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Objectives: While artemisinin-based combination therapies (ACTs) are effective in sub-Saharan Africa, clinical 
isolates that are refractory to artemisinin derivatives are emerging in East Africa and ACT partner drugs are be
coming less effective in West Africa. We investigated the ex vivo responses of Plasmodium falciparum clinical 
isolates to frontline antimalarials and the contribution of validated molecular markers of antimalarial drug 
resistance. 

Methods: Ex vivo susceptibility was measured for 66 clinical isolates collected from uncomplicated malaria 
patients. IC50 was measured for dihydroartemisinin, artesunate, lumefantrine, amodiaquine and chloroquine 
using a SYBR Green I growth inhibition assay. We also assessed known drug resistance-mediating polymorph
isms in pfcrt, pfmdr1 and pfkelch13 using Oxford Nanopore amplicon sequencing. 

Results: P. falciparum clinical isolates were susceptible to dihydroartemisinin and artesunate. Clinical isolates 
showed a wide distribution of susceptibility to lumefantrine and amodiaquine, with some parasites having 
IC50 values above reference cut-offs for resistance to lumefantrine (150 nM) and amodiaquine (60 nM), suggest
ing decreased drug susceptibility. Ninety-seven percent of the isolates carried WT pfcrt K76 and pfmdr1 N86 al
leles, reported to mediate reduced response to lumefantrine and artemether/lumefantrine. pfmdr1 N86 and 
184F haplotype was carried by 62.1% of parasites. None of the clinical isolates carried validated pfkelch13 mu
tations known to mediate artemisinin partial resistance. 

Conclusions: Clinical isolates from coastal Ghana remain susceptible to artemisinin derivatives in commonly 
used ACTs in Ghana. However, we observed lower susceptibility to the ACT partner drugs lumefantrine and amo
diaquine, suggesting the emergence of drug-tolerance phenotypes. Consistent surveillance of drug phenotype– 
genotype is needed to support ACT efficacy in Ghana.
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permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information 
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Introduction
The gains made in malaria control since 2016 had plateaued just 
before the COVID-19 pandemic, but post-COVID-19 estimates 
suggest a worsening burden of malaria, particularly in the WHO 
African region.1 There were an estimated 249 million cases and 
608 000 deaths globally in 2022, despite considerable malaria 
control efforts.1 Besides the disruptions in malaria control inter
ventions imposed by the pandemic, a key factor in the historical 

resurgence of malaria is the rapid development of resistance in 
Plasmodium falciparum to frontline antimalarials.2

Multiple independent emergence and spread of artemisinin 
resistance in Southeast Asia (SEA) contributed to treatment fail
ures with artemisinin-based combination therapies (ACT).3–6

Africa faces the dual risk of the spread of artemisinin resistance 
from SEA to the continent and/or independent emergence of 
artemisinin resistance. There is growing evidence of emerging 
partial artemisinin resistance in East Africa with recent reports 
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in Rwanda, Uganda, and Tanzania, and the Horn of Africa (in 
Ethiopia and Eritrea).7–10 This, in combination with growing re
ports of ACT partner drug tolerance across sub-Saharan Africa 
(sSA), poses risks to malaria control and elimination efforts. 
This calls for active surveillance of antimalarial drug efficacy 
against parasite populations, particularly in West Africa where 
transmission and drug pressure remain highest.11,12

Therapeutic efficacy studies (TESs) are the gold standard for 
monitoring the efficacy of antimalarial treatments but are not 
routinely feasible due to huge financial and logistic constraints.13

Ex vivo and in vitro drug susceptibility studies offer an alternative 
approach of generating complementary data for assessing para
site responses to drugs outside the human host. These ap
proaches, though with limitations, provide valuable information 
on parasite drug response patterns when combined with the 
study of molecular markers, which are potentially unbiased.13,14

Antimalarial drug policy in Ghana changed in 2005 from 
chloroquine to ACTs, in compliance with WHO recommenda
tions.15 Artemether/lumefantrine and artesunate/amodiaquine 
are now the frontline alternative treatments for uncomplicated 
malaria.15 More recently, dihydroartemisinin/piperaquine was in
troduced as a third treatment option.16 Sulfadoxine/pyrimeth
amine remains the mainstay for malaria prophylaxis during 
pregnancy and combined with amodiaquine for seasonal malaria 
chemoprevention (SMC) in children under 5 years in the northern 
Sahelian belt, where malaria transmission is seasonal.17 These 
drug interventions together exert substantial selection pressure 
on P. falciparum populations, which may result in parasite adap
tation and variable responses to frontline drugs.

