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Abstract 

An estimated quarter of the global population has been infected with Mycobacterium 

tuberculosis (Mtb), the causative agent of tuberculosis (TB). Despite ongoing eJorts, TB 

reduction trends are only slightly declining. Mathematical modelling that recognises the 

spectrum of TB disease provides valuable insights into its policy implications. This thesis aims 

to generate accurate estimates of the burden of viable Mtb infection and evaluate the impact of 

population-wide screening interventions. 

  

Firstly, I assessed the impact of immunoreactivity test reversion on the estimated annual risk of 

infection (ARI), a key metric in TB epidemiology that measures Mtb transmission risk. When 

accounting for reversion, the true ARI was determined to be 2–5 times higher than previously 

estimated. Secondly, I refined previous Mtb infection estimates using a mathematical model 

that incorporated reversion-adjusted ARI trends, age-specific mixing, and self-clearance of 

infection. This analysis estimated that 2%—equating to 156 million people—are recently 

infected with viable Mtb and at high risk of disease progression. Thirdly, I re-evaluated the 

eJectiveness of mass screening interventions using chest radiography (CXR) as a strategy to 

significantly reduce TB prevalence. Finally, I calibrated a model to TB epidemiology in Vietnam 

and designed various population-wide screening algorithms to evaluate their impacts and 

costs. While a CXR-only algorithm rapidly reduced TB prevalence, they incurred high costs due 

to overtreatment. A combined approach of CXR followed by confirmatory bacteriological testing 

proved cost-eJective and became cost-saving compared to a business-as-usual counterfactual 

after the intervention ended. 

 

Overall, the findings of this thesis quantify the population eligible for TB preventive therapy and 

oJer insights into cost-eJective strategies for significantly reducing TB prevalence through 

population-wide screening in high-burden countries.  
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Chapter 1: Introduction 

In this chapter, the rationale for the thesis is presented, highlighting the research gaps that 

shaped its aims and objectives. The structure of the thesis is then outlined, along with an 

acknowledgment of the ethical considerations and funding sources that supported this 

research. 

 

1.1 Rationale 

This research focuses on refining tuberculosis (TB) disease modelling and public health 

interventions to better represent the complex natural history of TB along the disease spectrum. 

It re-evaluates assumptions about immunoreactivity and mycobacteria viability while exploring 

the impact of mass screening approaches. The thesis aims to enhance the precision of 

Mycobacterium tuberculosis (Mtb) infection burden estimates and identify cost-eCective 

population-wide screening algorithms to reduce TB prevalence in high-burden countries. 

Ultimately, this work seeks to inform targeted, cost-eCective interventions to accelerate 

progress towards TB elimination. 

 

1.2 Thesis aims 

The thesis has two main aims: 

1. Estimate the global burden of viable Mycobacterium tuberculosis infection, and 

2. Evaluate the potential impact, cost, and benefits of population-wide screening 

interventions for tuberculosis in a high-burden setting 

 

1.3 Thesis objectives 

To address Aim #1, there are two objectives: 

1. Quantify the impact of immunoreactivity test reversion upon the estimated annual risk 

of infection (ARI). 

2. Estimate the global burden of viable Mtb infection, accounting for reversion-adjusted 

and age-specific ARI trends in addition to self-clearance of infection.  

 

To address Aim #2, there are two objectives: 

3. Re-evaluate the impact of a historical mass chest radiography (CXR) screening 

intervention on the reduction of TB prevalence. 

4. Assess the cost-eCectiveness of various population-wide screening algorithms and 

durations using a natural history model of the spectrum of TB disease. 
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1.4 Thesis structure 

This thesis is structured in a ‘research paper style’ format, as per the guidelines for doctoral 

students at the London School of Hygiene and Tropical Medicine. The seven chapters of this 

thesis are organised as follows: 

§ Chapter 1: The introductory chapter provides an overview of the thesis, presenting a 

concise rationale for the work. It outlines the aims, objectives, and structure of the 

thesis, as well as details on ethical considerations and funding. 

§ Chapter 2: This chapter presents a comprehensive literature review oCering the 

necessary background knowledge for the research projects described in the subsequent 

chapters. It focuses on identifying the research gaps, as highlighted in Section 1.1. 

§ Chapter 3: Centred around the first research paper of the thesis, published in the 

American Journal of Epidemiology, this chapter quantifies the impact of 

immunoreactivity test reversion upon the estimated ARI [1]. It compares naïve ARI 

estimates (which do not account for reversion) against true ARI estimates derived from 

various reversion probabilities, up to 50%. This chapter addresses thesis Objective #1.   

§ Chapter 4: The second research paper, currently available as a preprint on SSRN 

pending peer review, is discussed in this chapter [2]. This study estimated the global 

burden of viable Mtb infection under diCerent assumptions of long-term self-clearance 

rates by constructing country-specific ARI trends. These trends incorporated estimates 

of TB burden, age-specific contact mixing, and immunoreactivity reversion into a 

deterministic model tracking Mtb infection and self-clearance. This chapter addresses 

thesis Objective #2. 

§ Chapter 5: The third research paper, published in the International Journal of 

Tuberculosis and Lung Disease, re-evaluates the impact of a historical mass CXR 

screening programme [3]. The study examines whether there was a decline in TB 

incidence and to what extent was this due to the intervention. This chapter addresses 

thesis Objective #3. 

§ Chapter 6: The fourth and final research paper, also available as a preprint on medRxiv, 

is the focus of this chapter [4]. In this paper, an expanded a TB natural history model was 

calibrated to TB epidemiology in Viet Nam to simulate the impact of various population-

wide screening strategies introduced in 2025. The study compares the incident TB and 

deaths averted under each intervention compared to the business-as-usual 

counterfactual. Additionally, the cost-eCectiveness of each intervention is evaluated by 
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calculating the incremental cost-eCectiveness ratio per disability-adjusted life years 

averted up to 2050. This chapter addresses thesis Objective #4. 

§ Chapter 7: The final chapter synthesises the findings from each of the research papers 

presented throughout the thesis, discussing their implications for TB prevention and 

care, as well as their limitations. It also outlines potential directions for future research 

to build upon this work. 

 

1.5 Contributions of the author 

For the research projects presented in this thesis (Chapters 3–6), I served as the lead author, 

taking primary responsibility for conceptualising the studies, conducting analyses, and drafting 

the manuscripts. I developed and calibrated mathematical models and designed screening 

algorithms in collaboration with co-authors. I performed data analysis, interpreted the results, 

and conducted sensitivity analyses to ensure robustness. Additionally, I drafted all 

manuscripts, incorporated feedback from co-authors, and prepared submissions to journals 

and preprint servers. Specific details of my contributions, as well as those of my co-authors, are 

detailed in Section D of the Research Paper Cover Sheet for each chapter. Although the use of 

first-person singular ('I' and 'my') throughout this thesis highlights my primary role, I wish to 

acknowledge that the successful completion of these research projects was the result of a 

collaborative eCort. 

 

1.6 Ethical considerations 

In the discussion section of Chapter 3, an additional analysis is described that used participant 

data obtained from studies that had secured appropriate ethical approvals, including those 

from the Health Sciences Research Committee of the Malawi Ministry of Health, the Ethics 

Committee of the London School of Hygiene and Tropical Medicine, and the Standing 

Committee on Research in Human Subjects of the World Health Organization. For the 

remaining projects, all data were sourced from publicly available resources, such as peer-

reviewed journals, books, and institutional reports. 

 

1.7 Funding 

No specific funding was received for the PhD. However, the research projects described in this 

thesis were partially supported by the European Research Council under the Horizon 2020 

research and innovation program [grant number 757699] and the United States National 

Institutes of Health [grant number R-202309-71190]. 
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Chapter 2: Background 

In this chapter, a comprehensive literature review is presented, o5ering the necessary 

background knowledge for the thesis. Furthermore, it identifies the research gaps that the 

subsequent chapters aim to address. 

 

2.1 Tuberculosis 

Tuberculosis (TB) is an airborne infectious disease and a leading cause of morbidity and 

mortality worldwide [1,2]. The World Health Organization (WHO) estimates that 10.8 million 

people fell ill and 1.3 million people died from TB in 2023, making it the deadliest infectious 

disease [2]. TB predominantly a5ects adults (aged 15 years and older), accounting for 88% of 

the global TB incidence, with men having a notably higher prevalence than women [2,3]. 

Moreover, while TB is present in all countries, its burden is disproportionally concentrated in 

low- and middle-income countries (LMICs) [2].  

 

It is estimated that approximately a quarter of the global population has been infected with 

Mycobacterium tuberculosis (Mtb), the causative agent of TB [4]. Mtb is an aerobic, slow-

replicating bacterium that, whilst primarily a pulmonary pathogen, can a5ect every organ in the 

body [5]. Exposure to Mtb occurs via the respiratory tract through inhalation and inoculation of 

the bacterium in the alveoli [5,6]. Then, a complex interplay between the innate and adaptive 

immune response of the host takes place, resulting in either the elimination of infection or the 

persistence of bacteria in the lung parenchyma [1,6]. Approximately 5-10% of individuals 

infected with Mtb will develop symptomatic TB disease during their lifetime, with a higher risk 

within the first two years after infection [7–10]. Thereafter, progression to disease without 

reinfection is relatively infrequent [9].  

 

Pulmonary TB is the primary manifestation of the disease, with only around 16% of incident TB 

episodes attributed to extra-pulmonary TB [2]. The classic clinical manifestations of individuals 

with pulmonary disease include persistent, productive cough which might worsen into 

haemoptysis; additionally, non-specific, constitutional symptoms such as fever, chills, weight 

loss, fatigue, anorexia, and night sweats are often present [1,5]. Nevertheless, several TB 

prevalence surveys have highlighted that pulmonary TB may be asymptomatic, with up to 80% 

of those diagnosed with TB not reporting any symptoms [11]. Fortunately, TB is a treatable and 

curable disease [2]. The current first-line treatment regimen for drug-susceptible pulmonary TB 

consists of four drugs administered over a six-month period, though shorter regimens with 
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di5erent drugs are now being introduced [1,12,13]. The standard regimen has a high success 

rate, with treatment failure generally linked to antibiotic resistance, toxicity and side e5ects, as 

well as challenges in maintaining therapy adherence stemming from health system issues, 

economic constraints, or personal circumstances [1,5]. In the case of drug resistance, 

treatment duration is extended and second or third-line agents are used, which tend to be more 

toxic, further compromising success rates [1,5]. 

 

Over 30 years ago, in 1993, the WHO declared TB a global public health emergency, aiming to 

drive momentum to reduce TB burden [14]. More recently, in 2014, ambitious targets were 

established in the End TB Strategy, which envisions a world free of TB deaths, disease, and 

su5ering by 2035 [15]. Unfortunately, with only a modest decline in TB incidence and mortality 

over the last decade, we are not on track to meet these milestones [2]. 

 

2.2 Natural history 

TB is a complex disease with an intricate natural history. Nonetheless, a binary approach has 

traditionally been applied to TB, divided by a single threshold: latent TB infection (LTBI) and 

symptomatic TB disease (commonly referred to as clinical or active TB) [5,16]. The former is 

defined as having a positive immunoreactive test for Mtb, no symptoms, and no microbiologic 

or pathologic findings of symptomatic disease [17]. In this state, bacteria are assumed to 

persist dormant in a non-infectious state, with a lifelong risk of progression to disease [6,18,19]. 

On the other hand, as the name suggests, symptomatic TB disease is characterised by the 

presence of symptoms, along with microbiologic and/or pathologic findings; importantly, Mtb 

transmission also occurs in this state [1,18]. Although not always clear-cut in clinical settings, 

this classical paradigm has been widely adopted in public health settings due to its simplicity, 

forming the basis for numerous interventions and mathematical model structures [1]. 

 

Recent research increasingly recognises that TB is better understood as a spectrum rather than 

being confined to two distinct states [1,18,20–24].  This perspective is not entirely new; 

attempts to conceptualise and define TB states date back to observations made during the pre-

chemotherapy era [25]. More recent e5orts to unravel TB’s complexity have led to the 

development of various conceptual frameworks, each with distinct terminology dependent on 

their focus (e.g., TB pathogenesis, immunology, clinical relevance, or epidemiology) [26]. Figure 

2.1 presents a proposed conceptual framework illustrating the spectrum of TB and the defining 

characteristics of each state [1]. A shared feature of these frameworks is the recognition that TB 
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exists along a dynamic continuum of infection and disease, with progression that is not strictly 

unidirectional and may instead follow undulating trajectories [1,18,20–24]. This stands in 

contrast to the classical binary approach, which acknowledges only the extremes of the 

spectrum [27]. Consequently, these frameworks highlight how the binary approach could hinder 

e5orts towards achieving the End TB Strategy goals [15], as clinical management and research 

remains largely based on a binary understanding of the disease [23,24]. 

 

 
Figure 2.1 The spectrum of TB from Mtb infection to active TB disease. The spectrum of TB comprises 

of several states, from initial Mtb infection to active TB disease. Exposure to Mtb can lead to pathogen 

elimination, which may or may not leave immunological evidence of exposure. Individuals then harbour 

viable mycobacteria in a state where preventive therapy is recommended. Subclinical and active TB 

disease are infectious disease states, primarily distinguished by the presence and severity of symptoms. 

IGRA: Interferon-gamma release assay; Mtb: Mycobacterium tuberculosis; TB: Tuberculosis; TST: 

Tuberculin skin test. From Pai et al. Nat Rev Dis Primers 2016 [1]. 

 

Recognising the need for an updated and standardised classification of TB that accommodates 

key disease states, the International Consensus for Early TB (ICE-TB) group developed a 

framework outlining four conceptual states of TB disease (Figure 2.2) [23]. These states were 

defined based on three dimensions: macroscopic pathology, infectiousness, and symptoms 

and signs, all under the assumption of the presence of a viable Mtb infection [23]. This 

framework is intended to provide clarity and consistency in the terminology used for states 

across the spectrum of disease to enable progress in research [23].  
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Figure 2.2 Conceptual states of Mtb infection and TB disease. Conceptual states of across the 

spectrum of Mtb infection and TB disease identified with consideration of potential benefits of diagnosis 

and treatment (A) and pathways across states (B). The four conceptual states are defined based on three 

dimensions: macroscopic pathology, infectiousness, and symptoms and signs. From Coussens et al. 

Lancet Respir Med 2024 [23]. 

 

Recently, the WHO convened experts to define subdivisions of early TB, with a particular focus 

on asymptomatic TB (widely known as subclinical TB) [28]. These discussions were guided by 

the proposed framework developed by the ICE-TB group but introduced a di5erent naming 

convention [23,28]. The proposed conceptual states are as follows: bacteriologically confirmed 

symptomatic TB; bacteriologically confirmed asymptomatic TB; bacteriologically unconfirmed 

symptomatic TB; and bacteriologically unconfirmed asymptomatic TB [28]. It is expected that 

future editions of WHO guidelines, operational handbooks, reports, and other publications will 

use these definitions, facilitating further approaches to be made for early detection and 

treatment of early TB states [28].  
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Significant advancements in understanding the spectrum of TB disease have emerged in recent 

years. This thesis draws on key publications to inform the parameters and reporting relevant to 

the spectrum of TB disease. The overall model structure, as well as progression and regression 

rates across the spectrum, will primarily be based on the work of Horton et al. [22]. While 

definitions are closely aligned with the ICE-TB framework [23], naming conventions will adhere 

to the recent WHO terminology [28]. The following subsections will provide a detailed 

discussion of each relevant conceptual state. 

 

2.2.1 Mycobacterium tuberculosis infection 

Following exposure to Mtb, an individual’s immune response can promptly eliminate the 

bacteria [1,6]. However, the pathway—whether through innate or acquired immunity—may 

or may not leave immunological evidence of exposure, despite achieving the same outcome 

[6]. Through innate immunity, bacteria are eliminated without the development of a specific 

immune response and thus markers of infection remain negative; whilst, with the acquired 

immune response, antigen-specific e5ector memory persists [6]. In established Mtb 

infection, immunoreactivity is often present without signs and symptoms of TB disease. 

Traditionally, it is assumed that Mtb infection carries a lifelong risk of reactivation, usually 

dependent on comorbidities or acquired immunosuppression [5]. Moreover, individuals with 

Mtb infection would stand to benefit from TB preventive therapy (TPT), commonly in the form 

of mono-drug regimens using first-line anti-TB drugs [1,5,27,29].  

 

The assumption that Mtb infection is lifelong has been grounded by equating 

immunoreactivity to current infection; however, immunoreactivity is not a reliable proxy for 

infection but rather reflects immunological memory of exposure to Mtb [30]. Firstly, 

immunoreactivity is not stable and is dependent upon established thresholds to determine 

whether an individual is su5iciently immunoreactive (suggestive of Mtb infection) or not [17]. 

Secondly, several studies have shown that immunoreactivity is maintained for many years 

despite the provision of TPT and the observed benefit of lowered TB incidence [31–33]. 

Cohort studies following immunoreactive individuals who later acquired 

immunosuppression (through organ transplantation, immunosuppressive drugs, or human 

immunodeficiency virus (HIV) infection) revealed a much lower-than-expected rate of 

disease progression, suggesting that immunoreactivity does not indicate viable infection 

[30]. Analysis from these cohorts estimates that only 1% to 11% of immunoreactive 

individuals have viable Mtb infection, indicating that the proportion at risk of progressing to 
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disease is much lower than previously thought [30]. This underscores the importance of 

understanding self-clearance rates, which recent modelling e5orts have sought to estimate 

for incorporation into TB transmission models [22,34]. If Mtb infection is not cleared, 

progression along the spectrum of disease may occur, albeit at variable speeds [18,22,35].  

 

2.2.2 Bacteriologically unconfirmed tuberculosis 

After Mtb infection, individuals may progress to a state of TB disease characterised by 

pathological changes detectable through imaging techniques, while remaining non-

infectious and often asymptomatic [21,36,37]. This state, referred to as minimal TB in recent 

literature [21,22], represents the earliest state in the spectrum following progression from 

viable infection [21]. As previously mentioned, the disease trajectory is variable, with some 

individuals experiencing accelerated progression, others following an undulating course, and 

some even regressing and naturally recovering from the disease [27]. Symptoms are often 

absent but may also be present, as symptom thresholds can vary widely at the individual 

level due to di5erences in pathology [27]. Most extrapulmonary TB in adults (particularly 

symptomatic) and the majority of TB in children fall within this disease category [23]. Under 

the ICE-TB framework, two states are characterised by the presence of macroscopic 

pathology and non-infectiousness [23]. However, as previous studies on progression and 

regression rates across the spectrum were conducted using a natural history model that 

grouped these states into a single non-infectious category [21,22], this thesis will adopt this 

umbrella state for non-infectious TB, following the WHO naming convention [28]. 

 

2.2.3 Bacteriologically confirmed, asymptomatic tuberculosis 

One widely recognised intermediate state between Mtb infection and classical symptomatic 

disease is asymptomatic TB—referred to as subclinical TB in recent literature— where 

individuals do not exhibit symptoms, are not aware of them, or do not report them [11,23]. A 

review of TB prevalence surveys has found that approximately half of prevalent 

bacteriologically confirmed TB was asymptomatic [11]. Furthermore, an individual 

participant meta-analysis of TB prevalence surveys, showed varying proportions according 

to the chosen definition of the phenotype, as no persistent (less than 2 weeks), no cough, 

and no TB symptoms [38]. Regardless of the definition, the proportion asymptomatic was 

substantial [38], highlighting how thinking of TB as binary states would lead to a 

underrepresentation of a sizeable population with TB who are also contributing to 

transmission [39–41]. Under this state, individuals are capable of transmitting Mtb, although 
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intensity may vary relative to overt symptomatic disease [41,42]. Modelling estimates also 

suggest that half of all transmission is attributable to individuals with asymptomatic TB, even 

when assuming a lower relative infectiousness compared to symptomatic TB [43]. 

 

2.2.4 Bacteriologically confirmed, symptomatic tuberculosis 

The most advanced and widely recognised state of the spectrum is symptomatic TB, with its 

key characteristics outlined in Section 2.1. Symptoms are overtly evident and individuals are 

generally more infectious than earlier TB states [1,41]. This is the target state of national TB 

programmes to diagnose and treat individuals as most individuals would seek care [1]. 

Symptomatic disease is associated with a long duration of infectiousness, which can last 

over a year in some cases [1]. If untreated, the mortality rate from symptomatic TB is high, 

approximately 70% [44]. 

 

2.3 Diagnosis of Mycobacterium tuberculosis infection 

In the absence of TB disease, no test can directly detect the presence of Mtb in an individual; 

however, Mtb exposure or infection has traditionally been inferred through assessments of 

immune response to Mtb-related antigens [17,29]. Currently, the two primary immunoreactivity 

tests used are the tuberculin skin test (TST) and interferon-gamma release assay (IGRA) [5,17]. 

These tests are primarily intended to identify individuals with Mtb infection who may benefit 

from e5ective prophylactic treatment to prevent progression to active disease [17,45]. However, 

both tests have limitations: a positive result cannot distinguish between present or past 

infection and, although some high IGRA values or larger TST indurations are associated with a 

greater disease risk, they have low accuracy in predicting progression [17,46,47]. 

 

The TST is a low-cost, in vivo test in which antigenic purified protein derivative of Mtb is injected 

intradermally on the forearm to elicit a delayed hypersensitivity reaction, typically occurring 2 to 

12 weeks after infection [5,17,48]. The injection site is examined 48 hours after inoculation, and 

the reaction is measured by the skin induration diameter in millimetres [17,49]. A reaction is 

considered positive if the induration diameter meets specific cut-o5 values, which vary based 

on factors such as exposure risk, setting, and comorbidities [17,49]. Generally, an induration of 

≥10mm or an increase of ≥6mm is considered TST-positive; nevertheless, false-positive results 

can occur due to exposure to environmental non-tuberculous mycobacteria (NTM) or prior 

Bacillus Calmette-Guérin (BCG) vaccination [5,17,50]. False-negative results may arise in 

immunocompromised individuals with a weakened adaptive immune response, such as those 
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infected with HIV or organ transplant recipients [5]. Additionally, TST is prone to inter and intra-

reader variability and digit bias [17,51]. Despite its limitations, TSTs have been widely used since 

their introduction in the late 1800s, mainly for universal screening of the general population or 

targeted screening of at-risk populations, and to derive Mtb transmission risk trends in the 

community [48,52,53]. 

 

A century later, IGRAs were introduced to address some limitations of TSTs [54]. This in vitro 

assay is based on the principle that T-cells of individuals infected with Mtb release interferon-

gamma when exposed to mycobacterial antigens [54,55]. IGRAs o5er several advantages over 

TST: they require only one visit and, unlike induration measurements, the results are less 

subjective [54]. Additionally, the antigens used in IGRAs are specific to Mtb, so the test does not 

produce positive results in individuals exposed to most NTM or with prior BCG vaccination 

[54,55]. However, higher materials costs and the need for laboratory capabilities limit their 

widespread use, particularly in LMICs [17]. Similar to TSTs, IGRAs are less accurate in 

individuals with compromised immune systems [1,17].  

 

Recently, newer diagnostic methods have been developed [56]. Novel skin tests now elicit a 

more specific immune response to Mtb than conventional TSTs by using the Mtb-specific 

antigens ESAT6 and CFP10, similar to those in IGRAs, while retaining the simplicity of traditional 

skin tests [57]. Additionally, new semi-automated lateral flow IGRAs require less blood and 

laboratory infrastructure, reducing financial and logistical barriers compared to its older 

counterparts [58]. The WHO has noted that these novel skin tests are cost-e5ective, 

acceptable, and feasible for diagnosing Mtb infection, and has recommended their use [59]. 

 

While immunoreactivity tests have limitations at the individual level, they can provide valuable 

insights into Mtb exposure at the population level [60,61]. Historically, cross-sectional surveys 

measuring TST positivity, primarily in children, have been used to estimate the risk of Mtb 

infection and track transmission trends [52,62]. One advantage of monitoring immunoreactivity 

is that ongoing recent transmission accounts for most incident TB episodes, making it useful for 

tracking trends over time [63,64]. Additionally, these surveys are generally less costly than TB 

disease prevalence surveys, as they require a significantly smaller sample size—only 3 to 20% 

of that needed for prevalence studies [61]. Immunoreactivity surveys are currently 

recommended in high-burden settings or among individuals at high risk of developing TB who 

may benefit from preventive measures [61,65]. As such, quantifying transmission through 
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infection surveillance o5ers a practical and cost-e5ective way to estimate Mtb infection and 

draw inferences on the TB disease burden, particularly in resource-limited settings with high TB 

prevalence. 

 

Immunoreactivity prevalence is commonly used to derive the annual risk of infection (ARI), a 

critical metric quantifying the current magnitude of the Mtb transmission burden [53]. Changes 

in ARI serve as early indicators of trends in Mtb transmission: a decline suggests improvements 

in TB prevention and care, whereas an increase signals that interventions may be inadequate 

[53]. The ARI is typically calculated using tuberculous immunoreactivity test prevalence and the 

mean age of surveyed individuals [53]. However, its calculation relies on two key assumptions: 

first, that tuberculous immunoreactivity persists throughout an individual's lifetime, meaning a 

positive test result remains positive indefinitely [30]; and second, that immunoreactivity 

conveys a continuous risk of TB disease progression [66]. Emerging evidence challenges these 

assumptions. Immunoreactivity can wane over time, and positive TST/IGRA results may revert to 

negative [67]. Studies have even observed distinct, age-specific reversion probabilities in 

population-based surveys [66,68,69]. Given the ARI's importance in policy and TB models, its 

precision is crucial. Yet, without considering immunoreactivity test reversion, current estimates 

risk being unreliable, limiting their impact on interventions. 

 

Research gap: The impact of Mtb immunoreactivity test reversion on the estimated 

ARI and its interpretation has not been thoroughly explored. 

 

2.4 Diagnosis of tuberculosis 

There are several tools used to diagnose TB disease, which may present from asymptomatic, 

tuberculous pathology found incidentally in imaging, to overtly symptomatic disease with Mtb 

transmission (Figure 2.3) [1,70,71]. A timely and e5ective diagnosis is a key component of TB 

elimination ensuring integrated, patient-centred care and prevention [15,72]. However, it is 

known that millions that fall ill with TB are lost in the care cascade, in which diagnosis plays a 

pivotal role [73,74]. Additionally, some of these tools are often used for screening TB disease 

where, unlike diagnosis, there is no focus on the clinical characteristics of an individual seeking 

healthcare but it is rather initiated by a provider and targets apparently healthy individuals with 

or without risk factors [75]. While screening and diagnosis are part of the same cascade for 

some individuals, the key distinction lies in the focus: screening prioritises methods with high 

sensitivity to identify potential cases, whereas diagnosis requires high specificity for 
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confirmatory testing  [71,75]. Four main techniques are used for the diagnosis (and sometimes 

screening) of TB disease: microscopy, culture-based methods, molecular tests, and imaging 

techniques; all often complemented by clinical appraisal [1].  

 

 
Figure 2.3 The iceberg of prevalent TB disease. The iceberg model illustrates the distinction between 

disease prevalence currently measured and all prevalence that is missed. Conceptual thresholds of TB 

disease are shown, with rough estimates representing individuals contributing to transmission or 

displaying TB pathology, though actual proportions vary by diagnostic methods and tools used. BAL: 

Bronchoalveolar lavage; CT: Computed tomography; CXR: Chest radiography; PET: Positron emission 

tomography; TB: Tuberculosis. From Houben et al. Lancet Respir Med 2022 [70]. 

 

2.4.1 Sputum smear microscopy 

The most widely used method to diagnose TB disease, particularly in LMICs, is sputum 

smear microscopy, a fast and inexpensive method to directly observe mycobacterial acid-

fast bacilli (AFB) [76]. By directly identifying bacilli, this method can diagnose individuals with 

infectious TB regardless of symptoms, although sputum yield is typically higher in individuals 

with symptoms [39]. Smear microscopy is a highly specific test but has low sensitivity which 

is slightly increased with at least two repeated samples [77]. The detection of AFB is used to 

classify sputum samples as smear-negative or positive, with the latter subclassified 

according to the number of bacilli per microscopy field [78]. Ziehl-Neelsen staining has been 

traditionally used in microscopy, although newer alternatives such as fluorescence 
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microscopy have greatly improved sensitivity [79]. Furthermore, its e5icacy is operator-

dependent, thus training is required for an adequate diagnostic yield [80].  

 

2.4.2 Culture 

Culture-based methods, in solid or liquid media, remain the gold standard diagnostic test for 

TB disease and are paramount for drug susceptibility testing (DST) [1]. Due to the slow 

turnaround of results (up to 8 weeks), it is often used in tandem with microscopy [72,76]. 

Additionally, the need for specialised infrastructure and highly-skilled laboratory technicians 

further limits its large-scale use [76]. Both microscopy and culture are often used in TB 

treatment monitoring, but cannot predict treatment failure or relapse [76,81]. As with 

sputum smear microscopy, these methods can be used to diagnose individuals with 

infectious TB. 

 

2.4.3 Molecular tests 

Currently, there is a shift toward the use of molecular methods, referred to as nucleic acid 

amplification tests (NAATs) [78]. These assays, often performed by real-time polymerase 

chain reaction amplification of an Mtb gene, can detect TB from usual samples and perform 

DST for the most important first-line and some second-line drugs, providing rapid results 

while being a good proxy for the detection of multidrug-resistant strains [76,82,83]. This 

leads to significant reductions in delays in TB diagnosis and treatment initiation [84,85]. One 

of the most widely known NAATs is Xpert MTB/RIF (Cepheid, USA), which was endorsed by 

the WHO in 2010 for the diagnosis of TB and resistance to rifampicin, a first-line drug [82,86]. 

A next generation NAAT, Xpert MTB/RIF Ultra (Cepheid, USA), included modifications that 

increased their sensitivity compared with the previous generation, albeit at a slightly worse 

specificity [82]. In 2017, Xpert MTB/RIF Ultra was also endorsed by the WHO as the initial TB 

diagnostic test for adults and children, regardless of HIV status, over smear microscopy and 

culture [87]. Regardless of their diagnostic accuracy, these tests have not been fully 

implemented in countries with the highest TB burdens [82]; however, some are cartridge-

based tests, facilitating their spread in resource-limited settings [78]. The advances in 

molecular testing show great promise for the future of TB diagnostics and screening. 

 

2.4.4 Imaging 

Imaging techniques have also improved and while the range of imaging modalities extends to 

positron emission tomography/computed tomography, conventional chest radiography (CXR) 
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remains the initial image-based screening tool for suspected pulmonary TB [88]. It is a 

valuable aid in diagnosis when pulmonary TB cannot be confirmed bacteriologically [89]. 

Computed tomography and magnetic resonance imaging have proven valuable in 

distinguishing TB lesions from cancerous lesions and in diagnosing lesions outside the lungs; 

they also identify non-infectious TB disease, i.e., small pulmonary lesions that are not 

actively transmitting Mtb bacilli [90]. While pulmonary TB may be diagnosed with CXR alone, 

tuberculous pulmonary lesions can easily mimic other conditions and vice versa, therefore, 

abnormal findings should be followed up with the other methods mentioned above [1,91]. 

Like microscopy, radiography is operator-dependent, limited by the reader's ability to detect 

abnormal opacities which has been shown to have notable inter/intra-observer variation 

[92]. To address these limitations, computer-aided diagnosis (CAD) has emerged as a 

prominent method [93]. Additionally, artificial intelligence is beginning to play a role in 

imaging diagnostics, with some studies suggesting high accuracy using this technology [94]. 

The main advantage of imaging techniques is that patients with non-infectious or 

extrapulmonary TB may be missed via the usual diagnostic algorithm using any of the 

bacteriological methods mentioned before [95].  

 

2.5 Burden of Mycobacterium tuberculosis infection 

Due to limitations in current tools and resource constraints for identifying Mtb infection, global 

prevalence estimates have relied heavily on mathematical modelling [4,96,97]. In 1997, an 

expert panel, chosen by the WHO, estimated that  32% (1.86 billion people) of the global 

population had LTBI [96]. This consensus was reached with the estimation of ARIs derived 

directly from TST-surveys or indirectly by using TB incidence rates as a proxy, the so-called 

Stýblo rule (smear-positive pulmonary TB incidence of 50 per 100,000 inhabitants equates to an 

ARI of 1%) [96,98]. The panel agreed that this was at best a plausible estimate, given the poor 

quality of the underlying data [96]. After two decades, a re-estimation was generated 

accounting for population growth and demographic shifts, availability of new surveys, and 

disassociation from reliance on the Stýblo rule [4]. The re-estimation placed the global burden 

of LTBI to be 23% (95%CI: 20.4-26.4%), amounting to 1.7 billion people in 2014 [4]. Additionally, 

it was estimated that 0.8% of the global population (55.5 million individuals) had recently 

(within two years) been infected with Mtb and were at a higher risk of developing TB disease [4]. 

Another re-estimation by the Global Burden of Disease study used similar data and methods to 

examine trends from 1990 to the present and also approximated the current burden of LTBI to 

be near one-quarter of the global population (23.5%; 95%CI: 21.4-25.8%) [97].  
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Both recent estimations agree that it is unlikely that we will reach the 2035 End TB Strategy goals 

since ongoing TB transmission will be greatly driven by the large reservoir of Mtb infections 

[4,97]. All these re-estimations linger on the assumption of permanent positive 

immunoreactivity, which also expands to permanent viable infection and continuous risk of 

disease development. However, both assumptions are challenged by reversion and self-

clearance, respectively. These phenomena are often not considered when interpreting 

immunoreactivity prevalence, which leads to an overestimation of the population at risk of TB 

disease [34,99,100]. A more accurate global Mtb infection burden estimate would consider the 

viability of the microorganism of progressing to disease and would be a valuable insight for TB 

prevention and care practices, particularly TPT.  

 

Research gap: Current global estimates of Mtb infection burden do not accurately 

identify individuals with viable infections who are at risk of disease progression. 

 

2.6 Tuberculosis screening 

Worldwide, national TB strategies are often based on passive detection, where diagnosis and 

care are restricted to individuals experiencing symptoms who then access and receive 

healthcare [75,101]. However, in order to achieve End TB Strategy targets, relying solely on 

passive detection is insufficient [102]. This approach results in a significant gap, leaving 

approximately 40% of individuals undiagnosed, and fails to reduce Mtb transmission by 

focusing solely on the measured outcomes at the symptomatic extreme of the spectrum [2,43]. 

In contrast, population-wide screening aims to find and treat individuals with TB disease that 

would otherwise not have been diagnosed through the usual patient-initiated pathway, not only 

reaching more but treating individuals earlier in the disease pathway to halt onward 

transmission [101,102]. Additionally, population-wide screening could extend access to care 

for vulnerable populations and help mitigate patient costs associated with diagnosis, both of 

which are significant barriers to current healthcare access [103].  

 

While mass CXR screening programmes were once common, they were abandoned in the past 

half-century following recommendations that focused on a perceived impracticality—namely, 

the low yield and high cost of identifying individuals with smear-positive TB [89]. However, a 

large body of evidence suggests the opposite. Screening campaigns using mobile CXR units 

were conducted as early as the 1930s [104,105]. Remarkable results were found with its 
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implementation: TB prevalence rate halved in a Welsh mining community (1950-1953) [106], TB 

mortality rate among Alaskan Eskimos and Indians experienced a five-fold drop (1950-1957) 

[107], detected over 50,000 individuals with TB in the Netherlands (1951-1967) [108], and 

contributed greatly to decreasing TB burden in the Kolín district, Czechoslovakia (1960-1972) 

[109–111]. Additionally, there was an observable temporary decrease in TB notification rates in 

South Africa (1950-1970) during a period of population-wide screening with miniature CXR, 

alongside reductions in the ARI in 1950s Japan, where annual CXR screenings covered a 

substantial portion of the population [112–114]. Data from the mass CXR screening campaign in 

Glasgow, which occurred in the span of 5 weeks in 1957, has been estimated to avert over 4,500 

pulmonary TB notifications [115]. Recently, CAD has been implemented for CXR films, 

providing computer-driven, standardised assessment and scoring, which interprets the 

likelihood that the individual has TB [78,89]. Despite its success as a TB detection strategy, it 

was not deemed a cost-effective tool to interrupt TB transmission and was mostly abandoned 

as healthcare systems shifted towards a more symptom- and health facility-centric approach 

[104,111,116].  

 

Research gap: Symptom-agnostic mass screening interventions using CXR have 

been perceived as impractical, yet clear benefits could be seen when considering 

the spectrum of TB disease. 

 

In the search for more effective strategies, recent cluster-randomised trials have assessed the 

impact of community-wide screening on TB epidemiology, yielding mixed results [117,118]. The 

ZAMSTAR trial in Zambia and South Africa, which employed symptom-based screening with 

sputum smear microscopy, did not demonstrate a reduction in TB prevalence [117]. In contrast, 

the ACT3 trial utilised a symptom-agnostic approach, similar to historic mass screening efforts, 

implementing annual community-wide screenings over three years with the Xpert MTB/RIF 

assay [118]. Notably, the results demonstrated a significant reduction in the prevalence of 

pulmonary TB within communities where community-wide screening was employed, compared 

to those utilising standard passive-detection methods alone [118]. The findings from the ACT3 

trial represent contemporary evidence of the impact of community-wide screening that goes 

beyond mere theory and thus, underscore the importance of introducing proactive healthcare 

measures in our current approaches to TB prevention and care. As suggested from historical 

studies, its application should extend beyond high-risk groups to encompass broader 

community outreach, and that the initiative requires sustained, multiple rounds for 
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effectiveness [119]. However, its implementation as a central component of TB elimination 

strategies remains under debate. The challenge lies in identifying the optimal implementation 

of population-wide screening, including the ideal duration and algorithm, to determine the most 

effective approach to reducing the TB burden. Additionally, careful evaluation of the 

interventions' cost-effectiveness, along with the required front-loaded investment and overall 

budget impact, is essential. 

 

Research gap: While population-wide screening interventions may reduce TB 

prevalence, the optimal algorithm and duration—balancing resource 

considerations—have not been fully examined, especially in the context of the 

spectrum of TB disease. 

 

2.7 Mathematical modelling 

Mathematical modelling is a valuable tool used in infectious disease epidemiology, allowing the 

testing of hypotheses about disease natural history, understanding underlying mechanisms 

through empirical data, and exploring e5ective, impactful, and cost-e5icient care strategies 

[120,121]. When focused on transmission, models enhance our ability to understand and 

predict outbreaks, supporting informed decision-making [122]. This is especially useful, as 

disease outcomes are often rare or delayed which makes observational studies impractical and 

costly. Additionally, modelling facilitates analyses based on various parameters to enable 

estimates in changing conditions that might not be present during the conduction of real-world 

studies. Moreover, models can evaluate scenarios that would be unethical to test in practice, 

o5ering insights into the consequences of inaction or the impact of specific interventions [121].  

 

Mathematical modelling is widely used in TB research to gain insights into the complexities of 

TB epidemiology. The first TB model, developed by Hans Waaler and colleagues in 1962, acted 

as a proof of concept that modelling could be used to study TB epidemiology [123]. Model 

definitions and structures have since evolved and are tailored to address specific research 

question, though many share some similarities. TB models often use a deterministic SEIR 

framework, broadly dividing the population into categories of susceptible (S), exposed (E), 

infected (I), and recovered (R) individuals [124,125]. These models often add further granularity 

by incorporating population-level strata based on risk factors, such as HIV, age, and drug-

resistant [124,125]. 
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Today, TB mathematical models serve various purposes. Coupled with empirical data, models 

generate burden estimates, including the annual WHO Global TB Report figures [2,126], as well 

as estimates of paediatric and drug-resistant TB [127–129]. Modelling has also been used to 

estimate the burden of Mtb infection [4,97], and to determine the number of TB survivors and 

individuals with post-TB sequelae [130,131]. Additionally, models have assessed the impact 

and cost-e5ectiveness of interventions [132–137], and have explored the natural history of TB in 

greater depth [21,22,34,43,138]. For example, work on self-clearance of Mtb infection arrived at 

the conclusion that the population with viable Mtb is likely much lower than previously thought 

[34]. Other models have proposed TB disease states along the spectrum, and estimated 

progression and regression rates between these states [22,35]. Further studies have examined 

the relative infectiousness of asymptomatic TB and its role in overall transmission [41,43]. The 

findings from these models can inform policy changes, enabling the implementation of cost-

e5ective interventions, such as vaccines, screening interventions, and preventive therapies 

[139–141]. 

