNPs with ambiguous haplotyping were detected at other genes. Conclusions: This integrated finding on the genetic features of major malaria vectors’ biological factors across natural populations offer new insights for developing sustainable malaria control tools. These loci were reasonably conserved, allowing for the design of effective targeting with small molecule inhibitors towards controlling vector populations and lowering global malaria transmission.


picture_as_pdf
Seck-etal-2025-Reduced-genetic-diversity-of-key.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads