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BACKGROUND A biomarker of cardiovascular aging, derived from a deep learning algorithm applied to digitized

12-lead electrocardiograms, has recently been introduced. This biomarker, d-age, is defined as the difference between

predicted electrocardiogram age and chronological age.

OBJECTIVES The purpose of this study was to assess the potential value of d-age in enhancing the performance of

primary prevention models for cardiovascular disease that incorporate traditional cardiovascular risk factors.

METHODS In this cohort study, we included 7,108 men and women from the Norwegian Tromsø Study in 2015 to 16,

with follow-up through 2021 for incident fatal and nonfatal myocardial infarction (MI) and hemorrhagic or cerebral

stroke. We used Cox proportional hazards regression models, Harrell’s concordance statistic (C-index), and the net

reclassification improvement.

RESULTS During a median follow-up of 5.9 years, we observed 155 cases of MI and 141 strokes. In men and women

combined,HR per SD increment in d-age, after adjustment for traditional risk factors included in the Norwegian risk model

for acute cerebral stroke and myocardial infarction (NORRISK 2) score, was 1.24 (95% CI: 1.09-1.41) for the combined

outcome, with similar HRs for MI and stroke. In men, the HR was significant for MI and in women for stroke. The C-index

increased significantly but modestly when d-age was added to a model with traditional risk factors. The net reclassifi-

cation improvement was 26.0% (95% CI: 13.3%-38.1%) for the combined outcome, 17.5% (95% CI: 0.6%-33.5%) for MI,

and 37.2% (95% CI: 20.1%-53.0%) for stroke.

CONCLUSIONS Incorporating d-age into primary prevention risk prediction models significantly improved performance

beyond traditional cardiovascular risk factors for the combined outcome and separately for MI and stroke.

(JACC Adv. 2025;4:101764) © 2025 The Authors. Published by Elsevier on behalf of the American College of Cardiology

Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AI = artificial intelligence

CVD = cardiovascular disease

DNN = deep neural network

ECG = electrocardiograms

HDL = high-density lipoprotein

MI = myocardial infarction

NRI = net reclassification

improvement

d-age = ECG age minus

chronological age
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M achine learning is increasingly
used to address issues in biomed-
icine, creating new scientific

insights, and improving diagnosis, manage-
ment, and risk prediction. Deep neural net-
works (DNNs) are a machine learning
approach that generates diagnostic or pre-
dictive algorithms from raw data in an
end-to-end manner, that is, without
requiring intermediate steps. The applica-
tion of DNNs to imaging data is proceeding
in parallel in several clinical specialties
attempting to improve the prevention, diag-
nostics, and treatment of diseases. In particular, in
cardiovascular medicine, DNNs are being developed
to process the signals obtained from echocardiogra-
phy, magnetic resonance images of the heart, and
electrocardiograms (ECGs).1-6 One of the proposed
DNNs was a novel biomarker of cardiovascular ag-
ing, based on the difference between age predicted
using a deep learning algorithm to digitized 12-lead
ECGs and chronological age.1,6 Cardiovascular aging
results from multiple underlying molecular and
cellular processes and occurs at different pace
within individuals due to varying exposure to envi-
ronmental insults, individual behaviours, and ge-
netic predispositions.7 Higher cardiovascular aging,
defined as having a predicted ECG age greater
than one’s chronological age has been associated
with higher risk of cardiovascular disease (CVD)
and total mortality, compared to having a predicted
ECG age lower than the chronological age.6,8-10 In
principle, a biomarker measuring the difference
ECG age minus chronological age (d-age) holds
promise to be used as a component of clinical risk
prediction scores. It is widely accepted that risk
prediction models of CVD, such as SCORE and
others, have limitations for predicting individual
risk.11 Hence, important treatments and life-style
change may not be prescribed in time for some pa-
tients. Incorporation of d-age into clinical risk pre-
diction models for CVD may improve risk
prediction for these patients and subsequent pri-
mary prevention. The objective of this study is to
assess d-age’s potential value to improve perfor-
mance of primary prevention models for CVD that
include traditional cardiovascular risk factors. We
will use data from 7,008 participants of the Tromsø
Study (wave 7, 2015-16) with collected ECGs, and
6 years of median follow-up. We hypothesize that
d-age will improve the prediction of incident fatal
and nonfatal myocardial infarction (MI) and stroke
on top of what contemporary CVD prediction tools
would do.
METHODS

STUDY SAMPLE. The Tromsø Study is a population-
based, prospective study consisting of 7 surveys,
referred to as Tromsø1 to 7, conducted in the munic-
ipality of Tromsø, Norway, from 1974 to 2016.12 In the
most recent wave (Tromsø7, 2015-16), all men and
women in the municipality aged 40 years and older
were invited to participate, with a participation of
65%, amounting to 21,083 individuals.13 A subcohort
of 8,346 participants, aged 40 to 84 years, was further
invited to a second visit, which included more
extensive clinical examinations.