 

2.8 Research gaps 

This chapter provides an overview of tuberculosis, covering its epidemiology, natural history, 

diagnostic methods, and the resources available to combat it. It also introduces the research 

gaps that this thesis aims to address, with a summary of these gaps and the corresponding 

chapters where they are explored listed below: 

§ The impact of Mtb immunoreactivity test reversion on the estimated ARI and its 

interpretation has not been thoroughly explored (Chapter 3). 

§ Current global estimates of Mtb infection burden do not accurately identify individuals 

with viable infections who are at risk of disease progression (Chapter 4). 

§ Symptom-agnostic mass screening interventions using CXR have been perceived as 

impractical, yet clear benefits could be seen when considering the spectrum of TB 

disease (Chapter 5). 

§ While population-wide screening interventions may reduce TB prevalence, the optimal 

algorithm and duration—balancing resource considerations—have not been fully 

examined, especially in the context of the spectrum of TB disease (Chapter 6).  
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Chapter 3: Immunoreactivity reversion and the annual risk of infection 

In this chapter, the first research paper of the thesis is presented to address Objective #1: to 

quantify the impact of immunoreactivity test reversion on the estimated annual risk of infection 

(ARI). The chapter opens with a concise overview of the research gap, followed by the published 

paper, additional analyses using a longitudinal dataset of tuberculin skin test (TST) 

measurements, and concludes with a brief summary. 

 

3.1 Introduction 

The ARI is a key metric in tuberculosis (TB) epidemiology, reflecting the intensity of 

Mycobacterium tuberculosis (Mtb) transmission [1]. Its calculation is crucial for guiding public 

health interventions, and often serves as an input for TB mathematical models [1]. 

Conceptualised in the mid-20th century, Muench introduced a method to estimate annual 

infection rates from immunoreactivity prevalence data [2], and later refined into a standard 

formula by Nyboe [3]. This approach was further developed by Stýblo, Meier, and Sutherland, 

who applied it to Dutch data, demonstrating the utility of converting TST prevalence into a 

continuous series of infection risks [4,5]. By incorporating the mean age and immunoreactivity 

prevalence, the ARI became a valuable tool for tracking TB trends and evaluating the success of 

national TB programmes, independently of notification performance [5,6]. 

 

The calculation of the ARI traditionally assumes that once an individual tests positive, using a 

TST or an interferon-gamma release assay (IGRA), the result remains positive throughout their 

lifetime [7]. However, reversion, defined as the change from a positive to a negative 

immunoreactivity test result upon repeat testing, has been recognised since the earliest use of 

TST [8]. Thus, questions about the accuracy of the assumption of long-lasting immunoreactivity 

arose early on [4]. In the 1970s, Sutherland conducted a theoretical study examining the impact 

of waning immunoreactivity over time on ARI estimates, showing that reversion rates as low as 

1% per year could significantly underestimate the ARI, with higher rates leading to even greater 

underestimation [9]. Empirical studies have shown that immunoreactivity reversion does 

regularly occur and is not negligible, with probabilities varying depending on the tool, threshold, 

and definition used to measure reversion [10]. Additionally, the ARI is often calculated from 

immunoreactivity surveys conducted among school-age children (8–12 years old) to capture 

recent infection [1]. However, reversion remains a relevant factor even in this age group, with its 

impact being cumulative over time [9]. Notwithstanding, the phenomenon of reversion was 

largely overlooked in subsequent population-based surveys and policy decisions [10]. 
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The implications of not considering reversion are substantial: underestimating ARI distorts the 

understanding of Mtb transmission intensity, misguides public health interventions, and 

introduces biases into TB mathematical models that rely on ARI as a key input [11,12]. These 

challenges underscore the urgent need to fully quantify ARI underestimation by incorporating 

empirical reversion estimates, ensuring a more accurate representation of transmission 

intensity and disease burden. 

 
3.2 Research paper 

The following pages contain the Research Paper Cover Sheet, the copyright license, the 

published research paper, and the supplementary material for: Schwalb A, Emery JC, Dale KD, 

Horton KC, Ugarte-Gil CA, Houben RMGJ. Impact of Reversion of Mycobacterium tuberculosis 

Immunoreactivity Tests on the Estimated Annual Risk of Infection. Am J Epidemiol. 2023. 

DOI:10.1093/aje/kwad028 [11]. 
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A key metric in tuberculosis epidemiology is the annual risk of infection (ARI), which is usually derived
from tuberculin skin test (TST) and interferon-γ release assay (IGRA) prevalence surveys carried out in
children. Derivation of the ARI assumes that immunoreactivity is persistent over time; however, reversion of
immunoreactivity has long been documented. We used a deterministic, compartmental model of Mycobacterium
tuberculosis (Mtb) infection to explore the impact of reversion on ARI estimation using age-specific reversion
probabilities for the TST and IGRA. Using empirical data on TST reversion (22.2%/year for persons aged ≤19
years), the true ARI was 2–5 times higher than that estimated from immunoreactivity studies in children aged 8–12
years. Applying empirical reversion probabilities for the IGRA (9.9%/year for youths aged 12–18 years) showed a
1.5- to 2-fold underestimation. ARIs are increasingly underestimated in older populations, due to the cumulative
impact of reversion on population reactivity over time. Declines in annual risk did not largely affect the results.
Ignoring reversion leads to a stark underestimation of the true ARI in populations and our interpretation of Mtb
transmission intensity. In future surveys, researchers should adjust for the reversion probability and its cumulative
effect with increasing age to obtain a more accurate ref lection of the burden and dynamics of Mtb infection.

interferon-γ release assay; Mycobacterium tuberculosis transmission; TST/IGRA surveys; tuberculin skin test;
tuberculosis

Abbreviations: ARI, annual risk of infection; CI, confidence interval; IGRA, interferon-γ release assay; Mtb, Mycobacterium
tuberculosis; TB, tuberculosis; TST, tuberculin skin test.

Editor’s note: An invited commentary on this article
appears on page 1944, and the authors’response appears on
page 1947.

Tuberculosis (TB) remains a major cause of morbidity
and mortality worldwide, and it is estimated that one-quarter
of the global population is latently infected with Mycobac-
terium tuberculosis (Mtb) (1–3). Mtb infection is inferred
from the presence of a host immune response to Mtb protein
components with the use of the tuberculin skin test (TST) or
interferon-γ release assay (IGRA) (4, 5). While it is known
that Mtb immunoreactivity does not equate to Mtb infection,
population surveys of TST positivity have historically been

used to derive estimates of Mtb infection risk and trans-
mission trends, most conducted among school-age children
(ages 8–12 years) (6). A key metric in TB epidemiology is
the annual risk of infection (ARI), which aims to provide a
more insightful picture of the risk of Mtb transmission (7).
It is calculated using Mtb immunoreactivity test prevalence
data and the mean age of the individuals surveyed (8). In
a public health setting, a decrease in the ARI is interpreted
as an early indicator of a decline in Mtb transmission in a
population; on the other hand, an increase could indicate that
TB prevention and care measures are insufficient (8).

When calculating ARIs, there is a conventional, usually
implicit, assumption that positive Mtb immunoreactivity is
persistent throughout an individual’s lifetime (9). Neverthe-
less, this assumption does not hold. TB immunoreactivity
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Figure 1. Model of Mycobacterium tuberculosis (Mtb) immunoreactivity accounting for reversion. ka represents real infection risk, which
is a function of the annual risk of infection (ARI) at birth (ARI0), with a subsequent annual decrease in risk; Pa represents the proportion of
the population found to be Mtb-immunoreactive at age a years; and r represents the annual constant proportion of individuals with positive
immunoreactivity who will revert.

can wane over time, and positive TSTs and IGRAs can
revert to negative (reversion) (10–12). Therefore, a major
caveat in the ARI is that the phenomenon of reversion is
not accounted for in its calculation, thus resulting in a naive
ARI which might differ from the true value. In previous
studies, investigators have considered the limitations of the
current formula in arriving at an accurate estimate and
interpretation of the ARI (10, 13). In a theoretical study
by Sutherland (13), the effects of TST reversion on the
ARI were explored, suggesting a considerable underestima-
tion when annual reversion probabilities exceed 1% (nearly
50% and 67% when facing annual reversion probabilities
of 5% and 10%, respectively). However, the Sutherland
study considered only low reversion probabilities (≤10%);
it did not consider age-specific effects, nor did it link to
observed reversion data. While empirically observed rever-
sion probabilities were documented over a century ago (14),
their importance has been largely dismissed. With a few
notable exceptions, immunoreactivity surveys do not usually
consider reversion when estimating the ARI (10, 12). This
is an issue, because ARI estimates without consideration
of reversion are likely to underestimate the proportion of
individuals once infected with Mtb (8).

In contemporary policy, the ARI remains important and is
estimated in TST/IGRA surveys in populations or high-risk
settings (15–17). The ARI is also a common parameter in the
mathematical modeling of TB—for example, to estimate the
global burden of latent Mtb infection or to set the intensity
of transmission in a population (3, 18). Moreover, as novel
diagnostic tools that measure Mtb immunoreactivity become
available and immunoreactivity surveys may be reconsid-
ered in global policy, it is important to consider the reversion
level of specific tests so ARI underestimation can be appro-
priately quantified through current methods. In this paper,
we aimed to use empirical estimates of reversion for TST
and IGRA to quantify the extent of ARI underestimation due
to reversion.

METHODS

Model overview

We developed a deterministic, compartmental model of
Mtb infection (Figure 1). It builds on the theoretical study on
the effect of constant TST reversion probabilities upon the

ARI estimation proposed by Sutherland (13). The proportion
of the population found to be immunoreactive at age a years
is expressed by Pa. The parameter ka represents the real
infection risk, a function of the ARI at birth (ARI0), with
subsequent annual decrease d in risk: ka = (1 − d)a ×
ARI0. Additionally, the model includes an annual constant
proportion r of individuals with positive immunoreactivity
who will revert. In order to estimate the proportion infected
in the next year, the following formula is used:

P(a+1) = Pa + (1 − Pa) × ka − Pa × r.

The formula has 3 components: 1) the proportion of the
population infected with Mtb in the current year, 2) plus
the proportion of noninfected individuals who convert to
positive immunoreactivity over the following year, 3) minus
the proportion of immunoreactive individuals who revert
over the following year. For a fixed initial ARI of 1.5%,
Mtb immunoreactivity prevalence was calculated in daily
time steps using increasing reversion probabilities from 0%
to 50% with 1% increments from birth to age 80 years. For
all ages and Mtb immunoreactivity prevalence, the ARI was
calculated using the classic formula ARIa = 1−(1 − Pa)

1/a .
Then, the base ARI (not accounting for reversion) was com-
pared against each reversion ARI (up to 50% reversion) as
a ratio. Since we are considering that reversion is occurring
but not accounted for in the calculation of the ARI, this ratio
reflects how much the naive ARI must increase to match the
measured prevalence, resulting in the true ARI. The model
was constructed and the analysis run using R, version 4.1.0
(May 18, 2021) for statistical computing and graphics (19).
Plots were created using the ggplot2 package (20).

Model assumptions

The key assumption of our model is that Mtb infection
always leads to Mtb immunoreactivity, regardless of dif-
ferent cutoff values and incremental changes considered in
conversion criteria (21). Furthermore, the model does not
account for reinfection, assuming that reinfections occur at
a similar rate as primary infections; this was done for sim-
plicity. Finally, it assumes that no child is immunoreactive
at birth; therefore, P0 = 0.
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Table 1. Age-Specific Annual Mycobacterium tuberculosis Immunoreactivity Test Reversion Probabilities in 3
Different Studies

First Author, Year (Reference
No.) and Age Group, years Setting (Date Range) Annual Reversion

Probability, % 95% CI

TST Surveys

Grzybowski, 1964 (11) Victoria County, Ontario, Canada
(1958–1962)

≤19 22.2 15.2, 31.4

20–39 8.0 4.9, 12.6

40–59 4.8 3.2, 6.9

≥60 9.0 6.5, 12.3

Fine, 1999 (10) Karonga District, Malawi
(1980–1989)

≤4 17.9

5–9 10.2

10–14 7.5

15–19 6.1

20–24 5.3

25–29 4.8

30–39 4.1

≥40 3.7

IGRA Survey

Andrews, 2015 (12) Worcester, South Africa
(2005–2007)

12–18 9.9 8.8, 11.1

Abbreviations: CI, confidence interval; TST, tuberculin skin test; IGRA, interferon-γ release assay.

Data sources for ARI estimates

A global ARI estimate was calculated from TST surveys
used to reestimate the global burden of latent TB infection
by Houben and Dodd (3). This value was a simple average
of ARI estimates from 141 TST surveys collected from
Cauthen et al. (8) and a systematic review of the literature
(3). The resulting global average ARI of 1.5% (95% con-
fidence interval (CI): 1.3, 1.7) was used for the primary
analysis. For the primary results, ka was only dependent
on ARI0. The annual decline (2.3%) component of ka was
evaluated further in the sensitivity analyses.

Data sources for Mtb immunoreactivity test reversion

Reversion probabilities—classified per age group—were
used to illustrate the degree of ARI underestimation obtained
from the model. These were collected from 2 population-
wide TST surveys and 1 adolescent IGRA survey. The first
TST survey, by Grzybowski and Allen (11), was conducted
in 1959 among 29,000 individuals of all ages in Victoria
County, Ontario, Canada; it consisted of 5 consecutive
annual TST surveys, in which an area of induration greater
than or equal to 5 mm was considered a positive result. At
the time, Bacillus Calmette-Guérin vaccination was not con-
sidered in newborns or infants and was only recommended

for contacts of patients with active TB. The study provided
numerators (number of reversions) and denominators (posi-
tive reactors retested in 1 year) used for age-group–specific
reversion probabilities; we calculated 95% CIs for the given
proportions to account for uncertainty in the probabilities.
In the second TST survey, Fine et al. (10) described a set of
over 64,000 TSTs performed in 2 total population surveys in
the Karonga District, northern Malawi, from 1980 to 1989;
TST reversion data were available from paired results from
6,991 individuals who participated in both surveys. An area
of induration greater than or equal to 10 mm was considered
a positive result. Reversion probabilities in females without
a Bacillus Calmette-Guérin scar were presented in a plot and
were extracted using a Web-based plot digitizer (22). Confi-
dence intervals were not available, since the absolute numer-
ator and denominator were not provided. On the other hand,
in the IGRA survey, which was conducted by Andrews et al.
(12) from 2005 to 2007, students aged 12–18 years were
recruited from local schools in Worcester, South Africa. The
age-specific annual Mtb immunoreactivity test reversion
probabilities from all studies are displayed in Table 1.

To test the application of the model, we used ARI esti-
mates from 2 population-wide TST surveys as illustrative
examples to calculate the difference between the observed
ARIs of the studies and the true ARIs of the model. Firstly,
the study by Hoa et al. (16) was a nationwide TST survey
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Figure 2. Underestimation of the annual risk of infection (ARI) with Mycobacterium tuberculosis according to varying annual reversion
probabilities. The ratio between the true ARI (varying reversion levels) and the naive ARI (no reversion) represents the true increase in the
ARI. Baseline parameters were a 1.5% ARI at birth and no decline in annual risk. Tuberculin skin test (TST) reversion probabilities (red line;
dashed red lines represent 95% confidence intervals) were derived from the paper by Grzybowski and Allen (11), and interferon-γ release assay
reversion probabilities (yellow line; dashed yellow lines represent 95% confidence intervals) were derived from the paper by Andrews et al. (12).
White dashed lines represent the age range of populations in which most TST surveys are conducted. The study by Grzybowski and Allen (11)
was conducted in Ontario, Canada (1958–1962), and the study by Andrew et al. (12) was conducted in Worcester, South Africa (2005–2007).

carried out in Vietnam among children aged 6–14 years
from 2006 to 2007; the study produced an ARI estimate
of 1.7% (95% CI: 1.5, 1.8), calculated from a TST-positive
prevalence of 16.7% in a population with a mean age of
10.8 years. Secondly, the study by Wood et al. (17) was
conducted among human immunodeficiency virus–negative
individuals aged 5–40 years in Cape Town, South Africa.
The study derived an ARI of 3.9% (95% CI: 2.2, 5.7) from an
estimated TST-positive prevalence of 18.1% among 5-year-
olds, an ARI of 3.9% (95% CI: 3.3, 4.5%) from an estimated
prevalence of 32.7% among 10-year-olds, and an ARI of
4.8% (95% CI: 4.1, 5.5) from an estimated prevalence of
52.0% among 15-year-olds.

Sensitivity analyses

We performed sensitivity analyses to assess the impact
of the parameters on the ARI underestimation output. First,
model outputs using the lower and upper bounds of the
95% CIs of the baseline ARI (1.3–1.7) were explored.
Additionally, considering the heterogeneity in the global
TB burden, we also used an initial ARI of 5%, accounting
for high-burden settings. Moreover, the component of annual
risk decrease was incorporated into parameter ka. The global
annual rate of decline for TB incidence was estimated to
be 2.3%, with some regions presenting more notable de-
creases (2).

RESULTS

Figure 2 shows the degree of ARI underestimation due
to ignoring reversion. In the age range 8–12 years, where
most TST surveys are conducted, we found that for the
TST (and in the range of reversion probabilities from
Grzybowski and Allen (11) and Andrews et al. (12)), the
true ARI was 2–5 times higher than that estimated under
the naive scenario (i.e., assuming no reversion). With
the following age-group reversion probabilities, the ARI
underestimation was maintained in the older populations,
rising to at least a 5-fold increase of the true ARI after
age 60 years (see Web Figure 1, available at https://
doi.org/10.1093/aje/kwad028). The lower observed TST
reversion probabilities from Fine et al. (10) gave a 1.25- to
1.50-fold increase of the true ARI from age 3 years onwards
and a more than 2-fold increase from age 12 years onwards
(Web Figure 2). In the case of IGRA, the narrow reversion
probabilities led to a 1.50- to 2-fold increase of the true ARI
for ages 12–18 years, within the reversion probabilities from
Andrews et al. (12).

Outside of the empirical reversion probabilities, Figure 2
shows how ARI underestimation grew with increasing levels
of annual reversion probabilities, as well as with increasing
age at which immunoreactivity was tested. Annual reversion
probabilities up to 2.5% increased the true ARI by less than
1.25 times. After the first life year, changes in reversion
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probabilities for a particular age could reach diverse levels
of underestimation (Web Figure 1).

The impact of reversion on the observed ARIs was evalu-
ated in 2 population-wide surveys. For the study by Hoa et al.
(16), the observed ARI of 1.7% at the mean age of 11 years,
adjusting for reversion (using empirical reversion probabili-
ties from Grzybowski and Allen (11)), showed the true ARI
to be twice that originally observed. Likewise, in the survey
by Wood et al. (17), the observed ARI of 3.9% would be
increased by a factor of 1.5 at age 5 years and by a factor of
2 or more at ages 10 and 15 years (considering the empirical
reversion probabilities from Grzybowski and Allen (11)).

Sensitivity analyses

There was no notable difference between the contour maps
produced by the lower and upper bounds of the 95% CI
of the 1.5% baseline ARI, within the reversion probability
ranges from the TST and IGRA surveys (Web Figures 3 and
4). When using a 5% baseline ARI, more discernible true
ARI increases were evident at higher reversion probabilities
(Web Figure 5). Incorporating the global decline in TB
incidence (2.3%) into the model increased the true ARI
underestimation, albeit slightly (Web Figure 6).

DISCUSSION

We estimated that the true ARI for Mtb immunoreac-
tivity surveys conducted in school-age children and using
empirical data on TST reversion was 2–5 times higher
than the baseline value that did not account for reversion.
Failing to account for Mtb immunoreactivity test reversion
in estimating the ARI significantly underestimates the true
value, and the cumulative effect of reversion can be seen
in time. In recent work, Dowdy and Behr (23) explored
ARI underestimation due to increasing infection risks in
adolescence and early adulthood, resistance to infection, and
immunoreactivity test reversion, concluding that the latter
could underestimate the risk of infection by one-third or
more. In our study, we used empirical data for reversion and
explored the impact across age groups in detail, highlighting
how reversion is important on its own but probably differs
by age and immunoreactivity test. More recent data on
reversion, especially of new tools (24), are urgently needed;
this is an important concept to explore and consider when
interpreting future ARI estimates of recent surveys.

In the original work, Sutherland concluded that rever-
sion probabilities above 1% would significantly impact ARI
estimates (13). However, as we have seen, empirical data
for TST/IGRA reversions in populations have shown that
the probabilities strongly exceed 1% per year and vary by
age (10–12), although the reversion probabilities are still
poorly quantified and understood for new tests. Reversions
may result from a myriad of different factors, including self-
clearance of Mtb infection, cross-reactivity with Bacillus
Calmette-Guérin vaccination or nontuberculous mycobac-
teria (in the case of the TST), and false-negative reactions
due to impaired immune response. Note that the difference
in ARI underestimation depending on the tool used might

not be related to the actual tool but probably depends on the
TB incidence in those settings at the time of the surveys,
since the likelihood of reversion might be influenced by rein-
fection. Thus, lower reversion probabilities could be seen in
settings with a higher risk of reinfection (25, 26). While data
on reversion from novel diagnostic methods are nonexistent
at present, our work highlights why it is crucial to acquire
such data and how they may affect ARI estimates. Nonethe-
less, regardless of how—and to what extent—reversions
occur, our findings focus more on the implications of the
underestimation and interpretation of the resulting ARI.

Another essential issue with regard to interpretation of
the ARI is its reliance on the host immune response to
Mtb, which is an indirect ascertainment of Mtb infection.
Because of the limitations of Mtb immunoreactivity tests,
the interpretation of a positive test result as a marker of true
infection—that is, harboring viable Mtb bacilli and being at
risk of TB disease—is unclear. While our findings call for
conscientious interpretations of the ARI given the reversion
phenomenon, TB prevention and care may benefit from an
improved biomarker for detecting Mtb infection that will
enable more direct estimation of the true ARI. Luckily,
some biomarkers are already being explored (27, 28), some
providing the additional benefit of identifying individuals at
higher risk of progression to active TB disease (28).

ARI estimates are key to understanding time trends in
TB burden and dynamics and are important to inform
subsequent policy. Given the substantial impact of reversion
on ARI estimates, this naturally occurring phenomenon
should be recognized in ARI calculations or, at minimum,
its interpretations (29). Our exploratory analysis of the TST
prevalence surveys by Hoa et al. (16) and Wood et al. (17)
illustrates how the true ARI can be at least 2 times higher
than the naive ARI. We may apply our understanding of the
impact of ARI estimation to other existing surveys, such as
India’s recent nationally representative survey, as reversion
would mean a true transmission risk 2–5 times as high (30).
Caution in interpretation of the majority of published ARIs
to date is essential, including global estimates of individuals
recently or remotely infected with Mtb (3).

Limitations

The reversion probabilities used to highlight the degree of
underestimation may differ by TB incidence in the setting,
the immunoreactivity test, and the cutoff used. For the
latter, issues arise from the use of reversion probabilities
from the report of Grzybowski and Allen (11) because of
the instability of the test, mainly the variability around
the 5-mm single cutoff point. This issue is exacerbated
by interreader variability and digit bias often encountered
when using TSTs (31). In turn, the reversion probabilities
from Fine et al. (10) are more convincing, as they adhere to
the American Thoracic Society/Centers for Disease Control
and Prevention definitions, which address this variability.
Despite this, we opted to base our TST results on the
reversion probabilities of Grzybowski and Allen (11), since
they provide a range of uncertainty in their estimates (32).
Similarly, IGRA reversions are also overemphasized in
the so-called uncertainty zone (0.2–0.7 IU/ml) around the
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default cutoff value, where they are as high as 52%, declining
as the value increases (12, 32). By presenting a wide range
of reversion probabilities (up to 50%), we provide a contour
map that serves as a guide that could be used to explore ARI
underestimation as seen by other empirical probabilities.
While our simple model with 2 binary outcomes enabled
a clear analysis of the impact of reversion, it excluded
other phenomena which could also play a role in Mtb
immunoreactivity and, subsequently, the ARI.

The model assumed that the risks of Mtb immunoreac-
tivity were the same for primary infections and reinfections,
and while it is not possible to determine whether there would
also be a reduced risk of immunoreactivity conversion (33),
studies have shown a risk reduction in the progression of
TB disease in previously “infected” individuals—that is,
persons with positive Mtb immunoreactivity (34). Hypothet-
ically, if we assumed that a risk reduction would be observed
among individuals who had converted before, then, for the
estimates accounting for reversion, the Mtb immunoreac-
tivity prevalences—and their corresponding ARIs—would
have been lower than those obtained in the primary analysis,
thus resulting in a higher ratio and a greater degree of
underestimation. Another phenomenon that could affect the
estimated ARI is resistance to Mtb infection in some indi-
viduals (i.e., repeatedly negative Mtb immunoreactivity tests
in persons who have had close contact with pulmonary TB
patients, such as household contacts, miners, etc.) (35–37).
Including an Mtb resistance parameter would affect the naive
and true ARIs in similar ways; therefore, it would not be
expected to alter the true ARI:naive ARI ratios observed
in our primary results. Finally, Bacillus Calmette-Guérin
vaccination and nontuberculous mycobacteria exposure are
known to cause false-positive TST results (4, 5), which may
contribute to a degree of overestimation when using reactiv-
ity to assess ARI. However, their contribution to reactivity
and whether and how they may modify infection risks and
reversion probability is unknown, so we did not include them
in the model.

Conclusions

Not accounting for reversion leads to a stark underes-
timation of the true ARI in populations, which changes
our understanding and interpretation of Mtb transmission
intensity. Considering our findings, interpretations of ARI
estimates should be handled prudently. Categorization by
ARI levels and mathematical models of TB disease relying
on ARI as a parameter would need to be amended. Rever-
sion probabilities specific to a region, test, and even age
group are needed to increase the interpretation of ARIs from
future cross-sectional surveys. Adjustment for the reversion
probability and its cumulative effect with increasing age
will provide a more accurate reflection of the burden and
dynamics of Mtb infection.
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Web Figure 1 

Contour maps of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 1.5% ARI at birth and no decline in annual risk. TST reversion probabilities from 

Grzybowski and Allen (represented by the red line; dotted red lines represent 95%CI) and IGRA reversion 

probabilities from Andrews et al. (represented by the yellow line; dotted yellow lines represent 95%CI)(1,2). 

White dotted lines represent the age range of populations where most TST surveys are conducted. TST, 

Tuberculin skin test; IGRA, Interferon-gamma release assay.  
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Web Figure 2 

Contour map of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 1.5% ARI at birth and no decline in annual risk. Age-specific TST reversion probabilities 

from Fine et al. (represented by the red lines)(3). White dotted lines represent age range of populations where 

most TST surveys are conducted. TST, Tuberculin skin test. 
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Web Figure 3 

Contour map of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 1.3% ARI at birth and no decline in annual risk. TST reversion probabilities from 

Grzybowski and Allen (represented by the red line; dotted red lines represent 95%CI) and IGRA reversion 

probabilities from Andrews et al. (represented by the yellow line; dotted yellow lines represent 95%CI)(1,2). 

White dotted lines represent age range of populations where most TST surveys are conducted. TST, Tuberculin 

skin test; IGRA, Interferon-gamma release assay.
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Web Figure 4 

Contour map of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 1.7% ARI at birth and no decline in annual risk. TST reversion probabilities from 

Grzybowski and Allen (represented by the red line; dotted red lines represent 95%CI) and IGRA reversion 

probabilities from Andrews et al. (represented by the yellow line; dotted yellow lines represent 95%CI)(1,2). 

White dotted lines represent age range of populations where most TST surveys are conducted. TST, Tuberculin 

skin test; IGRA, Interferon-gamma release assay. 
  



 Chapter 3 – Page 58 

 
6 

 

Web Figure 5 

Contour map of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 5.0% ARI at birth and no decline in annual risk. TST reversion probabilities from 

Grzybowski and Allen (represented by the red line; dotted red lines represent 95%CI) and IGRA reversion 

probabilities from Andrews et al. (represented by the yellow line; dotted yellow lines represent 95%CI)(1,2). 

White dotted lines represent age range of populations where most TST surveys are conducted. TST, Tuberculin 

skin test; IGRA, Interferon-gamma release assay. 
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Web Figure 6 

Contour map of ARI underestimation by varying annual reversion probabilities. 

 
The ratio between true (varying reversion levels) and naïve ARI (no reversion) represents true ARI increase. 

Baseline parameters: 1.5% ARI at birth and 2.3% decline in annual risk. TST reversion probabilities from 

Grzybowski and Allen (represented by the red line; dotted red lines represent 95%CI) and IGRA reversion 

probabilities from Andrews et al. (represented by the yellow line; dotted yellow lines represent 95%CI)(1,2). 

White dotted lines represent age range of populations where most TST surveys are conducted. TST, Tuberculin 

skin test; IGRA, Interferon-gamma release assay. 
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3.3 Additional analyses 

As noted by the research project, a pivotal study in calculating conversion and reversion rates 

was the research by Fine et al. in Malawi, which analysed an extensive longitudinal dataset of 

TST measurements [13]. This study was instrumental in providing age and sex-specific rates and 

accounted for Bacillus Calmette–Guérin (BCG) vaccine exposure, yet it notably omitted 

uncertainty estimates [13]. This absence hindered the precision of ARI calculations and limited 

their application, confining it to providing only the median estimates rather than a 

comprehensive range of probable outcomes. As the research project above showed the ARI 

may be significantly underestimated, primarily due to the neglect of immunoreactivity reversion 

in its calculation [11], it becomes imperative to explore the full range of estimates for more 

accurate and novel applications. Therefore, we re-evaluated longitudinal data from the Karonga 

Prevention Study (KPS) in Malawi, to estimate reversion rates from a cohort with repeated 

instances of TSTs.  

 

The KPS was a large-scale research programme on the epidemiology of mycobacterial infection 

and disease, conducted in the Karonga district of northern Malawi [14]. Participant records were 

reviewed from two population surveys carried out as part of the KPS, spanning from 1980-1984 

and 1986-1989 [15,16]. The latter survey also served as the recruitment phase for a subsequent 

leprosy and TB vaccine trial [16]. This essentially encompassed the same population as 

investigated in the study by Fine et al. [13]. Available data included sex, date of birth, TST 

induration size, BCG scar status, trial vaccine administration, and TB incidence. We included 

participants of all ages, with an initial positive TST result that had undergone a minimum of two 

TSTs, with a gap exceeding two years between tests. Additionally, we excluded individuals with 

uncertain BCG scar results, indicating digerent scar statuses between readings, and those who 

had received BCG vaccination as part of trial procedures before the administration of the 

second TST. We defined a positive TST (i.e., conversion) as an induration of ≥10mm following the 

1981 American Thoracic Society (ATS) guidelines threshold [17]. As an opposite phenomenon to 

conversion, we defined TST reversion as an induration decrease from above 10mm, with an 

absolute reduction of at least 6mm [17].  We calculated TST reversion risks and rates per sex, 

age, and BCG scar status, providing confidence intervals for all estimates. Additionally, we 

evaluated the association between TB incidence and TST reversion. We used the chi-squared 

test to compare proportion and the Mann-Whitney U test to compare medians between groups.  
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Participant data were obtained from studies with appropriate ethical approval in place, 

including the Health Sciences Research Committee of the Malawi Ministry of Health, the ethics 

committee of the London School of Hygiene and Tropical Medicine, and the Standing 

Committee on Research in Human Subjects of the World Health Organization. All participants 

provided informed consent (either verbal or written) to be part of the studies.  

 

From a total of 87,446 individuals with recorded TST induration measurements, 2,918 (3.3%) 

met our inclusion criteria and were selected for analysis (Figure 3.1). These participants 

contributed a cumulative follow-up time of 15,328 person-years. Most participants (54.6%) 

were female, and the median age at the first TST measurement was 32 years (IQR: 15-47). 

Among this population, 1,810 (62.0%) individuals were without a BCG scar, and 39 (1.3%) 

experienced a TB episode, resulting in a disease incident rate of 254 (95%CI: 181-348) per 

100,000 inhabitants. 

 

 
Figure 3.1 Inclusion flowchart for TST reversion analysis. Data collected from two population surveys 

in the Karonga district, northern Malawi, spanning from 1980-1984 and 1986-1989 [15,16]. TST: Tuberculin 

skin test.  
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There were 717 instances of reversion, with a median induration decrease of 11mm (IQR: 10-

14). This corresponded to an overall risk of 24.6% (95%CI: 23.0-26.2) and an annualised rate of 

4.7 reversions (95%CI: 4.3-5.0) per 100 person-years. Reversion rates appeared higher in 

children than in adults (Figure 3.2 and Table 3.1).  

 

 
Figure 3.2 Age-specific TST reversion rates by BCG scar status. TST reversion rates by BCG scar status 

from population surveys in the Karonga district, northern Malawi. Lines and points represent annualised 

reversion rate at age group mid-point, and the shaded area shows 95% confidence interval. BCG: Bacillus 

Calmette-Guérin; TST: Tuberculin skin test.  

 

Table 3.1 Age-specific TST reversion rates per BCG scar status 

 All BCG+ BCG- 

Age 
group Reversion Rate per 100py 

(95%CI) Reversion Rate per 100py 
(95%CI) Reversion Rate per 100py 

(95%CI) 

0-5 113/180 11.8 (9.7-14.2) 98/156 11.8 (9.6-14.4) 15/24 11.8 (6.6-19.5) 

5-10 78/250 5.8 (4.6-7.2) 57/176 6.0 (4.6-7.8) 21/74 5.2 (3.2-7.9) 

10-15 57/264 4.1 (3.1-5.3) 33/199 3.1 (2.1-4.4) 24/65 7.1 (4.6-10.6) 

15-20 55/253 4.1 (3.1-5.3) 49/217 4.2 (3.1-5.6) 6/36 3.2 (1.2-7.0) 

20-25 38/181 4.1 (2.9-5.7) 28/133 4.2 (2.8-6.0) 10/48 4.0 (1.9-7.4) 

25-30 54/242 4.4 (3.3-5.7) 11/77 3.0 (1.5-5.4) 43/165 4.9 (3.6-6.7) 

30-35 35/167 4.0 (2.8-5.5) 6/24 5.1 (1.9-11.2) 29/143 3.8 (2.5-5.5) 

35-40 42/230 3.6 (2.6-4.8) 4/33 2.5 (0.7-6.3) 38/197 3.7 (2.6-5.1) 

40-45 52/262 3.8 (2.8-4.9) 5/34 3.1 (1.0-7.1) 47/228 3.9 (2.8-5.1) 
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45-50 55/301 3.5 (2.6-4.6) 7/28 5.1 (2.0-10.5) 48/273 3.4 (2.5-4.4) 

50+ 138/588 4.4 (3.7-5.2) 5/31 3.4 (1.1-7.9) 133/557 4.5 (3.8-5.3) 

All 717/2918 4.7 (4.3-5.0) 303/1108 5.3 (4.7-5.9) 414/1810 4.3 (3.9-4.8) 

TST reversion rates by BCG scar status from population surveys in the Karonga district, northern Malawi. 

BCG: Bacillus Calmette-Guérin; TST: Tuberculin skin test; PY: Person-years. 

 

Evaluating the initial TST induration distribution revealed that individuals who experienced 

reversion exhibited a lower median induration compared to those who did not revert (12mm 

[IQR: 11-15] vs 14mm [IQR: 12-17], p < 0.001) (Figure 3.3).  

 

 
Figure 3.3 Induration distribution of initial TST by reversion status. Initial TST induration size 

distribution, as count and percentage, by the presence of reversion from population surveys in the 

Karonga district, northern Malawi. TST: Tuberculin skin test. 

 

Among those without a BCG scar, 414 experienced TST reversion, resulting in a risk of 22.9% 

(95%CI: 20.9-24.9). Additionally, considering a follow-up time of 9,561 person-years, there was 

an annualised rate of 4.3 reversions (95%CI: 3.9-4.8) per 100 person-years. In contrast, those 

with a BCG scar presented a risk of 27.3% (95%CI: 24.8-30.1) and an annualised reversion rate 
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of 5.3 (95%CI: 4.7-5.9) per 100 person-years. There was strong evidence of a digerence between 

TST reversion rates according to BCG scar status (p < 0.001), but none according to sex (p = 

0.185). Additionally, evaluating reversion rates according to the interval between TSTs also 

revealed higher rates early after initial measurement as compared to later (Table 3.2).  

 

Table 3.2 TST reversion rates by interval between tests 

Interval between tests Reversion Follow-up (years) Rate per 100py (95%CI) 

> 2 to ≤ 3 years 12/47 124 9.7 (4.9-16.9) 

> 3 to ≤ 4 years 91/388 1396 6.5 (5.2-8.0) 

> 4 to ≤ 5 years 168/831 3920 4.3 (3.7-4.9) 

> 5 to ≤ 6 years 290/1202 6529 4.4 (3.9-4.9) 

> 6 years 156/450 3358 4.6 (3.9-5.4) 

TST reversion rates by interval between tests from population surveys in the Karonga district, northern 

Malawi. TST: Tuberculin skin test; PY: Person-years. 

 

There were 32 TB episodes among individuals without reversion (1.5%; 95%CI: 1.0-2.1) and 7 TB 

episodes among individuals with reversion (1.0%; 95%CI: 0.4-2.0). This digerence was not 

statistically significant (p = 0.435), although it is worth noting that the power to detect such an 

association was low (17.5%). 

 

By analysing the extensive TST data collected, we computed reversion rates along with their 

corresponding confidence intervals. Consistent with the observations made in the original 

study by Fine et al., we found that TST reversion is neither a rare nor a negligible phenomenon 

[13]. Additionally, rates are higher in younger populations and early after initial measurement, 

which is concordant with other studies evaluating TST reversion [18,19]. Notably, similar 

patterns are evident in immunoreactivity measured with IGRAs [20,21], indicating that the 

challenge of reversion has not been overcome even with the advent of newer diagnostic tools. 

 

As explained before, awareness of Mtb immunoreactivity test reversion is critical to correctly 

estimating and interpreting the ARI [11]. Solely relying on tuberculous immunoreactivity largely 

underestimates the ARI, regardless of the population and tool employed [9,11,12,20]. In work 

described in this chapter, we estimated the true ARI to be at least 50% higher, considering the 

median estimates from the published Malawi cohort, than the naïve ARI (i.e., without 

accounting for reversion) [11]. By performing these additional analyses of the Malawi cohorts, 
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we were able to calculate reversion rates with its corresponding 95% confidence interval for 

individuals ages 8 to 12 years, as the most common targets for immunoreactivity surveys. 

Within this age group and the upper and lower bound of the reversion rates (6.3 reversions 

[95%CI: 4.1-9.2] per 100 person-years), the true to naïve ARI ratio was 2.9 (95%CI: 1.9-3.9).  

 

There are some limitations to highlight. Firstly, it is important to note that reversion rates are 

highly contingent on the specific definition employed. As noted by Fine et al., digerent ARIs 

were derived based on which ATS guideline was followed [13]. Given that reversion is defined as 

the opposite of conversion, the discrepancies in threshold criteria and the required change in 

induration size inevitably lead to diverse reversion rate estimates. Similarly, here we considered 

a positive TST whether or not the value was above the threshold of 10mm and did not account 

for the change in induration. This approach was adopted because considering changes in 

induration would have required three, rather than two, TST measurements per participant. On 

the other hand, it is worth considering that reversion is likely underestimated since follow-up 

does not start from conversion, and some might have already reverted. Finally, despite access 

to over 115,000 TST measurements, most were a single instance, and those with subsequent 

tests occurred at variable intervals, ultimately leading to wide confidence ranges and were 

underpowered to evaluate certain associations. 