We have previously demonstrated the utility of Oxford 
Nanopore Technology (ONT) sequencing for malaria molecular 
surveillance in resource-poor settings.18 Here, we determined 
whether the susceptibility of clinical isolates has been affected 
by using multiple frontline ACTs, and employed an ONT-based 
amplicon sequencing panel to assess the prevalence of genetic 
polymorphisms in known antimalarial drug resistance loci. 
These included P. falciparum kelch13 (pfkelch13) for artemisinin, 
P. falciparum MDR gene 1 (pfmdr1) for amodiaquine and lume
fantrine, and P. falciparum chloroquine resistance transporter 
(pfcrt) for chloroquine. The association of known markers of anti
malarial drug resistance with ex vivo drug susceptibility is critical 
for identifying markers that correlate with phenotypic resistance 
as part of monitoring drug responses of Ghanaian parasites to ar
temisinin derivatives and ACT partner drugs.

Methods
Study site and procedure
The study was conducted at the Ledzokuku-Krowor Municipal Assembly 
(LEKMA) Hospital, located at Teshie in the Greater Accra Region (Figure S1, 
available as Supplementary data at JAC Online) of Ghana. Before the 
study, ethical approval was obtained from the Ethics Committee for Basic 
and Applied Sciences (ECBAS), College of Basic and Applied Sciences, 
University of Ghana (Ethics Reference Number: ECBAS 030/21-22). All study 
participants or their guardians gave written informed consent and addition
al assent was obtained for children aged between 12 and 17 years.

Individuals of all ages who presented with acute fever (or a history of 
fever within the past 24 h) were screened with the Combo malaria rapid 
diagnostic test (mRDT) based on P. falciparum histidine-rich protein 2 

(HRP2) and Plasmodium lactate dehydrogenase (pLDH). Individuals 
who were on antimalarials or had taken any antimalarials within the 
past 2 weeks, and individuals with mixed-species infection, mostly 
P. falciparum and P. malariae, were excluded. Five millilitres of venous 
blood was collected from each participant into EDTA tubes and trans
ported in a cool box to the West African Centre for Cell Biology of 
Infectious Pathogens (WACCBIP), University of Ghana for processing 
and analyses (see further details in the Supplementary data).

Ex vivo growth inhibition drug assay
The SYBR Green I-based antimalarial drug assay was set up as previously 
described, with few modifications.19 Ninety microlitres of processed in
fected RBCs in complete media without serum (0.5% parasitaemia, 2% 
haematocrit) from the freshly collected clinical samples was added to 
10 μL of serially diluted dihydroartemisinin (50–0.195 nM), artesunate 
(150–0.586 nM), lumefantrine (750–2.930 nM), amodiaquine (100– 
0.391 nM), chloroquine (750–2.930 nM) and complete media (no drug 
control) in 96-well plates. Three technical replicate assays were set up 
for each antimalarial compound. Drug assay plates were gassed (2% 
O2 and 5% CO2 balanced with N2) in a modular incubator chamber and 
incubated for 72 h at 37°C. 2× SYBR Green I (Invitrogen, USA) in lysis buf
fer [20 mM Tris (pH 7.5), 5 mM EDTA, 0.008% (w/v) saponin and 0.08% 
(v/v) Triton X-100] was prepared by mixing 15 μL of SYBR Green I nucleic 
acid stain (Invitrogen, USA) with 45 mL of sterile lysis buffer. Assay plates 
were lysed with 1× final concentration SYBR Green I lysis buffer, incubated 
in the dark for 1 h and read on a Varioskan LUX multimode microplate 
reader (Thermo Fisher Scientific, USA) at an excitation wavelength of 
485 nm and an emission wavelength of 520 nm. The half-maximal inhibi
tory concentrations (IC50s) were estimated from the dose–response data 
for each antimalarial compound using non-linear regression analysis in 
GraphPad Prism (version 9.0, GraphPad Software, San Diego, CA, USA).

Genotyping of validated drug resistance-associated 
mutations in P. falciparum
Genomic DNA (gDNA) was extracted from aliquots of the processed in
fected RBCs using the QIAamp® DNA Blood Mini Kit (QIAGEN, Germany) 
following the manufacturer’s protocol. Purified gDNA was quantified 
using the Invitrogen Qubit™ 1× dsDNA High Sensitivity (HS) assay kit 
with a Qubit fluorometer (Thermo Fisher Scientific, USA) and stored at 
−20°C. Amplicons of pfcrt, pfdhfr, pfdhps, pfmdr1 and pfkelch13 were 
generated by multiplex PCR as previously described.18 Nuclease-free 
water (negative control) and gDNA of the P. falciparum KH02 isolate (posi
tive control) were included in each PCR run. PCR was run on the PCRmax™ 
Alpha Cycler 4 (Thermo Fisher Scientific, USA) under preset thermocycling 
conditions.18 A 2% agarose gel was run and visualized to confirm ampli
con sizes.

Amplicon purification and library preparation
PCR amplicons were purified using the QIAamp® DNA MinElute Kit 
(QIAGEN, Germany) according to the manufacturer’s instructions. 
Eluted DNA amplicons were quantified and stored at 4°C. Three sequen
cing libraries were prepared for the purified PCR amplicons (22 clinical iso
lates, KH02 positive control and negative control per batch) using the 
SQK-NBD112.24 native barcoding kit (ONT, UK). The manufacturer’s 
protocol was followed for the library preparation. Briefly, 12.5 μL of 
each purified DNA amplicon (∼200 fmol) was end-prepped using 1 ×  
Ultra II End-prep enzyme mix incubated for 5 min at 20°C and 5 min at 
65°C. End-prepped amplicons were purified with 1 ×  AMPure XP Beads, 
eluted in 10 μL nuclease-free water and quantified.

Purified end-prepped DNA was barcoded with 24 unique native bar
codes using 1 ×  Blunt/TA Ligase master mix for 20 min at room tempera
ture (RT). After barcoding, all 24 samples were pooled and purified with 
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1 ×  AMPure XP. Pooled barcoded DNA amplicons were eluted in 35 μL of 
nuclease-free water and quantified. Pooled barcoded DNA (30 μL) was li
gated to the Adapter Mix II H (AMII H) using the Quick T4 Ligase for 
20 min at RT. Purification was performed with 1 ×  AMPure XP using short 
fragment buffer (SFB). Adapter-ligated amplicons were eluted in 15 μL of 
elution buffer and quantified.

Sequencing, base-calling, alignment and SNP detection
DNA libraries for sequencing were prepared by thoroughly mixing 12 μL of 
prepared DNA library (∼20 fmol), 37.5 μL of sequencing buffer II (SBII) 
and 25.5 μL of loading beads II (LBII). Seventy-five microlitres of the mix
ture was gently administered to flow cells (version FLO-MIN10.7) in the 
MinION Mk1b sequencer (MN39679). Sequencing was performed be
tween 6 and 8 h with real-time high-accuracy guppy base calling (version 
7.0.8) using the MinKNOW software (version 23.07.8). The resulting fastq 
files were processed through a custom Nextflow pipeline: nano-rave 
(Nanopore Rapid Analysis and Variant Explorer).17 After quality control 
(QC) checks, sequence reads were mapped to 3D7 reference sequences 
for each amplicon target genes using minimap2. Amplicon coverage 
data was generated using BEDTools. Medaka haploid was used for variant 
calling to generate variant call format (VCF) file outputs for each amplicon 
for each sample (ONT barcode). VCF files were processed using custom R 
scripts (RStudio software, version 4.1.2) to calculate SNP frequencies at 
each drug resistance locus. A cut-off of >50 ×  coverage was applied for 
an amplicon to be included in the analysis. All 66 P. falciparum clinical iso
lates collected were successfully sequenced (Figure S2).

Sequence alignment and phylogenetic analysis
A custom bash script was used to extract the 3D7 (PlasmoDB release 
9.0) reference sequences for each sequenced resistance gene. These 
were indexed using samtools faidx, and sequence dictionaries were 
created with Picard CreateSequenceDictionary. BED files containing 
the chromosome bounds were generated from the samtools fai 
indexes. These BED files were converted to Picard interval lists using 
BedToIntervalList. The Expasy online tool (https://web.expasy.org/ 
translate/) was used to translate all the consensus sequences for resist
ance genes in FASTA format to amino acid sequences for the 3D7 refer
ence, Dd2 and clinical isolates. The amino acid sequence for each gene 
was concatenated to form a linear consensus sequence for each sam
ple. The amino acid sequences were aligned with MAFFT using the auto
matic strategy. IQ-Tree analysed the multiple sequence alignment using 
the TEST model to construct an unrooted phylogenetic tree with 1000 
bootstrap replicates.20 Bootstrap support values were interpreted to de
termine the likelihood of clinical isolates clustering within the same 
clade using a similarity index of 1000.

Statistical analysis
IC50s for phenotypic groups were compared using the Kruskal-Wallis test. 
The correlation of lumefantrine, amodiaquine and chloroquine IC50 va
lues was determined using Pearson correlation. Distribution of extreme 
(i.e >median or <median) IC50 values of pfmdr1 Y184F genotypes and 
pfcrtK76T genotypes was compared using unpaired two-tailed t test. A 
P value of ≤0.05 was considered statistically significant.

Results
Ex vivo response of freshly isolated P. falciparum to five 
antimalarial drugs
A total of 66 ex vivo growth inhibition assays were performed to 
test the efficacy of each antimalarial drug against the clinical iso
lates. High-quality curve fitting and IC50 values were obtained for 

48 of the samples (72.7%) across all five drugs. We observed a 
wide range of ex vivo responses to lumefantrine, amodiaquine 
and chloroquine, with geometric mean IC50 values below estab
lished resistance thresholds for lumefantrine (150 nM), chloro
quine (100 nM) and amodiaquine (60 nM) (Figure 1).21–23

Amodiaquine had a lower geometric mean IC50 value (16.6 nM) 
compared with lumefantrine (34.2 nM). For chloroquine, a geo
metric mean IC50 of 24.5 nM was observed, which is 4-fold lower 
than the 100 nM cut-off for chloroquine resistance.21–23 For dihy
droartemisinin, the major active metabolite for artemisinins, a 
geometric mean IC50 value of 4.3 nM was observed, similar to ar
tesunate (4.0 nM), confirming the susceptibility of parasite popu
lations to the artemisinin derivatives in frontline ACTs in Ghana 
(Table 1). Pearson correlation of IC50 values for partner drugs 
and chloroquine revealed a significant correlation between 

(a) (b)

(c) (d)

(e)

Figure 1. Distribution of ex vivo responses of P. falciparum clinical isolates 
to (a) dihydroartemisinin (DHA), (b) artesunate (AS), (c) lumefantrine 
(LUM), (d) amodiaquine (AQ) and (e) chloroquine (CQ). P. falciparum clin
ical isolates showed variable ex vivo responses to DHA, AS, LUM, AQ and 
CQ. Almost all the clinical isolates tested had IC50 values below the resist
ance cut-offs (indicated by blue line) for DHA, AS, LUM, AQ and CQ.21–23

Thick black line indicate median with IQR.
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amodiaquine and chloroquine (P = 0.047). Lumefantrine and 
amodiaquine were also correlated (P = 0.045). There was no sig
nificant correlation between amodiaquine and lumefantrine (P =  
0.252) (Figure S3).