For this analysis, the sample is based on the 7,780
participants from Tromsø7 visit 2 who had standard
12-lead ECGs recorded. We excluded participants who
did not consent to medical research (n ¼ 2), had a
history of MI or stroke (n ¼ 546), or had incomplete
covariate history at baseline (n ¼ 124). Thus, the
study included 7,108 men and women for the present
analyses. The study was approved by the Regional
Committee for Medical and Health Research Ethics,
REC North. It has conformed to the principles
embodied in the Declaration of Helsinki. All partici-
pants provided written informed consent.

MEASUREMENTS. Tromsø7 incorporated a standard-
ized protocol with physical examinations and blood
sampling.13 Information regarding smoking habits,
education, medication use, and family history of MI
was collected through questionnaire data. Resting 10-
second digital 12-lead ECG was obtained using the
Schiller device AT104 PC, and the raw ECG signal was
stored digitally. Blood pressure was measured using
an oscillometric digital automatic device (Dinamap
Procare 300, GE Healthcare) by trained personnel.
After a 2-minute rest in a sitting position, 3 readings
were taken on the upper right arm at 1-minute in-
tervals. The average of the last 2 measurements was
used to determine systolic blood pressure in this
study. Nonfasting blood samples were analyzed using
standard methods at the Department of Laboratory
Medicine, University Hospital of Northern Norway.
Serum total cholesterol and triglycerides were
analyzed within 48 hours by enzymatic colorimetric
methods using commercial kits from Roche
Diagnostics (CHOD-PAP). Serum high-density lipo-
protein (HDL) cholesterol was measured after pre-
cipitation of low-density lipoprotein using heparin
and manganese chloride. Participants’ weight and
height were measured in light clothing without shoes
using a Jenix DS-102 scale (DongSahn Jenix). Body
mass index was calculated as weight in kilograms
divided by the square of height in meters (kg/m2).



J A C C : A D V A N C E S , V O L . 4 , N O . 6 , 2 0 2 5 Wilsgaard et al
J U N E 2 0 2 5 : 1 0 1 7 6 4 Delta Age and Incident Cardiovascular Disease

3

Smoking status was determined from the response to
the question “Do you/did you smoke daily?” with 3
answer options (never; yes, now; yes, previously).
The participants were asked to tick which of the
following relatives have or have had heart attack
before the age of 60 (father, mother, children, sib-
lings). From this a family history of MI before the age
of 60 years was created in 3 levels (0, 1, $2 family
members). Educational level was obtained with the
question “What is the highest level of education you
have completed?” with 4 answer options (Primary/
partly secondary education up to 10 years of
schooling; upper secondary education $3 years; ter-
tiary education short: college/university <4 years;
tertiary education long: college/university $4 years).

PREDICTED ECG AGE. We obtained ECG predicted
age based on digital 12-lead ECGs for 7,780 partici-
pants from Tromsø7 using a convolutional neural
networks algorithm developed by our team previ-
ously in the Mayo clinic.1,8 The neural network was
trained and validated on a large clinical population
from the Mayo Clinic (499,727 in the training set,
275,056 in the testing set). A 10-second rested, stan-
dard 12-lead ECG was used to develop the neural
network. The network was built using stacked blocks
of convolutional, max pooling, and batch normaliza-
tion. The output of the network was the artificial in-
telligence (AI)-enabled ECG age prediction as a
continuous variable.1 The predicted ECG age was
corrected to account for bias due to systematically
higher predicted age in younger participants and
lower predicted age in older participants by using
linear regression as follows

�
ECGageuncorrected�agechronological

�
¼cb0þcb1agechronological

ECGage ¼ ECGageuncorrectede
�cb0þcb1agechronological

�
;

where ECGageuncorrected is the uncorrected predicted
ECG age, agechronological is the observed chronological
age, cb0 and cb1 are estimated linear regression co-
efficients, and ECGage is the final bias corrected ECG
age. Supplemental Figure 1 shows scatter plots be-
tween ECG age and chronological age, before and af-
ter the bias correction.