 

3.4 Summary 

This chapter examines the impact of immunoreactivity test reversion on ARI estimates, using a 

simple compartmental model of Mtb infection. Incorporating empirical reversion probabilities 

from TST and IGRA studies, the analysis reveals that ignoring reversion leads to significant 

underestimation of ARI, with true values being 2–5 times higher in surveyed children and 

compounding further in older populations. This underestimation distorts Mtb transmission 

intensity estimates, biases TB mathematical models, and risks misguiding public health 

interventions. The findings highlight the importance of integrating test- and age-specific 

reversion adjustments into ARI calculations, or at minimum, into its interpretation, to better 

inform TB strategies. 
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Chapter 4: Global burden of viable Mycobacterium tuberculosis infection 

In this chapter, the second research paper of the thesis is presented to address Objective #2: to 

estimate the global burden of viable Mycobacterium tuberculosis (Mtb) infection, incorporating 

reversion-adjusted and age-specific annual risk of infection (ARI) trends, as well as self-

clearance of infection. The chapter opens with a concise overview of the research gap, followed 

by the preprint, supplementary material, and concludes with a brief summary. 

 

4.1 Introduction 

Determining the burden of Mycobacterium tuberculosis (Mtb) infection has always been a 

challenge. This is primarily because, in the absence of disease, its presence in the host cannot 

be directly measured, and instead relies on immunological memory of exposure to tuberculous 

antigens [1]. Consequently, previous estimates have centred on ‘latent’ tuberculosis infection 

(LTBI)—a non-disease, non-transmissible state—defined by immunoreactivity detected through 

a tuberculin skin test or an interferon-gamma release assay [1,2]. These studies suggest that 

approximately one-third to one-quarter of the global population has LTBI [3,4]. However, they 

actually represent a proportion of individuals who have been previously exposed to Mtb and 

exhibit tuberculous immunoreactivity, rather than necessarily viable Mtb infection, i.e. 

individuals capable of progressing to disease without re-infection [5]. Estimates of the latter 

accounts for the dynamic and transient nature of Mtb infection, providing useful insights into 

the population who would benefit from TB preventive therapy (TPT) [6]. 

 

Noting that the distinction between immunoreactivity and viable infection is critical, there are a 

number of assumptions to re-evaluate. Immunoreactivity, as a measure of past exposure, can 

be underestimated as it wanes or reverts [7]. Reversion reflects the decline of immune memory 

over time, which can occur due to the absence of ongoing exposure to Mtb antigens, assay 

variability, or changes in the host’s immune status [7]. Previous studies have used trends in ARI, 

derived from immunoreactivity, to estimate current prevalence [3,4]. However, these studies 

have not accounted for the stark underestimation of the ARI caused by immunoreactivity 

reversion [8], as noted in the previous chapter. Furthermore, the ARI is often extrapolated from 

immunoreactivity surveys in children, even though they experience less Mtb transmission as 

compared to adults [9]. Lastly, evidence suggests that a substantial proportion of individuals 

infected may clear the infection without treatment, meaning they no longer harbour viable Mtb 

[5,10]. By addressing these assumptions, we can grasp a more refined understanding of viable 

Mtb, thereby providing actionable insights for TB prevention. 
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4.2 Research paper 

The following pages contain the Research Paper Cover Sheet, the copyright license, the preprint 

of the research paper, and the supplementary material for: Schwalb A, Dodd PJ, Rickman HM, 

Ugarte-Gil CA, Horton KC, Houben RMGJ. Estimating the global burden of viable Mycobacterium 

tuberculosis infection. SSRN. 2024. DOI:10.2139/ssrn.5017943 [11]. 
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Abstract
Background: Estimating the proportion of individuals currently infected with Mycobacterium 

tuberculosis (Mtb) is key for informing global health policies. Although a substantial portion of 

the global population exhibit tuberculous immunoreactivity, not all have a viable infection that 

can progress to disease. Moreover, individuals with recent infections are at a higher risk of 

developing tuberculosis. Here, we present estimates of the global burden of viable Mtb infection, 

using new insights into the natural history of TB.

Methods: We constructed country-specific trends in annual risk of infection considering 

estimates of TB burden, immunoreactivity reversion, and age-specific mixing. We applied these 

trends to a deterministic mathematical model incorporating reinfection and self-clearance to 

estimate recent (within 2 years) and total viable Mtb infections. Self-clearance rates were 

informed by empirical data and modelling estimates; the robustness of the model to 

assumptions about long-term self-clearance rates was explored.

Findings: In 2022, 156 million people (95%UI:127-199) were recently infected with viable Mtb, 

equating to 2.0% (95% uncertainty interval [UI]:1.6-2.5) of the global population. Depending on 

assumptions regarding long-term self-clearance rates, we estimate that between 4.9% 

(95%UI:4.4-5.6) and 7.7% (95%UI:6.9-8.5) of the global population harbour a viable infection, 

corresponding to 387 (95%UI:347-441) and 606 (95%UI:549-670) million people, respectively. 

Of those recently infected, 11.5% (95%UI:10.5-12.3) were children under 15 years of age. Most 

recent infections were found in Southeast Asia (47.9%; 95%UI:37.6-59.4) and the Western 

Pacific regions (25.7%; 95%UI:17.6-35.8). India, China, and Indonesia had the highest burden 

with 41.7 (95%UI:22.3-76.7), 21.6 (95%UI:11.1-41.8), and 14.2 (95%UI:8.7-22.8) million recent 

Mtb infections, respectively.

Interpretation: Our findings offer the first global burden estimates of viable Mtb infection. New 

insights reveal a sizable population recently infected with viable Mtb and at high risk of 

progression to disease. New diagnostic tools that can detect individuals with viable Mtb —those 

who would benefit most from TB preventive therapy—are urgently needed. 

Funding: European Research Council (ERC).
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Research in context 
Evidence before this study
We searched PubMed on 28 August 2024 for articles estimating the global burden of 

Mycobacterium tuberculosis (Mtb) infection, using the following search terms in the title or 

abstract, with no date or language restrictions: “(TB OR tuberc*) AND (infection) AND (global 

AND burden)." We identified 600 articles, two of which provided global estimates of 'latent' 

tuberculosis infection (LTBI), published in 1999 and 2016, estimating that approximately one-

third and one-quarter of the global population were infected with Mtb, respectively. In parallel, 

we reviewed the estimates of the Global Burden of Disease study, which similarly suggest that, 

over the last decade, one-quarter of the global population has LTBI. These estimates of LTBI 

represent a proportion of individuals who have been previously exposed to Mtb and exhibit 

tuberculous immunoreactivity, rather than viable Mtb. Notably, these estimates were based on 

assumptions of permanent immunoreactivity and lifelong Mtb infection. Our search did not 

identify any prior studies that considered self-clearance in their estimates to account for the 

viability of infection.

Added value of this study
Our study introduces an estimate of the global population harbouring viable Mtb infection with a 

particular focus on those at high risk of progression to disease. To achieve this, we introduced 

several novel steps. Firstly, we constructed trends in the annual risk of infection (ARI), adjusting 

for immunoreactivity reversion and age-specific social mixing patterns; this approach addresses 

the underestimation of ARI in adults from using data in infection rates in children, providing a 

higher and more accurate representation of the force of infection. Secondly, we utilise evidence 

that a substantial portion of individuals may self-clear their infection, integrated this into a 

deterministic mathematical model, and thus provided an estimate of viable Mtb infection rather 

than an estimate of tuberculous immunoreactivity. Thirdly, we focused on recent infections, 

acknowledging that the highest risk of progression to disease occurs within the first two years 

since infection. Finally, we provide country-specific estimates for 171 nations, while also 

accounting for population dynamics.

Implications of all the available evidence
Our findings indicate that in 2022, 156 million people globally had a recent viable Mtb infection, 

highlighting a sizable population at high risk of progressing to disease. Additionally, we estimate 

that 5 to 8% of the global population was harbouring a viable Mtb infection in 2022, contrasting 
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with previous estimates of the proportion exposed to Mtb. These results underscore the need to 

develop tests that can detect viable Mtb, rather than relying on measures of immunological 

memory, as such tests would more accurately identify those who would benefit from preventive 

therapy. 
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Background 
Estimates of Mycobacterium tuberculosis (Mtb) infection burden are fundamental in shaping 

global health strategies for tuberculosis (TB).1 These estimates guide key interventions, such as 

the provision of TB preventive therapy (TPT) to individuals infected with Mtb, which is vital for 

reducing TB incidence.2 Therefore, it is critical that estimates capture the number of individuals 

harbouring viable Mtb infection, i.e., an infection capable of progressing to disease.3 

Furthermore, these estimates should account for the recency of infection, as most infected 

individuals who progress to disease will do so within two years of infection.4 Focusing on recent 

viable Mtb infection sets a medically actionable target for optimising the prevention cascade and 

the population to target with TPT.1,3 Additionally, such estimates would offer deeper insights into 

the reservoir fuelling ongoing Mtb transmission in the coming years.1

Previous studies have estimated that a substantial portion of the global population had ‘latent’ 

TB infection (LTBI), an asymptomatic state defined by the presence of immunoreactivity to 

tuberculous antigens.5–7 Although these estimates essentially reflect individuals exposed to Mtb 

and still exhibiting immunoreactivity, they are often used interchangeably to indicate current 

infection.1,8 As our understanding of the natural history of TB has evolved,9,10 long-standing 

assumptions that informed those estimates warrant reconsideration. 

Firstly, estimates of LTBI used the annual risk of infection (ARI) as a metric for the force of 

infection experienced by a population. The ARI is derived from surveys of immunoreactivity 

prevalence, and assumes immunoreactivity persists over time;11 however, immunoreactivity can 

wane and in several cases revert,12 leading to significant underestimation of the actual ARI.13,14 

Secondly, the ARI is often extrapolated from surveys in children;11 however, Mtb transmission to 

children is less common than adolescents and adults.15 As a result, infection incidence (and the 

estimated ARI) may be underestimated in older age groups, who have higher contact rates with 

individuals with infectious TB.14,15 Both reversion and contact patterns suggest that the true 

force of infection in adults is likely higher than previously assumed. If so, this would significantly 

increase the estimated global burden of infection, especially given the long-held assumption of 

lifelong Mtb infection. However, this assumption has been challenged by estimates suggesting 

that a large proportion (>90%) of individuals self-clear their infection without treatment and are 

no longer at risk of TB in the absence of reinfection.8,9,16,17 Therefore, considering the 

phenomenon of self-clearance in our estimates would likely result in a lower global burden of 

infection than previously thought.9  
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These progressive insights underscore the need for estimates that account for the dynamic 

nature of Mtb infection. By incorporating these factors, more accurate assessments of the 

current global burden of viable Mtb infection can be made to guide effective TB prevention 

strategies. In this study, we estimate the global burden of viable Mtb infection using a 

mathematical modelling approach that incorporates recent insights into TB natural history.

Methods 
Annual risk of infection

To estimate the burden of viable Mtb infection, we constructed national ARI trajectories 

spanning from 1950 to 2022, based on the methods used by Houben and Dodd.6 The 

trajectories were constructed using a Gaussian process (GP) regression, a flexible, non-

parametric framework combining different sources of estimates with the assumption of a normal 

approximation to the likelihood. These were fitted to 171 countries (comprising 99.6% of the 

world population) using two sources of ARI estimates. Direct ARI estimates were obtained from 

nationally representative immunoreactivity surveys identified in previous searches (Table S1 
and Supplementary Material SM1). Most surveys used tuberculin skin test (TST) positivity 

prevalence and were conducted in children aged 6 to 9 years old. For estimates reported as a 

single value without presentation of uncertainty, an additional step is taken to quantify 

measurement precision (Supplementary Material SM2). Moreover, indirect ARI estimates were 

derived from TB prevalence estimates using the revised Stýblo rule and adjusted to account for 

the influence of age and HIV on smear positivity (Supplementary Material SM3). TB 

prevalence estimates were calculated by converting the most recent World Health Organization 

(WHO) TB incidence estimates (from 2000-2022) by applying an average duration of disease 

(Supplementary Material SM4). Furthermore, accounting for the impact of immunoreactivity 

reversion and that the true ARI is roughly 3 times higher than calculated, all ARI estimates are 

adjusted based on this underestimation.13 Additionally, measurement uncertainty was also 

increased by 50% to account for this adjustment. The GP regression with a linear trend was 

applied to the reversion-adjusted data on ARI (on a log scale) and the measurement precision 

per country. For each country, 1,000 simulated ARI trajectories from 1950 to 2022 were 

generated.

Mixing and age-specific risks of infection
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To address the higher risk of infection in adults compared to children, we used age-specific 

estimates of TB incidence as a proxy for TB prevalence and then applied contact mixing 

matrices to derive the corresponding hazard ratios for each age group. We defined three distinct 

age groups to encapsulate varying ARIs: under 15 years, 15 to 45 years, and 45 years and 

older. Using the estimated TB incidence disaggregated by age and country,18 we calculated the 

relative TB incidence per capita, using the under-15-year-old age group as the reference, 

assuming that this age group has low infectiousness (Figure S1). Similarly, by employing the 

synthetic country-specific contact mixing matrices developed by Prem et al.,19 we obtained the 

average number of contacts between the defined age groups (Figure S2). We then integrated 

these data to estimate the relative ARI for each age group, again using the under-15-year-old 

age group as the reference (Figure S3). Finally, ARI trajectories were subdivided into three age 

groups and adjusted based on relative ARI; for countries with missing data, we applied the 

regional relative ARI.

Self-clearance rates

Using a Bayesian approach, self-clearance rates were calibrated by tracking an infected cohort 

over time, using a similar model structure as described above, but without accounting for 

infection or reinfection. Informed by the pathways described in the natural history of TB model 

by Horton et al.,10 the proportions of the cohort that self-clear or recover (i.e., no longer harbour 

viable Mtb infection) at years 1 (95% CI: 80.1-81.7%), 2 (95% CI: 91.4-92.5%), and 10 (95% CI: 

96.9-97.5%) were used as calibration targets. Due to the lack of data on the proportion after 10 

years, we opted to assume a range of 98.5-99.5% as long-term proportion self-cleared and 

calibrated the associated post-10-year self-clearance rate under two different scenarios: one 

where this was reached by year 20 post-infection (high self-clearance) and another for year 50 

(low self-clearance) (Figure S4). All rates were assigned uninformed uniform priors and 

posterior estimates were calculated using a Markov chain Monte-Carlo algorithm in Stan via R 

statistical software.20,21 We assumed that self-clearance rates were constant and were not 

influenced by age or year. Further details on calibration are available in the Supplementary 
Material SM5.

Model structure

We developed a deterministic model tracking Mtb infection and self-clearance of infection 

across five-year age groups (Figure S5). Parameters and descriptions can be found in Table 
S2. Once individuals are infected, they can progress through four infection states reflecting 
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various times since infection. In each infection state, individuals can self-clear infection and 

revert to not being infected. Individuals who have been distally infected (i.e. more than two 

years), are at risk of reinfection, adjusted by a protection factor.22 The force of infection was 

determined by the reversion-adjusted and age-group specific ARI trajectory for each country. 

The self-clearance rates were obtained from the calibrated scenarios. The model was 

constructed using R version 4.3.2 for statistical computing and graphics.21 Further details and 

model equations are available in the Supplementary Material SM6-7.

Model run and outputs

For each country, all 1,000 ARI trajectories from 1950 to 2022 were used to estimate the 

proportion of each age group harbouring viable Mtb at various times since infection. These 

proportions were combined with population estimates obtained from the United Nations World 

Population Prospects.23 Estimates for absolute numbers and prevalence of viable Mtb infection 

were summarised and explored by age group, country, region, and globally. For the main 

results, we report the estimates based on the high self-clearance scenario as a conservative 

approach to estimating viable Mtb infection in 2022, with robustness compared against the low 

self-clearance scenario. All results are reported as medians with their corresponding 95% 

uncertainty intervals (95%UI), calculated as the 2.5% to 97.5% percentile range. 

GATHER reporting

This study was reported in accordance with the Guidelines for Accurate and Transparent Health 

Estimates Reporting (GATHER).24 Figure 1 provides a comprehensive conceptual overview of 

the study including methods and data sources. The GATHER checklist is also available as 

Supplementary Material. 

Role of the funding source

The funders had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding author had full access to all the data in the study and 

had final responsibility for the decision to submit for publication.

Results 
Annual risk of infection estimates

Figure 2 shows the fitted ARI trajectories with and without reversion and age-specific 

adjustments for India, Indonesia, and China—countries with the highest estimated TB incidence 
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in 2022. Compared to the under-15-year-old population, the average relative ARI was 4.3 for the 

15 to 45-year-old population and 3.3 for those aged 45 and older. Regional relative ARIs by age 

group are available in Table S3. For India, Indonesia, and China, the estimated ARI for the 15 

to 45 years age group was 8.7% (95% UI: 4.3-17.8), 16.1% (95% UI: 8.1-30.5), and 3.6% (95% 

UI: 1.6-8.0), respectively. ARI estimates for 2022 for the remaining countries on the WHO's list 

of 30 high TB burden countries are shown in Table S4. When compared to the unadjusted ARI 

estimates for 2014 from Houben and Dodd,6 the ARI for the under 15 years age group was 3.1 

times higher (IQR: 2.6-4.0), reflecting the increase in the force of infection due to adjustments 

for reversion underestimation (Table S5).

Global burden of infection estimates

We estimate that 2.0% (95%UI: 1.6-2.5) of the global population was recently infected with 

viable Mtb, amounting to approximately 155.6 million people (95%UI: 127.2-198.7) (Table 1 and 
Table 2). Estimates of recently infected were robust across scenarios. In contrast, the overall 

infected population ranged between 4.9% (95%UI: 4.4-5.6) and 7.7% (95%UI: 6.9-8.5), 

depending on assumptions of long-term self-clearance rates. 

Regional and country-level infection estimates

Of all recent infections, over 87% were found in the three regions of Southeast Asia (47.9%; 

95%UI: 37.6-59.4), Western Pacific (25.7%; 95%UI: 17.6-35.8), and Africa (13.7%; 95%CI: 

10.3-17.5) (Table S5). At the country level, India, China, and Indonesia combined to about 50% 

of global recent infections, with 41.7 (95%UI: 22.3-76.7), 21.6 (95%UI: 11.1-41.8), and 14.2 

(95%UI: 8.7-22.8) million recent Mtb infections, respectively (Table S6). The remaining 

countries in the top 10 were all from the WHO's list of 30 high TB burden countries.25 Figure 3 

shows the regional and country-level variation in the prevalence of recent viable Mtb infections. 

Here, the countries with the highest prevalence of recent viable Mtb infections were North Korea 

(9.3%; 95%UI: 4.8-16.3), The Philippines (8.5%; 95%UI: 4.4-16.4), and Cambodia (5.4%; 

95%UI: 2.9-9.3) (Table S7). Estimates of viable Mtb infection for all 171 countries are available 

in the Supplementary File.

Age trends

The proportions of individuals with viable Mtb infection by age group and region are shown in 

Figure S6. Across all regions, higher infection estimates are concentrated in the adult 

population younger than 45 years old, in line with the increased ARI. Among those recently 
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infected, 11.5% (95%UI: 10.5-12.3) were in children under 15 years of age, amounting to 17.6 

million (95%UI: 14.5-22.2) (Table 1 and Table 2). There was a substantial regional disparity in 

recent infections among children, ranging from 5.3% (95%UI: 4.8-6.0) in the European Region 

to 22.5% (95%UI :21.4-23.6) in the African Region, likely due to differences in population 

structure (Table 2).

Discussion 
Our findings provide an estimate of the global burden of viable Mtb infection, with approximately 

156 million people, 2% of the world’s population, recently infected and at immediate high risk of 

progression to disease, with significant geographical variability. Considering a reasonable range 

of long-term self-clearance rate assumptions, we estimate the total burden to lie between 5% 

and 8%. This underscores the need for enhanced diagnostic and management strategies to 

identify and treat these individuals, as only those with viable Mtb infection can possibly benefit 

from TPT.

Our estimates further highlight the important distinction between viable Mtb infection and 

positive immunoreactivity tests. Despite working on a similar construction of ARI trajectories, 

there is a stark numerical contrast between our viable Mtb infection estimates and the latest 

LTBI estimates.6 The main contributor to this difference is the inclusion of self-clearance of 

infection in our model, and thus shifting the change of the estimate definition from (historical) 

exposure to Mtb (as measured by immunoreactivity) to viable Mtb infection. This was first 

suggested by Emery et al. where the population with viable Mtb infection was markedly smaller 

(up to 20%) than assumed in India, China, and Japan.9 Similarly, our estimates indicate a lower 

overall proportion of Mtb infection, even after adjusting for the increased ARI experienced 

(considering immunoreactivity reversion and age-specific risks). Self-clearance is now widely 

acknowledged, as reflected by a shift in WHO reporting, which now describes the quarter of the 

population figure as “having been infected” rather than “currently infected”.1,18 Self-clearance 

therefore outweighed the increased force of infection generated by revised understanding of the 

true ARI underneath empirical measurements.13,14 However, the shift in ARI has led to a higher 

estimate of the recently infected population are compared to previous (2.0 vs 0.8%), suggesting 

a rapid turnover of the population at risk of developing TB.6 

While this study attempts to quantify the extent of viable Mtb infection, we remain unable to 

directly detect it. Current diagnostic tests for TBI, mainly TSTs and interferon-gamma release 
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assays (IGRA), detect immunoreactivity to tuberculous antigens but do not directly detect the 

presence of the organism itself.26 Similarly, this pattern can also be observed in the diagnosis of 

TB among individuals with non-specific chest radiography abnormalities. Additionally, they are 

an inaccurate surrogate of viability as they can remain detectable (positive) after provision of 

TPT.27 This poses a significant challenge for national TB programmes, as TPT is often offered 

to those with a single positive immunoreactivity test,28 whereas the number of those that would 

truly benefit is likely smaller, especially in absence of an indicative patient history, such as 

recent contact with a TB patient. To improve and expand the use of TPT, there is a clear need 

for improved biomarkers for Mtb infection, with some having been explored recently.29,30

Our modelling study is not without limitations. Firstly, contemporary empirical ARI estimates are 

scarce, leading to substantial uncertainty for the ARI in recent years. While still requiring 

adjustments to account for reversion, recent surveys using IGRA or new TB antigen-based skin 

tests would improve ARI estimates, especially as they reduce false positive results among 

children who received Bacillus Calmette Guerin (BCG) vaccination.26 Furthermore, in our 

attempt to capture a global estimate, we had to make several simplifications. For example, we 

treated all individuals as experiencing one of three age-specific ARIs, disregarding existing 

population and individual factors that could increase or decrease the force of infection. We also 

did not account for migration, assuming that all countries were epidemiologically independent. 

Additionally, the reversion underestimation factor was simplified; it was determined by a single 

value and applied uniformly to all ARI estimates. While reversion rates vary significantly across 

different ages and populations,12 we opted for an average value and accounted for decreased 

measurement precision to reflect the additional uncertainty introduced by this assumption. 

Similarly, ARI estimates could have been further refined by breaking them down into distinct 5-

year age groups, rather than using only three broad categories, which resulted in a coarse age 

group distribution in the estimates. However, as our results indicate, self-clearance of infection 

was the most significant operating factor in the model, suggesting that the added granularity 

would be unlikely to have provided qualitatively different findings. These necessary 

compromises may have introduced some biases in the accuracy of our results, but they were 

appropriate to ensure the feasibility of country, regional, and global burden assessments.

Our findings provide valuable global estimates of the burden of viable Mtb infection, 

emphasising the crucial distinction from positive immunoreactivity tests. By more accurately 

accounting for the true force of infection and the immune system's ability to clear infections, we 
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were able to better identify a sizeable population recently infected and at risk of progressing to 

disease. This approach underscores the importance of distinguishing viable Mtb infection as a 

prerequisite for TB disease,31 as opposed to the concept of ‘latency’, most of which does not 

represent a dormant TB risk. There is an urgent need for enhanced diagnostic tools capable of 

detecting viable Mtb infection, allowing us to target those most likely to benefit from TB 

preventive therapy.

Author contributions: Conceptualisation: AS, PJD, and RMGJH; Data curation: AS; Formal 

analysis: AS and PJD; Writing – original draft: AS; Writing – review & editing: PJD, HMR, 

CAUG, KCH, and RMGJH; Supervision: PJD, KCH, and RMGJH.

 
Acknowledgements: The authors would like to acknowledge Prof. Marcel Behr and Prof. Dave 

Moore for their valuable insights on the methodology employed and estimates generated. 

Additionally, the authors extend their gratitude to Dr. Tomos Prŷs-Jones for his assistance in 

developing the pipeline to run the analyses on the high-performance computing platform.

Funding: This work was supported by the European Research Council [grant number 757699 

to AS, KCH, and RMGJH]. The funders had no role in the study design, collection, analysis, or 

interpretation of data, writing the manuscript, or the decision to submit the paper for publication.

 
Conflict of interest: All authors declare no conflicts of interest.

 
Data availability: Data and analysis code are available on GitHub 

(https://github.com/aschwalbc/MtbInf).

References:
1 Behr MA, Edelstein PH, Ramakrishnan L. Rethinking the burden of latent tuberculosis to 

reprioritize research. Nature Microbiology 2024; 9: 1157–8.

2 World Health Organization. The End TB Strategy. Geneva, Switzerland: WHO, 2015.

3 Matteelli A, Churchyard G, Cirillo D, et al. Optimizing the cascade of prevention to protect 
people from tuberculosis: A potential game changer for reducing global tuberculosis 
incidence. PLOS Glob Public Health 2024; 4: e0003306.

4 Behr MA, Edelstein PH, Ramakrishnan L. Revisiting the timetable of tuberculosis. BMJ 
2018; 362. DOI:10.1136/bmj.k2738.

5 Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC. Consensus statement. Global 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5017943

Pr
ep

rin
t n

ot 
pe

er
 re

vie
wed

  



 

 Chapter 4 – Page 86 

13

burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO 
Global Surveillance and Monitoring Project. JAMA 1999; 282: 677–86.

6 Houben RMGJ, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-
estimation Using Mathematical Modelling. PLoS Med 2016; 13: e1002152.

7 GBD Tuberculosis Collaborators. Global, regional, and national burden of tuberculosis, 
1990-2016: results from the Global Burden of Diseases, Injuries, and Risk Factors 2016 
Study. Lancet Infect Dis 2018; 18: 1329–49.

8 Behr MA, Edelstein PH, Ramakrishnan L. Is Mycobacterium tuberculosis infection life long? 
BMJ 2019; 367: l5770.

9 Emery JC, Richards AS, Dale KD, et al. Self-clearance of Mycobacterium tuberculosis 
infection: implications for lifetime risk and population at-risk of tuberculosis disease. Proc 
Biol Sci 2021; 288: 20201635.

10 Horton KC, Richards AS, Emery JC, Esmail H, Houben RMGJ. Reevaluating progression 
and pathways following Mycobacterium tuberculosis infection within the spectrum of 
tuberculosis. Proc Natl Acad Sci U S A 2023; 120: e2221186120.

11 Cauthen GM, Pio A, ten Dam HG. Annual risk of tuberculous infection. 1988. Bull World 
Health Organ 2002; 80: 503–11; discussion 501-2.

12 Dale KD, Schwalb A, Coussens AK, et al. Overlooked, dismissed, and downplayed: 
reversion of Mycobacterium tuberculosis immunoreactivity. Eur Respir Rev 2024; 33: 
240007.

13 Schwalb A, Emery JC, Dale KD, Horton KC, Ugarte-Gil CA, Houben RMGJ. Impact of 
Reversion of Mycobacterium tuberculosis Immunoreactivity Tests on the Estimated Annual 
Risk of Infection. Am J Epidemiol 2023; published online Feb 7. DOI:10.1093/aje/kwad028.

14 Dowdy DW, Behr MA. Are we underestimating the annual risk of infection with 
Mycobacterium tuberculosis in high-burden settings? Lancet Infect Dis 2022; published 
online May 5. DOI:10.1016/S1473-3099(22)00153-0.

15 Dodd PJ, Looker C, Plumb ID, et al. Age- and Sex-Specific Social Contact Patterns and 
Incidence of Mycobacterium tuberculosis Infection. Am J Epidemiol 2016; 183: 156–66.

16 Ferebee SH. Controlled chemoprophylaxis trials in tuberculosis. A general review. Bibl 
Tuberc 1970; 26: 28–106.

17 Opie EL, Aronson JD. Tubercule bacilli in latent tuberculosis lesions and in lung tissue 
without tuberculosis lesions. Arch Pathol 1927; 4: 1–21.

18 World Health Organization. Global Tuberculosis Report 2023. Geneva, Switzerland: WHO, 
2023 https://iris.who.int/bitstream/handle/10665/373828/9789240083851-
eng.pdf?sequence=1.

19 Prem K, van Zandvoort K, Klepac P, et al. Projecting contact matrices in 177 geographical 
regions: An update and comparison with empirical data for the COVID-19 era. PLoS 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5017943

Pr
ep

rin
t n

ot 
pe

er
 re

vie
wed

  



 

 Chapter 4 – Page 87 

14

Comput Biol 2021; 17: e1009098.

20 Stan Development Team. Stan Modeling Language Users Guide and Reference Manual, 
v2.35. 2024 https://mc-stan.org (accessed Aug 9, 2024).

21 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: 
R Foundation for Statistical Computing, 2024 https://www.r-project.org/ (accessed Aug 9, 
2024).

22 Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of 
progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. 
Clin Infect Dis 2012; 54: 784–91.

23 United Nations. World Population Prospects - Population Division. World Population 
Prospects 2022. https://population.un.org/wpp/ (accessed June 2023).

24 Stevens GA, Alkema L, Black RE, et al. Guidelines for Accurate and Transparent Health 
Estimates Reporting: The GATHER statement. Lancet 2016; 388: e19–23.

25 World Health Organization. WHO global lists of high burden countries for tuberculosis (TB), 
TB/HIV and multidrug/rifampicin-resistant TB (MDR/RR-TB), 2021-2025: background 
document. Geneva, Switzerland: WHO, 2021 
https://play.google.com/store/books/details?id=o3dyEAAAQBAJ.

26 Getahun H, Matteelli A, Chaisson RE, Raviglione M. Latent Mycobacterium tuberculosis 
infection. N Engl J Med 2015; 372: 2127–35.

27 Johnson DF, Malone LL, Zalwango S, et al. Tuberculin skin test reversion following 
isoniazid preventive therapy reflects diversity of immune response to primary 
Mycobacterium tuberculosis infection. PLoS One 2014; 9: e96613.

28 Hamada Y, Gupta RK, Quartagno M, et al. Predictive performance of interferon-gamma 
release assays and the tuberculin skin test for incident tuberculosis: an individual 
participant data meta-analysis. EClinicalMedicine 2023; 56: 101815.

29 Belay M, Tulu B, Younis S, et al. Detection of Mycobacterium tuberculosis complex DNA in 
CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: 
an observational study. Lancet Microbe 2021; 2: e267–75.

30 Scriba TJ, Fiore-Gartland A, Penn-Nicholson A, et al. Biomarker-guided tuberculosis 
preventive therapy (CORTIS): a randomised controlled trial. Lancet Infect Dis 2021; 21: 
354–65.

31 Coussens AK, Zaidi SMA, Allwood BW, et al. Classification of early tuberculosis states to 
guide research for improved care and prevention: an international Delphi consensus 
exercise. Lancet Respir Med 2024; published online March 22. DOI:10.1016/S2213-
2600(24)00028-6.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5017943

Pr
ep

rin
t n

ot 
pe

er
 re

vie
wed

  



 

 Chapter 4 – Page 88 

15

Table 1. Number of individuals with viable Mycobacterium tuberculosis infection in 2022.

WHO Region Recent infections 
(M) [95%UI]

Recent infections in 
children (M) [95%UI]

All infections –
high self-clearance 

scenario (M) [95%UI]

All infections –
low self-clearance 

scenario (M) [95%UI]
AFR 21.3 [17.9–26.2] 4.8 [4.0–6.0] 53.3 [48.5–59.6] 80.3 [72.3–89.2]

AMR 5.4 [4.1–7.3] 0.4 [0.3–0.5] 14.6 [12.2–18.6] 44.1 [29.1–67.9]

EMR 8.5 [5.6–13.5] 1.7 [1.1–2.8] 22.2 [18.0–28.6] 43.9 [35.1–54.3]

EUR 5.2 [4.1–7.0] 0.3 [0.2–0.4] 17.3 [15.1–20.4] 46.8 [37.9–57.9]

SEA 74.3 [52.4–110.3] 7.5 [5.1–11.6] 173.6 [143.8–216.9] 225.6 [186.5–280.4]

WPR 39.4 [26.5–60.3] 2.8 [1.9–4.4] 103.6 [83.1–134.1] 160.2 [129.2–206.2]

GLOBAL 155.6 [127.2–198.7] 17.6 [14.5–22.2] 387.0 [346.6–440.6] 605.5 [548.5–670.4]

Absolute number of individuals globally and by WHO region infected with viable Mycobacterium 

tuberculosis in 2022. Numbers are in millions (M), with brackets indicating 95% uncertainty intervals 

(95%UI). Recent infection is defined as occurring within two years. Children are classified as individuals 

under 15 years of age. Estimates for all infections are provided and disaggregated based on different 

scenarios depending on assumptions about long-term self-clearance rates. WHO: World Health 

Organization; AFR: African Region; AMR: Region of the Americas; EMR: Eastern Mediterranean Region; 

EUR: European Region; SEA: South-East Asia Region; WPR: Western Pacific Region. 
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Table 2. Proportion of population with viable Mycobacterium tuberculosis infection in 
2022.

WHO Region
Recent infection 
prevalence (%) 

[95%UI]

Proportion of recent 
infections in children 

(%) [95%UI]

All infections 
prevalence –

high self-clearance 
scenario (%) [95%UI]

All infections 
prevalence –

low self-clearance 
scenario (%) [95%UI]

AFR 1.8 [1.5–2.2] 22.5 [21.4-23.6] 4.5 [4.1-5.1] 6.8 [6.1-7.6]

AMR 0.5 [0.4–0.7] 7.4 [6.8-7.9] 1.4 [1.2-1.8] 4.3 [2.8-6.6]

EMR 1.1 [0.7–1.7] 20.2 [19.5-20.9] 2.9 [2.3-3.7] 5.7 [4.5-7.0]

EUR 0.6 [0.4–0.8] 5.3 [4.8-6.0] 1.9 [1.6-2.2] 5.0 [4.1-6.2]

SEA 3.6 [2.5–5.3] 7.1 [5.6-9.2] 8.4 [7.0-10.5] 10.9 [9.0-13.6]

WPR 2.0 [1.4–3.1] 10.0 [9.6-10.5] 5.4 [4.3-6.9] 8.3 [6.7-10.7]

GLOBAL 2.0 [1.6–2.5] 11.4 [10.4-12.1] 4.9 [4.4-5.6] 7.7 [6.9-8.5]

Proportion of population globally and by WHO region infected with viable Mycobacterium tuberculosis in 

2022. Values are given percentages (%), with brackets indicating 95% uncertainty intervals (95%UI). 

Recent infection is defined as occurring within two years. Children are classified as individuals under 15 

years of age. Estimates for all infections are provided and disaggregated based on different scenarios 

depending on assumptions about long-term self-clearance rates. WHO: World Health Organization; AFR: 

African Region; AMR: Region of the Americas; EMR: Eastern Mediterranean Region; EUR: European 

Region; SEA: South-East Asia Region; WPR: Western Pacific Region. 
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Figure 1.  Diagram of conceptual overview of study.

Conceptual overview of study as per Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER).24 ARI: Annual risk of 

infection; HIV: Human immunodeficiency virus; ODE: Ordinary differential equation; TB: Tuberculosis; WHO: World Health Organization.
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Figure 2.  Fitted trajectories for annual risk of infection and adjustments.

Fitted trajectories for the annual risk of Mycobacterium tuberculosis infection for selected countries and 

corresponding adjustments. The first column shows ARI trajectories without adjustment, the second 

column shows trajectories adjusted for immunoreactivity reversion, and the third column shows the ARI 

trajectories subdivided by age group, using children under 15 years of age as the reference group for 

relative ARIs. Greater uncertainty is observed in earlier years, which narrows as ARI data becomes 

available from immunoreactivity surveys or TB prevalence estimates. Data points represent available ARI 

data, with black circles representing TB prevalence estimates and black triangles representing nationally 

representative immunoreactivity surveys; error bars reflect measurement precision to ± one standard 

deviation. Lines represent the mean ARI, and the shaded area shows ± one standard deviation from the 

Gaussian process regression with a linear trend. ARI: Annual risk of infection; IND: India; CHN: China; 

IDN: Indonesia.
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Figure 3.  Prevalence of recent viable Mycobacterium tuberculosis infection in 2022.

Median estimated population prevalence of recent viable Mycobacterium tuberculosis infection by country 

in 2022. Recent infection is defined as occurring within two years.
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Supplementary Methods: 

SM1. Immunoreactivity surveys 

Direct annual risk of infection (ARI) estimates were obtained from nationally representative 

immunoreactivity surveys, most of which used the tuberculin skin test (TST) and were implemented 

among children (Table S1). The immunoreactivity surveys were conducted in 42 countries over 

approximately 250 years, resulting in 6 surveys per country-year. These surveys had been 

previously identified by Cauthen et al. and a systematic search by Houben and Dodd.1,2 

Additionally, we extracted nationally representative surveys from a systematic review by Rickman 

et al. (in preparation).  

 

SM2. Uncertainty in annual risk of infection estimates 

Typically, ARI estimates are reported as a point estimate, i.e. without presentation of uncertainty. 

Immunoreactivity surveys report the ARI alongside the sample size and the mean age of 

participants; this data can be used to conservatively estimate the precision associated with the 

study, as previously described by Houben and Dodd.2 Using the information above, the precision 

can be conservatively estimated as: ! "#$⁄ , where " is the sample size, #$ is the mean age of 

participants, and ! is the force of infection or ARI.  

 

SM3. The Stýblo rule 

In 1985, Dr. Karel Stýblo formulated a guiding rule for TB epidemiology.3 The Stýblo rule assumes a 

fixed mathematical relationship, equating an ARI of 1% to an incidence of smear-positive disease 

of 50 per 100,000 inhabitants and a prevalence of smear-positive disease of 100 per 100,000 

inhabitants.3 This rule implies that one individual with smear-positive TB will cause in ten Mtb 

infections per year.3 However, this widely used rule of thumb was derived from limited 

observations from the prechemotherapy era, and several studies have since suggested that it may 

no longer be applicable.4–6 Transmission from one individual with smear-positive TB might be lower, 

for reasons such as prompt diagnosis and treatment, or if the individual is a child or has HIV 

infection, both of which reduce infectiousness, among other factors.5,6 As seen in the study by 

Houben and Dodd,2 a revised Stýblo rule was used by fitting a log-normal distribution to data from 

more recent ARI and TB prevalence estimates.7 Additionally, ARI estimates were adjusted to 

account for the proportion of prevalent TB that is smear-positive in children and in people living 

with HIV.2 
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SM4. TB prevalence estimates 

The World Health Organization (WHO) has published a global tuberculosis (TB) report annually 

since 1997.8 This report includes WHO-generated estimates of TB mortality, incidence, among 

other metrics. While TB prevalence used to be featured in the document, the latest estimate 

provided dates back to 2014. We used the simple approximate relation of prevalence (&), incidence 

('), and the average duration of disease (()) to update TB prevalence estimates.9 This is expressed 

as follows: & = ' × (). We can then express the average duration of disease as the prevalence-to-

incidence ratio. We obtained this value by averaging the estimated prevalence and incidence per 

each country from the last WHO database featuring prevalence estimates (available in the GitHub 

repository). The country-specific average duration of disease is then applied to current TB 

incidence estimates (2000-2022) to obtain TB prevalence estimates. This method opts to draw 

from TB incidence estimates that are constantly revised and, in some cases, incorporate findings 

from national TB prevalence surveys conducted.  