Temporal trends in ex vivo responses of P. falciparum 
clinical isolates
Temporal changes in the ex vivo responses of clinical isolates were 
evaluated by comparing data from this study with those from 
similar previous studies conducted in the same settings.23,24

There was minimal increase in the geometric mean IC50 value 
for dihydroartemisinin and artesunate over time, suggesting their 
continual efficacy from 2007 to 2023. There was an increase in the 
geometric mean IC50 value of lumefantrine (5.2 nM to 34.2 nM) 
and amodiaquine (6.6 nM to 16.6 nM) between 2013 and 2023, 
suggesting selection and reduced susceptibility to both drugs 
over the years. However, the increase was steeper for lumefan
trine compared with amodiaquine. In contrast, there was a 
consistent sharp decline in geometric mean IC50 value for chloro
quine (57.6 nM to 24.0 nM) from 2007 to 2023 (Figure 2).

Phylogenetic analysis
To examine possible shared haplotypes among P. falciparum clin
ical isolates, a neighbour-joining tree was constructed from the 
concatenated sequences of drug resistance marker alleles in the 
five variable loci (i.e. pfcrt, pfmdr1, pfdhfr, pfdhps and pfkelch13). 
This revealed three distinct phylogenetic groups (Figure 3a), main
ly driven by pfdhfr and pfdhps haplotype clusters. The distribution 
of IC50 values for each group by drug did not reveal a clear pattern 
of susceptibility (Figure 3b–f). However, there was a wide range of 
responses to each drug within each phylogenetic group. A pairwise 
comparison of the median IC50 values between groups for each 
drug was generally not statistically significant after Bonferroni cor
rection, except for the artemisinin derivative artesunate (group 1 
versus group 2, P = 0.02 and group 2 versus group 3, P = 0.045).

Polymorphism in pfcrt and pfmdr1 and ex vivo drug 
response
We evaluated the prevalence of polymorphisms in pfcrt and 
pfmdr1 and parasite drug responses. We analysed samples with 
above-median IC50 values (tolerant isolates) and below-median 
IC50 values (susceptible isolates). For pfcrt, only 3% of samples car
ried the pfcrt 76T mutation associated with chloroquine resistance. 
For pfmdr1, 62% of the samples had the pfmdr1 184F mutation 
and there was no mutation at the pfmdr1 86 codon (Table S1). 
There was no significant differences in the ex vivo responses 
(lumefantrine, amodiaquine and chloroquine) of clinical isolates 
carrying pfmdr1 Y184 WT or Y184F mutant alleles. However, the 
majority of the clinical isolates with very high IC50 values (outliers) 
for all drugs tested carried the pfmdr1 Y184F mutant allele 
(Figure S4 and Table S2). Except for chloroquine, the pfmdr1 
Y184F mutant was more prevalent in isolates with IC50 values 
greater than the median for each drug tested (Table 2).

Discussion
Antimalarial drug resistance is a major roadblock to global malaria 
elimination and eradication.1,25 Following reports of emergence of 
artemisinin resistance in Cambodia in 2007–08, and its subsequent 
local spread and/or multiple independent emergence in countries 
within the Greater Mekong region, significant efforts were made 
to contain artemisinin-resistant alleles from spreading from SEA 
to Africa.3,5,26 However, between 2016 and 2020, validated 

Table 1. Ex vivo responses of freshly isolated P. falciparum

Drug compound DHA (nM) AS (nM) LUM (nM) AQ (nM) CQ (nM)

n (assay success, %) 36 (55) 41 (62) 41 (62) 35 (53) 42 (64)
Median 4.17 3.90 40.56 21.71 31.55
IQR 4.01 2.64 54.70 18.27 15.00
Range (min–max) 0.58–12.73 0.76–12.39 2.38–312.40 1.83–93.14 2.11–85.45
Geometric mean 