The d-age was calculated as the difference ECGage
minus chronological age, where positive values
reflect an older than expected age.

OUTCOME. Prevalent and incident fatal and nonfatal
MI and stroke events were registered from several
sources. Events dated 2014 and earlier were sourced
from the local CVD register of the Tromsø Study14,15 to
identify those with prevalent diseases, while events
from 2015 to 2021 were obtained from national
registries of MI, stroke, and causes of death. In the
local registry, MIs and strokes were identified
through linkage to the diagnosis registries at the
University Hospital of North Norway and the National
Causes of Death Registry. In this registry, we applied
modified World Health Organization (WHO) MONICA/
MORGAM criteria for defining prevalent MI14 and
stroke,15 with an independent endpoint committee
adjudicated both hospitalized and out-of-hospital
events. Event cases were ascertained by reviewing
medical records with International Classification of
Diseases (ICD)-10 discharge diagnoses of I20 to I25,
I46 to I48, I50, I60 to I69, G45, G46, G81, R96, R98, or
R99. All Norwegian hospitals are mandated to register
patients hospitalized with an acute MI in the Nor-
wegian Myocardial Infarction Register and those with
acute stroke in the Norwegian Stroke Register. The
inclusion criteria for MI encompass all patients with
an ICD-10 diagnosis of I21 or I22 hospitalized within
28 days after symptom onset. For stroke, the inclu-
sion criteria are hospitalized patients with ICD-10
codes I61, I63, or I64. Patients hospitalized with
acute stroke following a traumatic head injury, stroke
related to intracranial tumors, or ischemic stroke
following a subarachnoid hemorrhage are excluded
from the Stroke Register. The national Cause of Death
Registry provided data on out-of-hospital fatal inci-
dent cases of MI and stroke. Deaths with ICD-10 codes
I21-I24, I25.2, I46, or R96 combined with I20 or I25 as
the underlying or contributing cause of death, were
defined as MIs. Deaths with ICD-10 codes I61, I63, or
I64 were classified as strokes. The diagnoses recorded
in the national registers overlapped with the local
register for 2013 to 2014 and have been verified as
accurate and complete compared with the validated
diagnoses in the local register.16,17

STATISTICAL ANALYSIS. All analyses were per-
formed on the whole sample and separately for men
and women using SAS software version 9.4 (SAS
Institute Inc). Participants with previous MI or stroke
at baseline, or incomplete covariate information were
not included in the analysis. The analyses were con-
ducted for each outcome, MI and stroke, and for the
combined outcomes. Baseline characteristics were
presented as means (SD) or percentages (numbers).
Follow-up time ranged from the day of study entry in
2015 to 16 to the date of first fatal or nonfatal event,
participant censoring due to emigration from Norway,
death, or the end of follow-up December 31, 2021,
whichever came first. Cox proportional hazard
regression models were used to estimate HRs for the
association between d-age and incident fatal and
nonfatal events. HRs with 95% CIs were estimated in

https://doi.org/10.1016/j.jacadv.2025.101764
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2 models: model 1, adjusted for chronological age and
sex, and model 2 further adjusted for systolic blood
pressure, blood pressure treatment, total cholesterol,
triglycerides, HDL cholesterol (dichotomized
to <1.00 mmol/L in men and <1.3 mmol/L in women),
daily smoking, and a family history of MI before the
age of 60 years. The traditional risk factors were
selected based on those included the Norwegian risk
prediction model NORRISK 2,18 which is analogous to
SCORE prediction model for primary prevention
adapted to the Norwegian population.18 Tests of sex
differences were performed by adding a two-way
cross product between d-age and sex to a model
including main effects of these variables along with
all traditional risk factors. Additional Cox models
were performed by fitting d-age with restricted cubic
splines with knots at the quintiles and by categorizing
d-age in to 3 levels (ECGage lower than 1 SD (6.2 years)
of chronological age, ECG age within �1 SD of chro-
nological age, ECG age higher than 1 SD of chrono-
logical age). Survival curves were estimated using the
direct adjustment method with stratified Cox
model.19 Discrimination was assessed using Harrell’s
concordance statistic (C-index) and the net reclassi-
fication improvement (NRI). Improvement in C-index
from the model with the traditional risk factors to the
model adding d-age was estimated as the difference
in C-index. The 95% CIs of this difference were esti-
mated from 1,000 bootstrap samples. The NRI was
calculated using estimated probabilities of event at
6 years of follow-up from 2 Cox proportional hazard
regression models, one with the traditional risk fac-
tors and one model with the traditional risk factors
and d-age. We used the version of NRI that is defined
as category-free and applicable to survival data.20 If
we assume n subjects, where nu are reclassified up
and nd are reclassified down the NRI can be written as
sum of 2 parts as:

NRI ¼ PðeventjupÞ$nu � PðeventjdownÞ$nd

n$PðeventÞ
þ ð1� PðeventjdownÞÞ$nd � ð1� PðeventjupÞÞ$nu

n$ð1� PðeventÞÞ ;

where the numerators represent expected numbers of
events reclassified upward and downward (first
numerator) and expected numbers of nonevents
reclassified downward and upward (second numer-
ator). The denominators are total expected cases of
events and nonevents, respectively. The 95% CIs
were estimated from 1,000 bootstrap samples. The
proportional hazards assumption was verified by vi-
sual inspection of log minus log survival curves for
quintiles of d-age and by tests of Schoen-
feld residuals.

RESULTS

We have followed 7,108 men and women from the
date of baseline examination in 2015 to 16 to the end
of 2021. The median follow-up time was 5.9 years
(IQR: 5.4-6.2 years), and we observed 155 incident
cases of MI (incidence 3.8 per 1,000 person-years), 141
cases of stroke (incidence 3.4), and 290 cases with
either MI or stroke (incidence 7.1). Table 1 shows
descriptive characteristics of the study sample. The
age at attendance ranged from 39.4 to 85.7 years with
an average of 63 years. The baseline predicted ECG
age was on average 4.5 years lower than the baseline
chronological age, but the average bias corrected
predicted ECG age was equal to the average chrono-
logical age. The averages for body mass index, sys-
tolic blood pressure, total cholesterol, HDL
cholesterol, and triglycerides were 27 kg/m2,
133 mm Hg, 5.6 mmol/L, 1.6 mmol/L, and 1.5 mmol/L,
respectively. Thirty-one percent reported to use
blood pressure–lowering medication, 18% used lipid-
lowering drugs, 13% were daily smokers, and 44%
had reported to have university-level education.

Supplemental Figure 2 shows scatter plots between
d-age and chronological age with filled red star sym-
bols as markers for event outcomes. We observed that
mean baseline age was lower in men with MI
compared to women with MI, 67.5 years and
72.4 years, respectively, while there was no sex dif-
ference in mean baseline age in participants who
experienced a stroke during follow-up, 71.1 years vs
71.3 years, respectively.

HRs per SD increase in d-age, after adjustment for
traditional risk factors, were 1.24 (95% CI: 1.09, 1.41)
for the combined outcome, 1.26 (1.06, 1.49) for MI,
and 1.25 (1.03, 1.50) for stroke (Table 2). In men, the
corresponding HRs were 1.27 (1.09, 1.49), 1.46 (1.18,
1.79), and 1.02 (0.80, 1.31), respectively, and in
women, 1.20 (0.97, 1.49), 0.87 (0.64, 1.20), and 1.58
(1.19, 2.11), respectively. Adjustment for the tradi-
tional risk factors in the multivariable models only
slightly attenuated HR for d-age compared to models
only adjusted for chronological age and sex. We
observed significant sex differences in HRs of MI and
stroke, but not of the combined outcome. HRs
presented in Figure 1, Supplemental Figure 3, and
Central Illustration show some slight deviations from
the linearity assumption, especially for stroke, but
mostly agrees with the results in Table 2 when

https://doi.org/10.1016/j.jacadv.2025.101764
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TABLE 1 Descriptive Characteristics by Sex

Overall
(N ¼ 7,108)

Men
(n ¼ 3,089)

Women
(n ¼ 4,019)

Age, y 63.2 � 10.4 63.0 � 10.4 63.3 � 10.4

Predicted ECG age, y 58.7 � 8.9 58.4 � 8.8 58.9 � 9.0

Bias corrected predicted ECG age, y 63.2 � 12.1 62.8 � 11.9 63.4 � 12.2

d-age, y 0.00 � 6.2 �0.17 � 6.2 0.14 � 6.1

Body mass index, kg/m2 27.2 � 4.4 27.8 � 3.9 26.8 � 4.7

Systolic blood pressure, mm Hg 133 � 20.2 135 � 18.1 132 � 21.5

Blood pressure treatment, % 30.8 (2,186) 32.4 (1,002) 29.5 (1,184)