 

SM5. Self-clearance rates calibration 

We developed a transition matrix model using the same structure as described in the manuscript 

and above. The model tracked an infected cohort in ‘Infected – Year 1’ as it experienced self-

clearance and infection year transitions as competing risks, without accounting for infection or 

reinfection. Calibration targets reflected the proportion of the cohort that self-cleared at years 1 

(80.9%; 95% CI: 80.1-81.7), 2 (91.9%; 95% CI: 91.4-92.5), and 10 (97.2%, 95% CI: 96.9-97.5), with 

an additional proportion (99.0%, 95% CI: 98.5-99.5) at either year 20 or year 50. Calibrated targets 

were modelled as being normally distributed. Self-clearance rates were drawn from exponential 

distributions with uninformed priors, assumed to be the same for ‘Infected – Year 1’ and ‘Infected – 

Year 2’, and then decreasing thereafter. Posterior estimates were calculated using a Markov chain 

Monte-Carlo algorithm in Stan via R statistical software.10,11 For each scenario, we generated 

80,000 parameter sets to be randomly sampled in each model run. The calibration fit was plotted 

for each scenario and is shown in Figure S4. 

 
SM6. Model structure 

We developed a deterministic compartmental model of Mycobacterium tuberculosis (Mtb) 

infection. The model captures the proportional population size of each country, and the structure is 

repeated across seventeen 5-year age groups until 80+ years.  
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The model structure explores the dynamics of Mtb infection, re-infection, and self-clearance of 

infection. Individuals in the ‘Uninfected’ compartment are exposed to Mtb as informed by the ARI 

(symbolised as !) of their corresponding age category. Upon infection, there is progression through 

a tunnel model of four ‘Infected’ compartments describing consecutive progression since time 

from infection. Transitions between infection are fixed values: ‘Infected - Year 1’ progresses to 

‘Infected – Year 2’ at rate ,! = 1, ‘Infected – Year 2’ progresses to ‘Infected – Years 3 to 10’ at ," =
1, and ‘Infected – Years 3 to 10’ progresses to ‘Infected – Years 10+’ at rate ,# = 1/8. All ‘Infected’ 

compartments can experience self-clearance of infection at varying rates 0$  (with 1 = 1,… ,4) 

informed by calibration; self-clearance effectively returns individuals back to the ‘Uninfected’ 

compartment. Individuals who have been distally infected (i.e. more than two years), ‘Infected – 

Years 3 to 10’ and ‘Infected – Years 10+’, are at risk of being reinfected at rate ! accounting for 

protection from reinfection 5, and thus return to ‘Infected - Year 1’. The model was constructed 

using R version 4.3.2 for statistical computing and graphics.11 

 

SM7. Model formulas 

To describe the model, we have employed the following variable descriptions which represent: 

§ 6%: the proportion of the population in age group 7 that is ‘Uninfected’. 

§ '%$: the proportion of the population in in age group 7 that is in the ‘Infected’ compartment 

for infection year 1, where: 

o 1 = 1: ‘Infected – Year 1’ 

o 1 = 2: ‘Infected – Year 2’ 

o 1 = 3: ‘Infected – Years 3 to 10’ 

o 1 = 4: ‘Infected – Years 10+’ 

§ 7: the seventeen 5-year age groups from 0-5 (7 = 1) to 80+ (7 = 17). 

§ ;"%: the fraction of the total population that belongs to age group 7. 

§ <&': the Kronecker delta, which is 1 when = = > and 0 otherwise. 

§ 5$: the relative risk of reinfection at infection year 1, where 5$ = 0 for 1 = 1 and 1 = 2. 

§ @(: the birth rate per capita at time A. 
§ !%,(: the force of infection at time A in age group 7.  

§ 0$: the self-clearance rate from infection year 1. 

§ ,$: the infection year 1 transition, where ,* = 0. 

  



 

 Chapter 4 – Page 98 

 6 

 
To describe the model, we have employed the following differential equations: 

!"!
!# = %!" ∙

'#
()!,#

∙ (1 − "!) − .!,# ∙ "! +0(0+ ∙
%

&'"
1!&) 

 

!1!&
!# = %&" ∙ .!,# ∙ "! − 1!& ∙ 2%!" ∙

'
()!,#

+ 0+ + (1 − %&%) ∙ ,+ + .!,# ∙ 3&4 + 

(1 − %&") ∙ ,+−1 ∙ 1!&(" + %&" ∙ .!,# ∙ 5"! + 0 3&! ∙ 1!&
!

%

&!'"
6 

 

The force of infection (!%,() is derived from national annual risk of infection trajectories spanning 

from 1950 to 2022. These trajectories were subdivided into three age groups (under 15 years, 15 to 

45 years, and 45 years and older) and adjusted based on relative ARI. 
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Supplementary Tables: 

Table S1. Immunoreactivity surveys used for annual risk of infection estimates. 

Country  
(ISO-3) 

Survey years 
(Mid-point) 

Number 
tested 

Age 
(Mid-point) 

ARI, % 
(95%CI) Reference 

Source: Cauthen et al. Bull World Health Organ 2002.1 

AFG 1963 (1963.5) 30,938 10.0 3.06 12 

AFG 1982 (1982.5) 881 7.5 3.53 13 

ARG 1960–1961 (1961.0) 1,259 7.5 0.53 14 

ARG 1967–1968 (1968.0) 1,221 7.0 1.31 15 

ARG 1967–1968 (1968.0) 3,196 7.0 0.57 15 

ARG 1974–1975 (1975.0) 3,590 7.0 0.23 15 

ARG 1974–1978 (1976.5) 26,902 6.5 0.56 16 

ARG 1979–1980 (1980.0) 443 7.0 0.29 15 

ARG 1979–1980 (1980.0) 2,125 7.0 0.23 15 

ARG 1983 (1983.5) 325 7.0 0.26 15 

BDI 1964 (1964.6) 202 17.5 2.66 17 

BDI 1982–1984 (1983.5) 912 20.5 1.17 18 

BHR 1969 (1969.5) 897 7.0 0.90 19 

BHR 1981 (1981.4) 6,151 7.0 0.20 19 

BRA 1983 (1983.5) 11,880 7.3 0.39 20 

BRA 1983 (1983.5) 3,507 7.0 0.56 20 

BWA 1956–1957 (1957.0) 1,450 6.6 5.79 21 

BWA 1981–1982 (1982.0) 257 6.5 1.30 22 

CHN 1979 (1979.5) 10,000* 7.5 1.01 23 

CMR 1964 (1964.3) 326 7.5 1.32 24 

CMR 1984 (1984.5) 860 8.5 0.64 25 

DZA 1949–1952 (1951.1) 110,547 8.5 4.30 26 

DZA 1976 (1976.5) 262 8.5 1.03 27 

DZA 1980 (1989.9) 1,844 8.5 0.46 27 
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DZA 1981 (1981.5) 1,117 8.5 0.75 27 

DZA 1980–1984 (1982.8) 7,514 8.5 0.48 27 

DZA 1985 (1985.5) 2,378 8.5 0.27 28 

ETH 1977 (1977.5) 185 8.5 3.81 29 

ETH 1983 (1983.9) 1,251 8.6 1.30 30 

GMB 1976 (1976.4) 2,397 9.4 1.92 31 

IDN 1964–1965 (1965.0) 1,633 7.5 1.64 32 

IDN 1972 (1972.2) 1,371 9.3 4.73 33 

IDN 1974 (1974.5) 1,070 8.1 1.76 34 

IDN 1975 (1975.6) 2,425 8.9 3.76 34 

IDN 1975 (1975.8) 1,429 8.2 4.26 34 

IDN 1976 (1976.5) 1,124 8.6 2.17 35 

IDN 1976 (1976.9) 1,655 8.6 3.09 35 

IDN 1977 (1977.3) 1,199 8.7 3.92 34 

IDN 1978 (1978.4) 1,659 8.8 3.47 33 

IDN 1978 (1978.4) 1,125 8.9 1.77 34 

IDN 1979 (1979.5) 1,122 8.9 0.89 34 

IDN 1979 (1979.5) 2,197 8.9 2.12 34 

IDN 1980 (1980.2) 4,839 8.5 3.80 34 

IDN 1980 (1980.5) 3,573 8.7 4.03 34 

IDN 1981 (1981.7) 2,501 8.9 1.75 35 

IDN 1981 (1981.8) 2,181 8.6 1.77 35 

IDN 1982 (1982.8) 1,577 9.0 3.42 34 

IDN 1983 (1983.2) 1,894 8.5 1.28 34 

IDN 1983 (1983.6) 1,549 8.8 2.29 33 

IDN 1984 (1984.5) 1,406 8.3 0.66 34 

IDN 1984 (1984.5) 2,938 8.5 1.72 34 

IDN 1985 (1985.5) 4,001 8.9 3.92 34 
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IDN 1985 (1985.8) 4,840 8.9 3.48 34 

IDN 1986 (1986.8) 3,839 8.8 1.83 35 

IDN 1986 (1986.9) 1,986 8.7 3.07 35 

IND 1960–1961 (1960.9) 3,788 2.5 1.66 36 

IND 1961–1963 (1962.2) 7,981 2.5 0.84 37 

IND 1968–1971 (1969.9) 27,520 3.0 1.70 38 

IND 1972 (1972.8) 679 3.0 1.40 38 

IND 1974–1975 (1974.8) 3,805 2.5 1.04 39 

IND 1977–1978 (1977.9) 1,492 2.5 0.97 40 

IND 1979 (1979.5) 5,203 2.5 0.99 39 

KOR 1965 (1965.5) 2,377 2.5 4.23 41 

KOR 1975 (1975.5) 1,871 2.1 2.32 41 

KOR 1980 (1980.5) 1,310 2.1 2.36 41 

KOR 1985 (1985.5) 1,420 2.8 1.97 42 

KWT 1972 (1972.5) 2,258 4.7 0.36 43 

KWT 1973 (1973.5) 6,363 4.3 0.29 43 

KWT 1974 (1974.5) 6,722 4.2 0.20 43 

KWT 1975 (1975.5) 7,665 4.5 0.29 43 

KWT 1976 (1976.5) 9,018 5.1 0.44 43 

KWT 1977 (1977.5) 17,444 5.3 0.29 43 

KWT 1972–1981 (1978.4) 131,846 5.1 0.26 43 

KWT 1978 (1978.5) 20,843 5.2 0.31 43 

KWT 1979 (1979.5) 22,674 5.3 0.24 43 

KWT 1980 (1980.5) 16,149 5.1 0.12 43 

KWT 1981 (1981.5) 22,710 5.2 0.22 43 

LBY 1954 (1954.5) 188 7.5 3.68 44 

LBY 1959 (1959.7) 361 7.5 2.39 45 

LBY 1976–1977 (1977.0) 1,827 7.5 0.26 46 
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LBY 1976–1977 (1977.0) 361 7.5 0.26 46 

LSO 1956–1957 (1957.0) 1,101 4.9 2.78 21 

LSO 1962–1965 (1963.8) 10,216 4.9 2.83 47 

LSO 1981–1982 (1982.0) 158 5.2 2.03 22 

MYS 1976–1977 (1977.0) 1,429 5.5 0.37 48 

PAK 1961–1962 (1962.0) 769 7.5 3.45 49 

PAK 1974–1978 (1976.5) 2,289 7.5 1.84 49 

PHL 1981–1983 (1982.5) 2,038 2.1 1.84 50 

SYR 1960 (1960.8) 387 7.5 0.74 51 

SYR 1978 (1978.8) 1,845 6.5 0.26 52 

SYR 1983 (1983.8) 1,586 6.5 0.30 52 

SYR 1983 (1983.8) 1,182 6.5 0.14 52 

THA 1954 (1954.9) 1,578 10.5 2.52 53 

TZA 1977 (1977.1) 383 9.7 0.92 54 

TZA 1978 (1978.9) 1,329 10.2 1.30 55 

TZA 1979 (1979.5) 1,817 10.0 2.16 56 

TZA 1983–1987 (1985.6) 30,982 10.3 1.11 57 

Source: Houben and Dodd PLoS Med 2016.2 

AFG 2005–2006 (2005.0) 11,413 20.4 0.80 (0.76–0.84) 58 

BGD 1964–1966 (1965.0) 21,658 7.5 0.56 (0.48–0.64) 59 

BGD 2007–2009 (2008.0) 9,357 7.0 1.50 60 

BGD 2007–2009 (2008.0) 8,228 12.0 1.70 60 

BTN 2009 (2009.0) 835 7.0 0.70 (0.50–0.90) 61 

CAF 2011 (2011.0) 2,710 10.0 1.90 (1.70–2.20) 62 

CAF 2011 (2011.0) 2,710 10.0 0.80 (0.70–0.90) 62 

DJI 1994 (1994.0) 1,505 9.0 2.86 63 

EGY 1995–1997 (1996.0) 14,766 6.7 0.32 64 

ETH 1987–1990 (1989.0) 23,695 8.0 1.40 65 
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GMB 2011 (2011.0) 13,386 9.0 1.27 (1.09–1.49) 66 

GRC 1981–1991 (1986.0) 544,210 21.0 0.89 67 

IND 2000–2003 (2002.0) 83,746 4.0 1.50 (1.40–1.60) 68 

IND 2009–2010 (2010.0) 18,400 4.0 1.00 (0.80–1.20) 68 

KEN 1986–1990 (1988.0) 14,984 8.5 0.60 69 

KEN 1994–1996 (1995.0) 7,556 9.0 1.10 (0.80–1.40) 70 

KEN 2004–2007 (2006.0) 12,107 9.6 1.15 (0.84–1.48) 71 

KHM 1995 (1995.0) 1,224 8.0 0.75 (0.56–0.96) 72 

KHM 2002 (2002.0) 2,273 6.0 2.06 (1.77–2.40) 73 

KOR 1990 (1990.0) 1,210 7.5 1.10 74 

KOR 1995 (1995.0) 857 7.5 0.50 75 

LAO 1996–1997 (1997.0) 4,035 8.4 1.10 76 

MDG 1991–1994 (1993.0) 1,544 8.0 1.29 (0.97–1.59) 77 

MWI 1994 (1994.0) 2,696 10.2 1.20 (1.00–1.40) 78 

NPL 2006 (2006.0) 17,260 9.0 0.86 (0.49–1.23) 79 

PHL 1997 (1997.0) 6,492 7.5 2.30 80 

SOM 2006 (2006.0) 10,364 9.0 2.70 (2.5–2.9) 81 

TZA 1983–1987 (1985.0) 34,427 10.4 1.20 82 

TZA 1988–1992 (1990.0) 29,696 10.9 1.00 82 

TZA 1993–1998 (1995.0) 20,592 11.3 0.90 82 

TZA 2000–2003 (2002.0) 10,239 9.5 0.68 (0.55–0.81) 83 

VNM 2006–2007 (2006.0) 21,487 10.0 1.70 (1.50–1.80) 84 

YEM 2007 (2007.0) 28,499 9.5 0.05 (0.04–0.07) 85 

Source: Rickman et al. In preparation.  

BEN 1987–1990 (1989.0) 17,390 7.9 0.44 86 

BEN 1994 (1994.0) 23,476 8.1 0.50 86 

BWA 1996 (1996.0) 783 2.3 3.10 87 

HKG 1999–2000 (2000.0) 21,113 8.0 1.68 (1.61–1.74) 88 
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KOR 2006 (2006.0) 4,018 6.0 1.90 89 

LKA 2010 (2010.0) 4,318 10.0 0.40 (0.20–0.70) 90 

SAU 2010–2013 (2012.0) 1,369 26.3 0.36 91 

Direct annual risk of infection (ARI) from immunoreactivity surveys per source used to identify. *Estimated 

value. ISO-3: International Organization for Standardization 3166-1 alpha-3 codes; AFG: Afghanistan; ARG: 

Argentina; BDI: Burundi; BEN: Benin; BGD: Bangladesh; BHR: Bahrain; BRA: Brazil; BTN: Bhutan; BWA: 

Botswana; CAF: Central African Republic; CHN: China; CMR: Cameroon; DZA: Algeria; DJI: Djibouti; EGY: 

Egypt; ETH: Ethiopia; GMB: Gambia; GRC: Greece; HKG: Hong Kong; IDN: Indonesia; IND: India; KEN: Kenya; 

KHM: Cambodia; KOR: South Korea; KWT: Kuwait; LAO: Laos; LBY: Libya; LKA: Sri Lanka; LSO: Lesotho; MDG: 

Madagascar; MWI: Malawi; MYS: Malaysia; NPL: Nepal; PAK: Pakistan; PHL: Philippines; SAU: Saudi Arabia; 

SOM: Somalia; SYR: Syria; THA: Thailand; TZA: Tanzania; VNM: Vietnam; YEM: Yemen. 
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Table S2. Model parameters. 

Parameter Description Notes 

λ Annual risk of infection Obtained from GP regression, varying by country, year, and age group 

γη Self-clearance rate Obtained from MCMC calibration, varying by infection year 

κη Infection year transitions Fixed values (κ1 = 1; κ2 = 1; κ3 = 1/8) 

π Relative risk of reinfection 0.21(95%CI: 0.14–0.30),92 sampled from a beta distribution 

GP: Gaussian process; MCMC: Markov chain Monte-Carlo. 
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Table S3. Regional relative annual risk of infection as implied by mixing matrices. 

WHO Region Under 15 years* 15 to 45 years 45 years and older 

AFR 1.00 2.82 1.82 

AMR 1.00 4.51 3.42 

EMR 1.00 3.89 2.09 

EUR 1.00 5.63 4.72 

SEA 1.00 4.20 3.21 

WPR 1.00 4.45 3.77 

GLOBAL 1.00 4.29 3.25 

Age-specific relative annual risk of infection by WHO region, as implied by TB incidence and contact mixing 

matrices. Individuals under 15 years old were used as the reference age group. WHO: World Health 

Organization; AFR: African Region; AMR: Region of the Americas; EMR: Eastern Mediterranean Region; EUR: 

European Region; SEA: South-East Asia Region; WPR: Western Pacific Region.  
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Table S4. Adjusted annual risk of infection estimates by age group in 2022. 

Country (ISO-3) 
Annual risk of Mycobacterium tuberculosis infection (%) [95%UI] 

Under 15 years 15 to 45 years 45 years and older 

AGO 3.5 [1.4–8.6] 9.7 [3.9–24.1] 6.2 [2.5–15.4] 

BGD 3.6 [1.6–8.8] 12.4 [5.3–29.9] 8.5 [3.7–20.7] 

BRA 0.4 [0.2–1.0] 2.3 [1.1–5.1] 1.5 [0.7–3.4] 

CAF 4.7 [2.0–12.0] 12.1 [5.2–31.0] 7.5 [3.2–19.3] 

CHN 0.6 [0.3–1.4] 3.6 [1.6–8.0] 3.5 [1.6–7.8] 

COD 3.8 [1.6–9.6] 9.0 [3.7–22.8] 6.4 [2.6–16.2] 

COG 3.2 [1.4–8.4] 9.1 [3.9–23.6] 5.9 [2.5–15.3] 

ETH 0.9 [0.5–1.6] 3.2 [1.8–5.4] 1.8 [1.0–3.0] 

GAB 5.5 [2.5–12.3] 14.1 [6.3–31.3] 8.1 [3.6–18.1] 

IDN 4.2 [2.1–7.9] 16.1 [8.1–30.5] 11.3 [5.7–21.4] 

IND 2.7 [1.3–5.5] 8.7 [4.3–17.8] 5.7 [2.8–11.6] 

KEN 1.6 [0.9–3.0] 5.5 [2.9–10.3] 3.6 [1.9–6.6] 

LBR 3.5 [1.5–8.0] 10.6 [4.5–24.1] 7.3 [3.2–16.7] 

LSO 3.4 [1.9–6.7] 11.4 [6.4–22.2] 7.6 [4.3–14.8] 

MMR 4.1 [2.1–7.7] 16.5 [8.2–30.5] 11.6 [5.8–21.4] 

MNG 5.1 [2.2–12.0] 16.6 [7.3–39.6] 9.7 [4.2–23.0] 

MOZ 3.0 [1.2–7.3] 7.8 [3.1–19.4] 5.2 [2.1–13.0] 

NAM 3.2 [1.5–7.0] 9.1 [4.3–19.7] 5.4 [2.5–11.7] 

NGA 1.6 [0.7–3.9] 3.6 [1.4–8.7] 2.3 [0.9–5.6] 

PAK 2.8 [1.3–5.7] 6.9 [3.2–14.3] 4.9 [2.2–10.1] 

PHL 8.8 [4.0–19.9] 28.8 [13.1–65.4] 19.6 [8.9–44.4] 

PNG 4.3 [1.7–10.5] 11.4 [4.5–27.7] 6.2 [2.4–15.0] 

PRK 5.1 [2.2–10.8] 29.5 [12.7–62.6] 24.1 [10.4–51.3] 

  



 

 Chapter 4 – Page 108 

 16 

SLE 3.7 [1.6–8.8] 9.8 [4.3–22.9] 6.4 [2.8–15.0] 

THA 1.7 [0.9–3.0] 10.1 [5.6–17.9] 10.7 [5.9–18.9] 

TZA 2.6 [1.4–4.5] 6.9 [3.8–12.1] 5.0 [2.8–8.8] 

UGA 1.3 [0.6–2.8] 3.1 [1.4–6.8] 2.1 [0.9–4.5] 

VNM 2.2 [1.0–4.8] 9.9 [4.7–21.4] 7.6 [3.6–16.3] 

ZAF 3.6 [1.8–6.9] 12.2 [6.3–23.6] 6.9 [3.5–13.4] 

ZMB 2.0 [0.9–4.7] 5.5 [2.5–13.1] 3.8 [1.7–9.0] 

Reversion-adjusted, age-specific annual risk of infection for WHO’s top 30 high TB burden countries. ISO-3: 

International Organization for Standardization 3166-1 alpha-3 codes. AGO: Angola; BGD: Bangladesh; BRA: 

Brazil; CAF: Central African Republic; CHN: China; COD: Democratic Republic of the Congo; COG: Congo; 

ETH: Ethiopia; GAB: Gabon; IDN: Indonesia; IND: India; KEN: Kenya; LBR: Liberia; MMR: Myanmar; MNG: 

Mongolia; MOZ: Mozambique; NAM: Namibia; NGA: Nigeria; PAK: Pakistan; PHL: Philippines; PNG: Papua 

New Guinea; PRK: Democratic People’s Republic of Korea; SLE: Sierra Leone; THA: Thailand; TZA: United 

Republic of Tanzania; UGA: Uganda; VNM: Viet Nam; ZAF: South Africa; ZMB: Zambia.   
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Table S5. Annual risk of infection estimates in 2014. 

Country (ISO-3) 

Annual risk of Mycobacterium tuberculosis infection (%) [95%UI] 

Unadjusted2 Age-specific and reversion adjusted 

All ages Under 15 years 15 to 45 years 45 years and older 

AGO 1.4 [0.7–2.8] 3.8 [2.0–7.3] 10.7 [5.4–20.3] 6.8 [3.5–12.9] 

BGD 1.1 [0.6–2.3] 3.4 [1.8–6.6] 11.7 [6.2–22.4] 8.1 [4.3–15.5] 

BRA 0.1 [0.1–0.3] 0.4 [0.2–0.8] 2.2 [1.2–4.1] 1.5 [0.8–2.7] 

CAF 1.1 [0.5–2.2] 4.5 [2.3–8.6] 11.6 [6.0–22.3] 7.2 [3.8–13.8] 

CHN 0.2 [0.1–0.5] 0.8 [0.4–1.6] 4.8 [2.5–9.2] 4.6 [2.5–9.0] 

COD 1.5 [0.7–3.0] 3.9 [2.0–7.3] 9.4 [4.7–17.5] 6.6 [3.3–12.4] 

COG 1.3 [0.7–2.7] 3.3 [1.7–6.2] 9.2 [4.8–17.5] 6.0 [3.1–11.4] 

ETH 0.5 [0.3–1.0] 1.5 [0.9–2.3] 4.9 [3.1–7.6] 2.8 [1.8–4.3] 

GAB 1.6 [0.8–3.3] 5.9 [3.1–11.5] 14.9 [7.9–29.2] 8.6 [4.5–16.8] 

IDN 1.9 [1.0–3.4] 4.3 [2.3–8.0] 16.8 [8.7–30.9] 11.8 [6.1–21.7] 

IND 0.6 [0.3–1.1] 3.1 [1.6–5.8] 10.2 [5.2–18.8] 6.6 [3.4–12.2] 

KEN 0.6 [0.3–1.3] 2.8 [2.0–3.9] 9.5 [6.8–13.4] 6.1 [4.4–8.6] 

LBR 1.4 [0.7–2.9] 3.4 [1.8–6.7] 10.3 [5.3–20.0] 7.2 [3.7–13.9] 

LSO 1.6 [0.8–3.2] 4.2 [2.5–6.9] 14.1 [8.4–22.9] 9.4 [5.6–15.2] 

MMR 1.2 [0.7–2.3] 4.8 [2.9–7.3] 18.9 [11.7–29.1] 13.3 [8.2–20.4] 

MNG 0.6 [0.3–1.3] 4.9 [2.8–8.2] 16.2 [9.1–26.9] 9.4 [5.3–15.7] 

MOZ 1.6 [0.8–3.2] 3.0 [1.5–5.9] 7.9 [4.0–15.6] 5.3 [2.7–10.5] 

NAM 1.9 [0.9–3.8] 4.7 [2.7–8.1] 13.2 [7.6–22.8] 7.8 [4.5–13.5] 

NGA 0.9 [0.5–1.6] 1.7 [0.9–3.2] 3.7 [1.9–7.0] 2.4 [1.2–4.5] 

PAK 0.9 [0.5–1.7] 2.9 [1.6–5.7] 7.4 [4.0–14.4] 5.2 [2.8–10.1] 

PHL 1.2 [0.6–2.1] 7.6 [4.3–13.9] 25.1 [14.1–45.9] 17.1 [9.6–31.2] 

PNG 1.4 [0.7–3.0] 4.4 [2.3–8.4] 11.5 [6.0–22.1] 6.2 [3.3–12.0] 
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PRK 1.4 [0.6–3.3] 5.1 [2.7–9.4] 29.6 [15.8–54.8] 24.3 [12.9–44.9] 

SLE 1.3 [0.6–2.6] 3.9 [2.1–7.6] 10.2 [5.4–19.7] 6.7 [3.5–12.9] 

THA 0.7 [0.4–1.3] 1.9 [1.2–2.9] 11.5 [7.3–17.4] 12.2 [7.7–18.4] 

TZA 1.5 [0.7–3.3] 2.9 [1.6–4.8] 7.7 [4.4–13.0] 5.6 [3.2–9.4] 

UGA 0.3 [0.2–0.6] 1.4 [0.7–2.6] 3.3 [1.8–6.2] 2.2 [1.2–4.2] 

VNM 0.6 [0.3–1.2] 2.8 [1.6–4.7] 12.4 [7.0–21.3] 9.5 [5.4–16.3] 

ZAF 1.8 [0.9–3.7] 5.9 [3.8–9.8] 20.3 [13.2–33.5] 11.5 [7.5–18.9] 

ZMB 1.1 [0.6–2.2] 2.8 [1.5–4.9] 7.6 [4.2–13.5] 5.2 [2.9–9.2] 

Comparison of annual risk of infection estimates for WHO’s top 30 high TB burden countries in 2014. 

Unadjusted estimates were extracted from ARI data from Houben and Dodd.2 ISO-3: International 

Organization for Standardization 3166-1 alpha-3 codes. AGO: Angola; BGD: Bangladesh; BRA: Brazil; CAF: 

Central African Republic; CHN: China; COD: Democratic Republic of the Congo; COG: Congo; ETH: Ethiopia; 

GAB: Gabon; IDN: Indonesia; IND: India; KEN: Kenya; LBR: Liberia; MMR: Myanmar; MNG: Mongolia; MOZ: 

Mozambique; NAM: Namibia; NGA: Nigeria; PAK: Pakistan; PHL: Philippines; PNG: Papua New Guinea; PRK: 

Democratic People’s Republic of Korea; SLE: Sierra Leone; THA: Thailand; TZA: United Republic of Tanzania; 

UGA: Uganda; VNM: Viet Nam; ZAF: South Africa; ZMB: Zambia.   
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Table S6. Regional distribution of viable Mtb infection in 2022. 

WHO Region Percentage of global burden of 
recent infection [95%UI] 

Percentage of global burden of 
all infections – high self-

clearance scenario [95%UI] 

Percentage of global burden of 
all infections – low self-

clearance scenario [95%UI] 

AFR 13.7 [10.3–17.5] 13.8 [11.8–15.9] 13.3 [11.5–15.2] 

AMR 3.4 [2.5–4.8] 3.8 [3.0–4.9] 7.3 [4.8–10.9] 

EMR 5.5 [3.5–8.5] 5.7 [4.5–7.4] 7.2 [5.8–9.0] 

EUR 3.4 [2.4–4.7] 4.5 [3.7–5.4] 7.8 [6.1–9.6] 

SEA 47.9 [37.6–59.4] 45.1 [39.2–51.5] 37.6 [32.2–43.6] 

WPR 25.7 [17.6–35.8] 26.8 [21.8–32.8] 13.3 [11.5–15.2] 

Proportion of global viable Mycobacterium tuberculosis infection of population by WHO region in 2022. 

Values are given as percentages (%), with brackets indicating 95% uncertainty intervals (95%UI). Recent 

infection is defined as occurring within two years. Estimates for all infections are provided and disaggregated 

based on different scenarios depending on assumptions about long-term self-clearance rates. WHO: World 

Health Organization; AFR: African Region; AMR: Region of the Americas; EMR: Eastern Mediterranean Region; 

EUR: European Region; SEA: South-East Asia Region; WPR: Western Pacific Region.  
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Table S7. Top ten countries with the highest number of recent viable Mtb infections in 2022. 

Country [ISO-3) Recent infections  
(M) [95%UI] 

All infections – high self-
clearance scenario  

(M) [95%UI] 

All infections – low self-
clearance scenario  

(M) [95%UI] 

India (IND) 41.7 [22.3–76.7] 103.8 [74.6–144.6] 141.5 [104.9–197.1] 

China (CHN) 21.6 [11.1–41.8] 64.0 [45.0–93.9] 108.3 [78.0–150.6] 

Indonesia (IDN) 14.2 [8.7–22.8] 31.7 [23.6–42.1] 37.3 [29.0–48.3] 

Philippines (PHL) 9.7 [5.0–18.8] 18.9 [12.9–29.0] 20.5 [14.7–30.0] 

Bangladesh (BGD) 7.0 [3.7–14.4] 15.7 [11.2–24.2] 19.4 [14.3–28.0] 

Pakistan (PAK) 5.6 [3.0–10.4] 13.8 [9.8–19.9] 20.1 [14.5–27.4] 

Viet Nam (VNM) 3.3 [1.8–6.4] 8.6 [6.2–12.3] 10.9 [8.3–14.4] 

Thailand (THA) 3.0 [1.8–4.8] 7.1 [5.2–9.8] 8.7 [6.6–11.4] 

Myanmar (MMR) 2.9 [1.6–4.8] 6.5 [4.6–9.1] 7.5 [5.7–10.1] 

DR Congo (COD) 2.8 [1.4–6.2] 6.5 [4.5–10.3] 8.4 [5.9–12.2] 

Absolute number of individuals per country infected with viable Mycobacterium tuberculosis in 2022, 

showing the top ten countries sorted in descending order by the number of recent infections. Numbers are in 

millions (M), with brackets indicating 95% uncertainty intervals (95%UI). Recent infection is defined as 

occurring within two years. Estimates for all infections are provided and disaggregated based on different 

scenarios depending on assumptions about long-term self-clearance rates. ISO-3: International Organization 

for Standardization 3166-1 alpha-3 codes. 
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Table S8. Top ten countries with the highest prevalence of recent viable Mtb infections in 2022. 

Country (ISO-3) Recent infection prevalence 
(%) [95%UI] 

All infections prevalence – 
high self-clearance scenario 

(%) [95%UI] 

All infections prevalence – 
low self-clearance scenario 

(%) [95%UI] 

DPR Korea (PRK) 9.3 [4.8–16.3] 18.4 [13.0–26.3] 19.4 [14.5–27.2] 

Philippines (PHL) 8.5 [4.4–16.4] 16.5 [11.3–25.3] 17.9 [12.8–26.2] 

Cambodia (KHM) 5.4 [2.9–9.3] 12.4 [8.8–17.3] 13.4 [9.8–18.2] 

Timor-Leste (TLS) 5.4 [2.5–11.1] 11.7 [7.9–18.1] 13.2 [9.3–19.2] 

Myanmar (MMR) 5.3 [2.9–8.8] 12.0 [8.6–16.8] 13.9 [10.5–18.8] 

Indonesia (IDN) 5.2 [3.2–8.3] 11.5 [8.6–15.3] 13.6 [10.6–17.6] 

Mongolia (MNG) 5.0 [2.4–10.3] 10.7 [7.4–17.4] 12.7 [9.3–18.8] 

Gabon (GAB) 4.5 [2.3–8.9] 10.1 [7.0–15.2] 11.9 [8.8–16.7] 

Bangladesh (BGD) 4.1 [2.2–8.5] 9.2 [6.6–14.2] 11.4 [8.4–16.5] 

Lao PDR (LAO) 4.1 [2.2–7.2] 9.5 [6.8–13.4] 11.7 [8.8–15.4] 

Proportion of population by country infected with viable Mycobacterium tuberculosis in 2022, showing the 

top ten countries sorted in descending order by the prevalence of recent infections. Values are given as 

percentages (%), with brackets indicating 95% uncertainty intervals (95%UI). Recent infection is defined as 

occurring within two years. Estimates for all infections are provided and disaggregated based on different 

scenarios depending on assumptions about long-term self-clearance rates. ISO-3: International Organization 

for Standardization 3166-1 alpha-3 codes. 
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Supplementary Figures: 

Figure S1. Relative TB incidence per capita in 2022. 

 
Country-specific relative TB incidence per capita by WHO region in 2022, using children under 15 years of age 

as the reference group, with the y-axis displayed on a square root scale. Age-specific TB incidence estimates 

were sourced from WHO,93 and population data from the UN World Population Prospects.94 WHO: World 

Health Organization; AFR: African Region; AMR: Region of the Americas; EMR: Eastern Mediterranean Region; 

EUR: European Region; SEA: South-East Asia Region; WPR: Western Pacific Region; UN: United Nations.  

  



 

 Chapter 4 – Page 115 

 23 

Figure S2. Average number of contacts per age group. 

 
Average number of social contacts per age group by WHO region, based on synthetic country-specific 

contact mixing matrices developed by Prem et al.95 WHO: World Health Organization; AFR: African Region; 

AMR: Region of the Americas; EMR: Eastern Mediterranean Region; EUR: European Region; SEA: South-East 

Asia Region; WPR: Western Pacific Region.  
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Figure S3. Relative annual risk of infection as implied by mixing matrices. 

 
Relative annual risk of Mycobacterium tuberculosis infection per country by WHO region in 2022, using 

children under 15 years of age as the reference group. WHO: World Health Organization; AFR: African Region; 

AMR: Region of the Americas; EMR: Eastern Mediterranean Region; EUR: European Region; SEA: South-East 

Asia Region; WPR: Western Pacific Region.  
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Figure S4. Calibration plots for self-clearance rates under different scenarios.  

 
Percentage of an initially infected cohort that has effectively controlled or eliminated Mycobacterium 

tuberculosis infection without developing TB (self-cleared) or after developing TB (recovered), i.e., no longer 

harbouring viable infection.96 Lines represent the median value, and the shaded area shows the lower (2.5% 

quantile) and upper (97.5% quantile) bounds. Error bars indicate calibration targets at years 1 (80.1– 81.7%), 

2 (91.4– 92.5%), and 10 (96.9– 97.5%). Due to limited data beyond year 10, two scenarios were tested one 

assuming a range of 98.5-99.5% at year 20 (high self-clearance), and another at year 50 (low self-clearance). 
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Figure S5. Model structure. 

 
The model structure for a single age group is illustrated. λ: Force of infection; γ: Self-clearance rates; κ: 

Infection year transitions; π: Protection from reinfection. Recent infection is defined as occurring within two 

years, i.e., ‘Infected – Year 1’ and ‘Infected – Year 2’. 
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Figure S6.  Prevalence of viable M. tuberculosis infection by age and WHO region in 2022. 