(95% CI)
4.30 

(3.37–5.48)
4.01 

(3.38–4.78)
34.19 

(24.51–47.68)
16.56 

(12.26–22.37)
24.52 

(19.59–30.68)
3D7 control IC50 (nM) 1.65 3.86 54.41 24.11 42.02
Resistance threshold 12 20 150 60 100

DHA, dihydroartemisinin; AS, artesunate; LUM, lumefantrine; AQ, amodiaquine; CQ, chloroquine.
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Figure 2. Temporal trends in ex vivo responses of P. falciparum clinical 
isolates from 2007, 2013 and 2023.23,24 There was a minimal increase 
in the geometric mean IC50 values for dihydroartemisinin and artesunate 
from 2013 to 2023, and 2007 to 2023, respectively (blue and green lines). 
There was an increase in the geometric mean IC50 value for lumefantrine 
and amodiaquine from 2013 to 2023, and 2007 to 2023, respectively 
(purple and orange lines). There was a decrease in the geometric mean 
IC50 value for chloroquine from 2007 to 2023 (black line). Artesunate 
amodiaquine was the only ACT evaluated in the 2007 study, thus no 
data were present for dihydroartemisinin and lumefantrine.
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pfkelch13 artemisinin-resistant mutations have independently 
emerged in the Horn of Africa (in Eritrea and Ethiopia), Uganda, 
Rwanda and, more recently, Tanzania in 2022.7–10,27,28 Therefore, 
the threat of artemisinin resistance in sSA remains high, and con
tinual surveillance is imperative. This study investigated ex vivo 

responses of P. falciparum clinical isolates to frontline antimalarial 
drugs in Ghana and the contribution of validated drug resistance 
markers.

Artemisinins remain the most effective antimalarial drugs 
against P. falciparum clinical isolates in the study population. 

Figure 3. Phylogenetic relationship between the phenotyped P. falciparum clinical isolates and distribution of IC50 values of phylogenetic groups. 
Phylogenetic analysis of the clinical isolates revealed three distinct phylogenetic groups (a). A comparison of IC50s of the three phylogenetic groups 
revealed no statistically significant difference among the groups for (b) dihydroartemisinin (DHA), (d) lumefantrine (LUM), (e) amodiaquine (AQ) and (f) 
chloroquine (CQ). There was a statistically significant difference among the phylogenetic groups for (c) artesunate (AS) (group 1 versus group 2, and 
group 2 versus group 3).

P. falciparum ex vivo drug response                                                                                                                 
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These findings are reassuring as partial artemisinin resist
ance is yet to be established in Ghana and most of West 
Africa. On the contrary, lumefantrine and amodiaquine had 
relatively higher geometric mean IC50 values, suggesting 
that P. falciparum clinical isolates may be gaining some level 
of tolerance to these commonly used partner drugs in 
Ghana. Indeed, recent studies in Burkina Faso and Uganda 
found decreased susceptibility to lumefantrine.29,30 There 
are also anecdotal reports from The Gambia.11,12 Responses to 
partner drugs had the highest IC50 ranges, with substantial vari
ability suggesting incipient adaptation of P. falciparum clinical iso
lates to partner drug pressure ahead of the artemisinin 

derivatives. Interestingly, in neighbouring Burkina Faso, clinical 
trials involving artemether/lumefantrine and artesunate/amodia
quine found positive selection of pfcrt-K76 and pfmdr1-N86 al
leles after treatment with artemether/lumefantrine and, 
conversely, selection of pfcrt-76T and pfmdr1-86Y alleles after 
treatment with artesunate/amodiaquine, prompting the sugges
tion that artemether/lumefantrine and artesunate/amodiaquine 
impose opposite trends in selecting pfcrt-K76T and 
pfmdr1-N86Y alleles.31,32 This pattern of selection was not ob
served in the current study, and we believe the use of multiple 
ACT first-line treatment options in Ghana did not allow the inde
pendent selection effects exerted by artemether/lumefantrine 

Figure 3. Continued
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and artesunate/amodiaquine to manifest, as observed elsewhere 
in the subregion and Africa as a whole.