Total serum cholesterol, mmol/L 5.6 � 1.1 5.4 � 1.0 5.7 � 1.1

Serum HDL cholesterol, mmol/L 1.6 � 0.5 1.4 � 0.4 1.8 � 0.5

Serum triglycerides, mmol/L 1.5 � 0.9 1.6 � 1.0 1.4 � 0.7

Lipid-lowering drug use, % 17.8 (1,268) 18.0 (557) 17.7 (711)

Daily smoking, %

Current smoker 12.5 (892) 11.8 (366) 13.1 (526)

Previous smoker 48.0 (3,414) 49.8 (1,538) 46.7 (1,876)

Never smoker 39.4 (2,802) 38.4 (1,185) 40.2 (1,617)

Family history of MI before the age of 60 y, %

0 family members 76.0 (5,377) 78.4 (2,410) 74.2 (2,967)

1 family member 20.7 (1,463) 18.9 (580) 22.1 (883)

$2 family members 3.3 (232) 2.7 (83) 3.7 (149)

Education

#10 y of schooling 28.4 (1,981) 24.7 (750) 31.3 (1,231)

High school diploma 27.9 (1,948) 30.1 (914) 26.3 (1,034)

College or university <4 y 18.6 (1,297) 21.6 (657) 16.3 (640)

College or university $4 y 25.1 (1,750) 23.6 (718) 26.2 (1,032)

Values are mean � SD or % (n).

d-age ¼ bias corrected predicted ECG age minus chronological age; ECG ¼ electrocardiogram; HDL ¼ high-density lipoprotein; MI ¼ myocardial infarction.

TABLE 2 HRs (95% CI) per SD Increase in d-Age by Sex

Combined Outcome Myocardial Infarction Cerebral Stroke

Overall

Number of events 290 156 141

Age- and sex-adjusted model 1.29 (1.14-1.47) 1.32 (1.11-1.56) 1.29 (1.07-1.56)

Multivariable-adjusted modela 1.24 (1.09-1.41) 1.26 (1.06-1.49) 1.25 (1.03-1.50)

Men

Number of events 177 111 68

Age-adjusted model 1.30 (1.11-1.52) 1.49 (1.22-1.83) 1.05 (0.82-1.34)

Multivariable-adjusted modela 1.27 (1.09-1.49) 1.46 (1.18-1.79) 1.02 (0.80-1.31)

Women

Number of events 113 45 73

Age-adjusted model 1.28 (1.04-1.59) 0.96 (0.70-1.31) 1.64 (1.24-2.17)

Multivariable-adjusted modela 1.20 (0.97-1.49) 0.87 (0.64-1.20) 1.58 (1.19-2.11)

P value for sex equalityb 0.69 0.007 0.017

aHRs are adjusted for age (sex in the overall model), systolic blood pressure, blood pressure treatment, total
cholesterol, triglycerides, low HDL cholesterol, daily smoking, and family history of MI before the age of
60 years. bTest for interaction between sex and d-age in an overall multivariable adjusted model.

Abbreviation as in Table 1.
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accounting for the 95% confidence bands. Formal
statistical tests showed a significant deviation from
linearity in the overall sample with stroke as outcome
(P ¼ 0.011). Conversely, for the remaining 8 associa-
tions, the tests for nonlinearity did not yield signifi-
cant results, with all P values >0.10.

A favorable d-age is a predicted ECG age lower than
chronological age, that is, a d-age <0. The cumulative
incidence curves in Figure 2 shows that those with a
favorable d-age below �1 SD have better survival for
all outcomes. However, differences between groups
were only significant for the combined outcome and
borderline significant for MI showing HRs (95% CI) for
subjects with d-age >1 SD compared to d-age below �1
SD of 1.55 (1.00-2.40) for the combined outcome, 1.80
(0.95-3.43) for MI, and 1.54 (0.85-2.77) for stroke. In
sex-specific models (Supplemental Figure 4), these
group differences were only significant in men for the
combined outcome and MI with HRs (95% CI) of 1.91
(1.10-3.33) and 3.25 (1.44-7.33), respectively.