 
Median estimated proportion of the population per age group and by WHO region infected with viable 

Mycobacterium tuberculosis in 2022. Values are presented as percentages (%). Recent infection is defined 

as occurring within two years, and distal infection as occurring after two years. The coarse age group 

distribution in the estimates reflects the annual risk of infection disaggregated into the following groups: 

under 15 years old, 15 to 45 years old, and 45 years and older. Estimates are based on scenario assuming 

high long-term self-clearance rates. WHO: World Health Organization; AFR: African Region; AMR: Region of 

the Americas; EMR: Eastern Mediterranean Region; EUR: European Region; SEA: South-East Asia Region; 

WPR: Western Pacific Region.  
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Recent infections Recent infections in children
All infections - high self-clearance 

scenario
All infections - low self-clearance 

scenario
Recent 

infections
All infections - high self-

clearance scenario
All infections - low self-

clearance scenario
AFG 648,000 (323,000-1,311,000) 182,000 (91,000-373,000) 1,779,000 (1,228,000-2,719,000) 2,947,000 (2,066,000-4,070,000) 1.69 (0.84-3.45) 4.38 (3.03-6.70) 7.26 (5.09-10.03)
AGO 996,000 (461,000-2,134,000) 248,000 (113,000-540,000) 2,447,000 (1,710,000-3,757,000) 3,129,000 (2,170,000-4,467,000) 2.99 (1.40-6.26) 6.98 (4.88-10.72) 8.93 (6.19-12.75)
ALB 10,000 (5,000-21,000) 0 (0-1,000) 33,000 (23,000-63,000) 118,000 (32,000-265,000) 0.39 (0.19-0.77) 1.17 (0.79-2.20) 4.14 (1.12-9.29)
ARE 3,000 (2,000-6,000) 0 (0-0) 22,000 (10,000-112,000) 330,000 (34,000-783,000) 0.04 (0.02-0.07) 0.24 (0.11-1.19) 3.51 (0.36-8.32)
ARG 143,000 (90,000-231,000) 11,000 (7,000-17,000) 506,000 (345,000-902,000) 2,568,000 (1,192,000-4,823,000) 0.34 (0.21-0.53) 1.11 (0.76-1.99) 5.66 (2.63-10.63)
ARM 13,000 (7,000-26,000) 1,000 (0-2,000) 56,000 (38,000-86,000) 151,000 (72,000-247,000) 0.51 (0.26-1.00) 2.01 (1.38-3.10) 5.44 (2.58-8.87)
AUS 30,000 (14,000-60,000) 2,000 (1,000-3,000) 89,000 (59,000-219,000) 284,000 (77,000-2,404,000) 0.12 (0.06-0.24) 0.34 (0.23-0.84) 1.09 (0.29-9.23)
AUT 11,000 (5,000-21,000) 0 (0-1,000) 56,000 (34,000-160,000) 390,000 (80,000-881,000) 0.13 (0.07-0.25) 0.63 (0.38-1.79) 4.36 (0.90-9.86)
AZE 150,000 (77,000-314,000) 11,000 (6,000-24,000) 444,000 (312,000-663,000) 724,000 (424,000-1,084,000) 1.54 (0.79-3.18) 4.30 (3.02-6.42) 7.01 (4.11-10.50)
BDI 119,000 (67,000-218,000) 30,000 (17,000-56,000) 374,000 (258,000-558,000) 740,000 (503,000-1,052,000) 0.99 (0.57-1.88) 2.94 (2.03-4.39) 5.82 (3.96-8.27)
BEL 17,000 (8,000-35,000) 1,000 (0-2,000) 61,000 (37,000-172,000) 402,000 (60,000-1,123,000) 0.15 (0.08-0.32) 0.53 (0.32-1.47) 3.45 (0.52-9.65)
BEN 73,000 (37,000-152,000) 16,000 (8,000-34,000) 228,000 (155,000-356,000) 585,000 (326,000-1,016,000) 0.60 (0.30-1.25) 1.73 (1.17-2.70) 4.44 (2.47-7.72)
BFA 88,000 (43,000-189,000) 23,000 (11,000-50,000) 284,000 (186,000-485,000) 779,000 (270,000-1,521,000) 0.41 (0.20-0.89) 1.27 (0.83-2.17) 3.48 (1.20-6.79)
BGD 6,628,000 (3,473,000-13,681,000) 725,000 (373,000-1,535,000) 15,693,000 (11,213,000-24,167,000) 19,349,000 (14,345,000-28,035,000) 4.12 (2.16-8.48) 9.21 (6.58-14.19) 11.36 (8.42-16.46)
BGR 38,000 (20,000-77,000) 1,000 (0-2,000) 168,000 (112,000-265,000) 403,000 (235,000-650,000) 0.58 (0.30-1.21) 2.46 (1.65-3.88) 5.90 (3.44-9.51)
BHR 5,000 (2,000-9,000) 0 (0-0) 18,000 (12,000-33,000) 74,000 (38,000-129,000) 0.34 (0.17-0.69) 1.23 (0.80-2.24) 5.04 (2.59-8.79)
BIH 24,000 (12,000-46,000) 1,000 (0-1,000) 96,000 (65,000-147,000) 207,000 (128,000-315,000) 0.78 (0.40-1.51) 2.94 (2.01-4.52) 6.39 (3.93-9.71)
BLR 70,000 (36,000-135,000) 2,000 (1,000-5,000) 286,000 (195,000-426,000) 605,000 (368,000-926,000) 0.77 (0.41-1.53) 2.99 (2.04-4.47) 6.34 (3.85-9.69)
BOL 186,000 (91,000-396,000) 22,000 (11,000-47,000) 550,000 (385,000-840,000) 880,000 (594,000-1,297,000) 1.64 (0.78-3.37) 4.53 (3.17-6.91) 7.24 (4.89-10.68)
BRA 1,641,000 (856,000-3,346,000) 90,000 (47,000-185,000) 4,851,000 (3,296,000-7,992,000) 12,241,000 (6,885,000-20,846,000) 0.82 (0.44-1.65) 2.26 (1.53-3.72) 5.70 (3.20-9.70)
BTN 26,000 (13,000-49,000) 2,000 (1,000-3,000) 65,000 (47,000-91,000) 83,000 (61,000-113,000) 3.48 (1.78-6.79) 8.30 (6.02-11.73) 10.67 (7.77-14.50)
BWA 40,000 (23,000-66,000) 5,000 (3,000-9,000) 132,000 (98,000-180,000) 206,000 (157,000-272,000) 1.61 (0.95-2.74) 5.07 (3.76-6.89) 7.92 (6.02-10.43)
CAF 193,000 (91,000-414,000) 56,000 (26,000-122,000) 446,000 (303,000-727,000) 543,000 (383,000-790,000) 3.69 (1.79-8.00) 8.10 (5.50-13.21) 9.87 (6.97-14.36)
CAN 51,000 (26,000-109,000) 2,000 (1,000-3,000) 154,000 (103,000-434,000) 611,000 (137,000-3,437,000) 0.14 (0.07-0.30) 0.40 (0.27-1.13) 1.60 (0.36-8.98)
CHE 11,000 (5,000-23,000) 0 (0-1,000) 43,000 (28,000-130,000) 305,000 (43,000-880,000) 0.13 (0.07-0.28) 0.50 (0.32-1.49) 3.50 (0.49-10.10)
CHL 63,000 (32,000-122,000) 3,000 (1,000-5,000) 194,000 (129,000-373,000) 720,000 (193,000-1,683,000) 0.34 (0.17-0.67) 0.99 (0.66-1.91) 3.67 (0.98-8.59)
CHN 20,149,000 (10,429,000-39,243,000) 757,000 (389,000-1,489,000) 63,985,000 (44,984,000-93,917,000) 108,279,000 (78,018,000-150,552,000) 1.51 (0.78-2.93) 4.49 (3.15-6.59) 7.59 (5.47-10.56)
CIV 289,000 (149,000-541,000) 71,000 (37,000-134,000) 950,000 (648,000-1,392,000) 1,722,000 (1,110,000-2,364,000) 1.09 (0.57-2.08) 3.42 (2.33-5.01) 6.19 (3.99-8.50)
CMR 434,000 (236,000-782,000) 95,000 (51,000-174,000) 1,210,000 (859,000-1,718,000) 1,961,000 (1,380,000-2,743,000) 1.68 (0.90-3.01) 4.39 (3.12-6.24) 7.12 (5.01-9.95)
COD 2,688,000 (1,305,000-6,075,000) 766,000 (369,000-1,782,000) 6,503,000 (4,459,000-10,285,000) 8,413,000 (5,914,000-12,235,000) 2.91 (1.41-6.35) 6.68 (4.58-10.56) 8.64 (6.07-12.56)
COG 162,000 (78,000-357,000) 36,000 (17,000-80,000) 396,000 (270,000-625,000) 523,000 (356,000-725,000) 2.90 (1.37-6.26) 6.71 (4.58-10.60) 8.86 (6.03-12.27)
COL 399,000 (198,000-760,000) 26,000 (13,000-49,000) 982,000 (661,000-1,553,000) 1,937,000 (850,000-4,682,000) 0.81 (0.41-1.57) 1.90 (1.28-3.00) 3.74 (1.64-9.04)
COM 3,000 (2,000-7,000) 1,000 (0-2,000) 9,000 (6,000-15,000) 22,000 (8,000-58,000) 0.40 (0.19-0.85) 1.04 (0.69-1.77) 2.63 (0.97-6.98)
CPV 4,000 (2,000-8,000) 0 (0-1,000) 16,000 (11,000-24,000) 34,000 (17,000-51,000) 0.71 (0.36-1.47) 2.64 (1.85-4.09) 5.70 (2.85-8.72)
CRI 9,000 (5,000-19,000) 1,000 (0-1,000) 34,000 (20,000-83,000) 182,000 (31,000-463,000) 0.20 (0.10-0.39) 0.67 (0.39-1.60) 3.53 (0.60-8.97)
CUB 20,000 (10,000-43,000) 1,000 (0-1,000) 68,000 (45,000-179,000) 394,000 (66,000-1,104,000) 0.19 (0.09-0.41) 0.61 (0.40-1.59) 3.51 (0.59-9.84)
CYP 2,000 (1,000-4,000) 0 (0-0) 4,000 (3,000-10,000) 8,000 (4,000-105,000) 0.14 (0.07-0.30) 0.35 (0.23-0.76) 0.65 (0.29-8.44)
CZE 11,000 (5,000-22,000) 0 (0-1,000) 57,000 (33,000-182,000) 438,000 (75,000-1,004,000) 0.11 (0.06-0.23) 0.54 (0.31-1.73) 4.17 (0.72-9.56)
DEU 70,000 (36,000-144,000) 3,000 (2,000-6,000) 271,000 (174,000-1,001,000) 2,492,000 (275,000-8,294,000) 0.09 (0.05-0.19) 0.32 (0.21-1.20) 2.99 (0.33-9.94)
DJI 28,000 (14,000-61,000) 4,000 (2,000-8,000) 86,000 (62,000-125,000) 112,000 (85,000-154,000) 2.66 (1.34-5.76) 7.72 (5.58-11.25) 10.07 (7.62-13.84)
DNK 6,000 (3,000-12,000) 0 (0-0) 27,000 (16,000-87,000) 231,000 (27,000-539,000) 0.10 (0.05-0.21) 0.46 (0.27-1.48) 3.93 (0.46-9.18)
DOM 75,000 (36,000-157,000) 8,000 (4,000-16,000) 239,000 (161,000-392,000) 558,000 (230,000-958,000) 0.72 (0.33-1.46) 2.14 (1.44-3.51) 4.99 (2.06-8.57)
DZA 227,000 (121,000-429,000) 38,000 (20,000-71,000) 797,000 (543,000-1,275,000) 2,488,000 (1,376,000-4,387,000) 0.54 (0.29-1.04) 1.79 (1.22-2.86) 5.59 (3.09-9.85)

Absolute numbers, rounded to the nearest thousand (95%UI)
Country (ISO-3)

Prevalence of population as percentage (95%UI)
Country-level viable Mtb infection estimates from Schwalb et al 2025, distributed under CC BY 4.0 license https://creativecommons.org/licenses/by/4.0/
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ECU 141,000 (69,000-299,000) 13,000 (6,000-27,000) 400,000 (275,000-634,000) 905,000 (377,000-1,583,000) 0.84 (0.42-1.73) 2.23 (1.54-3.54) 5.06 (2.10-8.84)
EGY 121,000 (61,000-256,000) 21,000 (11,000-45,000) 566,000 (334,000-1,565,000) 3,794,000 (682,000-8,389,000) 0.12 (0.06-0.25) 0.51 (0.30-1.42) 3.45 (0.62-7.62)
ERI 26,000 (14,000-49,000) 5,000 (3,000-10,000) 90,000 (58,000-141,000) 202,000 (130,000-299,000) 0.75 (0.41-1.41) 2.47 (1.59-3.85) 5.53 (3.55-8.18)
ESP 88,000 (42,000-175,000) 2,000 (1,000-5,000) 425,000 (269,000-997,000) 2,165,000 (502,000-4,669,000) 0.20 (0.10-0.40) 0.89 (0.57-2.10) 4.55 (1.05-9.81)
EST 3,000 (2,000-6,000) 0 (0-0) 19,000 (11,000-36,000) 65,000 (32,000-108,000) 0.23 (0.12-0.49) 1.40 (0.82-2.74) 4.90 (2.41-8.14)
ETH 1,188,000 (699,000-1,923,000) 214,000 (126,000-347,000) 4,091,000 (2,973,000-5,584,000) 7,510,000 (5,283,000-10,576,000) 1.04 (0.62-1.69) 3.36 (2.44-4.58) 6.16 (4.34-8.68)
FIN 5,000 (3,000-11,000) 0 (0-0) 24,000 (15,000-80,000) 212,000 (26,000-556,000) 0.10 (0.05-0.21) 0.44 (0.26-1.45) 3.82 (0.47-10.05)
FJI 10,000 (5,000-20,000) 1,000 (1,000-2,000) 21,000 (13,000-33,000) 25,000 (15,000-66,000) 1.14 (0.54-2.24) 2.25 (1.45-3.58) 2.69 (1.60-7.16)
FRA 101,000 (51,000-225,000) 4,000 (2,000-9,000) 366,000 (242,000-995,000) 2,133,000 (363,000-6,079,000) 0.17 (0.09-0.35) 0.57 (0.37-1.54) 3.30 (0.56-9.42)
GAB 102,000 (52,000-204,000) 21,000 (11,000-44,000) 240,000 (165,000-359,000) 281,000 (209,000-396,000) 4.53 (2.33-8.90) 10.14 (6.98-15.19) 11.88 (8.82-16.75)
GBR 107,000 (50,000-213,000) 5,000 (2,000-9,000) 411,000 (269,000-984,000) 2,436,000 (424,000-5,972,000) 0.17 (0.08-0.34) 0.61 (0.40-1.46) 3.61 (0.63-8.86)
GEO 54,000 (28,000-98,000) 3,000 (1,000-5,000) 200,000 (146,000-273,000) 308,000 (232,000-403,000) 1.53 (0.79-2.78) 5.32 (3.89-7.26) 8.19 (6.17-10.75)
GHA 587,000 (319,000-1,044,000) 106,000 (57,000-190,000) 1,634,000 (1,136,000-2,391,000) 2,551,000 (1,861,000-3,443,000) 1.88 (1.03-3.34) 4.93 (3.42-7.21) 7.69 (5.61-10.38)
GIN 242,000 (114,000-496,000) 58,000 (27,000-121,000) 642,000 (444,000-968,000) 957,000 (606,000-1,384,000) 1.89 (0.88-3.81) 4.69 (3.24-7.07) 6.99 (4.43-10.11)
GMB 16,000 (8,000-30,000) 4,000 (2,000-8,000) 51,000 (35,000-82,000) 132,000 (81,000-210,000) 0.62 (0.32-1.17) 1.92 (1.32-3.06) 4.94 (3.01-7.84)
GNB 63,000 (31,000-141,000) 14,000 (7,000-32,000) 154,000 (104,000-244,000) 194,000 (132,000-283,000) 3.21 (1.55-7.15) 7.38 (4.97-11.72) 9.32 (6.34-13.60)
GNQ 32,000 (15,000-67,000) 6,000 (3,000-13,000) 75,000 (50,000-119,000) 102,000 (63,000-162,000) 2.03 (0.94-4.26) 4.54 (3.00-7.21) 6.13 (3.82-9.81)
GRC 6,000 (4,000-11,000) 0 (0-0) 72,000 (32,000-196,000) 428,000 (232,000-674,000) 0.07 (0.04-0.12) 0.69 (0.31-1.88) 4.11 (2.23-6.48)
GTM 64,000 (31,000-134,000) 10,000 (5,000-20,000) 190,000 (123,000-322,000) 536,000 (169,000-1,220,000) 0.38 (0.18-0.79) 1.07 (0.70-1.82) 3.02 (0.96-6.88)
GUY 6,000 (3,000-12,000) 1,000 (0-1,000) 20,000 (14,000-31,000) 42,000 (19,000-71,000) 0.77 (0.38-1.59) 2.47 (1.72-3.82) 5.27 (2.35-8.78)
HKG 128,000 (70,000-234,000) 2,000 (1,000-4,000) 451,000 (328,000-604,000) 660,000 (514,000-846,000) 1.80 (1.02-3.27) 6.02 (4.38-8.06) 8.81 (6.86-11.29)
HND 38,000 (20,000-80,000) 5,000 (2,000-10,000) 152,000 (96,000-286,000) 475,000 (174,000-785,000) 0.39 (0.20-0.80) 1.46 (0.93-2.76) 4.58 (1.68-7.58)
HRV 4,000 (2,000-8,000) 0 (0-0) 45,000 (24,000-107,000) 190,000 (93,000-319,000) 0.10 (0.05-0.20) 1.11 (0.58-2.64) 4.71 (2.31-7.89)
HTI 270,000 (132,000-540,000) 28,000 (14,000-59,000) 762,000 (545,000-1,083,000) 1,032,000 (752,000-1,412,000) 2.48 (1.23-4.93) 6.61 (4.73-9.41) 8.96 (6.53-12.26)
HUN 13,000 (6,000-25,000) 0 (0-1,000) 102,000 (58,000-264,000) 452,000 (230,000-838,000) 0.14 (0.07-0.27) 1.05 (0.60-2.73) 4.67 (2.37-8.65)
IDN 13,635,000 (8,224,000-21,953,000) 1,306,000 (764,000-2,168,000) 31,692,000 (23,575,000-42,090,000) 37,286,000 (29,010,000-48,272,000) 5.17 (3.18-8.30) 11.54 (8.58-15.33) 13.58 (10.56-17.58)
IND 39,509,000 (21,058,000-73,574,000) 4,367,000 (2,310,000-8,236,000) 103,770,000 (74,594,000-144,547,000) 141,463,000 (104,935,000-197,102,000) 2.95 (1.58-5.43) 7.35 (5.28-10.23) 10.02 (7.43-13.96)
IRL 4,000 (2,000-9,000) 0 (0-0) 22,000 (13,000-76,000) 185,000 (24,000-468,000) 0.09 (0.05-0.18) 0.43 (0.26-1.53) 3.70 (0.48-9.35)
IRN 147,000 (75,000-298,000) 14,000 (7,000-28,000) 571,000 (364,000-1,450,000) 3,036,000 (553,000-7,474,000) 0.18 (0.09-0.35) 0.65 (0.41-1.64) 3.44 (0.63-8.47)
IRQ 83,000 (40,000-165,000) 20,000 (10,000-40,000) 324,000 (213,000-732,000) 1,408,000 (312,000-3,079,000) 0.20 (0.10-0.40) 0.74 (0.48-1.66) 3.20 (0.71-7.00)
ISR 3,000 (1,000-6,000) 0 (0-1,000) 17,000 (9,000-97,000) 284,000 (21,000-735,000) 0.03 (0.02-0.06) 0.19 (0.09-1.08) 3.17 (0.24-8.19)
ITA 64,000 (31,000-132,000) 2,000 (1,000-4,000) 246,000 (161,000-818,000) 1,714,000 (244,000-6,022,000) 0.12 (0.06-0.23) 0.42 (0.27-1.38) 2.90 (0.41-10.19)
JAM 1,000 (1,000-3,000) 0 (0-0) 6,000 (4,000-24,000) 51,000 (5,000-222,000) 0.05 (0.03-0.11) 0.20 (0.13-0.84) 1.80 (0.19-7.84)
JOR 4,000 (2,000-9,000) 1,000 (0-2,000) 17,000 (10,000-92,000) 167,000 (15,000-827,000) 0.04 (0.02-0.08) 0.15 (0.09-0.82) 1.49 (0.14-7.35)
JPN 244,000 (116,000-490,000) 8,000 (4,000-16,000) 1,174,000 (762,000-2,808,000) 5,901,000 (1,527,000-13,118,000) 0.21 (0.10-0.42) 0.94 (0.61-2.26) 4.75 (1.23-10.56)
KAZ 135,000 (81,000-219,000) 15,000 (9,000-25,000) 534,000 (363,000-794,000) 1,147,000 (781,000-1,701,000) 0.75 (0.45-1.21) 2.77 (1.88-4.11) 5.94 (4.05-8.82)
KEN 950,000 (524,000-1,651,000) 160,000 (87,000-283,000) 2,827,000 (2,047,000-3,998,000) 3,360,000 (2,504,000-4,824,000) 1.85 (1.01-3.25) 5.28 (3.83-7.47) 6.28 (4.68-9.02)
KGZ 90,000 (47,000-173,000) 15,000 (8,000-29,000) 252,000 (176,000-373,000) 416,000 (245,000-629,000) 1.45 (0.78-2.76) 3.83 (2.67-5.68) 6.33 (3.73-9.56)
KHM 865,000 (460,000-1,491,000) 100,000 (52,000-178,000) 2,066,000 (1,470,000-2,879,000) 2,231,000 (1,631,000-3,037,000) 5.39 (2.95-9.26) 12.39 (8.81-17.26) 13.37 (9.78-18.21)
KOR 876,000 (518,000-1,564,000) 14,000 (8,000-26,000) 3,227,000 (2,451,000-4,283,000) 4,721,000 (3,671,000-6,137,000) 1.78 (1.07-3.18) 6.23 (4.73-8.26) 9.11 (7.08-11.84)
KWT 12,000 (6,000-24,000) 1,000 (0-1,000) 47,000 (32,000-89,000) 226,000 (97,000-423,000) 0.29 (0.15-0.59) 1.11 (0.75-2.10) 5.33 (2.29-9.96)
LAO 288,000 (161,000-507,000) 36,000 (19,000-64,000) 713,000 (512,000-1,000,000) 873,000 (661,000-1,153,000) 4.08 (2.24-7.18) 9.53 (6.84-13.38) 11.67 (8.84-15.42)
LBN 7,000 (3,000-15,000) 1,000 (0-2,000) 22,000 (14,000-63,000) 77,000 (19,000-425,000) 0.13 (0.06-0.29) 0.39 (0.25-1.13) 1.39 (0.34-7.66)
LBR 168,000 (81,000-332,000) 34,000 (16,000-70,000) 393,000 (270,000-598,000) 485,000 (335,000-684,000) 3.39 (1.64-6.53) 7.48 (5.14-11.39) 9.25 (6.38-13.03)
LBY 37,000 (19,000-72,000) 5,000 (2,000-9,000) 109,000 (72,000-186,000) 366,000 (194,000-610,000) 0.59 (0.31-1.13) 1.61 (1.06-2.74) 5.40 (2.87-9.00)
LKA 251,000 (135,000-507,000) 20,000 (10,000-40,000) 689,000 (484,000-1,058,000) 1,248,000 (652,000-2,120,000) 1.22 (0.66-2.43) 3.16 (2.22-4.85) 5.72 (2.99-9.72)
LSO 80,000 (47,000-142,000) 12,000 (7,000-22,000) 205,000 (146,000-290,000) 255,000 (188,000-343,000) 3.66 (2.13-6.62) 8.94 (6.39-12.64) 11.12 (8.17-14.95)
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LTU 21,000 (10,000-40,000) 1,000 (0-1,000) 90,000 (63,000-128,000) 179,000 (110,000-270,000) 0.83 (0.41-1.54) 3.27 (2.27-4.62) 6.48 (3.98-9.76)
LUX 1,000 (1,000-2,000) 0 (0-0) 3,000 (2,000-9,000) 18,000 (3,000-56,000) 0.18 (0.10-0.36) 0.54 (0.36-1.44) 2.76 (0.49-8.74)
LVA 9,000 (5,000-18,000) 0 (0-1,000) 48,000 (32,000-78,000) 112,000 (71,000-168,000) 0.51 (0.26-1.05) 2.60 (1.71-4.20) 6.01 (3.80-9.03)
MAC 10,000 (5,000-22,000) 0 (0-1,000) 34,000 (24,000-49,000) 54,000 (38,000-77,000) 1.61 (0.86-3.39) 4.96 (3.55-7.09) 7.87 (5.47-11.16)
MAR 389,000 (197,000-812,000) 44,000 (22,000-95,000) 1,111,000 (791,000-1,631,000) 2,061,000 (1,054,000-3,515,000) 1.11 (0.57-2.30) 2.98 (2.12-4.38) 5.53 (2.83-9.43)
MDA 54,000 (28,000-107,000) 3,000 (1,000-5,000) 165,000 (118,000-231,000) 250,000 (169,000-353,000) 1.87 (0.95-3.67) 5.40 (3.88-7.57) 8.20 (5.53-11.57)
MDG 868,000 (416,000-1,700,000) 164,000 (77,000-329,000) 2,129,000 (1,497,000-3,188,000) 2,755,000 (2,021,000-3,814,000) 3.13 (1.56-6.07) 7.28 (5.12-10.90) 9.42 (6.91-13.03)
MDV 3,000 (2,000-7,000) 0 (0-0) 10,000 (7,000-17,000) 25,000 (10,000-48,000) 0.70 (0.33-1.47) 1.94 (1.28-3.27) 4.82 (1.89-9.05)
MEX 497,000 (235,000-1,033,000) 44,000 (21,000-92,000) 1,272,000 (841,000-2,260,000) 2,968,000 (1,079,000-10,108,000) 0.41 (0.20-0.85) 1.00 (0.66-1.78) 2.34 (0.85-7.96)
MKD 5,000 (2,000-10,000) 0 (0-0) 25,000 (16,000-52,000) 102,000 (40,000-193,000) 0.25 (0.13-0.48) 1.18 (0.74-2.47) 4.84 (1.91-9.17)
MLI 101,000 (46,000-219,000) 29,000 (13,000-63,000) 312,000 (209,000-545,000) 801,000 (297,000-1,509,000) 0.48 (0.22-1.04) 1.40 (0.94-2.45) 3.60 (1.33-6.78)
MLT 3,000 (1,000-5,000) 0 (0-0) 5,000 (4,000-9,000) 6,000 (4,000-26,000) 0.49 (0.27-0.92) 1.02 (0.69-1.60) 1.22 (0.79-4.91)
MMR 2,727,000 (1,444,000-4,605,000) 247,000 (128,000-440,000) 6,478,000 (4,618,000-9,050,000) 7,516,000 (5,671,000-10,144,000) 5.30 (2.87-8.85) 12.00 (8.56-16.77) 13.92 (10.51-18.79)
MNE 2,000 (1,000-4,000) 0 (0-0) 7,000 (4,000-17,000) 29,000 (6,000-55,000) 0.28 (0.13-0.59) 1.11 (0.66-2.76) 4.56 (0.89-8.80)
MNG 160,000 (78,000-338,000) 25,000 (12,000-55,000) 362,000 (251,000-588,000) 429,000 (313,000-634,000) 5.01 (2.43-10.32) 10.74 (7.43-17.43) 12.71 (9.29-18.78)
MOZ 791,000 (368,000-1,683,000) 194,000 (89,000-417,000) 1,915,000 (1,294,000-3,063,000) 2,547,000 (1,704,000-3,720,000) 2.55 (1.15-5.47) 5.89 (3.98-9.42) 7.83 (5.24-11.44)
MRT 34,000 (17,000-65,000) 9,000 (5,000-18,000) 124,000 (83,000-189,000) 259,000 (165,000-365,000) 0.78 (0.39-1.48) 2.65 (1.77-4.05) 5.55 (3.52-7.81)
MUS 5,000 (3,000-11,000) 0 (0-0) 16,000 (11,000-29,000) 51,000 (15,000-119,000) 0.44 (0.22-0.91) 1.24 (0.83-2.25) 3.91 (1.17-9.14)
MWI 194,000 (116,000-338,000) 43,000 (26,000-75,000) 676,000 (471,000-989,000) 1,265,000 (879,000-1,718,000) 1.02 (0.61-1.76) 3.36 (2.34-4.91) 6.28 (4.36-8.53)
MYS 526,000 (265,000-1,003,000) 38,000 (19,000-74,000) 1,293,000 (902,000-1,911,000) 2,295,000 (1,413,000-3,653,000) 1.66 (0.83-3.15) 3.83 (2.67-5.66) 6.80 (4.19-10.82)
NAM 71,000 (36,000-139,000) 14,000 (7,000-27,000) 203,000 (150,000-290,000) 260,000 (199,000-351,000) 2.91 (1.48-5.77) 7.96 (5.88-11.36) 10.20 (7.81-13.77)
NER 190,000 (93,000-377,000) 59,000 (29,000-118,000) 618,000 (427,000-935,000) 1,307,000 (714,000-1,879,000) 0.78 (0.39-1.56) 2.40 (1.66-3.63) 5.08 (2.78-7.31)
NGA 2,578,000 (1,183,000-5,273,000) 707,000 (322,000-1,449,000) 6,644,000 (4,437,000-10,079,000) 11,114,000 (6,024,000-18,018,000) 1.25 (0.59-2.54) 3.08 (2.05-4.67) 5.15 (2.79-8.34)
NIC 36,000 (16,000-78,000) 4,000 (2,000-9,000) 107,000 (71,000-178,000) 268,000 (96,000-519,000) 0.54 (0.25-1.16) 1.56 (1.03-2.58) 3.89 (1.39-7.52)
NLD 19,000 (10,000-38,000) 1,000 (0-1,000) 82,000 (51,000-259,000) 677,000 (87,000-1,781,000) 0.12 (0.06-0.23) 0.47 (0.29-1.48) 3.86 (0.49-10.16)
NOR 4,000 (2,000-8,000) 0 (0-0) 18,000 (12,000-69,000) 173,000 (18,000-515,000) 0.08 (0.04-0.15) 0.34 (0.21-1.27) 3.20 (0.34-9.51)
NPL 971,000 (483,000-1,887,000) 100,000 (49,000-199,000) 2,567,000 (1,816,000-3,712,000) 3,253,000 (2,414,000-4,358,000) 3.40 (1.66-6.55) 8.45 (5.98-12.22) 10.71 (7.95-14.35)
NZL 7,000 (3,000-14,000) 0 (0-1,000) 25,000 (15,000-70,000) 157,000 (24,000-458,000) 0.14 (0.07-0.28) 0.48 (0.30-1.35) 3.03 (0.47-8.88)
OMN 6,000 (3,000-13,000) 0 (0-1,000) 23,000 (15,000-62,000) 139,000 (24,000-368,000) 0.15 (0.07-0.30) 0.51 (0.34-1.37) 3.06 (0.52-8.09)
PAK 5,313,000 (2,767,000-10,068,000) 1,085,000 (566,000-2,090,000) 13,760,000 (9,812,000-19,902,000) 20,045,000 (14,511,000-27,407,000) 2.41 (1.26-4.46) 5.89 (4.20-8.52) 8.58 (6.21-11.74)
PAN 25,000 (12,000-53,000) 2,000 (1,000-5,000) 77,000 (52,000-128,000) 200,000 (77,000-378,000) 0.59 (0.29-1.25) 1.75 (1.19-2.93) 4.57 (1.76-8.64)
PER 692,000 (333,000-1,474,000) 58,000 (27,000-129,000) 1,826,000 (1,239,000-2,766,000) 2,663,000 (1,734,000-3,876,000) 2.17 (1.03-4.62) 5.38 (3.65-8.16) 7.85 (5.11-11.43)
PHL 9,249,000 (4,742,000-17,782,000) 1,318,000 (650,000-2,673,000) 18,954,000 (12,933,000-28,989,000) 20,522,000 (14,659,000-30,027,000) 8.48 (4.38-16.37) 16.53 (11.28-25.28) 17.90 (12.78-26.19)
PNG 351,000 (173,000-750,000) 67,000 (33,000-146,000) 844,000 (586,000-1,304,000) 1,043,000 (738,000-1,530,000) 3.67 (1.79-7.73) 8.40 (5.84-12.98) 10.38 (7.34-15.22)
POL 115,000 (57,000-241,000) 3,000 (2,000-7,000) 531,000 (343,000-1,027,000) 1,890,000 (648,000-3,609,000) 0.32 (0.16-0.66) 1.39 (0.90-2.69) 4.94 (1.69-9.44)
PRI 1,000 (0-1,000) 0 (0-0) 6,000 (2,000-37,000) 124,000 (8,000-345,000) 0.02 (0.01-0.03) 0.18 (0.07-1.13) 3.83 (0.25-10.63)
PRK 2,321,000 (1,181,000-4,115,000) 111,000 (54,000-213,000) 4,776,000 (3,382,000-6,848,000) 5,047,000 (3,769,000-7,077,000) 9.28 (4.81-16.34) 18.35 (13.00-26.32) 19.39 (14.48-27.20)
PRT 45,000 (23,000-92,000) 1,000 (0-2,000) 191,000 (126,000-340,000) 563,000 (269,000-959,000) 0.47 (0.24-0.95) 1.86 (1.22-3.30) 5.48 (2.61-9.32)
PRY 46,000 (22,000-94,000) 5,000 (2,000-10,000) 121,000 (82,000-201,000) 243,000 (108,000-527,000) 0.72 (0.35-1.45) 1.80 (1.21-2.98) 3.60 (1.60-7.82)
PSE 0 (0-0) 0 (0-0) 1,000 (1,000-23,000) 61,000 (1,000-357,000) 0.00 (0.00-0.01) 0.03 (0.01-0.45) 1.17 (0.03-6.87)
QAT 38,000 (19,000-74,000) 1,000 (0-2,000) 102,000 (70,000-151,000) 180,000 (104,000-273,000) 1.49 (0.77-2.94) 3.80 (2.62-5.62) 6.70 (3.88-10.16)
ROU 241,000 (121,000-481,000) 8,000 (4,000-15,000) 922,000 (676,000-1,305,000) 1,499,000 (1,054,000-1,998,000) 1.31 (0.65-2.63) 4.79 (3.51-6.77) 7.78 (5.47-10.37)
RUS 1,553,000 (782,000-3,038,000) 64,000 (33,000-128,000) 5,387,000 (3,734,000-8,040,000) 10,236,000 (6,831,000-15,046,000) 1.14 (0.59-2.22) 3.72 (2.58-5.56) 7.07 (4.72-10.40)
RWA 71,000 (34,000-138,000) 13,000 (6,000-24,000) 233,000 (160,000-389,000) 605,000 (239,000-1,010,000) 0.55 (0.27-1.07) 1.71 (1.18-2.86) 4.44 (1.75-7.42)
SAU 51,000 (27,000-98,000) 5,000 (2,000-9,000) 226,000 (155,000-505,000) 1,336,000 (308,000-3,295,000) 0.15 (0.08-0.29) 0.63 (0.43-1.40) 3.70 (0.85-9.12)
SDN 242,000 (150,000-406,000) 62,000 (38,000-105,000) 886,000 (599,000-1,371,000) 2,323,000 (1,342,000-3,649,000) 0.55 (0.34-0.94) 1.91 (1.30-2.96) 5.02 (2.90-7.89)
SEN 168,000 (79,000-353,000) 45,000 (21,000-96,000) 485,000 (323,000-747,000) 871,000 (451,000-1,366,000) 1.04 (0.49-2.22) 2.84 (1.89-4.37) 5.10 (2.64-7.99)
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SGP 100,000 (49,000-213,000) 2,000 (1,000-4,000) 248,000 (167,000-397,000) 401,000 (222,000-670,000) 1.78 (0.88-3.70) 4.16 (2.81-6.66) 6.74 (3.73-11.24)
SLB 6,000 (3,000-13,000) 1,000 (1,000-2,000) 18,000 (13,000-28,000) 35,000 (18,000-59,000) 0.89 (0.45-1.83) 2.55 (1.80-3.93) 4.95 (2.54-8.25)
SLE 262,000 (128,000-515,000) 57,000 (27,000-114,000) 638,000 (448,000-952,000) 806,000 (580,000-1,173,000) 3.25 (1.54-6.40) 7.49 (5.27-11.18) 9.47 (6.82-13.77)
SLV 37,000 (19,000-77,000) 3,000 (2,000-7,000) 101,000 (69,000-159,000) 154,000 (81,000-503,000) 0.62 (0.32-1.27) 1.60 (1.09-2.51) 2.44 (1.29-7.95)
SOM 532,000 (263,000-1,091,000) 113,000 (55,000-238,000) 1,334,000 (909,000-1,994,000) 1,657,000 (1,195,000-2,230,000) 3.24 (1.64-6.54) 7.70 (5.25-11.51) 9.56 (6.89-12.87)
SRB 26,000 (13,000-56,000) 1,000 (0-2,000) 127,000 (78,000-257,000) 391,000 (119,000-650,000) 0.39 (0.19-0.80) 1.75 (1.07-3.54) 5.38 (1.64-8.96)
SSD 278,000 (138,000-573,000) 70,000 (34,000-145,000) 695,000 (461,000-1,050,000) 895,000 (505,000-1,268,000) 2.70 (1.33-5.46) 6.42 (4.25-9.70) 8.26 (4.66-11.70)
SUR 3,000 (1,000-6,000) 0 (0-1,000) 7,000 (5,000-13,000) 15,000 (6,000-49,000) 0.47 (0.22-0.95) 1.22 (0.80-2.07) 2.45 (1.03-8.03)
SVK 3,000 (2,000-7,000) 0 (0-0) 30,000 (14,000-108,000) 226,000 (53,000-482,000) 0.06 (0.03-0.13) 0.55 (0.26-1.99) 4.15 (0.97-8.87)
SVN 2,000 (1,000-5,000) 0 (0-0) 16,000 (9,000-44,000) 94,000 (28,000-208,000) 0.12 (0.06-0.23) 0.73 (0.42-2.09) 4.43 (1.34-9.80)
SWE 10,000 (5,000-19,000) 0 (0-1,000) 37,000 (25,000-122,000) 193,000 (34,000-958,000) 0.10 (0.05-0.19) 0.35 (0.24-1.16) 1.84 (0.33-9.11)
SWZ 17,000 (10,000-30,000) 3,000 (2,000-6,000) 62,000 (43,000-88,000) 95,000 (69,000-125,000) 1.49 (0.86-2.64) 5.18 (3.63-7.33) 7.92 (5.78-10.48)
SYR 33,000 (17,000-65,000) 5,000 (3,000-10,000) 125,000 (79,000-314,000) 923,000 (351,000-1,877,000) 0.16 (0.08-0.32) 0.58 (0.37-1.45) 4.27 (1.62-8.70)
TCD 203,000 (98,000-403,000) 57,000 (28,000-115,000) 534,000 (366,000-797,000) 887,000 (494,000-1,377,000) 1.23 (0.59-2.45) 3.06 (2.10-4.57) 5.08 (2.83-7.89)
TGO 31,000 (17,000-58,000) 6,000 (3,000-11,000) 108,000 (75,000-184,000) 326,000 (127,000-651,000) 0.38 (0.21-0.70) 1.24 (0.85-2.11) 3.72 (1.45-7.44)
THA 2,791,000 (1,688,000-4,680,000) 88,000 (52,000-151,000) 7,106,000 (5,190,000-9,803,000) 8,737,000 (6,625,000-11,401,000) 4.11 (2.45-6.73) 9.92 (7.24-13.68) 12.20 (9.25-15.91)
TJK 77,000 (38,000-151,000) 17,000 (9,000-34,000) 277,000 (185,000-421,000) 565,000 (321,000-820,000) 0.83 (0.41-1.63) 2.81 (1.88-4.28) 5.73 (3.26-8.32)
TKM 48,000 (24,000-95,000) 6,000 (3,000-13,000) 162,000 (111,000-251,000) 356,000 (184,000-540,000) 0.79 (0.40-1.59) 2.53 (1.73-3.93) 5.58 (2.88-8.46)
TLS 68,000 (31,000-144,000) 12,000 (5,000-26,000) 156,000 (106,000-241,000) 176,000 (124,000-256,000) 5.40 (2.51-11.06) 11.72 (7.94-18.09) 13.18 (9.29-19.19)
TTO 4,000 (2,000-8,000) 0 (0-0) 12,000 (8,000-25,000) 33,000 (11,000-134,000) 0.28 (0.14-0.58) 0.77 (0.51-1.61) 2.14 (0.71-8.79)
TUN 57,000 (27,000-124,000) 5,000 (3,000-12,000) 144,000 (96,000-244,000) 245,000 (119,000-926,000) 0.49 (0.23-1.04) 1.17 (0.78-1.98) 1.99 (0.97-7.52)
TUR 137,000 (64,000-277,000) 11,000 (5,000-22,000) 574,000 (359,000-1,409,000) 3,166,000 (611,000-7,578,000) 0.17 (0.08-0.34) 0.67 (0.42-1.66) 3.72 (0.72-8.91)
TZA 1,378,000 (878,000-2,250,000) 329,000 (208,000-549,000) 3,516,000 (2,506,000-5,151,000) 5,214,000 (3,768,000-7,074,000) 2.28 (1.45-3.70) 5.45 (3.88-7.98) 8.08 (5.84-10.96)
UGA 483,000 (225,000-949,000) 127,000 (59,000-252,000) 1,342,000 (899,000-1,976,000) 2,386,000 (1,218,000-3,656,000) 1.10 (0.51-2.12) 2.88 (1.93-4.24) 5.12 (2.62-7.85)
UKR 864,000 (432,000-1,731,000) 27,000 (13,000-55,000) 2,502,000 (1,765,000-3,532,000) 3,797,000 (2,633,000-5,352,000) 2.12 (1.07-4.17) 5.77 (4.07-8.15) 8.76 (6.08-12.35)
URY 21,000 (10,000-44,000) 1,000 (0-2,000) 52,000 (34,000-86,000) 85,000 (43,000-272,000) 0.65 (0.31-1.35) 1.52 (1.00-2.51) 2.47 (1.26-7.95)
USA 172,000 (84,000-354,000) 7,000 (3,000-15,000) 808,000 (469,000-3,866,000) 10,959,000 (840,000-32,490,000) 0.05 (0.03-0.11) 0.24 (0.14-1.15) 3.25 (0.25-9.63)
UZB 332,000 (162,000-692,000) 40,000 (19,000-84,000) 993,000 (699,000-1,521,000) 1,966,000 (1,054,000-3,088,000) 1.02 (0.51-2.12) 2.89 (2.04-4.43) 5.72 (3.07-8.99)
VEN 155,000 (73,000-319,000) 16,000 (8,000-33,000) 376,000 (246,000-621,000) 688,000 (318,000-2,226,000) 0.58 (0.29-1.16) 1.34 (0.88-2.21) 2.45 (1.13-7.94)
VNM 3,176,000 (1,656,000-6,070,000) 222,000 (114,000-436,000) 8,620,000 (6,188,000-12,350,000) 10,856,000 (8,295,000-14,449,000) 3.41 (1.81-6.58) 8.81 (6.32-12.62) 11.10 (8.48-14.77)
YEM 131,000 (66,000-255,000) 34,000 (17,000-67,000) 444,000 (296,000-818,000) 1,372,000 (472,000-2,474,000) 0.42 (0.21-0.81) 1.33 (0.89-2.46) 4.12 (1.42-7.43)
ZAF 2,202,000 (1,224,000-3,995,000) 277,000 (150,000-514,000) 6,062,000 (4,491,000-8,421,000) 7,207,000 (5,624,000-9,653,000) 3.89 (2.12-6.92) 10.16 (7.53-14.12) 12.08 (9.43-16.18)
ZMB 346,000 (172,000-715,000) 79,000 (39,000-165,000) 1,032,000 (744,000-1,529,000) 1,512,000 (1,085,000-2,025,000) 1.85 (0.93-3.81) 5.23 (3.77-7.74) 7.66 (5.50-10.25)
ZWE 170,000 (93,000-312,000) 33,000 (18,000-62,000) 616,000 (446,000-907,000) 1,086,000 (786,000-1,473,000) 1.12 (0.61-2.07) 3.81 (2.76-5.62) 6.72 (4.87-9.12)
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4.3 Additional analyses 

We used the ‘Infected’ tunnel states structure to track an infected cohort as it experienced self- 

clearance and infection year transitions as competing risks, without accounting for infection or 

reinfection. Self-clearance rates by year per tunnel state were ascertained using a Markov chain 

Monte-Carlo algorithm (Table 4.1). 