Chloroquine, which has been withdrawn for close to two dec
ades in Ghana following widespread resistance, showed a lower 
geometric mean IC50 value against the clinical isolates compared 
with the ACT partner drug lumefantrine, which is highly pre
scribed in the study population.15,33 Indeed, the IC50 values for 
P. falciparum clinical isolates to chloroquine were all within the 
susceptible range and had the lowest variability compared with 
other drugs. This reflects a more uniform reversion to chloroquine 
susceptibility in the Ghanaian P. falciparum clinical isolates, pos
sibly driven by the absence of substantial drug selection pressure.

Integration of data from the current study with data from pre
vious similar studies revealed striking temporal trends in parasite 
response to artemisinin derivatives and the partner drugs lume
fantrine and amodiaquine.23,24 There was marginal increase in 
the geometric mean IC50 value for dihydroartemisinin and arte
sunate over the three timepoints spanning over 15 years, which 
shows the continual efficacy of these drugs in Ghana. On the 
contrary, the temporal data shows high to moderate increases 
in the geometric mean IC50 values for lumefantrine and amodia
quine, respectively, further corroborating possible parasite adap
tation to these partner drugs over time. These findings are 
consistent with another report that showed reduced cure rates 
for artemether/lumefantrine and artesunate/amodiaquine in 
Ghana.34 Taken together, the evidence suggests that ACT partner 

drug tolerance may be emerging in Ghana, making continuous 
molecular surveillance of these drugs imperative. The geometric 
mean IC50 value for chloroquine rapidly decreased over the three 
timepoints, suggesting gains in chloroquine efficacy, as observed 
across other malaria-endemic areas where chloroquine has been 
replaced with ACTs.35–37

Targeted amplicon sequencing did not reveal validated 
pfkelch13 mutations that are known to confer partial artemisinin 
resistance, as previously observed in other studies.38,39 These re
sults are consistent with the ex vivo drug response data, where 
low IC50 values were observed for dihydroartemisinin and artesu
nate. Almost all the clinical isolates tested carried the pfcrt K76 
WT allele, which strongly supports the expansion of chloroquine- 
susceptible parasites.35–37 The three phylogenetic groups obtained 
did not have any clear pattern of dihydroartemisinin, artesunate, 
lumefantrine, amodiaquine and chloroquine susceptibility. This 
suggests that the known drug resistance markers do not form 
haplotype clusters that correlate with phenotypic resistance in 
the P. falciparum clinical isolates. There are no known validated 
parasite polymorphisms that have been well characterized to con
fer tolerance (or resistance) to artemether/lumefantrine and amo
diaquine. However, we looked for prevalence of polymorphisms in 
two key parasite transporter genes, pfcrt and pfmdr1, and parasites 
in the tails of IC50 distribution (>median versus <median IC50) of 
drug susceptibility. Evaluations of pfcrt were not informative as 
the pfcrt K76 WT allele was nearly fixed in the samples tested.

Table 2. Prevalence polymorphisms in pfcrt and pfmdr1, and ex vivo responsesa

Drug Comparison (IC50 nM) n
K76T 
n (%)

Y184F 
n (%)

K76T/Y184F 
n (%)