As shown in Table 3 and Central Illustration, Har-
rell’s C index slightly increased from model 1 with
chronological age as the predictor variable to model 2
with the traditional risk factors. A further modest
increase was observed between model 2 and model 3
that also included d-age. The 95% CI for the difference
in C-index excluded zero for the combined outcome

https://doi.org/10.1016/j.jacadv.2025.101764


FIGURE 1 Histograms and HRs for Events According to d-Age

The HRs for the association between d-age and each outcome are modeled with restricted cubic splines using d-age equal to zero as reference

level. The shaded areas represent 95% confidence limits, and the models are adjusted for age, sex, systolic blood pressure, blood pressure

treatment, total cholesterol, triglycerides, low HDL cholesterol, daily smoking, and family history of myocardial infarction before the age of

60 years. d-age ¼ bias corrected predicted ECG age minus chronological age; HDL ¼ high-density lipoprotein.
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CENTRAL ILLUSTRATION d-Age as New Biomarker in CVD Risk Score Models

The Tromsø Study 2015-2016
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Incorporating d-age into primary prevention risk prediction models significantly improved performance beyond traditional cardiovascular risk factors for myocardial

infarction and stroke. CVD ¼ cardiovascular disease; ECG ¼ electrocardiogram; MI ¼ myocardial infarction; NRI ¼ net reclassification improvement; other abbreviation

as in Figure 1.
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in both sexes, for MI in men, and stroke in women
with differences of 0.006 (95% CI: 0.001-0.014),
0.022 (95% CI: 0.004-0.044), and 0.014 (95% CI:
0.001-0.043), respectively.

Supplemental Tables 1 to 3, Table 4, and Central
Illustration show reclassification of events and the
NRI statistic for the combined outcome, and sepa-
rately for MI and stroke, comparing models with
traditional risk factors and models including tradi-
tional risk factors and d-age. In both sexes, 17.8% of
the expected events for the combined outcome were
correctly reclassified up and 8.1% of the expected
nonevents were correctly reclassified down resulting
in an overall NRI statistic of 26.0% (95% CI: 13.3%-
38.1%). The NRIs for MI and stroke were 17.5%
(95% CI: 0.6%-33.5%) and 37.2% (95% CI: 20.1%-
53.0%), respectively. In sex-specific models, the
corresponding NRIs in men were 24.5% (95% CI:
7.7%-40.0%), 19.8% (95% CI: 1.5%-39.6%), and 24.0%
(95% CI: �0.0% to 47.8%), respectively, and in
women 27.8% (95% CI: 8.4%-46.8%), 1.8%
(95% CI: �28.3% to 33.8%), and 51.0% (95% CI:
28.9%-72.4%), respectively.

DISCUSSION

In this population-based study, we have demon-
strated that d-age is independently associated with
the combined outcome of MI and stroke, as well as
separately for each outcome. The measured effect
sizes were only modestly attenuated after adjustment
for traditional cardiovascular risk factors. We also

https://doi.org/10.1016/j.jacadv.2025.101764


FIGURE 2 Cumulative Incidence According to d-Age Levels

Cumulative incidence curves are presented for 3 levels of d-age categorized with cutoffs at � 1 SD (6.2 years), and estimated from stratified

Cox proportional regression models with the direct adjustment method including age, sex, systolic blood pressure, blood pressure treatment,

total cholesterol, triglycerides, low HDL cholesterol, daily smoking, and family history of myocardial infarction before the age of 60 years as

covariates. Abbreviations as in Figure 1.
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TABLE 3 C-Index According to Event by Sex

C-Index Difference (95% CId)

Model 1a Model 2b Model 3c Model 3–Model 2

Overall

Combined outcome 0.714 0.750 0.756 0.006 (0.001-0.014)

Myocardial infarction 0.734 0.771 0.775 0.004 (�0.000 to 0.012)

Cerebral stroke 0.725 0.755 0.760 0.004 (�0.001 to 0.020)

Men

Combined outcome 0.663 0.707 0.717 0.010 (0.001-0.024)

Myocardial infarction 0.624 0.690 0.713 0.022 (0.004-0.044)

Cerebral stroke 0.726 0.751 0.751 0.000 (�0.004 to 0.011)

Women

Combined outcome 0.731 0.776 0.779 0.003 (�0.001 to 0.015)

Myocardial infarction 0.753 0.798 0.800 0.002 (�0.002 to 0.011)

Cerebral stroke 0.728 0.774 0.788 0.014 (0.001-0.043)

aModel 1: Age (and sex in the overall data set). bModel 2: Model 1 þ the traditional cardiovascular disease risk
factors systolic blood pressure, blood pressure treatment, total cholesterol, triglycerides, low HDL cholesterol,
daily smoking, and family history of MI before the age of 60 years. cModel 3: Model 2 þ d-age. dDifference
between C-indices with 95% CI from 1,000 bootstrap samples.