 

Table 4.1 Calibrated self-clearance rates by year. 

Parameter Description 
Scenarios 

High self-clearance Low self-clearance 

γ1 Infected – Year 1 1.39 (1.18 – 1.68) 1.61 (1.32 – 1.97) 

γ2 Infected – Year 2 3.92 (2.63 – 5.61) 2.70 (1.74 – 4.08) 

γ3 Infected – Years 3 to 10 0.14 (0.03 – 0.25) 0.29 (0.20 – 0.41) 

γ4 Infected – Years 10+ 0.09 (0.05 – 0.30) 0.02 (0.01 – 0.04) 

Self-clearance rates by year per tunnel state for each scenario. 

 

4.4 Summary 

In this chapter, I used mathematical modelling to account for immunoreactivity reversion, age-

specific social mixing patterns, and self-clearance of infection to estimate the global burden of 

viable Mtb infections and their recency. By focusing on recent infections—when the risk of 

disease progression is highest—we provide a medically actionable target for prioritising 

populations for TPT. These advancements represent a step forward in understanding the 

reservoir of infection driving transmission and disease. 
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Chapter 5: Tuberculosis screening in the Kolín study  

In this chapter, the third research paper of the thesis is presented to address Objective #3: to re-

evaluate the impact of a historical mass chest radiography (CXR) screening intervention on the 

reduction of tuberculosis (TB) prevalence. The chapter opens with a concise overview of the 

research gap, followed by the published paper, and concludes with a brief summary. 

 

5.1 Introduction 

Even before the advent of antimicrobial treatment, mass screenings for TB were conducted in 

cities then considered to have a high TB burden [1]. These interventions aimed to identify 

individuals earlier in their disease pathway, in an eGort to reduce TB mortality and isolate those 

with TB to curb transmission [1,2]. Typically, these interventions involved large-scale CXR 

campaigns, which were carried out in various cities and isolated communities from the 1930s to 

the 1960s [1]. These mass screening eGorts were symptom-agnostic, targeting the entire 

population or specific risk groups regardless of the presence of symptoms commonly 

associated with TB. Coupled with improved social conditions and housing, these interventions 

are thought to have contributed to substantial reductions in TB burden, ultimately leading to 

their discontinuation [3]. However, mass screening faced challenges; while CXR was a useful 

initial tool for identifying potential lung abnormalities, it was not suGiciently reliable on its own 

for diagnosing TB [3,4]. Individuals who screened positive on CXR films were typically referred 

for further investigation, including bacteriological studies, before initiating treatment [3,4]. 

Additionally, the logistics of sustaining such large-scale eGorts proved problematic [3,4]. 

 

In 1974, a World Health Organization (WHO) Expert Committee on TB concluded that mass CXR 

screening had “no significant eGect on the occurrence of subsequent smear-positive cases” 

and deemed it an ineGective and overly costly tool for interrupting transmission [5]. This 

conclusion shifted focus towards symptom- and bacteriology-based TB diagnosis, stimulated 

by the availability of treatment, and led to the development of a binary approach to TB. This 

paradigm dichotomises TB into: latent TB infection, characterised by immunoreactivity without 

clinical symptoms or microbiological evidence of disease, and active TB disease, marked by 

symptoms and transmissibility [6,7]. While this framework oGered simplicity for diagnosis and 

treatment allocation, it overlooked the complex natural history of TB, including intermediate 

states and the infectious period preceding overt disease, thereby limiting its eGectiveness in 

reducing transmission [8]. 
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The historical mass CXR screening programme in Kolín, Czechoslovakia, was among the key 

studies that informed the report by the Expert Committee [4,9,10]. However, in light of the 

recognition of the spectrum of TB disease, it is worth reconsidering whether its perceived 

ineGectiveness was accurately understood [11]. Recent advancements in CXR technology, such 

as computer-aided detection, along with reduced costs and increased portability of CXR units, 

have sparked renewed interest in mass CXR screening for TB [3]. As optimal algorithms for 

population-wide screening are re-evaluated, revisiting the historical evidence of the impact of 

these interventions on TB burden is both timely and essential. 

 

5.2 Research paper 

The following pages contain the Research Paper Cover Sheet, the copyright license, and the 

published research paper for: Schwalb A, Emery JC, Houben RMGJ. Use of chest radiography 

screening for TB: a re-evaluation of the Kolín study. Int J Tuberc Lung Dis. 2022;26: 983–985 [12]. 
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LETTER

Use of chest radiography screening for TB: a re-evaluation of the
Kolı́n study

Dear Editor,
Current TB care and prevention policies have resulted
in a slow (,2%) annual decline in disease incidence,1

meaning we are not on track to reach the 2030
Sustainable Development Goals.2 Historically, mass
chest radiography (CXR) screening programmes were
widely used, in part because of their sensitivity for
pulmonary TB.3 However, following a 1974 WHO
Expert Committee report, mass CXR screening was
mostly abandoned in the past half-century. It was
concluded that mass CXR screening had ‘‘no signif-
icant effect on the occurrence of subsequent smear-
positive cases’’ and, given the resource requirements,
was not a cost-effective tool to interrupt transmis-
sion.4 One of the key sources cited in support of this
viewpoint are the results from a carefully conducted
long-term study on mass CXR screening and TB
epidemiology in the district of Kolı́n, Czechoslovakia,
from 1960 to 1972.5–7

However, because costs for mass CXR screening
are rapidly dropping (due to technological advances,
such as digitalisation and computer-aided detection
of pulmonary abnormalities), we felt it timely to re-
evaluate the Kolı́n study; specifically, whether or not
the idea that mass CXR screening does not add
epidemiological value still holds up. We re-examined
the data from two key publications to address the
questions: 1) whether or not there was a decline in TB
incidence during the study period, and 2) if there was
a decline, to what extent was this due to mass CXR
screening. Before the study, the TB burden in
Czechoslovakia was high.6 Kolı́n District housed
approximately 100,000 inhabitants across rural and
urban areas, with an annual TB incidence of 151.8
per 100,000 in 1955–1959.6 The study’s objective
was to observe epidemiological trends in a region
covered by a TB programme over the 12-year study
period, which included, among other measures,
systematic Bacillus Calmette-Guérin vaccination
and treatment, follow-up of cases and repeated mass
CXR surveys of the population aged of !15 years.6,7

During the study period, five mass CXR surveys were
conducted to obtain several point-prevalence esti-
mates. CXR films were independently and blindly
evaluated by two physicians and stored for compar-
ison in subsequent surveys.6

To address our first question, we extracted data
from a plot of the period prevalence of bacillary

pulmonary TB, defined as the number of notified
cases (through study procedures) within a calendar
year, for the whole study period (Krivinka et al.,7 p
64). The graph used a logarithmic scale (replicated in
the Figure, left), which visually underestimates the
decline of total and new cases.7 However, plotting the
data on a linear scale and fitting a linear regression
curve to the logarithm of the cases by the least-
squares approach (Figure, right), we see that the total
number of cases declined annually by 13.6% (95% CI
9.4–17.9). It is worth mentioning that TB prevalence
increased noticeably in 1961 due to the first mass
examination of the study; further peaks also corre-
spond to years when mass CXR screening took place.
The final year of the curve in 1972 also corresponds
to a mass screening year, which implies that 1973
would have seen a further drop, mirroring previous
patterns. A slightly lower decrease in the number of
new cases was observed (annual decline of 10.8%,
95% CI 3.9–18.0). Although the study mainly
attributed the overall decline to a drop in prevalence
due to the effective treatment of chronic patients
(annual decline of 42.8%, 95% CI 37.7–48.2), a
substantial reduction in new TB cases was also
observed over the whole period. The decline in TB
burden also coincided with a period of national
economic growth, impacting the socio-economic
status of the study population.8 It is useful to note
that the annual decline differed between the two
study periods, with a steeper decline in total cases
occurring in 1960–1964 (annual decline of 17.2%,
95% CI 9.3–51.3) compared to 1965–1972 (10.6%,
95% CI 1.1–20.9), which suggests that interventions
in the study had the largest impact shortly after
implementation. Although less striking, it still ex-
ceeds the current annual global decline in TB five-
fold.1 Thus, either impact would be welcomed by
most, if not all, TB programmes today.

The second question is the extent to which the
decline of TB experienced in Kolı́n was due to mass
CXR screening. Ascribing causality is challenging,
but it is important to work through. Ideally, CXR
screening would identify new cases early, during what
we now refer to as the subclinical phase (i.e., before
systems develop). Furthermore, the smear status of
new cases is more likely to be smear-negative (i.e.,
have contributed less to transmission).9 For the
period 1960–1964, mass CXR contributed to the

Article submitted 15 April 2022. Final version accepted 19 May 2022.
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detection of 61% (148/241) of new TB cases, of
which (16%, 23/148) were smear-positive (see
Appendix Table 10 in Stýblo K, et al.6). For the
period 1965–1972, the contribution to the detection
of new cases declined to 38% (102/270); however, a
larger proportion were smear-positive (29%, 30/102;
see Table 2 in Krivinka R, et al.7). These numbers
were interpreted to show that CXR was ineffective at
detecting smear-positive cases. However, it is worth
highlighting that even in that period, symptom-based
passive case-finding contributed to 48% (129/270) of
new cases, of which 43% (56/129) were smear-
positive cases. One could therefore argue that the
effectiveness of CXR screening for detecting new
smear-positive cases was not substantially inferior,
and nor was it irrelevant for the observed decline. In
contrast, the conclusions surrounding the ‘‘impracti-
cality’’ of CXR were fixed on its lack of detection of
smear-positive cases. However, this focus prioritised
interrupting rather than preventing intensive trans-
mission and therefore warrants closer scrutiny.

As defined in a chapter in Toman’s Tuberculosis,
case detection is the early detection of individuals
discharging and transmitting tubercle bacilli that is
‘‘carried out in order to treat the sources of infection
so as to alleviate their suffering and to render them
non-infectious’’.5 Based on this description, CXR
perfored well by primarily identifying early cases,
most of which are less infectious (non-smear-posi-
tive), and providing them with timely treatment to
prevent future suffering. Nevertheless, in the same

chapter Toman considers the Kolı́n study an example
against the effectiveness of mass CXR screening. We
would argue that identifying smear-negative, asymp-
tomatic cases could, and maybe should, be regarded
as a benefit instead of a limitation.

Aside from the Kolı́n study, mass CXR screening
has shown promise as an effective measure in other
settings. In Cape Town, South Africa (1950–1970), a
temporary decrease in TB notification rates coincided
with population-wide active case-finding using min-
iature CXR.10 Since then, the increased availability
and reduced cost of CXR have allowed for its wider
use, especially in regions with precarious healthcare
systems.3 It may be particularly valuable in settings
with a high TB and HIV burden, as CXR is a cost-
effective tool for TB screening in HIV-positive
individuals.11 Additionally, complementary use of
molecular testing for TB further reduces requirements
on infrastructure and costs.12

As the TB community looks for new solutions for
the persistent global TB problem, we should revisit
our beliefs about what historical data can tell us.
Although mass CXR screening has challenges, we
show here that its historical performance was better
than originally perceived.

A. SCHWALB,1,2,3 J. C. EMERY,1,2 R. M. G. J. HOUBEN1,2

1TB Modelling Group, TB Centre, and 2Department
of Infectious Disease Epidemiology, London School

of Hygiene & Tropical Medicine, London, UK;
3Instituto de Medicina Tropical Alexander von

Figure Bacillary pulmonary TB cases in Kolı́n, Czechoslovakia, 1960–1972. Number of bacillary pulmonary TB cases detected in
Kolı́n, Czechoslovakia, from 1960 to 1972, categorised as total, new (newly discovered cases in a calendar year) and chronic
(continuous bacillary excretion for 2 years) cases, with corresponding regression lines. The original figure from Krivinka et al. is shown
on the left (log scale), and the adapted figure is shown on the right (linear scale).7 Dotted vertical lines indicate the year when a mass
CXR screening took place. CXR¼ chest X-ray.

984 The International Journal of Tuberculosis and Lung Disease

  



 Chapter 5 – Page 142 

Humboldt, Universidad Peruana Cayetano Heredia,
Lima, Peru

Correspondence to: Alvaro Schwalb, TB Modelling
Group, TB Centre, London School of Hygiene &

Tropical Medicine, London, UK. email: alvaro.
schwalb@lshtm.ac.uk

Acknowledgements

This work was supported by the European Research Council (ERC)
under the Horizon 2020 Research and Innovation Programme
(ERC Starting Grant No. 757699).

This is an open access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the
original author and source are credited.

References

1 World Health Organization. Global tuberculosis report, 2021.
Geneva, Switzerland: WHO, 2021.

2 World Health Organization. The End TB Strategy. Geneva,
Switzerland: WHO, 2014.

3 World Health Organization. Chest radiography in tuberculosis
detection: summary of current WHO recommendations and
guidance on programmatic approaches. Geneva, Switzerland:
WHO, 2016.

4 World Health Organization. WHO Expert Committee on
Tuberculosis. Geneva, Switzerland: WHO, 1974.

5 Toman K. Toman’s Tuberculosis - Case detection, treatment,
and monitoring: questions and answers. 2nd ed. Geneva,
Switzerland: World Health Organization, 2004.
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5.3 Summary 

In this chapter, I re-evaluated the historical mass CXR screening campaign in Kolín, 

Czechoslovakia, and argue that mass screening played a significant role in reducing TB burden 

by identifying and treating early TB disease, which, while likely less infectious, still contributed 

to transmission. Given recent advancements in CXR technology and accessibility, this work 

highlights the value of reconsidering CXR as a vital tool in current population-wide screening 

interventions, to prevent transmission and reduce TB prevalence. 
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Chapter 6: Population-wide screening for tuberculosis 

In this chapter, the fourth research paper of the thesis is presented to address Objective #4: to 

assess the cost-e4ectiveness of various population-wide screening algorithms and durations 

using a natural history model of the spectrum of tuberculosis (TB) disease. The chapter opens 

with a concise overview of the research gap, followed by the preprint, supplementary material, 

and concludes with a brief summary. 

 

6.1 Introduction 

Globally, the net reduction in TB incidence from 2015 to 2023 was 8.3% [1]. During this period, 

millions of individuals were diagnosed and treated for TB, reflecting substantial efforts in TB 

care and control [1]. However, this represents a limited decline, far short of the 90% reduction 

required by 2035 to meet the End TB Strategy targets—equivalent to an estimated constant 

reduction of 10% per year [2]. This slight decline is likely due to an overreliance on passive 

detection, where diagnosis and care are restricted to individuals experiencing symptoms who 

then seek and access healthcare [3,4]. Through this approach, individuals are diagnosed and 

treated after an extended period of infectiousness, contributing to ongoing transmission [5]. 

Furthermore, this approach does not reach the total people that have fallen ill with TB, with an 

estimated 40% undiagnosed [1]. Thus, in order to achieve the End TB Strategy targets, relying 

solely on passive detection is insufficient [2,3,5]. In contrast, population-wide screening aims 

to find and treat individuals with TB disease earlier in their disease pathway or those who would 

otherwise not have sought care [3,6]. Symptom-agnostic population-wide screening extends 

access to care to vulnerable populations and can overcome patient costs associated with 

diagnosis, which often hinder access to healthcare [8]. When implemented intensively and 

consistently over multiple years within a community, it has also been shown to reduce TB 

prevalence by shortening the period of infectiousness and cutting onward transmission [6,7].  

 

Viet Nam is listed among the 30 high TB burden countries with estimates pointing to over 10,000 

individuals falling ill with TB annually [1,9]. Despite concerted efforts to assess and address the 

TB burden, it has only decreased marginally over a 10-year period as shown in the TB 

prevalence surveys conducted between 2007 and 2017 [10–12]. In the search for more effective 

strategies, the ACT3 trial was undertaken, implementing annual, community-wide screenings 

across a span of three years [13]. It employed the Xpert MTB/RIF (Cepheid, USA) assay, a 

nucleic acid amplification test (NAAT), taking a symptom-agnostic approach that is similar to 

historic mass screening implementations [13]. Notably, ACT3 resulted in a significant reduction 
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in the prevalence of pulmonary TB within communities where the intervention was conducted, 

compared to those relying on passive detection [13]. However, despite the evident promise of 

this intervention, its implementation as a central component of TB elimination strategies 

remains under debate. The challenge lies in determining the optimal implementation of 

population-wide screening—including the ideal duration and algorithm—which is crucial to 

ascertain the most cost-effective approach to reducing the TB burden. 

 

6.2 Research paper 

The following pages contain the Research Paper Cover Sheet, the copyright license, the preprint 

of the research paper, and the supplementary material for: Schwalb A, Horton KC, Emery JC, 

Harker MJ, Gosce L, Veeken LD, et al. Potential impact, costs, and benefits of population-wide 

screening interventions for tuberculosis in Viet Nam: a mathematical modelling study. medRxiv. 

2024. DOI: 10.1101/2024.12.30.24319770 [14]. 
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Abstract  

Background: Population-wide screening may accelerate the decline of tuberculosis (TB) 

incidence, but the optimal screening algorithm and duration must weigh resource 

considerations. 

Methods: We calibrated a deterministic transmission model to TB epidemiology in Viet Nam. 

We designed three population-wide screening algorithms from 2025: sputum nucleic acid 

amplification tests (NAAT, Xpert MTB/RIF Ultra) only; chest radiography (CXR) followed by 

NAAT; and CXR-only without microbiological confirmation. We determined the annual 

screening rounds required to reduce pulmonary TB prevalence below 50 per 100,000 people. 

Cost-effectiveness was assessed using incremental cost-effectiveness ratios (ICERs), 

representing the additional costs (in US$) per disability-adjusted life year (DALY) averted 

compared to business-as-usual by 2050. Additionally, we evaluated the impact of NAAT 

cartridges costing US$1 each. 

Findings: NAAT-based algorithms required at least six rounds to reach the prevalence 

threshold, while CXR-only required three. NAAT-only achieved a prevalence reduction 

consistent with the ACT3 trial after three rounds. The CXR+NAAT algorithm averted 4.29m 

DALYs (95%UI:2.86-6.14) at US$225 (95%UI:85-520) per DALY averted compared with 

business-as-usual. The front-loaded investment of US$161m (95%UI:111-224) annually during 

the intervention resulted in average annual cost savings of US$12.7m (95%UI:6.7-21.4) up to 

2050 compared to the business-as-usual counterfactual. Reducing the cost of NAAT to US$1 

led to a 50% and 15% reduction in budget impact and a 63% and 26% reduction in the 

estimated ICER for the NAAT-only and CXR+NAAT algorithms, respectively. 

Interpretation: In Viet Nam, population-wide screening could achieve ambitious policy goals. 

Substantial front-loaded investment is immediately followed by persistent cost savings and 

could be further offset by more affordable NAATs. 

Funding: European Research Council, National Health and Medical Research Council 

Australia. 
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Research in context 

Evidence before this study 

Community-wide screening interventions for tuberculosis (TB) have historically been 

implemented in countries that are now considered low-burden. It has been hypothesised that 

such interventions could significantly alter TB epidemiology in current high-burden settings if 

applied with multiple screening rounds and broad coverage. A recent systematic review 

identified two contemporary cluster-randomised trials evaluating the effect of screening 

interventions on TB prevalence. The ACT3 trial in Viet Nam demonstrated a significant reduction 

in microbiologically confirmed TB prevalence after three annual rounds of screening with Xpert 

MTB/RIF for all, regardless of symptoms. In contrast, the ZAMSTAR trial in Zambia and South 

Africa, which used symptom-based screening with sputum smear microscopy, did not show a 

reduction in TB prevalence, highlighting that the screening algorithm employed plays a role in 

the impact of the intervention.  

 

Added value of this study 

This study assessed the impact and cost-effectiveness of annual rounds of different 

population-wide screening algorithms using a mathematical model calibrated to TB 

epidemiology in Viet Nam. The model incorporated recent insights into the spectrum of TB 

disease, including self-clearance of Mycobacterium tuberculosis infection, the presence of 

unconfirmed, asymptomatic infectious, and symptomatic infectious TB, and the relative 

contribution of asymptomatic TB to transmission. We evaluated the epidemiological impact—

assessed by cumulative TB incidence, TB deaths, and DALYs—along with the associated costs, 

including budget impact, the cost of front-loading for the duration of the intervention, and 

average annual cost savings over the time horizon, to inform policy decisions in a high TB 

burden setting. Additionally, sensitivity analyses allowed us to assess the impact of using 

alternative tests and reducing their associated costs. 

 

Implications of all the available evidence 

A substantial reduction in TB prevalence may be achieved by repeated annual rounds of 

symptom-agnostic, population-wide screening. A two-step algorithm, which uses chest 

radiography as an initial screen followed by sputum nucleic acid amplification test, is expected 

to avert 1.31 million individuals developing incident TB and 171,000 dying from TB by 2050. 

Despite an estimated budget impact of US$1,478 million and annual intervention-specific costs 

of US$161 million, annual savings of US$12.7 million begin immediately after the intervention 
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ends and are expected to be sustained well beyond 2050. These findings underscore the need 

to integrate proactive strategies into existing TB prevention and care practices and consider 

long term financial and health benefits. Furthermore, they illustrate how rapid achievement of 

ambitious policy goals can be accomplished through front-loaded investments. 
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Introduction 

Despite a slight decline in tuberculosis (TB) incidence of approximately 2% over the past 

decade, an estimated 10 million people still fall ill with TB each year.1 Worldwide, the 

conventional approach to TB prevention and care is passive detection, where diagnosis and 

treatment are only provided to individuals with symptoms who seek and receive healthcare.2–4 

This approach results in a large gap of undiagnosed individuals,1 as not everyone with TB 

experiences symptoms or is able to access care.5 Furthermore, due to the long duration and 

undulating pattern of TB, it also results in onward transmission before diagnosis and 

treatment.6 Thus, in order to achieve ambitious End TB Strategy targets,7 relying solely on 

passive detection is insufficient.3,6 In contrast, population-wide screening aims to interrupt 

transmission by finding and treating individuals with TB disease who otherwise would be 

diagnosed later or not at all through the usual patient-initiated pathway.2,3 Theoretically, when 

implemented intensively and consistently over multiple years, this approach could reduce TB 

prevalence and incidence by providing earlier treatment, shortening the period of 

infectiousness and breaking the chain of transmission.2,8,9  

 

Population-wide screening is not a novel approach; it has previously been employed in 

countries now considered to have a low TB burden.10 Screening campaigns using mobile chest 

radiography (CXR) units were conducted as early as the 1930s, with remarkable results across 

different settings.10–15 More recently, the ACT3 trial, conducted in Viet Nam from 2014 to 2018, 

implemented annual, community-wide screening over three years, using a symptom-agnostic 

approach similar to historic screening efforts.16 Notably, the trial demonstrated a significant 

reduction in the prevalence of pulmonary TB in the communities where screening was 

employed, compared with those utilising routine, passive detection methods alone.16 It also 

observed a 57% reduction in incident TB episodes over three successive annual cohorts.17 This 

outcome provides contemporary evidence of the tangible impact of population-wide screening, 

underscoring the importance of introducing proactive measures into current approaches to TB 

prevention and care.  

 

Although population-wide screening shows evident promise, its implementation as a central 

component of TB elimination strategies in high TB burden countries like Viet Nam remains 

under debate. A major challenge lies in determining the optimal way to implement these 

strategies—including the ideal duration and frequency of repeated screening, and the most 

appropriate screening algorithm. Resolving these factors is crucial to ascertaining the most 
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effective approach to reducing the TB burden, both in terms of incident TB and deaths averted. 

Furthermore, population-wide screening requires significant investment, thus scaling up its 

implementation must consider the substantial front-loaded costs, including financial and 

human resources.9  We sought to identify the most effective algorithm and duration of 

population-wide screening necessary to achieve a significant reduction in TB prevalence in Viet 

Nam, while weighing the short-term economic costs with long-term savings of reduced incident 

TB episodes.  

 

Methods 

Model structure 

Previous modelling work has emphasised the need for enhanced TB screening and diagnosis of 

individuals;17–19 nonetheless, it did not fully account for the spectrum of TB disease and the 

nature of transmission from individuals with asymptomatic TB.20–22 To address this, we 

developed a deterministic transmission model of TB natural history that incorporates recent 

advances in quantifying the spectrum of TB disease,20,23 including self-clearance of 

Mycobacterium tuberculosis (Mtb) infection and the relative contribution of asymptomatic TB 

to transmission.22,24  We represented the natural history of TB using nine compartments, 

reflecting the progression of Mtb infection along a spectrum from susceptibility to various 

states for disease and treatment (Figure 1). The three disease states were defined as follows: (i) 

unconfirmed TB, representing individuals with inflammatory pathology prior to bacteriological 

evidence of TB disease or symptoms; (ii) asymptomatic TB, representing individuals with 

bacteriological evidence of TB disease who do not report symptoms during screening; and (iii) 

symptomatic TB, representing individuals with bacteriological evidence of TB disease who do 

report symptoms during screening. The disease state classification was informed by the ICE-TB 

framework, and naming follows current World Health Organization (WHO) definitions.25,26 

Additional model states, parameterisation, and model equations are described in detail in 

Supplementary Materials SM1-2. The model was constructed using R v4.2.3 for statistical 

computing and graphics.27 

 

Model calibration 

We calibrated the model to TB epidemiological data from Viet Nam using history matching with 

emulation, facilitated by the hmer R package (further details in the Supplementary Materials 

SM3).28 Calibration targets included TB prevalence, TB mortality rate, TB notification rate, and 

the proportion of prevalent infectious disease that is asymptomatic, each set for at least two 
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distinct years (Table S1).22,29–32 Ranges for priors and sources are shown in Table S2. Posterior 

parameter sets are presented as median values with corresponding 95% uncertainty intervals 

(95% UI), calculated as the 2.5th to 97.5th percentiles of the parameter sets, to quantify 

uncertainty. 

 

Interventions 

We simulated the population impact of different screening algorithms and durations as 

compared with the business-as-usual (BAU) counterfactual (see details in Supplementary 

Materials SM4). In the counterfactual scenario, we assumed that TB trends would follow the 

calibration trajectory, reflecting the ongoing provision of TB treatment and prevention services 

through routine passive detection, including a limited amount of individual or high-risk group-

focused screening interventions (i.e., contact tracing, HIV screening) currently offered by the 

National TB Programme (NTP) of Viet Nam. Compared with the BAU baseline, we evaluated 

three population-wide screening intervention algorithms, all implemented regardless of 

whether individuals reported symptoms: (i) using a nucleic acid amplification test (NAAT, Xpert 

MTB/RIF Ultra) only, (ii) a two-step approach using digital CXR with computer-aided diagnosis 

software interpretation, followed by NAAT for those with imaging abnormalities and (iii) using 

CXR only. NAAT-based algorithms were performed upon expectorated sputum. For all three 

algorithms, a positive screen led to treatment initiation, with no additional bacteriological test 

or clinical assessment performed prior to treatment. We selected 2025 as the earliest year 

when population-wide screening interventions could be implemented and assumed the entire 

adult population of Viet Nam would be eligible for screening. The population was uniformly 

screened across all model states, with no increased probability of screening for individuals with 

TB disease. Additionally, we assumed that every individual with infectious TB (i.e. 

asymptomatic and symptomatic) would be able to provide a sputum sample, but only 60% of 

those with other model states would be able to do so.16 An exception was made under the 

CXR+NAAT algorithm, where we assumed that all individuals who screened positive to CXR 

would also be able to provide sputum, given radiological evidence of disease.  

 

Probability of a positive test 

Screening was implemented based on the probability of a positive test for each model state 

according to the screening tool used; for the two-step algorithm, these probabilities were 

multiplied (Table 1 and Table S3). Probabilities were independently sampled from uniform 

distributions for each model run. 
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Epidemiological outcomes 

We sought to determine the number of repeated annual rounds of population-wide screening 

needed for the TB prevalence to fall below 50 per 100,000 people using each algorithm. To 

assess this, we focused solely on the median value of the model outputs, deeming the 

threshold met if the median fell below or was within 10% above the target, regardless of the 

uncertainty interval. Once the TB prevalence threshold was reached, we assumed the 

screening intervention would cease, and the model would revert to the BAU standard of care.  

We estimated the number of incident TB episodes and deaths averted compared with the BAU 

counterfactual. TB prevalence was defined as the sum of individuals with asymptomatic and 

symptomatic TB, while incident TB referred to the flow into symptomatic TB. To evaluate the 

performance of each screening algorithm, we also estimated the ratio of true positives (positive 

tests for unconfirmed, asymptomatic, and symptomatic TB) to false positives (positive tests for 

non-disease states) treated. Additionally, we compared our model outputs with the results of 

the ACT3 trial by assessing the proportional reduction of TB prevalence after three rounds of 

community-wide screening with NAAT compared with BAU.16 We set a time horizon of 2050 to 

balance recency with a sufficient duration for benefits to accrue. 
 

Cost outcomes 

We took a simple and conservative provider approach to cost outcomes, broadly considering 

treatment and diagnosis in BAU and the various screening algorithms. To estimate the costs for 

the BAU passive detection counterfactual, we obtained cost estimates per individual from the 

NTP in Viet Nam (Table S4). These included the average cost of TB treatment, covering 

expenditure for TB drugs, personnel, bacterial monitoring and overheads; it did not include 

costs associated to the management of adverse events due to treatment. The average cost of 

passive TB diagnosis accounted for the number needed to test, personnel costs, infrastructure, 

and actual test costs. All costs were categorised based on drug susceptibility i.e., drug-

susceptible or drug-resistant TB. Population-wide screening costs for each intervention 

algorithm were provided from the ACT3 trial and the ongoing ACT5 trial (Table S5).16,33 These 

unit costs account for the number of tests performed, field staff, lab technicians, data 

managers, and consumables. For the main analysis, all cost estimates were independently 

sampled from gamma distributions, generated using the mean cost and a standard deviation of 

20% of the mean value. All costs are presented in 2023 United States dollar (US$). 

 

Summary health outcomes 
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We estimated disability-adjusted life years (DALYs) averted in the simulated algorithms 

compared with the BAU baseline to quantify the health gains achieved by population-wide 

screening interventions (see details in Supplementary Materials SM5). Both DALYs due to 

symptomatic TB and post-TB sequelae were considered, using country-specific data on total 

DALYs in 2019 from Menzies et al.34 We calculated the estimated lifetime DALYs per person 

with TB by accounting for the number of incident TB in Viet Nam in 2019.30,34 We then used the 

weighted average age of individuals with TB in Viet Nam and estimated the proportion of the 

lifetime that would be lived from 2025 to 2050. We estimated that 6.6 DALYs (95%CI: 4.8-9.0) 

would be incurred per incident TB episode (including the resulting post-TB sequelae) in 2025, 

varying depending on the age at which they experience TB. No disability weights were applied 

for other disease or treatment states and transitions. DALYs were independently sampled from 

a uniform distribution of the ranges discounted at 3% per year.31 We did not account for DALYs 

accrued during earlier disease states or due to adverse events associated to treatment.  

 

Summary cost-outcomes 

We calculated the budget impact of each algorithm and the BAU counterfactual as the 

cumulative costs of treatment and screening/diagnosis for both BAU and the intervention up to 

2050. The cost of front-loading was defined as the intervention-specific screening and 

treatment costs incurred, presented both as total cumulative costs and as annual averages 

over the intervention period. Additionally, we defined annual cost savings as the difference 

between BAU-specific diagnosis and treatment costs under the screening algorithms and the 

BAU counterfactual, averaged across the time horizon. 

 

Cost-effectiveness analysis 

We calculated the incremental cost-effectiveness ratio (ICER) for each screening algorithm 

relative to the BAU counterfactual as well as in comparison with one another. The resulting 

ICERs were expressed as the cost per DALY averted associated with the screening intervention 

and these were evaluated in relation to an estimated cost-effectiveness threshold range of 

US$2,176 to US$3,283 in Viet Nam, based on a GDP per capita of US$3,817 in 2023.35 We 

excluded interventions from consideration based on simple dominance, where an alternative 

intervention was both more effective and less costly than the comparator, and extended 

dominance, where an alternative was more effective and more costly but offered better value 

for money (i.e., lower ICER) than the comparator.37 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.30.24319770doi: medRxiv preprint 

  



 Chapter 6 – Page 159  10 

Sensitivity analyses 

We performed several sensitivity analyses to test our model and assumptions. Firstly, we 

evaluated the cost effectiveness of reducing the unit price of NAAT cartridges from US$8 to 

US$1 (Table S5); no price reduction was applied for CXR use. Secondly, for each algorithm we 

explored the number of rounds needed and the resulting impact on disease burden and cost-

effectiveness of targeting two alternative TB prevalence thresholds: 100 or 20 per 100,000 

people. Thirdly, we assessed the performance of using Xpert MTB/RIF instead of Xpert MTB/RIF 

Ultra in an alternative NAAT-only algorithm to evaluate the impact of a lower probability of a 

positive test on non-disease states (due to higher specificity) and disease states (due to lower 

sensitivity) (Table S3). Fourthly, we evaluated the impact of further investigation for individuals 

who screened positive in each algorithm, assuming that in practice additional steps such as 

further investigation, additional imaging, or sputum culture would be performed prior to 

initiating treatment. These measures are intended to guide appropriate treatment decisions, 

ensuring effective resource utilisation and minimising potential harm to individuals. In absence 

of clear data from the literature, we used performance of prolonged cough as a proxy (see Table 

S3) and assumed a fixed cost of US$2 per individual. Finally, we evaluated CXR-based 

algorithms, assuming reduced CXR test positivity for unconfirmed and asymptomatic TB, 

equivalent to its performance in individuals who have recovered or been treated (Table 1 and 

Table S3). 

 

Role of the funding source 

The funders had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding author had full access to all the data in the study and 

had final responsibility for the decision to submit for publication. 

 

Results 

Model calibration 

Model calibration generated 1,000 non-implausible parameter sets. Figure 2 shows model runs 

with fitted parameters compared against calibration targets. The median and corresponding 

95% uncertainty intervals (95%UI), calculated as the 2.5th to 97.5th percentiles, of the 

posterior parameter distributions, are presented in Table S2. 

 

Rounds required to reach TB prevalence thresholds 
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At least six annual rounds of population-wide screening were needed to reach a TB prevalence 

of 50 per 100,000 people under the NAAT-only algorithm and eight for the CXR+NAAT algorithm 

(Table 2 and Figure S2). In contrast, under the CXR-only algorithm, treating everyone with 

radiological abnormalities without microbiological confirmation resulted in a similar decline of 

TB prevalence after three annual rounds. Under BAU, the threshold was not reached within the 

time horizon. Additionally, we compared the performance of the NAAT-only algorithm, as 

simulated by our model, with the observed impact of the ACT3 clinical trial, which utilised the 

same screening algorithm. After three years of population-wide screening with the NAAT-only 

algorithm, we estimated a proportional reduction in TB prevalence of 58.7% (95%UI: 52.9-65.0), 

which sits between the reduction in prevalence seen in the intervention clusters and the 

comparison with the control clusters observed in the ACT3 trial of 67.7% (95%UI: 64.0-71.2) 

and 42.1 (95%UI: 36.7-47.1%), respectively (Figure S3). 

 

Epidemiological impact of interventions 

All screening algorithms resulted in lower cumulative TB incidence, TB deaths, and DALYs 

compared with BAU between 2025 and 2050 (Table 2). The cumulative TB incidence under both 

NAAT-based algorithms was similar, with 0.95 million (95%UI: 0.63-1.31) and 0.93 million 

(95%UI: 0.63-1.29) individuals projected to fall ill with TB under the NAAT and CXR+NAAT 

algorithms, respectively. Notably, TB incidence was further reduced under the CXR-only 

algorithm, with a cumulative TB incidence of 0.51 million (95%UI: 0.36-0.71). A similar trend 

was observed in cumulative TB deaths and DALYs (Table 2). Although implemented for only 

three annual rounds, the CXR-only algorithm correctly diagnosed 1.17 million (95%UI: 0.80-

1.56) individuals with TB, with the majority having unconfirmed TB (0.93 million; 95%UI: 0.60-

1.31). However, this algorithm also resulted in a high number of diagnoses among non-disease 

individuals, with 31.6 million (95%UI: 24.2-38.2) individuals screened positive, yielding a true-

positive (TP) to false positive (FP) ratio of 1:27. In contrast, the NAAT-based algorithms detected 

around half as many individuals with TB: 555 thousand (95%UI: 411-688) under the NAAT 

algorithm and 578 thousand (95%UI: 419-736) under the CXR+NAAT algorithm. The NAAT-only 

algorithm also diagnosed more FPs (2.8 million; 95%UI: 2.1-3.7) than TPs, resulting in a TP:FP 

ratio of 1:5. However, the two-step CXR+NAAT algorithm reduced the number of FPs overall (1.7 

million; 95%UI: 1.0-2.7), leading to a TP:FP ratio of 1:3. 

 

Cost impact of interventions 
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Total intervention costs were substantial, with the CXR-only algorithm requiring US$3.0 billion 

(95%UI: 1.9-4.4), followed by the NAAT-only algorithm at US$2.8 billion (95%UI: 2.0-3.8) and the 

two-step CXR+NAAT algorithm at US$1.5 billion (95%UI: 1.1-2.0) (Table 2). The cost of front-

loading for the CXR-only algorithm was estimated at US$949 million (95%UI: 606-1,415) per 

year for the three years of the intervention, with projected annual cost savings of US$15.6 

million (95%UI: 9.2-24.7) on average from 2025 to 2050. Similarly, the NAAT-only algorithm 

incurred US$427 million (95%UI: 299-599) in annual intervention-specific costs during the six 

years of intervention, resulting in average annual cost savings of US$12.3 million (95%UI: 6.5-

21.4). The CXR+NAAT algorithm required US$1.3 billion (95%UI: 1.0-1.8) of intervention-specific 

costs, averaging US$161 million (95%UI: 111-224) per year for the first eight years, before 

becoming cost saving at US$12.7 million (95%UI: 6.7-21.4) annually compared to the BAU 

counterfactual (Table 2 and Figure S4). Trends of annual cost savings suggest they will 

continue beyond the 25-year time horizon. For NAAT-based algorithms, the majority of costs 

were associated with screening procedures, accounting for 88.9% (95%UI: 81.6-93.2) of total 

costs in the NAAT-only algorithm and 84.2% (95%UI: 72.7-91.1) in the CXR+NAAT algorithm. In 

contrast, in the CXR-only algorithm, only 9.3% (95%UI: 5.4-15.8) of the total costs were related 

to screening, with the vast majority spent on treating individuals who screened positive.  

 

Cost-effectiveness analysis 

Estimated ICERs against the BAU for all algorithms were below the estimated cost-

effectiveness threshold range for Viet Nam. The CXR+NAAT algorithm averted 4.29 million 

DALYs (95%UI: 2.86-6.14) compared with BAU at an additional cost of US$967 million (95%UI: 

523-1,488), giving an ICER of US$225 (95%UI: 85-520) per DALY averted. The CXR-only 

algorithm provided even greater effectiveness by averting an additional 1.61 million DALYs 

(95%UI: 0.86-2.56) compared with CXR+NAAT, but at double the total cost (US$2,954 million; 

95%UI: 1,909-4,370), leading to an ICER of US$927 (95%UI: 393-1,124) per DALY averted 

compared with the CXR+NAAT algorithm (Table 2 and Table 3), which is also well below the 

cost-effectiveness threshold range. The NAAT-only algorithm was dominated by the other two 

alternatives, which were collectively cheaper and more effective. 