WT M WT M WT/WT WT/M M/M
DHA >median 17 16 

(94.1)
1 

(5.9)
2 

(11.8)
15 

(88.2)
2 

(11.7)
14 

(82.4)
1 

(5.9)
<median 19 18 

(94.7)
1 

(5.3)
13 

(68.4)
6 

(31.6)
13 

(68.4)
5 

(26.3)
1 

(5.3)
AS >median 20 20 

(100)
0 

(0.0)
7 

(35.0)
13 

(65.0)
7 

(35.0)
13 

(65.0)
0 

(0.0)
<median 21 19 

(90.5)
2 

(9.5)
8 

(38.1)
13 

(61.9)
8 

(38.1)
11 

(52.4)
2 

(9.5)
LUM >median 20 19 

(95.0)
1 

(5.0)
4 

(20)
16 

(80.0)
4 

(20)
15 

(75.0)
1 

(5.0)
<median 21 20 

(95.2)
1 

(4.8)
9 

(42.9)
12 

(57.1)
8 

(38.1)
12 

(57.1)
1 

(4.8)
AQ >median 17 16 

(94.1)
1 

(5.9)
4 

(23.5)
13 

(76.5)
4 

(23.5)
12 

(70.6)
1 

(5.9)
<median 18 17 

(94.4)
1 

(5.6)
8 

(44.5)
10 

(55.5)
8 

(41.5)
9 

(52.9)
1 

(5.6)
CQ >median 21 20 

(95.2)
1 

(4.8)
8 

(38.1)
13 

(61.9)
8 

(38.1)
12 

(57.1)
1 

(4.8)
<median 21 21 

(100)
0 

(0.0)
7 

(33.3)
14 

(66.7)
7 

(33.3)
14 

(66.7)
0 

(0.0)

DHA, dihydroartemisinin; AS, artesunate; LUM, lumefantrine; AQ, amodiaquine; CQ, chloroquine.
aFor each drug, number of clinical isolates (n) with greater than median (>) and below median IC50s (<) was analysed for polymorphisms in pfcrt, 
pfmdr1 and both. For polymorphisms, the number of isolates with the WT and mutant (M) genotype is shown. Prevalence, in percentage of mutant 
alleles or haplotypes, is indicated.
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Interestingly, outlier parasites with high IC50 values had a great
er prevalence of mutant allele at the pfmdr1 position Y184F than 
the isolates with high susceptibility. This, together with the fact 
that, overall, 62.1% isolates carried the mutant pfmdr1 Y184F al
lele, suggests that the PfMDR1-N86-184F haplotype, which 
was significantly over-represented in isolates with high IC50 values, 
may be under selection, in line with reports from other 
malaria-endemic settings where artemether/lumefantrine is the 
common first-line treatment for uncomplicated malaria.40,41 A 
study in Senegal, where artemether/lumefantrine is largely used, 
also observed decreased susceptibility to lumefantrine in parasites 
that carried the N86-Y184F haplotype.42 Parasites that carried 
pfmdr1 N86 WT alleles were associated with an approximately 
4.7-fold increase in the odds of artemether/lumefantrine treat
ment failure.43 These findings further support accumulating evi
dence that decreased lumefantrine susceptibility in African 
P. falciparum isolates may be driven by the pfmdr1 N86 allele alone, 
or together with other pfmdr1 alleles and pfcrt K76.41,44,45 Overall, 
both our ex vivo and targeted sequence data reveal patterns of ar
temisinin and ACT partner drug tolerance, which highlight the need 
for surveillance of known antimalarial drug resistance markers and 
for rapid elucidation of mechanisms underlying partner drug resist
ance to pave the way for molecular marker discovery to support 
global monitoring of ACTs.

The ring-stage survival assay (RSA), which is recommended for 
phenotyping artemisinin resistance, was not carried out, thus we 
recognize the limitation of the growth inhibition assay (IC50 values) 
for determining partial artemisinin resistance.46,47 Thus, caution 
needs to be exercised in interpreting dihydroartemisinin and arte
sunate IC50 values. Copy number amplification of pfmdr1, which 
is associated with susceptibility to lumefantrine, also was not de
termined in the current study but could confound the interpret
ation of the genotypes at this locus.48,49

Conclusions
We have demonstrated sustained susceptibility of clinical isolates 
in Ghana against artemisinin derivatives (dihydroartemisinin and 
artesunate), confirmed by the absence of any validated pfkelch13 
mutations. However, the wide distribution of susceptibility to lu
mefantrine and amodiaquine suggests the possible emergence 
of ACT partner drug tolerance. The PfMDR1 N86-184F haplotype 
in combination with PfCRT K76 may be driving this lumefantrine 
and/or amodiaquine tolerance in this population.
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