J A C C : A D V A N C E S , V O L . 4 , N O . 6 , 2 0 2 5 Wilsgaard et al
J U N E 2 0 2 5 : 1 0 1 7 6 4 Delta Age and Incident Cardiovascular Disease

9

showed that incorporating d-age into cardiovascular
risk scores models, such as the Norwegian
NORRISK 2, improves predictive accuracy.

A positive value of our biomarker, d-age, which is
the difference AI-generated ECG age minus chrono-
logical age, has previously been directly associated
with cardiovascular mortality8 and major adverse
cardiovascular events.21 However, those studies were
based on primary care patients rather than a general
population, and the former did not include nonfatal
events. Ladejobi et al8 showed that the difference be-
tween AI ECG and chronological age is an independent
predictor of all-cause and cardiovascular mortality.
Their finding aligns with our study, suggesting that the
d-age biomarker could identify individuals aging
beyond what is expected from their chronological age.
Their study did not present sex-specific results.

Toya et al21 included an observational cohort of 531
patients who underwent ECG and peripheral micro-
vascular endothelial function testing at the Mayo
Clinic, using the same AI-ECG algorithm as the pre-
sent study. They found that d-age was significantly
associated with an increased risk of major adverse
cardiovascular events in the presence of peripheral
microvascular endothelial function, indicating that
vascular aging may contribute to cardiovascular risk
in people with accelerated physiologic aging.21 Their
analyses showed a stronger association for women
compared to men, although the study was limited by
a small number of events. They also demonstrated a
significant NRI after adding d-age to a model
including the Reactive Hyperemia Peripheral Arterial
Tonometry index.21

Another study with a DNN-based ECG-age-predic-
tion model, developed in the Clinical Outcomes in
Digital Electrocardiography (CODE) Study cohort,2

showed that the difference between predicted ECG
age and chronological age is a predictor of overall
mortality, despite not being based on an unselected
nonpatient population and focusing on overall mor-
tality rather than incident cardiovascular events. This
suggests that the difference between predicted ECG
age and chronological age could be a useful tool in
assessing mortality risk in the general population.

A study from the Tri-Service General Hospital in
Taipei developed and validated a deep learning
model to estimate ECG age using data from
71,741 first exam ECGs.3 They concluded that patients
with a high residual (the difference between chrono-
logical age and ECG age) had an elevated risk of all-
cause mortality, cardiovascular mortality, and
cardiovascular outcomes after adjusting for con-
founding factors. External validation cohorts also
demonstrated that a high residual was associated
with increased all-cause mortality risk, although the
analyses were not sex-specific.

Different AI methods have been applied to predict
ECG age and d-age, and these biomarkers are related
to cardiovascular health and total mortality. Biolog-
ical aging, measured by ECG age, encompasses life-
style, environmental factors, inheritable and acquired
conditions, and diseases.22 Our biomarker of biolog-
ical aging could also relate to other non-CVDs and
conditions. For example, another publication from
the Tromsø Study showed that d-age was associated
with cognitive function,23 indicating potential in
identifying individuals at increased risk for neuro-
logical conditions.24 Also, a large population cohort
from the Mayo Clinic demonstrated that social isola-
tion is associated with accelerating biological aging,
independent of conventional cardiovascular risk
factors.25

Our study showed that d-age was independently
associated with the combined outcome of MI and
stroke in both men and women. However, in
outcome-specific analyses, the associations were only
significant for MI in men and for stroke in women,
with significant sex differences for both outcomes.
Women and men mostly share traditional risk factors
for CVD, but the relative impact of these risk factors
may vary.26 Nevertheless, a common pool of cardio-
vascular risk factors in men and women contrast our



TABLE 4 Net Reclassification Improvement Indices (95% CI) by Event and Sexa

Combined Outcome Myocardial Infarction Cerebral Stroke

Overall

Among events 17.8% (5.1%-29.7%) 9.8% (�7.1% to 25.2%) 27.7% (10.6%-43.4%)

Among nonevents 8.1% (5.7%-10.6%) 7.7% (5.3%-10.1%) 9.5% (7.1%-12.0%)

Overall 26.0% (13.3%-38.1%) 17.5% (0.6%-33.5%) 37.2% (20.1%-53.0%)