 

Sensitivity analyses 

The performance of the algorithms under the different sensitivity analyses are shown in Table 2 

and Table S6-9. Firstly, lowering the unit price of NAAT to US$1 reduced screening costs, 

bringing the total costs to US$1.3 billion (95%UI: 1.0–1.8) and US$1.2 billion (95%UI: 0.9–1.6) in 
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the NAAT-only and CXR+NAAT algorithms, respectively—an approximate reduction of 50% and 

15% (Table 2). In terms of ICERs, this reduction was 63% for the NAAT-only algorithm and 26% 

for the CXR+NAAT algorithm (Table 2). In the cost-effectiveness analysis, the NAAT-only 

algorithm was still dominated despite this reduction in cartridge unit cost, with CXR-only 

remaining cost effective compared to all alternatives (Table S10). Secondly, the relative 

epidemiological impact of the algorithms—assessed by cumulative TB incidence, TB deaths, 

and DALYs—remained consistent across different TB prevalence thresholds. However, the 

number of annual rounds required varied, ranging from two to three to achieve a prevalence of 

100 per 100,000 and from four to twelve to achieve 20 per 100,000 (Tables S6 and S7). Thirdly, 

the use of Xpert MTB/RIF in an alternative NAAT-only algorithm was found to be less effective 

and more expensive than all three standard algorithms in the cost-effectiveness analysis (Table 

S10). Fourthly, the addition of further investigation post-screening reduced the cumulative 

number of FPs across all algorithms, particularly in the CXR-only algorithm, where apparent FPs 

decreased by 90% compared to the main analysis (Table S8). Given the reduced costs 

associated with the reduction in people treated, the CXR-only algorithm resulted in an ICER of 

US$113 (95%UI: 28-278) per DALY averted when compared to the BAU. For this analysis, 

CXR+NAAT averted more DALYs than CXR-only, at an ICER of US$1,293 (95%UI: 1,153-1,555) 

per DALY averted, while NAAT-only was marginally the most effective, but at a high additional 

cost, giving an ICER compared on CXR+NAAT well above the cost-effectiveness threshold range 

(Table S10). Finally, with revised CXR sensitivity, the CXR+NAAT algorithm required one 

additional round to reach the 50 per 100,000 people TB prevalence threshold (Table S9). 

Despite this, it only resulted in slight increase of the ICER compared to the BAU of US$283 

(95%UI: 113-640) per DALY averted (Table S10). 

 

Discussion 

The study evaluates the implementation of various population-wide screening algorithms in 

order to achieve considerable reductions in TB prevalence in Viet Nam. While ambitious, these 

goals are aligned with the End TB Strategy targets,7 to which Viet Nam has committed. All three 

screening algorithms significantly reduced the TB burden compared to BAU, with the CXR-only 

algorithm achieving the greatest reductions in TB incidence, deaths, and DALYs. However, its 

high overtreatment rates made the two-step algorithm—combining CXR with a confirmatory 

NAAT—a more efficient option, averting a substantial number of DALYs at a relatively low cost. 

These outcomes are contingent on substantial front-loaded investments during the 

intervention, although reductions in NAAT cartridge costs can help offset these expenses. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.30.24319770doi: medRxiv preprint 

  



 Chapter 6 – Page 163  14 

Ultimately, all interventions resulted in persistent annual cost savings compared to the BAU 

counterfactual up to 2050, with trends suggesting sustained savings beyond this period. The 

findings from this modelling exercise underscore the effectiveness of symptom-agnostic 

population-wide screening and provide guidance for implementing such large-scale strategies 

in high TB burden settings. 

 

At face value, the CXR-only algorithm appears to be the most cost-effective option, achieving 

the greatest TB burden reduction with an ICER below the estimated cost-effectiveness 

threshold range.35 However, several factors raise legitimate concerns about its suitability. 

Firstly, its epidemiological impact results in treating a large number of individuals with FP 

screens, which, while occurring in very few cases, carries risks such as serious adverse events, 

including hepatotoxicity,50 potentially offsetting the DALYs averted and leading to higher ICERs. 

Secondly, the CXR-only algorithm is the most expensive intervention over the 25-year time 

horizon, requiring substantial front-loaded investment of nearly US$1 billion annually during the 

initial years. While cost savings would be realised after the short intervention period, such 

funding demands in the medium-term could pose challenges. In contrast, the CXR+NAAT 

algorithm reduces the annual economic strain to US$160 million per year, albeit over a longer 

duration, ultimately resulting in a lower budget impact. Lastly, while the investment appears 

cost-effective within the estimated threshold range of US$2,176 to US$3,283,35 Viet Nam has 

no official policy threshold, and judgements on what is affordable must therefore be made by 

national health decision-makers. 

 

When comparing against the outcomes of the ACT3 trial, we observed that our model shows a 

similar impact in the proportional reduction of TB prevalence.16 Given this, our model was able 

to extrapolate empirically validated methods for rapidly reducing TB burden to explore various 

algorithms and durations for population-wide screening interventions in Viet Nam. However, 

our modelling focused on screening but did not explore other used measures that could be 

implemented on top of population-wide screening, such as TB preventive therapy for household 

contacts, social protection, or a generally more holistic approach that also addresses other 

structural determinants of TB.41–43 Furthermore, our modelling assumed that after achieving 

intended TB prevalence thresholds, population-wide screening interventions are stopped, and 

TB care and prevention return to BAU. However, to sustain the momentum, alternative, more 

targeted approaches may then enable prevalence to decline to the level required for TB 

elimination, in accordance with the End TB Strategy targets.7 Interventions such as contact and 
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cluster investigations and targeted treatment of Mtb infection are likely to be more successful 

and more feasible in the context of the substantial reduction in both prevalence and incidence 

of TB once the threshold has been reached. Furthermore, we did not account for the 

catastrophic costs prevented, the economic contributions of individuals who remain healthy or 

alive, or the accumulating benefits beyond 2050 under BAU. Hence, the realistic long-term 

benefits of the intervention are likely strongly underestimated in this analysis. 

 

Opting to use symptom-independent diagnostic methods helps to overcome the considerable 

limitations of conventional diagnostic and referral pathways. However, a challenge 

encountered relates to the diagnostic accuracy of these test—particularly specificity—in the 

context of population-wide screening interventions.44 The cost-effectiveness of mass screening 

is linked to the ability of a test to accurately diagnose, as false positive diagnoses can drive up 

treatment costs, as illustrated by the CXR only scenario.45 This could largely be overcome by 

explicitly introducing further investigations post-screening as shown in our sensitivity analysis 

or by implementing confirmatory sputum culture for those testing positive on NAAT, coupled 

with ongoing surveillance for those who are negative on culture. As a case study, while our 

results indicate that CXR alone could rapidly reduce TB prevalence after a few annual rounds, 

this strategy is not feasible at present without an affordable, ideally non-sputum confirmatory 

test to establish the presence of viable Mtb as the cause of the pathology. Furthermore, the 

health consequences and social unacceptability of large-scale overtreatment would currently 

impede its recommendation. 

 

A major strength of our study is that the natural history TB model used recognises earlier states 

of disease before symptomatic disease, adapting features of previously published models,20,23  

and its use matches empirical data of community screening.16 Encompassing the spectrum of 

TB within this framework provides insight into the impact of screening interventions according 

to disease state. This is not only the case for asymptomatic TB and its recognised contribution 

to transmission,22 but also that of unconfirmed TB, a state where macroscopic evidence of 

disease can be detected and there is risk of further progression. An example of the large 

reservoir of unconfirmed TB disease can be seen as the bounce back in prevalence once 

screening rounds stopped, reflecting the importance of detection and treatment beyond 

infectious TB disease.47  
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Our study also has limitations. Firstly, our study highlighted how we have limited insight into 

test performance when used in communities. Estimates based on pooled diagnostic accuracy 

from clinical settings tend to underestimate the specificity of the test when applied to a 

community setting;48 thus values for non-disease states were used based on the performance 

of the test in selected population studies.44,49 Similarly, clinic-based estimates likely 

overestimate sensitivity.48 Sensitivity analyses, incorporating changes to test positivity or the 

addition of a further investigation step after screening, help to explore and validate the potential 

impact of these interventions. Secondly, our study did not account for the DALYs accrued due 

to overtreatment of the screened population as discussed above. Nonetheless, we are also 

likely underestimating the impact of screening on averting DALYs, as we only accounted for 

incident symptomatic TB, but did not look into the effect of these interventions on early TB 

disease diagnosis. Thirdly, our costing approach was simple in that we opted to obtain costs 

per individual screened and treated. Further granularity of the cost components would provide 

a deeper understanding of both the distribution of the intervention costs as well as that of costs 

averted under BAU. Additionally, our costing assumptions for conducting the interventions 

were centred around consumables and human resources but overlooked other sources of 

costs, including training and other scale-up activities prior to commencing the intervention. 

These costs are not negligible, especially in the start-up phase,51 and should be reflected for 

investment case for screening interventions. Fourthly, our model does not encompass or adjust 

based on key drivers of TB. Tuberculosis is a biosocial problem that unevenly impacts people of 

low socioeconomic status, likely given the greater exposure to many risk factors such as 

malnutrition, air pollution, and overcrowding.52,53 Lastly, further exploration of post-TB 

respiratory disease is warranted. The number of TB survivors is immense, and proper 

assessment of healthcare-associated use and costs due to lingering morbidity of existing and 

not-prevented TB episodes under BAU needs to be considered especially when implementing 

large interventions.54  

 

Conventional symptom-centred, facility-based TB detection is insufficient.6 Instead, proactive 

screening should complement existing routine passive detection. While Viet Nam currently 

implements active screening of limited high-risk populations, such as people living with HIV 

and close contacts of people with diagnosed TB, screening will need to extend beyond high-risk 

groups that only represent a limited fraction of prevalent TB. Sustained, multiple rounds will be 

required to ensure effectiveness.8 Continuing the current strategy without significant 

enhancements is likely to result in a grave cost of inaction, causing TB to remain as serious a 
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threat as it currently stands.38,39 Instead, the resources required to sustain BAU care would be 

better invested in a short-term strategy of repeated population-wide screenings. Immediate 

efforts must focus upon overcoming initial logistical challenges to scaling-up, such as 

developing infrastructure and human resource capacity required to support population-wide 

screening. In parallel, efforts to enhance acceptability of large-scale screening by the 

community should be conducted. Prioritising population-wide screening will make significant 

strides towards reducing TB prevalence and would set an example for global TB elimination 

efforts. In conclusion, this modelling study has demonstrated pathways to rapidly reducing TB 

prevalence in Viet Nam, through population-wide screening. The cost of front-loading in these 

interventions promises to reduce morbidity and mortality and realise the End TB Strategy at a 

time when BAU is unlikely to reach the agreed targets. 
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Table 1. Probability of a positive test per model state for each screening tool. 

Test State Value (Range) Description 
N

uc
le

ic
 a

ci
d 

am
pl

ifi
ca

tio
n 

te
st

  
(N

AA
T,

 X
pe

rt
 M

TB
/R

IF
 U

lt
ra

) 

Susceptible 0.006 
(0.005 – 0.008) (1 − specificity) for individuals in the community49 

Infected 0.006 
(0.005 – 0.008) (1 − specificity) for individuals in the community49 

Cleared 0.006 
(0.005 – 0.008) (1 − specificity) for individuals in the community49 

Recovered 0.040 
(0.020 – 0.060) (1 − specificity) for individuals with a history of TB55 

Unconfirmed TB 0.044 
(0.026 – 0.070) (1 − specificity) for individuals with presumptive TB48 

Asymptomatic TB 0.775 
(0.676 – 0.856) Sensitivity for smear-negative pulmonary TB48 

Symptomatic TB 0.909 
(0.862 – 0.947) Sensitivity for pulmonary TB48 

Treated 0.040 
(0.020 – 0.060) (1 − specificity) for individuals with a history of TB55 

 

C
he

st
 ra

di
og

ra
ph

y 
w

ith
 C

AD
 s

of
tw

ar
e 

in
te

rp
re

ta
tio

n 
 (C

XR
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Susceptible 0.085 
(0.069 – 0.134) Proportion of individuals with abnormal CXR5 

Infected 0.085 
(0.069 – 0.134) Proportion of individuals with abnormal CXR5 

Cleared 0.085 
(0.069 – 0.134) Proportion of individuals with abnormal CXR5 

Recovered 0.503 
(0.481 – 0.524) 

Proportion of individuals reporting previous TB 
treatment with abnormal CXR56 

Unconfirmed TB 0.677 
(0.626 – 0.712) 

Midpoint between values for Recovered/Treated and 
Symptomatic TB 

Asymptomatic TB 0.677 
(0.626 – 0.712) 

Midpoint between values for Recovered/Treated and 
Symptomatic TB 

Symptomatic TB 0.850 
(0.770 – 0.900) Sensitivity for bacteriologically confirmed TB4 

Treated 0.503 
(0.481 – 0.524) 

Proportion of individuals reporting previous TB 
treatment with abnormal CXR56 

Probability of a positive test result for each screening diagnostic tool for each state in the model. 

Probabilities were independently sampled from uniform distributions for each model run. Further 

descriptions on the probability of a positive test, including values for Xpert MTB/RIF and further 

investigation, are provided in Table S3. CAD: Computer-aided diagnosis; TB: Tuberculosis. 
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Table 2. Performance of population-wide screening interventions to reach TB prevalence threshold of 50 per 100,000 people. 

Epidemiological performance and economic impact of population-wide screening interventions in Viet Nam per algorithm when conducted to reach TB prevalence 

threshold of 50 per 100,000 people. The values represent cumulative accrual over the 25-year time horizon, extending up to 2050. Budget impact includes 

cumulative costs of screening/diagnosis and treatment for both BAU and the intervention algorithm up to 2050. The cost of front-loading refers to intervention-

specific screening and treatment costs, presented as the annual average during the intervention period. Annual cost savings are defined as the difference in BAU-

specific diagnosis and treatment costs between the intervention algorithm and the BAU counterfactual, averaged over the time horizon. BAU: Business-as-usual; 

CXR: Chest radiography; DALY: Disability-adjusted life year; FP: False positive; ICER: Incremental cost-effectiveness ratio; NAAT: Nucleic acid amplification test 

(Xpert MTB/RIF Ultra); TB: Tuberculosis; TP: True positive; UI: Uncertainty interval; US$: United States dollar. 

Screening algorithm BAU NAAT CXR+NAAT CXR 
Rounds required to reach 
threshold Not reached 6 annual rounds 8 annual rounds 3 annual rounds 

Cumulative TB incidence  2.25m 
(95%UI: 1.57-3.04) 

0.95m  
(95%UI: 0.63-1.31) 

0.93m 
(95%UI: 0.63-1.29) 

0.51m 
(95%UI: 0.36-0.71) 

Cumulative TB deaths  273k 
(95%UI:123-475) 

104k 
(95%UI: 44-184) 

99k 
(95%UI: 42-175) 

60k 
(95%UI: 27-106) 

Cumulative DALYs  8.12m 
(95%UI: 5.85-10.83) 

3.74m 
(95%UI: 2.64-4.99) 

3.85m 
(95%UI: 2.75-5.13) 

2.21m 
(95%UI: 1.59-3.01) 

Cumulative TPs diagnosed 
through screening N/A 555k  

(95%UI: 411-688) 
578k 

(95%UI: 419-736) 
1,165k 

(95%UI: 791-1,555) 
Cumulative FPs diagnosed 
through screening  N/A 2,779k 

(95%UI: 2,059-3,696) 
1,717k 

(95%UI: 959-2,698) 
31,619k 

(95%UI: 24,240-38,207) 
Unit price of NAAT N/A US$8 US$1 US$8 US$1 N/A 

Cost of diagnosis/screening 363m 
(95%UI: 222-578) 

2,428m 
(95%UI: 1,675-3,465) 

991m  
(95%UI: 693-1,360) 

1,211m 
(95%UI: 845-1,719) 

962m 
(95%UI: 679-1,335) 

350m 
(95%UI: 251-474) 

Cost of treatment 138m 
(95%UI: 86-209) 

336m 
(95%UI: 220-511) 

253m 
(95%UI: 152-393) 

2,609m 
(95%UI: 1,552-3,941) 

Budget impact 505m  
(95%UI: 328-757) 

2,766m 
(95%UI: 1,965-3,782) 

1,345m 
(95%UI: 999-1,755) 

1,478m 
(95%UI: 1,066-1,996) 

1,225m  
(95%UI: 894-1,614) 

2,954m 
(95%UI: 1,909-4,370) 

Annual cost of front-loading N/A 427m  
(95%UI: 299-599) 

190m  
(95%UI: 138-258) 

161m 
(95%UI: 111-224) 

129m 
(95%UI: 92-174) 

949m 
(95%UI: 606-1,415) 

Annual cost savings N/A 12.3m 
(95%UI: 6.5-21.4) 

12.7m 
(95%UI: 6.7-21.4) 

15.6m 
(95%UI: 9.2-24.7) 

ICER compared with BAU 
(US$ per DALY averted) N/A 516 

(95%UI: 233-1,073) 
189 

(95%UI: 71-426) 
225 

(95%UI: 85-520) 
167 

(95%UI: 57-380) 
410 

(95%UI: 178-929) 
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Table 3. Cost-effectiveness of population-wide screening interventions for TB. 

Screening 
algorithm 

DALYs averted vs 
BAU 

Additional costs 
(US$) vs BAU 

Incremental 
DALYs 

Incremental 
costs (US$) 

ICER (US$ per DALY 
averted) 

CXR+NAAT 4.29m 
(95%UI: 2.86-6.14) 

0.97b 
(95%UI: 0.52-1.49) 

4.29m 
(95%UI: 2.86-6.14) 

0.97b 
(95%UI: 0.52-1.49) 

225 
(95%UI: 85-520) 

NAAT 4.36m 
(95%UI: 3.09-6.23) 

2.25b 
(95%UI: 1.45-3.31) Removed due to extended dominance with respect to CXR-only 

CXR 5.94m 
(95%UI: 4.18-7.97) 

2.44b 
(95%UI: 1.41-3.88) 

1.61m 
(95%UI: 0.86-2.56) 

1.49b 
(95%UI: 0.34-2.87) 

927 
(95%UI: 393-1,124) 

Cost-effectiveness of population-wide screening interventions in Viet Nam per algorithm when 

conducted to reach TB prevalence threshold of 50 per 100,000 people. The values represent cumulative 

accrual over the 25-year time horizon, extending up to 2050. BAU: Business-as-usual; CXR: Chest 

radiography; DALY: Disability-adjusted life year; ICER: Incremental cost-effectiveness ratio; NAAT: 

Nucleic acid amplification test (Xpert MTB/RIF Ultra); TB: Tuberculosis; UI: Uncertainty interval; US$: 

United States dollar. 
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Figure 1. TB natural history model structure.  

 
A closed population, compartmental model of tuberculosis natural history, adapting features of 

previously published models.20,23 The model is depicted using nine compartments allowing for 

Mycobacterium tuberculosis infection through. Shaded compartments indicate those that contribute to 

transmission. The force of infection (depicted with λ) depends upon the contact parameter and the 

prevalence of infectious disease (i.e., asymptomatic and symptomatic TB), accounting for the relative 

infectiousness of asymptomatic TB.   
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Figure 2. Model outputs compared against calibration targets of TB in Viet Nam.  

 
Fitted parameter sets were obtained by calibrating TB epidemiological data of Viet Nam using history 

matching with emulation. The red lines and shaded areas represent the median outputs and 

corresponding 95% uncertainty interval, respectively. Error bars reflect the time-specific calibration 

targets, with their values and sources specified in Table S1. 
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Supplementary Methods: 

SM1. Baseline model structure 

We developed a compartmental model of tuberculosis (TB) natural history, adapting features of 

previously published models [1]. The model structure is shown in Figure 1 on the manuscript. 

Model parameters used and their definitions are provided in Table S2 in a later section within 

this document. This model was run from 1500 to 2020 with some time-varying parameters. The 

model tracked a closed population of 100,000 adults (≥15 years old).  

 

We represented TB natural history with nine distinct compartments allowing for Mtb infection 

through an annual risk of infection (ARI). Disease state classification was informed by the ICE-

TB framework, and naming follows current World Health Organization (WHO) definitions [2,3]: 

- Unconfirmed TB disease (uTB): individuals with inflammatory pathology (evidenced 

through imaging methods) prior to the onset of bacteriological evidence of TB disease or 

symptoms of active TB disease. 

- Asymptomatic TB disease (aTB): individuals with bacteriological evidence of TB disease 

who do not report symptoms of active TB disease on screening. 

- Symptomatic TB disease (sTB): individuals with bacteriological evidence of TB disease 

with symptoms of active TB disease. 

- Infectious disease: refers to bacteriologically positive disease; as such, it includes 

asymptomatic and symptomatic disease. 

- TB disease: Any state of unconfirmed, asymptomatic, or symptomatic disease. 

 

The ARI λ depends upon the contact parameter β and the prevalence of infectious disease (i.e., 

asymptomatic and symptomatic TB). Additionally, the relative infectiousness κ of 

asymptomatic TB is also considered. The formula for the ARI λ is presented later in this 

document. Individuals in the Susceptible (S) compartment could become infected with Mtb and 

progress to the Infection (I) compartment. From Infection (I), three pathways are possible: (i) 

self-clearance of infection (i.e. Cleared (C)) at rate infcle, (ii) progression to Unconfirmed (uTB) 

at rate infunc, and (iii) progression to Asymptomatic (aTB) at rate infasy. TB transmission in the 

model (i.e., transition into the Infected (I) compartment) can occur via the ARI λ through four 

distinct routes: through first infection from Susceptible (S), through reinfection after self-

clearance from Cleared (C), through reinfection after self-cure from Recovered (R) accounting 

for protection from reinfection π, and through reinfection after treatment from Treated (Tr) 

accounting for increased risk of reinfection ρ. TB disease states are sequentially depicted in the 

  



 Chapter 6 – Page 179  4 

model in the Unconfirmed (uTB), Asymptomatic (aTB), and Symptomatic (sTB) compartments, 

allowing progression (denoted with parameters uncasy and asysym) and regression (denoted 

with parameters asyunc and symasy). For the Unconfirmed (uTB) compartment, individuals can 

transition out of disease states by self-cure into the Recovered (R) compartment at rate uncrec; 

here, reinfection can occur via the ARI but we assume there is protection from reinfection π. 

The model assumes that TB diagnosis and treatment only occur for individuals in the 

Symptomatic (sTB) compartment at rate θ. Furthermore, it accounts for TB-specific mortality 

μΤΒ in this compartment. Once in Treatment (Tx), there can be treatment failure at rate φ and 

treatment completion at rate δ. Finally, in the Treated (Tr) compartment, reinfection can occur 

via the ARI λ parameter. 

 

The model also accounts for background mortality having a fixed rate μ (representing an age 

expectancy of 70 years) in each compartment. As a closed population model, the sum of all 

background and TB-specific mortality is fed back into the Susceptible compartment through the 

ω parameter. 

 

SM2. Baseline model equations 

A series of ordinary differential equations were set in place to represent the model structure 

mathematically. Parameter symbols and descriptions are outlined in Table S2. Parameter 

names indicate direction (i.e., infcle denotes from Infection to Cleared), and subscript t 

denotes parameters that vary over time. All nine compartments are represented: Susceptible 

(S), Infected (I), Cleared (C), Recovered (R), Unconfirmed (uTB), Asymptomatic (aTB), 

Symptomatic (sTB), Treatment (Tx), Treated (Tr). Given N = 100,000, then:  

 

!"
!# = % ∙ (( − ") + %!",$ ∙ ,-. − / ∙ " 

 

!0
!# = / ∙ (" + 1 + 2 ∙ 3 + 4 ∙ -5) − 0 ∙ (6789:; + 678<79 + 678=,> + %) 

 

!1
!# = 6789:; ∙ 0 − 1 ∙ (/ + %) 

 

!3
!# = <795;9 ∙ <-. − 3 ∙ (/ ∙ 2 + %) 

 

!<-.
!# = 678<79 ∙ 0 + =,><79 ∙ =-. − <-. ∙ (<795;9 + <79=,> + %) 

 

!=-.
!# = 0 ∙ (678=,> + <79=,>) + ,>?=,> ∙ ,-. − =-. ∙ (=,><79 + =,>,>? + %) 
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!,-.
!# = =,>,>? ∙ =-. − ,-. ∙ @,>?=,> + A$ + %!",$ + %B + C$ ∙ -D 

 

!-D
!# = A$ ∙ ,-. − -D ∙ (C$ + E + %) 

 

!-5
!# = E ∙ -D − -5 ∙ (/ ∙ 4 + %) 

 

As mentioned before, the ARI λ depends upon the contact parameter β and the prevalence of 

infectious disease (i.e., asymptomatic and symptomatic TB) and its equation is expressed 

below. 

 

/ = F ∙ (G ∙ =-. + ,-.)
H  

 

SM3. Calibration methodology 

We calibrated the model using history matching with emulation, a calibration method that 

explores high-dimensional parameter spaces efficiently [4]. History matching refers to the 

exploration of the ranges of parameters given and identifying parameter sets that give rise to 

model outputs that match empirical data [4]. History matching progresses through multiple 

iterations (referred to as waves), where implausible areas of parameters (i.e., values where no 

match is found) are identified and discarded [4]. This process is made efficient with the use of 

emulators, which provide approximations of model outputs orders of magnitudes faster than 

the model [4]. As a result of multiple waves, the implausible space is reduced, resulting in 

parameter sets that match calibration targets.  

 

History matching with emulation was implemented using the hmer package in R [5]. Calibration 

targets were TB epidemiological and demographic data of Viet Nam (S1 Table). The model 

comprised 23 dynamic parameters which are described in Table S2. The parameter ranges 

(priors) and sources are outlined. The non-implausible points (posteriors) were calculated as 

the median and corresponding 95% uncertainty intervals, calculated as the 2.5th to 97.5th 

percentiles of the parameter sets. 

 
SM4. Screening model structure 

We expanded the baseline TB natural history model described above to incorporate population-

wide screening interventions from 2020 to 2050. The model structure remains mostly 

unchanged except for the transitions which occur during the years where the screening is 
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applied in various annual rounds from 2025 (see dashed lines in Figure S2). When screened, 

each compartment transitions into a treatment compartment and after completion transitions 

back into its original compartment except Infection (I) which transitions into Cleared (C) and the 

disease compartments (Unconfirmed (uTB), Asymptomatic (aTB), and Symptomatic (sTB)) 

which transition into Treated (Tr). Individuals in the Treatment (Tx) compartment are not 

screened as part of screening interventions. The rates of transitions per compartment are 

outlined in Table 1 according to the tool used. The model is no longer a closed-population 

model and now accounts for birth and mortality rates for Viet Nam from 2020 to 2050 [6]. 

 
SM5. Disability-adjusted life years calculations 

Since our compartmental model does not track ageing, we opted to estimate mean lifetime 

disability-adjusted life years (DALYs) per incident TB. For this, we used the total DALYs for TB 

disease (0.40 million; 95%CI: 0.33-0.49) and post-TB (0.85 million; 95%CI: 0.57-1.22) in Viet 

Nam in 2019, as estimated by Menzies et al [6]. Then, considering the number of incident TB 

estimated in Viet Nam in 2019 (169,000), we calculated the point value for lifetime DALYs per 

incident TB: 2.4 (95%CI: 2.0-2.9) for TB disease and 5.0 (95%CI: 3.4-7.2) for post-TB [7,8]. 

 

To estimate the DALYs lived with post-TB, we used the weighted average age of individuals with 

TB in Viet Nam (49 years) from the WHO Global TB Report and obtained the life expectancy at 

that age (29.5 years) from the United Nations World Population Prospects [6,8]. Next, we 

estimated the proportion of an individual's remaining lifetime that would occur between the 

start of the population-wide screening interventions in 2025 and the time horizon of 2050, a 

period chosen to align with the duration of the implementation of the intervention and 

evaluation timeframe. Ultimately, lifetime DALYs per incident TB were calculated as the DALYs 

due to TB disease episode plus the DALYs lived with post-TB, discounted at a rate of 3% per 

year from 2025 [9]. 
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Supplementary Figures: 

Figure S1. TB natural history model under population-wide screening.  

 
A compartmental model of tuberculosis natural history, adapting features of previously published 

models [1,10]. The model is depicted using nine compartments allowing for Mycobacterium tuberculosis 

infection through. Shaded compartments indicate those that contribute to transmission. The force of 

infection (depicted with λ) depends upon the contact parameter and the prevalence of infectious disease 

(i.e., asymptomatic and symptomatic TB), accounting for the relative infectiousness of asymptomatic TB. 

Dashed lines symbolise compartment flow after TB treatment.
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Figure S2. TB prevalence reduction under population-wide screening algorithms.  

 
TB prevalence by each population-wide screening algorithm per threshold. Main analysis evaluates performance to reach TB prevalence of 50 per 100,000 people. 

Lines represent TB prevalence, and the shaded area shows the lower (2.5% quantile) and upper (97.5% quantile) bounds. Dashed lines represent TB prevalence 

thresholds (±10%). NAAT: Nucleic acid amplification test (Xpert MTB/RIF Ultra); CXR: Chest radiography with CAD software interpretation. 
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Figure S3. Proportional reduction of TB prevalence under NAAT-only approach and ACT3.  

 
Proportional TB prevalence reduction under three annual rounds of NAAT-only algorithm compared to 

business-as-usual. Line represents proportional TB prevalence reduction per 100,000 people, and the 

shaded area shows the lower (2.5% quantile) and upper (97.5% quantile) bounds. The symbols and error 

bars represents TB prevalence proportional reduction as observed in the ACT3 trial [11]. 
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Figure S4. Incremental costs under CXR+NAAT algorithm.  

 
Incremental costs compared to the business-as-usual (BAU) counterfactual of population-wide screening interventions in Viet Nam using a CXR+NAAT algorithm 

to achieve a TB prevalence of 50 per 100,000 people. Incremental costs are shown by category, with ACF representing intervention-specific costs and BAU 

reflecting business-as-usual TB prevention and care costs. The main analysis assumed an Xpert MTB/RIF Ultra cartridge cost of 8 USD, while a sensitivity analysis 

explored a reduced cartridge cost of 1 USD. Lines represent incremental costs, and the shaded areas indicate the lower (2.5% quantile) and upper (97.5% quantile) 

bounds.
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Supplementary Tables: 

Table S1. Calibration targets.  

Target Year Value [95%CI] Source 

TB prevalence per 100,000 people 
2007 250 [202 – 310] [12] 

2018 227 [177 – 290] [12] 

TB mortality rate per 100,000 people 
2000 59.7 [37.3 - 87.7] [6,8] 

2010 33.5 [22.8 - 45.7] [6,8] 

TB notification rate per 100,000 people 
2010 79.4 [63.5 - 95.3] [6,8] 

2020 73.2 [58.5 - 87.8] [6,8] 

Proportion asymptomatic TB 
2007 0.70 [0.56 - 0.84] [13] 

2018 0.66 [0.53 - 0.79] [13] 

Calibration targets, with brackets indicating 95% confidence intervals (95%CI), for TB epidemiology in 

Viet Nam were set for the adult population aged 15 years and older. TB prevalence refers specifically to 

infectious TB (i.e., asymptomatic and symptomatic), TB mortality is specific to deaths from symptomatic 

TB, TB notification represents the number of individuals with symptomatic TB initiating treatment through 

the business-as-usual approach, and the proportion of asymptomatic TB refers to the proportion of all 

infectious TB that is asymptomatic. Estimates for the TB prevalence used as calibration targets differ 

from those available in reference; since publication, an observed disparity in the proportional decline 

was corrected by the authors, and the estimates provided here reflect this correction.  
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Table S2. Model parameter description, ranges, and non-implausible points.  

Parameters Description Ranges Non-implausible ranges 
[95%UI] Sources 

beta (β) Transmission coefficient 6.00 - 20.00 14.16 [8.82 - 19.29] - 

kappa (κ) Relative transmission from asymptomatic TB 0.62 - 1.00 0.82 [0.64 - 0.98] [13] 

pi (π) Relative risk of reinfection after recovery from unconfirmed TB 0.14 - 0.30 0.21 [0.15 - 0.29] [14] 

rho (ρ) Relative risk of reinfection after treatment completion 2.14 - 4.27 3.15 [2.23 - 4.19] [15] 

infcle Rate of clearance from infection per year 0.93 - 3.30 1.90 [1.09 - 2.94] [1] 

infunc Rate of progression from infection to unconfirmed TB per year 0.04 - 0.23 0.16 [0.06 - 0.22] [1] 

infasy Rate of progression from infection to asymptomatic TB per year 0.01 - 0.10 0.06 [0.01 - 0.10] [1] 

uncrec Rate of recovery from unconfirmed TB per year 0.14 - 0.23 0.18 [0.14 - 0.22] [1] 

uncasy Rate of progression from unconfirmed to asymptomatic TB per year 0.21 - 0.28 0.25 [0.21 - 0.28] [1] 

asyunc Rate of recovery from asymptomatic to unconfirmed TB per year 1.24 - 2.03 1.66 [1.30 - 1.99] [1] 

asysym Rate of progression from asymptomatic to symptomatic TB per year 0.56 - 0.94 0.88 [0.76 - 0.94] [1] 

symasy Rate of recovery from symptomatic to asymptomatic TB per year 0.46 - 0.72 0.54 [0.47 - 0.68] [1] 

theta_ini (θt) Rate of treatment initiation from symptomatic TB per year (initial) 0.00 - 0.57 0.46 [0.34 - 0.56] - 

theta_fin (θt) Rate of treatment initiation from symptomatic TB per year (final) 0.57 - 0.77 0.71 [0.60 - 0.76] [8] 

delta (δ) Rate of treatment completion per year 2.00 - [16] 

phi_ini (φt) Rate of treatment failure per year (initial) 0.11 - 1.00 0.63 [0.21 - 0.97] - 

phi_fin (φt) Rate of treatment failure per year (final) 0.07 - 0.11 0.09 [0.07 - 0.11] [8] 
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mutb_ini (μTB,t) TB-specific mortality rate per year (initial) 0.28 - 0.38 0.34 [0.29 - 0.37] [10] 

mutb_fin (μTB,t) TB-specific mortality rate per year (final) 0.00 - 0.28 0.17 [0.07 - 0.27] - 

mu (μ) Background mortality rate per year 0.014 - - 

Model parameters description for deterministic TB transmission model calibrated to TB epidemiology in Viet Nam. Ranges for priors and median value with 

corresponding 95% uncertainty intervals (95%UI) for non-implausible ranges (posteriors) are shown. When range is not shown, constant value was used.  

All parameters are expressed per year. 
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Table S3. Probability of a positive test per model state for each screening tool. 

Test State Value (Range) Description 
N

uc
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st

 (N
AA

T,
 X
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rt

 M
TB

/R
IF

 U
lt

ra
)  

Susceptible 0.006 
(0.005 – 0.008) 

(1 – specificity) for individuals in a community in 
Kampala, Uganda [17] 

Infected 0.006 
(0.005 – 0.008) 

(1 – specificity) for individuals in a community in 
Kampala, Uganda [17] 

Cleared 0.006 
(0.005 – 0.008) 

(1 – specificity) for individuals in a community in 
Kampala, Uganda [17] 

Recovered 0.040 
(0.020 – 0.060) 

(1 – specificity) for individuals screened positive for 
symptoms and/or CXR with a history of TB in the 

community [18] 

Unconfirmed TB 0.044 
(0.026 – 0.070) 

(1 – specificity) for pulmonary TB from individuals in 
primary care facilities and local hospitals [19] 

Asymptomatic TB 0.775 
(0.676 – 0.856) 

Sensitivity for smear-negative TB from individuals in 
primary care facilities and local hospitals [19] 

Symptomatic TB 0.909 
(0.862 – 0.947) 

Sensitivity for pulmonary TB from individuals in primary 
care facilities and local hospitals [19] 

Treated 0.040 
(0.020 – 0.060) 

(1 – specificity) for individuals screened positive for 
symptoms and/or CXR with a history of TB in the 

community [18] 

 

C
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XR
)  

Susceptible 0.085 
(0.069 – 0.134) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants with 

abnormal CXR, regardless of TB status [20] 

Infected 0.085 
(0.069 – 0.134) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants with 

abnormal CXR, regardless of TB status [20] 

Cleared 0.085 
(0.069 – 0.134) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants with 

abnormal CXR, regardless of TB status [20] 

Recovered 0.503 
(0.481 – 0.524) 

Proportion with abnormal CXR suggestive of TB among 
participants of national TB prevalence survey reporting 

TB history [21] 

Unconfirmed TB 0.677* 
(0.626 – 0.712) 

Midpoint between the median and bounds of values for 
Recovered/Treated and Symptomatic TB [Assumption] 

Asymptomatic TB 0.677* 
(0.626 – 0.712) 

Midpoint between the median and bounds of values for 
Recovered/Treated and Symptomatic TB [Assumption] 

Symptomatic TB 0.910 
(0.900 – 0.920) 

Sensitivity of CAD software for bacteriologically 
confirmed TB in screening use case [22] 

Treated 0.503 
(0.481 – 0.524) 

Proportion with abnormal CXR suggestive of TB among 
participants of national TB prevalence survey reporting 

TB history [21] 
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Susceptible 0.0022  
(0.0016 – 0.0029) 

(1 – specificity) for individuals in a community in 
selected villages in Ca Mau province, Viet Nam [23] 

Infected 0.0022  
(0.0016 – 0.0029) 

(1 – specificity) for individuals in a community in 
selected villages in Ca Mau province, Viet Nam [23] 

Cleared 0.0022  
(0.0016 – 0.0029) 

(1 – specificity) for individuals in a community in 
selected villages in Ca Mau province, Viet Nam [23] 

Recovered 0.026 
(0.005 – 0.083)  

(1 – specificity) for individuals with a history of TB in 
primary care facilities and local hospitals [19] 

Unconfirmed TB 0.016 
(0.007 – 0.030) 

(1 – specificity) for pulmonary TB from individuals in 
primary care facilities and local hospitals [19] 

Asymptomatic TB 0.606 
(0.484 – 0.717) 

Sensitivity for smear-negative TB from individuals in 
primary care facilities and local hospitals [19] 

Symptomatic TB 0.847  
(0.786 – 0.899) 

Sensitivity for pulmonary TB from individuals in primary 
care facilities and local hospitals [19] 

Treated 0.026 
(0.005 – 0.083)  

(1 – specificity) for individuals with a history of TB in 
primary care facilities and local hospitals [19] 
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Susceptible 0.061 
(0.047 – 0.074) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants reporting 
prolonged cough, regardless of CXR or TB status [20] 

Infected 0.061 
(0.047 – 0.074) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants reporting 
prolonged cough, regardless of CXR or TB status [20] 

Cleared 0.061 
(0.047 – 0.074) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants reporting 
prolonged cough, regardless of CXR or TB status [20] 

Recovered 0.131 
(0.089 – 0.162) 

Midpoint between the median and bounds of values for 
S/I/C and Unconfirmed TB [Assumption] 

Unconfirmed TB 0.201 
(0.129 – 0.249) 

Median and interquartile range for the proportion of 
national TB prevalence survey participants reporting 

prolonged cough with abnormal CXR, regardless of TB 
status  [20] 

Asymptomatic TB 1.00 Assuming a strong clinical appraisal that is able to 
diagnose confirmed TB [Assumption] 

Symptomatic TB 1.00 Assuming a strong clinical appraisal that is able to 
diagnose confirmed TB [Assumption] 

Treated 0.566 
(0.545 – 0.581) 

Midpoint between the median and bounds of values for 
Recovered and Asymptomatic/Symptomatic TB 

[Assumption] 

Probability of a positive test result for each screening diagnostic tool for each state in the model and were 

independently sampled from uniform distributions for each model run. Test positivity under further 

investigation refers to individuals who have tested positive based on a given screening algorithm. *Under 

a sensitivity analysis, evaluating revised CXR sensitivity for Unconfirmed and Asymptomatic TB, the value 

matches the one in Recovered and Treated. CAD: Computer-aided diagnosis; TB: Tuberculosis.
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Table S4. Costing estimates for business-as-usual TB diagnosis and treatment. 