Men

Among events 15.7% (�0.3% to 30.0%) 7.1% (�11.6% to 26.2%) 20.6% (�2.5% to 43.3%)

Among nonevents 8.8% (5.5%-12.4%) 12.7% (9.3%-16.2%) 3.4% (�0.2% to 7.0%)

Overall 24.5% (7.7%-40.0%) 19.8% (1.5%-39.6%) 24.0% (�0.0% to 47.8%)

Women

Among events 21.2% (2.0%-39.9%) �3.3% (�32.9% to 29.4%) 34.4% (12.1%-55.0%)

Among nonevents 6.6% (3.4%-9.8%) 5.2% (2.1%-8.2%) 16.7% (13.6%-19.8%)

Overall 27.8% (8.4%-46.8%) 1.8% (�28.3% to 33.8%) 51.0% (28.9%-72.4%)

95% CI from 1,000 bootstrap samples. aNet reclassification improvement when d-age is added to a model with the traditional cardiovascular disease risk factors age, sex,
systolic blood pressure, blood pressure treatment, total cholesterol, triglycerides, low HDL cholesterol, daily smoking, and family history of MI before the age of 60 years.
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finding that d-age was not associated with stroke in
men and MI in women. Furthermore, several studies
have shown associations between specific features
derived from standard 12-lead ECGs, like premature
ventricular complexes and nonspecific ST-segment
and T-wave abnormalities, and coronary heart dis-
ease, stroke, and mortality.27-31 Some of these
studies have presented sex-specific results or tested
for sex differences,27-29 but they do not align with
our findings of potential sex difference in the effect
of d-age. Despite observing that women with MI
were, on average, 5 years older than their male
counterparts and that the statistical power in MI-
specific analyses was lower for women than for
men, the underlying cause of a possible sex differ-
ence in the effect of d-age remains unclear. This
discrepancy warrants further investigation in future
population-based studies.

Our study has several strengths. The study cohort
is based on a general population with a high atten-
dance proportion. Incident outcome events were
extracted from national quality registers for MI and
stroke, with all Norwegian hospitals mandated to
register patients hospitalized with acute MI and
stroke. While the events are not adjudicated, the
registers are considered adequately complete and
correct.32,33 Furthermore, MI and stroke events from
the national registers for 2013 and 2014 were vali-
dated against the local adjudicated cardiovascular
endpoint register, confirming high correctness and
completeness.16,17

STUDY LIMITATIONS. A limitation of the study is that
the AI model used to predict ECG age was developed
and validated internally using a patient study popu-
lation where ECGs were obtained for some clinical
indication. How the neural network model would
perform using a general population is unknown and
an external validation in a general population is
warranted. However, some key statistics are compa-
rable between the Mayo Clinic and Tromsø Study
populations. The mean age is 58.6 years in Mayo
Clinic and 63.2 in Tromsø. Pearson correlation coef-
ficient and the mean absolute error between ECG age
and chronological age is 0.84 and 0.72, and 6.9 and
6.8 in the Mayo Clinic and Tromsø, respectively.
Another limitation, inherent to AI, is the current lack
of explainability in deep learning models. This opac-
ity arises not from any specific feature of the image
being solely responsible for the outcome, but rather
from the totality of information processed. This lack
of transparency is met with caution by clinicians. To
address this issue, explainable AI aims to elucidate
the features of neural networks, thereby making
DNNs more acceptable for clinical use. Several ran-
domized control trials are testing or planning to test
DNN models in real life situations.34-36 Understanding
human-selected features that AI models are looking
at is crucial for adopting this technology in clinical
medicine.37 For example, Attia et al37 demonstrated
that neural networks for ECG signals extract features
similarly to human experts and generate additional
novel features that enhance performance.

CONCLUSIONS

We have demonstrated that d-age, derived from
noninvasive, standard 12-lead ECGs routinely con-
ducted in primary care settings, has significant po-
tential and can be seamlessly integrated into
established risk prediction scores, such as the



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: AI ECG-derived

age has the potential to enhance clinical decision-making by

playing a significant role in diagnosis, risk stratification, and

population-level medicine.

TRANSLATIONAL OUTLOOK: Our findings suggest that

d-age could be included in primary prevention risk prediction

models for CVD.
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Norwegian NORRISK 2 and the European SCORE
model. Our findings should be replicated in other
population-based studies with longer follow-up and a
greater number of incident events to confirm the
robustness and generalizability of our results, and to
further elucidate possible sex differences.
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