Cost type Cost per 
individual (US$) Distribution Notes 

Diagnosis for DS-TB 264.0 Gamma distribution, standard 
deviation 20% of the mean Considering NNT, CXR, bacteriological costs, and staff time costs 

Diagnosis for DR-TB 1595.0 Gamma distribution, standard 
deviation 20% of the mean Considering NNT, CXR, bacteriological costs, and staff time costs 

Treatment for DS-TB 81.0 Gamma distribution, standard 
deviation 20% of the mean 

Includes TB drugs, healthcare staff, bacterial monitoring, and 
overhead costs per treatment episode 

Treatment for DR-TB 973.0 Gamma distribution, standard 
deviation 20% of the mean 

Includes TB drugs, healthcare staff, bacterial monitoring, and 
overhead costs per treatment episode 

Costing estimates per individual for business-as-usual TB diagnosis and treatment provided by the national TB programme in Viet Nam. Costs were independently 

sampled from gamma distributions as specified for each model run. CXR: Chest radiography; DR-TB: Drug-resistant TB; DS-TB: Drug-susceptible TB; NNT: Number 

needed to test; TB: Tuberculosis; US$: United States dollar. 
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Table S5. Costing estimates for population-wide screening algorithms. 

Analysis Algorithm Cost per individual (US$) Distribution 

M
ai

n 
 

an
al

ys
is

 
NAAT-only 8.0 Gamma distribution, standard deviation 20% of the mean 

CXR+NAAT 1.7 Gamma distribution, standard deviation 20% of the mean 

CXR-only 1.2 Gamma distribution, standard deviation 20% of the mean 

Se
ns

iti
vi

ty
 

an
al

ys
is

 NAAT-only  
(US$1 NAAT) 3.0 Gamma distribution, standard deviation 20% of the mean 

CXR+NAAT 
(US$1 NAAT) 1.3 Gamma distribution, standard deviation 20% of the mean 

Costing estimates per individual for different population-wide algorithms. Estimates represent the average cost per individual screened, calculated from the total 

costs of six years of community-wide screening interventions, informed by the ACT3 trial and the ongoing ACT5 trial [11,24]. Costs account for several factors, 

including the number of screening days per year, human resource costs (e.g., technicians, field workers, laboratory staff, administrative staff, and supervisors), the 

proportion of the population participating, the proportion providing sputum samples, the number undergoing NAAT, consumables, setup of screening sites, and 

transportation. For the CXR+NAAT algorithm, costs also include the proportion of CXR deemed abnormal, requiring confirmatory NAAT testing. Unit costs were 

independently sampled from a gamma distribution. NAAT: Nucleic acid amplification test; CXR: Chest radiography; US$: United States dollar. 
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Table S6. Performance of population-wide screening interventions to reach TB prevalence threshold of 100 per 100,000 inhabitants. 

Epidemiological performance and economic impact of population-wide screening interventions in Viet Nam per algorithm when conducted to reach TB prevalence 

threshold of 100 per 100,000 people. The values represent cumulative accrual over the 25-year time horizon, extending up to 2050. Budget impact includes 

cumulative costs of screening/diagnosis and treatment for both BAU and the intervention algorithm up to 2050. The cost of front-loading refers to intervention-

specific screening and treatment costs, presented as the annual average during the intervention period. Annual cost savings are defined as the difference in BAU-

specific diagnosis and treatment costs between the intervention algorithm and the BAU counterfactual, averaged over the time horizon. BAU: Business-as-usual; 

CXR: Chest radiography; DALY: Disability-adjusted life year; FP: False positive; ICER: Incremental cost-effectiveness ratio; NAAT: Nucleic acid amplification test 

(Xpert MTB/RIF Ultra); TB: Tuberculosis; TP: True positive; UI: Uncertainty interval; US$: United States dollar. 

  

Screening algorithm BAU NAAT NAAT+CXR CXR 

Rounds required to reach 
threshold Not reached 3 annual rounds 3 annual rounds 2 annual rounds 

Cumulative TB incidence  2.25m 
(95%UI: 1.57-3.04) 

1.39m  
(95%UI: 0.94-1.89) 

1.52m 
(95%UI: 1.04-2.06) 

0.79m 
(95%UI: 0.55-1.10) 

Cumulative TB deaths  273k 
(95%UI:123-475) 

160k 
(95%UI: 70-278) 

177k 
(95%UI: 77-308) 

94k 
(95%UI:41-163) 

Cumulative DALYs  8.12m 
(95%UI: 5.85-10.83) 

5.13m 
(95%UI: 3.60-6.82) 

5.62m 
(95%UI: 4.04-7.37) 

3.09m 
(95%UI: 2.21-4.17) 

Cumulative TPs diagnosed 
through screening N/A 369k 

(95%UI: 281-450) 
313k 

(95%UI: 232-392) 
988k 

(95%UI: 666-1,307) 
Cumulative FPs diagnosed 
through screening  N/A 1,384k 

(95%UI: 1,033-1,834) 
617k 

(95%UI: 360-983) 
21,107k 

(95%UI: 16,340-25,722) 
Unit price of NAAT N/A US$8 US$1 US$8 US$1 N/A 

Cost of diagnosis/screening 363m 
(95%UI: 222-578) 

1,343m 
(95%UI: 952-1,846) 

641m  
(95%UI: 471-842) 

639m  
(95%UI: 478-858) 

548m 
(95%UI: 398-719) 

311m 
(95%UI: 230-411) 

Cost of treatment 138m 
(95%UI: 86-209) 

235m 
(95%UI: 157-344) 

176m 
(95%UI: 114-268) 

1,806m 
(95%UI: 1,133-2,796) 

Budget impact 505m  
(95%UI: 328-757) 

1,583m 
(95%UI: 1,183-2,102) 

878m 
(95%UI: 677-1,113) 

822m 
(95%UI: 617-1,075) 

722m  
(95%UI: 548-932) 

2,118m 
(95%UI: 1,451-3,093) 

Annual cost of front-loading N/A 429m 
(95%UI: 297-586) 

192m 
(95%UI: 139-255) 

162m 
(95%UI: 113-219) 

131m 
(95%UI: 93-183) 

967m 
(95%UI: 646-1,466) 

Annual cost savings N/A 8.0m 
(95%UI: 1.9-15.8) 

6.9m 
(95%UI: 0.3-14.8) 

13.0m 
(95%UI: 7.1-21.8) 

ICER compared with BAU  
(US$ per DALY averted) N/A 354 

(95%UI: 144-811) 
123 

(95%UI: 24-325) 
123 

(95%UI: 21-359) 
84 

(95%UI: 1-285) 
318 

(95%UI: 133-724) 
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Table S7. Performance of population-wide screening interventions to reach TB prevalence threshold of 20 per 100,000 inhabitants. 

Epidemiological performance and economic impact of population-wide screening interventions in Viet Nam per algorithm when conducted to reach TB prevalence 

threshold of 20 per 100,000 people. The values represent cumulative accrual over the 25-year time horizon, extending up to 2050. Budget impact includes 

cumulative costs of screening/diagnosis and treatment for both BAU and the intervention algorithm up to 2050. The cost of front-loading refers to intervention-

specific screening and treatment costs, presented as the annual average during the intervention period. Annual cost savings are defined as the difference in BAU-

specific diagnosis and treatment costs between the intervention algorithm and the BAU counterfactual, averaged over the time horizon. BAU: Business-as-usual; 

CXR: Chest radiography; DALY: Disability-adjusted life year; FP: False positive; ICER: Incremental cost-effectiveness ratio; NAAT: Nucleic acid amplification test 

(Xpert MTB/RIF Ultra); TB: Tuberculosis; TP: True positive; UI: Uncertainty interval; US$: United States dollar. 

  

Screening algorithm BAU NAAT NAAT+CXR CXR 
Rounds required to reach 
threshold Not reached 11 annual rounds 12 annual rounds 4 annual rounds 

Cumulative TB incidence  2.25m 
(95%UI: 1.57-3.04) 

0.62m  
(95%UI: 0.42-0.85) 

0.68m 
(95%UI: 0.47-0.93) 

0.36m 
(95%UI: 0.26-0.49) 

Cumulative TB deaths  273k 
(95%UI:123-475) 

63k 
(95%UI: 26-107) 

68k 
(95%UI: 29-113) 

43k 
(95%UI:20-74) 

Cumulative DALYs  8.12m 
(95%UI: 5.85-10.83) 

2.92m 
(95%UI: 2.06-3.84) 

3.25m 
(95%UI: 2.35-4.31) 

1.77m 
(95%UI: 1.30-2.35) 

Cumulative TPs diagnosed 
through screening N/A 711k 

(95%UI: 520-907) 
718k 

(95%UI: 504-946) 
1,262k 

(95%UI: 852-1,676) 
Cumulative FPs diagnosed 
through screening  N/A 5,276k 

(95%UI: 3,917-6,834) 
3,022k 

(95%UI: 1,754-4,667) 
42,402k 

(95%UI: 32,130-51,051) 
Unit price of NAAT N/A US$8 US$1 US$8 US$1 N/A 

Cost of diagnosis/screening 363m 
(95%UI: 222-578) 

4,259m 
(95%UI: 2,782-6,223) 

1,671m  
(95%UI: 1,097-2,380) 

2,031m 
(95%UI: 1,375-2,873) 

1,555m 
(95%UI: 1,061-2,243) 

420m 
(95%UI: 293-577) 

Cost of treatment 138m 
(95%UI: 86-209) 

540m 
(95%UI: 336-827) 

349m 
(95%UI: 215-562) 

3,494m 
(95%UI: 2,148-5,477) 

Budget impact 505m  
(95%UI: 328-757) 

4,801m 
(95%UI: 3,301-6,780) 

2,219m 
(95%UI:1,586-2,973) 

2,368m 
(95%UI: 1,692-3,259) 

1,929m  
(95%UI: 1,387-2,599) 

3,913m 
(95%UI: 2,598-5,873) 

Annual cost of front-loading N/A 426m 
(95%UI: 290-605) 

191m 
(95%UI: 136-259) 

187m 
(95%UI: 131-260) 

150m 
(95%UI: 106-207) 

958m 
(95%UI: 634-1,447) 

Annual cost savings N/A 15.5m 
(95%UI: 9.0-24.9) 

15.2m 
(95%UI: 8.8-24.7) 

16.9m 
(95%UI: 10.6-26.6) 

ICER compared with BAU 
(US$ per DALY averted) N/A 825 

(95%UI: 380-1,713) 
328 

(95%UI: 143-688) 
381 

(95%UI: 172-818) 
291 

(95%UI: 122-643) 
537 

(95%UI: 240-1,207) 
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Table S8. Performance of population-wide screening interventions with further investigation post-screening. 

Epidemiological performance and economic impact of population-wide screening interventions with further investigation post-screening in Viet Nam per algorithm 

when conducted to reach TB prevalence threshold of 50 per 100,000 people. Further investigation was applied and costed exclusively for individuals who screened 

positive under their respective algorithm. The values represent cumulative accrual over the 25-year time horizon, extending up to 2050. Budget impact includes 

cumulative costs of screening/diagnosis and treatment for both BAU and the intervention algorithm up to 2050. The cost of front-loading refers to intervention-

specific screening and treatment costs, presented as the annual average during the intervention period. Annual cost savings are defined as the difference in BAU-

specific diagnosis and treatment costs between the intervention algorithm and the BAU counterfactual, averaged over the time horizon. BAU: Business-as-usual; 

CXR: Chest radiography; DALY: Disability-adjusted life year; FP: False positive; ICER: Incremental cost-effectiveness ratio; NAAT: Nucleic acid amplification test 

(Xpert MTB/RIF Ultra); TB: Tuberculosis; TP: True positive; UI: Uncertainty interval; US$: United States dollar. 

  

Screening algorithm BAU NAAT CXR+NAAT CXR 
Rounds required to reach 
threshold Not reached 6 annual rounds 8 annual rounds 3 annual rounds 

Cumulative TB incidence  2.25m 
(95%UI: 1.57-3.04) 

1.03m  
(95%UI: 0.68-1.41) 

1.04m 
(95%UI: 0.69-1.43) 

1.22m 
(95%UI: 0.83-1.67) 

Cumulative TB deaths  273k 
(95%UI:123-475) 

113k 
(95%UI: 47-194) 

112k 
(95%UI: 46-196) 

140k 
(95%UI: 62-248) 

Cumulative DALYs  8.12m 
(95%UI: 5.85-10.83) 

3.99m 
(95%UI: 2.77-5.31) 

4.17m 
(95%UI: 2.89-5.56) 

4.52m 
(95%UI: 3.22-6.06) 

Cumulative TPs diagnosed 
through screening N/A 490k  

(95%UI: 377-594) 
489k 

(95%UI: 364-600) 
514k 

(95%UI: 374-670) 
Cumulative FPs diagnosed 
through screening  N/A 272k 

(95%UI: 182-410) 
224k 

(95%UI: 127-383) 
3,057k 

(95%UI: 2,236-4,051) 
Unit price of NAAT N/A 8USD 8USD N/A 

Cost of diagnosis/screening 363m 
(95%UI: 222-578) 

2,399m 
(95%UI: 1,655-3,405) 

1,243m 
(95%UI: 816-1,746) 

478m 
(95%UI: 339-641) 

Cost of treatment 138m 
(95%UI: 86-209) 

137m 
(95%UI: 91-204) 

134m 
(95%UI: 84-203) 

369m 
(95%UI: 237-553) 

Budget impact 505m  
(95%UI: 328-757) 

2,540m 
(95%UI: 1,794-3,567) 

1,377m 
(95%UI: 955-1,885) 

921m 
(95%UI: 688-1,177) 

Annual cost of front-loading N/A 387m  
(95%UI: 262-555) 

145m 
(95%UI: 95-209) 

193m 
(95%UI: 139-262) 

Annual cost savings N/A 11.7m 
(95%UI: 5.8-20.3) 

11.6m 
(95%UI: 5.9-20.2) 

9.5m 
(95%UI: 3.8-18.0) 

ICER compared with BAU 
(US$ per DALY averted) N/A 489 

(95%UI: 207-1,105) 
219 

(95%UI: 73-521) 
113 

(95%UI: 28-278) 
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Table S9. Performance of population-wide screening interventions with revised CXR sensitivity. 

Epidemiological performance and economic impact of population-wide screening interventions with revised CXR sensitivity for unconfirmed and asymptomatic TB 

in Viet Nam per algorithm when conducted to reach TB prevalence threshold of 50 per 100,000 people. The values represent cumulative accrual over the 25-year 

time horizon, extending up to 2050. Budget impact includes cumulative costs of screening/diagnosis and treatment for both BAU and the intervention algorithm up 

to 2050. The cost of front-loading refers to intervention-specific screening and treatment costs, presented as the annual average during the intervention period. 

Annual cost savings are defined as the difference in BAU-specific diagnosis and treatment costs between the intervention algorithm and the BAU counterfactual, 

averaged over the time horizon. BAU: Business-as-usual; CXR: Chest radiography; DALY: Disability-adjusted life year; FP: False positive; ICER: Incremental cost-

effectiveness ratio; NAAT: Nucleic acid amplification test (Xpert MTB/RIF Ultra); TB: Tuberculosis; TP: True positive; UI: Uncertainty interval; US$: United States 

dollar.

Screening algorithm BAU NAAT CXR+NAAT CXR 
Rounds required to reach 
threshold Not reached 6 annual rounds 9 annual rounds 3 annual rounds 

Cumulative TB incidence  2.25m 
(95%UI: 1.57-3.04) 

0.95m  
(95%UI: 0.63-1.31) 

1.00m 
(95%UI: 0.67-1.35) 

0.68m 
(95%UI: 0.47-0.93) 

Cumulative TB deaths  273k 
(95%UI:123-475) 

104k 
(95%UI: 44-184) 

105k 
(95%UI: 45-185) 

79k 
(95%UI: 34-139) 

Cumulative DALYs  8.12m 
(95%UI: 5.85-10.83) 

3.74m 
(95%UI: 2.64-4.99) 

4.14m 
(95%UI: 2.91-5.52) 

2.79m 
(95%UI: 2.00-3.74) 

Cumulative TPs diagnosed 
through screening N/A 555k  

(95%UI: 411-688) 
544k 

(95%UI: 395-698) 
985k 

(95%UI: 672-1,305) 
Cumulative FPs diagnosed 
through screening  N/A 2,779k 

(95%UI: 2,059-3,696) 
1,924k 

(95%UI: 1,122-3,013) 
31,354k 

(95%UI: 24,199-38,227) 
Unit price of NAAT N/A US$8 US$8 N/A 

Cost of diagnosis/screening 363m 
(95%UI: 222-578) 

2,428m 
(95%UI: 1,675-3,465) 

1,350m 
(95%UI: 945-1,881) 

374m 
(95%UI: 273-509) 

Cost of treatment 138m 
(95%UI: 86-209) 

336m 
(95%UI: 220-511) 

272m 
(95%UI: 158-425) 

2,570m 
(95%UI: 1,623-4,103) 

Budget impact 505m  
(95%UI: 328-757) 

2,766m 
(95%UI: 1,965-3,782) 

1,639m 
(95%UI: 1,191-2,196) 

2,967m 
(95%UI: 2,005-4,487) 

Annual cost of front-loading N/A 427m  
(95%UI: 299-599) 

159m 
(95%UI: 110-219) 

938m 
(95%UI: 623-1,448) 

Annual cost savings N/A 12.3m 
(95%UI: 6.5-21.4) 

12.2m 
(95%UI: 5.9-21.0) 

14.3m 
(95%UI: 8.1-23.2) 

ICER compared with BAU 
(US$ per DALY averted) N/A 516 

(95%UI: 233-1,073) 
283 

(95%UI: 114-640) 
456 

(95%UI: 204-1,062) 
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Table S10. Cost-effectiveness of population-wide screening interventions for TB. 

Analysis type Screening algorithm DALYs averted 
compared to BAU 

Additional costs 
(US$) compared to 

BAU 
Incremental DALYs Incremental costs  

(US$) 
ICER  

(US$ per DALY averted) 

Reducing the unit 
price of NAAT 

cartridges to US$1 

CXR+NAAT 4.28m 
(95%UI: 2.93-6.16) 

0.71b 
(95%UI: 0.35-1.11) 

4.28m 
(95%UI: 2.93-6.16) 

0.71b 
(95%UI: 0.35-1.11) 

167 
(95%UI: 57-380) 

NAAT 4.38m 
(95%UI: 2.97-6.19) 

0.83b 
(95%UI: 0.44-1.27) Removed due to extended dominance with respect to CXR-only 

CXR 5.94m 
(95%UI: 4.18-7.97) 

2.44b 
(95%UI: 1.41-3.88) 

1.52m 
(95%UI: 0.79-2.37) 

1.61b 
(95%UI: 0.51-3.06) 

1,057 
(95%UI: 642-1,291) 

 

TB prevalence 
threshold of 100 

per 100,000 
people 

CXR+NAAT 2.55m 
(95%UI: 1.53-3.92) 

0.31b 
(95%UI: 0.08-0.55) 

2.55m 
(95%UI: 1.53-3.92) 

0.31b 
(95%UI: 0.08-0.55) 

123 
(95%UI: 21-359) 

NAAT 3.02m 
(95%UI: 1.93-4.47) 

1.07b 
(95%UI: 0.64-1.57) Removed due to extended dominance with respect to CXR-only 

CXR 5.06m 
(95%UI: 3.56-6.86) 

1.61b 
(95%UI: 0.91-2.58) 

2.49m 
(95%UI: 1.57-3.54) 

1.31b 
(95%UI: 0.59-2.25) 

528 
(95%UI: 376-636) 

 

TB prevalence 
threshold of 20 per 

100,000 people 

CXR+NAAT 4.89m 
(95%UI: 3.34-6.92) 

1.86b 
(95%UI: 1.19-2.73) 

4.89m 
(95%UI: 3.34-6.92) 

1.86b 
(95%UI: 1.19-2.73) 

381 
(95%UI: 172-818) 

NAAT 5.19m 
(95%UI: 3.65-7.35) 

4.29b 
(95%UI: 2.79-6.26) Removed due to simple dominance with respect to CXR-only 

CXR 6.32m 
(95%UI: 4.49-8.66) 

3.39b 
(95%UI: 2.08-5.43) 

1.46m 
(95%UI: 0.81-2.31) 

1.52b 
(95%UI: 0.12-3.62) 

1,036 
(95%UI: 148-1,567) 

 

Performance of 
using Xpert 

MTB/RIF in a NAAT-
only algorithm 

NAAT (Xpert MTB/RIF) 4.29m 
(95%UI: 2.93-6.16) 

2.96b 
(95%UI: 1.89-4.41) Removed due to simple dominance with respect to CXR+NAAT 

CXR+NAAT 4.29m 
(95%UI: 2.86-6.14) 

0.97b 
(95%UI: 0.52-1.49) 

4.29m 
(95%UI: 2.86-6.14) 

0.97b 
(95%UI: 0.52-1.49) 

225 
(95%UI: 85-520) 

NAAT (Xpert MTB/RIF Ultra) 4.36m 
(95%UI: 3.09-6.23) 

2.25b 
(95%UI: 1.45-3.31) Removed due to extended dominance with respect to CXR-only 

CXR 5.94m 
(95%UI: 4.18-7.97) 

2.44b 
(95%UI: 1.41-3.88) 

1.61m 
(95%UI: 0.86-2.56) 

1.49b 
(95%UI: 0.34-2.87) 

927 
(95%UI: 393-1,124) 
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Performance of 
further 

investigation post-
screening 

CXR 3.59m 
(95%UI: 2.43-5.23) 

0.41b 
(95%UI: 0.15-0.68) 

3.59m 
(95%UI: 2.43-5.23) 

0.41b 
(95%UI: 0.15-0.68) 

113 
(95%UI: 28-278) 

CXR+NAAT 3.96m 
(95%UI: 2.61-5.83) 

0.87b 
(95%UI: 0.43-1.36) 

0.37m 
(95%UI: 0.00-1.15) 

0.46b 
(95%UI: 0.03-1.00) 

1,293 
(95%UI: 1,153-1,555) 

NAAT 4.14m 
(95%UI: 2.77-5.99) 

2.03b 
(95%UI: 1.24-3.06) 

0.16m 
(95%UI: 0.00-0.48) 

1.16b 
(95%UI: 0.23-2.23) 

6,183 
(95%UI: 5,165-10,441) 

 

Revised CXR 
sensitivity for 

unconfirmed and 
asymptomatic TB 

CXR+NAAT 3.98m 
(95%UI: 2.64-5.73) 

1.12b 
(95%UI: 0.65-1.69) 

3.98m 
(95%UI: 2.64-5.73) 

1.12b 
(95%UI: 0.65-1.69) 

283 
(95%UI: 113-640) 

NAAT 4.36m 
(95%UI: 3.09-6.23) 

2.25b 
(95%UI: 1.45-3.31) Removed due to extended dominance with respect to CXR-only 

CXR 5.35m 
(95%UI: 3.77-7.33) 

2.44b 
(95%UI: 1.49-4.00) 

1.34m 
(95%UI: 0.62-2.16) 

1.32b 
(95%UI: 0.22-2.95) 

962 
(95%UI: 750-1,447) 

Cost-effectiveness sensitivity analyses of population-wide screening interventions in Viet Nam per algorithm. The values represent cumulative accrual over the 25-

year time horizon, extending up to 2050. BAU: Business-as-usual; CXR: Chest radiography with computer-aided detection software interpretation; DALY: Disability-

adjusted life year; ICER: Incremental cost-effectiveness ratio; NAAT: Nucleic acid amplification test (primarily Xpert MTB/RIF Ultra unless specified otherwise); TB: 

Tuberculosis; UI: Uncertainty interval; US$: United States dollar. 

 

 

 

 

  



 Chapter 6 – Page 199  24 

References 

1.  Horton KC, Richards AS, Emery JC, Esmail H, Houben RMGJ. Reevaluating progression and 
pathways following Mycobacterium tuberculosis infection within the spectrum of tuberculosis. 
Proc Natl Acad Sci U S A. 2023;120: e2221186120. doi:10.1073/pnas.2221186120 

2.  Coussens AK, Zaidi SMA, Allwood BW, Dewan PK, Gray G, Kohli M, et al. Classification of early 
tuberculosis states to guide research for improved care and prevention: an international Delphi 
consensus exercise. Lancet Respir Med. 2024. doi:10.1016/S2213-2600(24)00028-6 

3.  Falzon D, Miller C, Law I, Floyd K, Arinaminpathy N, Zignol M, et al. Managing tuberculosis 
before the onset of symptoms. Lancet Respir Med. 2024;0. doi:10.1016/s2213-2600(24)00372-
2 

4.  Scarponi D, Iskauskas A, Clark RA, Vernon I, McKinley TJ, Goldstein M, et al. Demonstrating 
multi-country calibration of a tuberculosis model using new history matching and emulation 
package - hmer. Epidemics. 2023;43: 100678. doi:10.1016/j.epidem.2023.100678 

5.  Iskauskas A, McKinley TJ. hmer: history matching and emulation package. In: The 
Comprehensive R Archive Network [Internet]. 2022. Available: https://CRAN.R-
project.org/package=hmer 

6.  United Nations. World Population Prospects - Population Division. In: World Population 
Prospects 2022 [Internet]. [cited Jun 2023]. Available: https://population.un.org/wpp/ 

7.  Menzies NA, Quaife M, Allwood BW, Byrne AL, Coussens AK, Harries AD, et al. Lifetime burden 
of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis 
sequelae. Lancet Glob Health. 2021;9: e1679–e1687. doi:10.1016/S2214-109X(21)00367-3 

8.  World Health Organization. Global Tuberculosis Report 2022. Geneva: WHO; 2022. 

9.  Wilkinson T, Sculpher MJ, Claxton K, Revill P, Briggs A, Cairns JA, et al. The International 
Decision Support Initiative reference case for economic evaluation: An aid to thought. Value 
Health. 2016;19: 921–928. doi:10.1016/j.jval.2016.04.015 

10.  Richards AS, Sossen B, Emery JC, Horton KC, Heinsohn T, Frascella B, et al. Quantifying 
progression and regression across the spectrum of pulmonary tuberculosis: a data synthesis 
study. Lancet Glob Health. 2023;11: e684–e692. doi:10.1016/S2214-109X(23)00082-7 

11.  Marks GB, Nguyen NV, Nguyen PTB, Nguyen T-A, Nguyen HB, Tran KH, et al. Community-wide 
Screening for Tuberculosis in a High-Prevalence Setting. N Engl J Med. 2019;381: 1347–1357. 
doi:10.1056/NEJMoa1902129 

12.  Nguyen HV, Nguyen HB, Nguyen NV, Cobelens F, Finlay A, Dao CH, et al. Decline of 
Tuberculosis Burden in Vietnam Measured by Consecutive National Surveys, 2007-2017. Emerg 
Infect Dis. 2021;27: 872–879. doi:10.3201/eid2703.204253 

13.  Emery JC, Dodd PJ, Banu S, Frascella B, Garden FL, Horton KC, et al. Estimating the 
contribution of subclinical tuberculosis disease to transmission: An individual patient data 
analysis from prevalence surveys. Elife. 2023;12. doi:10.7554/eLife.82469 

14.  Andrews JR, Noubary F, Walensky RP, Cerda R, Losina E, Horsburgh CR. Risk of progression to 
active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin Infect Dis. 
2012;54: 784–791. doi:10.1093/cid/cir951 

15.  Verver S, Warren RM, Beyers N, Richardson M, van der Spuy GD, Borgdorff MW, et al. Rate of 
reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am J 

 
  



 Chapter 6 – Page 200  25 

Respir Crit Care Med. 2005;171: 1430–1435. doi:10.1164/rccm.200409-1200OC 

16.  World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 4: 
Treatment - Drug-susceptible tuberculosis treatment. Geneva, Switzerland: WHO; 2022. 

17.  Kendall EA, Kitonsa PJ, Nalutaaya A, Erisa KC, Mukiibi J, Nakasolya O, et al. The Spectrum of 
Tuberculosis Disease in an Urban Ugandan Community and Its Health Facilities. Clin Infect Dis. 
2021;72: e1035–e1043. doi:10.1093/cid/ciaa1824 

18.  World Health Organization. National tuberculosis prevalence surveys: what diagnostic 
algorithms should be used in future? Geneva, Switzerland: WHO; 2023 May. Available: 
https://iris.who.int/bitstream/handle/10665/367909/9789240073913-eng.pdf?sequence=1 

19.  Zifodya JS, Kreniske JS, Schiller I, Kohli M, Dendukuri N, Schumacher SG, et al. Xpert Ultra 
versus Xpert MTB/RIF for pulmonary tuberculosis and rifampicin resistance in adults with 
presumptive pulmonary tuberculosis. Cochrane Database Syst Rev. 2021;2: CD009593. 
doi:10.1002/14651858.CD009593.pub5 

20.  Frascella B, Richards AS, Sossen B, Emery JC, Odone A, Law I, et al. Subclinical tuberculosis 
disease - a review and analysis of prevalence surveys to inform definitions, burden, 
associations and screening methodology. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa1402 

21.  Mungai B, Ong’angò J, Ku CC, Henrion MYR, Morton B, Joekes E, et al. Accuracy of computer-
aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya 
National Tuberculosis Prevalence Survey. PLOS Glob Public Health. 2022;2: e0001272. 
doi:10.1371/journal.pgph.0001272 

22.  World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 2: 
Screening - Systematic screening for tuberculosis disease. Geneva, Switzerland: WHO; 2021 
Mar. 

23.  Ho J, Nguyen PTB, Nguyen TA, Tran KH, Van Nguyen S, Nguyen NV, et al. Reassessment of the 
positive predictive value and specificity of Xpert MTB/RIF: a diagnostic accuracy study in the 
context of community-wide screening for tuberculosis. Lancet Infect Dis. 2016;16: 1045–1051. 
doi:10.1016/S1473-3099(16)30067-6 

24.  Australian New Zealand Clinical Trials Registry. ACTRN12622000115730. In: ANZCTR [Internet]. 
[cited 6 Feb 2024]. Available: 
https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12622000115730 

 

  



 Chapter 6 – Page 201 

6.3 Summary 

In this chapter, I calibrated a natural history TB model to TB epidemiology in Viet Nam, to assess 

the impact and cost-e4ectiveness of annual rounds of various population-wide screening 

algorithms. All screening algorithms demonstrated a reduction in TB burden compared to 

business-as-usual between 2025 and 2050. While these interventions required substantial 

front-loaded investments, they were followed by persistent cost savings. Notably, the two-step 

approach combining CXR and NAAT proved to be particularly cost-e4ective. These findings 

underscore the potential of symptom-agnostic population-wide screening interventions as a 

pathway to rapidly reducing TB prevalence in high-burden settings, highlighting the need to 

integrate such strategies into existing TB prevention and care frameworks. 
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Chapter 7: Discussion 

This chapter provides the key findings and further discussion of the research projects presented 

in the previous chapters, highlighting their implications. Additionally, it outlines future 

recommendations and presents the overall conclusions of the thesis.  

 

7.1 Key findings 

The key findings of the thesis are as follows: 

§ The annual risk of infection (ARI) is severely underestimated when not accounting for 

immunoreactivity reversion in its calculation (Chapter 3). 

§ Globally, a sizeable number of individuals have a recent viable Mycobacterium 

tuberculosis (Mtb) infection and are at high risk of progression to disease (Chapter 4). 

§ Mass screening with chest radiography (CXR) can result in a reduction of tuberculosis 

(TB) burden by identifying and treating early disease (Chapter 5). 

§ Symptom-agnostic population-wide screening algorithms are a cost-eKective 

intervention for rapidly reducing the TB burden, generating average cost savings 

immediately, despite their substantial front-loaded investment (Chapter 6). 

 

7.2 Further discussion 

Further discussion of each of the research projects (Chapters 3–6) is addressed below: 

 

7.2.1 Chapter 3: Immunoreactivity reversion and the annual risk of infection 

This chapter addresses Objective #1 of the thesis by quantifying the impact of 

immunoreactivity test reversion upon the estimated ARI. Furthermore, this chapter is a key 

component to achieve the first aim of the thesis on estimating the global burden of viable 

Mtb infection.   

 

I concluded that the estimated ARI is substantially underestimated when not accounting for 

immunoreactivity test reversion [1]. Immunoreactivity reversion does regularly occur and 

empirical data shows that reversion can be associated with age, degree of immunoreactivity, 

and time from presumed exposure, among others [2]. Thus, awareness of Mtb 

immunoreactivity test reversion is critical to correctly estimating and interpreting the ARI 

[1,3]. An excellent example comes from an adolescent cohort in Cape Town, where 

participants were tested with an interferon-gamma release assay (IGRA) at baseline and 

again after two years, with half of the cohort undergoing additional testing at intermediate 
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time points [4]. When IGRA positivity was examined using a longitudinal analysis that 

accounted for reversion, the resulting ARI was found to be twice as high as estimates derived 

from cross-sectional methods, which are traditionally used in immunoreactivity surveys [4].  

 

Populations experiencing three times more Mtb transmission than previously estimated 

fundamentally alters our understanding of TB dynamics and response priorities [1]. Firstly, 

this imbalance emphasises the predominance of disease driven by recent infections, as 

progression to TB disease is most likely within the first two years after infection [5]. This 

highlights the importance of prioritising interventions targeting Mtb transmission, rather than 

focusing on preventing progression to disease from remote infections. TB prevention and 

care eKorts rely on ARIs ranging between 1% and 2% [3]; yet they overlook the heightened 

risk associated with recent infections, which can result in misinformed national TB policies. 

Secondly, translating immunoreactivity prevalence directly into TB incidence and prevalence 

without considering their limitations and underlying assumptions risks misrepresenting the 

true burden of disease [6,7]. However, immunoreactivity trends can still oKer valuable 

insights, especially since current surveillance primarily targets endpoints at the opposite 

extreme of the spectrum, such as symptomatic TB or death, which are associated with an 

unfixed and variable incubation period [8]. Shifting attention to earlier stages of the spectrum 

addresses critical gaps in current surveillance and is essential for recalibrating TB prevention 

and care strategies to better reflect Mtb transmission and disease dynamics. 

 

While my findings highlight the pitfalls of directly interpreting immunoreactivity as Mtb 

infection burden, they do not diminish its potential utility in tracking trends [8]. Measures of 

the force of infection derived from repeat surveys can oKer immediate and actionable 

insights into the performance of TB prevention and care interventions, bypassing the 

variability and delays inherent in tracking outcomes at the later stages of the spectrum [8,9]. 

When appropriately interpreted, these surveys provide a cost-eKective alternative to TB 

prevalence surveys, oKering critical insights into transmission risk at a fraction of the cost 

[8]. This highlights the need for reintroducing immunoreactivity surveys as a key tool for 

monitoring trends and informing interventions. 

 

7.2.2 Chapter 4: Global burden of viable Mycobacterium tuberculosis infection 

This chapter addresses Objective #2 of the thesis by estimating viable Mtb infection burden, 

accounting for revised estimates of the ARI and self-clearance of infection. Notably, this 
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chapter was set to achieve the first aim of the thesis on estimating the global burden of 

viable Mtb infection.   

 

I concluded that 156 million people were recently infected with viable Mtb, equating to 2.0% 

of the global population [10]. Because of the recency of infection, this population is at high 

risk of progression to disease, and thus would benefit from receiving TB preventive therapy 

(TPT) [10,11]. Given the limited empirical data on the proportion self-cleared after 10 years 

since infection, I estimated the total number infected with viable Mtb to be between 5% and 

8% [10], based on assumptions informed by available evidence [12,13]. While this estimate 

is less intimidating than ‘one quarter of the global population’ [14], it is important to highlight 

that this is reflecting individuals with infection capable of progressing to disease in the 

absence of reinfection, rather than those that were ever exposed to Mtb [10]. More 

importantly, my estimates of recently infected with viable Mtb are two times higher than 

previously estimates of those ever exposed to Mtb, as indicated by immunoreactivity (2.0% v 

0.8%) [10,14], highlighting again the shift in understanding the underestimation of the ARI 

and suggesting a rapid turnover of infections.  

 

The significant diKerence between the global estimates of ‘latent’ TB infection and viable Mtb 

infection underscores the disparity between measured immunoreactivity and infection 

capable of progressing to disease [10,14]. This highlights the urgent need for a diagnostic 

test capable of detecting the presence of viable Mtb in individuals with established infection 

or those along the TB disease spectrum where conventional bacteriological diagnostic 

methods yield negative results. For the former, such a test would enable accurate targeting 

of individuals with current viable Mtb infection for TPT, rather than relying on an (often single) 

immunoreactive test of past exposure. For the latter, within the conceptual TB states, a 

specific test would be invaluable for diagnosing bacteriologically unconfirmed TB—states 

with evident macroscopic pathology but bacteriologically negative results [15,16]. Such a 

test could enhance the eKectiveness of screening algorithms, particularly those employing 

CXR as an initial step. It would also pave the way for further research into specific, potentially 

shorter, drug regimens tailored for bacteriologically unconfirmed TB. 

 

As explained in Chapter 4, the aim was to determine the ‘real’ burden of viable Mtb infection, 

establishing a medically actionable target—an estimated population that would benefit from 

TPT [10]. These revised estimates also raise the question of the resulting TB burden 
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generated from this reservoir, though considerations of the TB spectrum and its undulating 

pathways require further exploration to fit the puzzle [13]. Additionally, these estimates can 

support policymaking for TB vaccine candidates, as country- and age-specific estimates of 

infected populations can influence proposed coverage and eKicacy targets depending on the 

vaccine profile. 

 

7.2.3 Chapter 5: Tuberculosis screening in the Kolín study 

This chapter addresses Objective #3 of the thesis by re-evaluating the impact of a historical 

mass CXR screening programme in the Kolín district, Czechoslovakia. This chapter serves as 

a component to achieve the second aim of the thesis on evaluating the impact of population-

wide screening interventions for TB. 

 

The mass CXR screening campaign conducted in Kolín was historically considered an 

epidemiological failure, consolidating the lingering belief that such campaigns are not a 

cost-eKective tool for interrupting transmission [17]. However, with my re-evaluation, I 

concluded otherwise; what was deemed a failure—namely, the detection of individuals with 

smear-negative TB—likely contributed to the early identification of individuals with TB (either 

already infectious or on the verge of becoming infectious), thereby potentially reducing 

background Mtb transmission and preventing future suKering [18]. Unlike the conventional 

approach of targeting only those with symptoms and sputum smear-positivity, early 

treatment interrupts transmission and contributes to reduce TB burden [19]. Historical TB 

literature represents a valuable yet underutilised resource for addressing contemporary 

scientific and policy questions, as its re-analysis can provide insights and eKiciently answer 

contemporary challenges [20]. For example, a recent analysis of a similar campaign 

conducted in Glasgow in 1957 revealed a significant and sustained reduction in TB 

notifications in the following years [21]. A key contributor to this reduction was the detection 

of individuals with early, asymptomatic TB [21]. As with the Kolín study, the potential impact 

of improved housing and social conditions must also be considered when interpreting these 

results [18,21]. Nonetheless, based on contemporary evidence, only a symptom-agnostic 

approach seems to result in the desired outcome of a reduced TB burden [22,23]. 

 

7.2.4 Chapter 6: Population-wide screening for tuberculosis 

This chapter addresses Objective #4 of the thesis by calibrating a natural history model of the 

spectrum of TB disease to TB epidemiology in Viet Nam to assess the cost-eKectiveness of 
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various population-wide screening algorithms. Notably, this chapter was set to achieve the 

second aim of the thesis on evaluating the potential impact, cost, and benefits of 

population-wide screening interventions for TB in a high-burden setting.   

 

I concluded that population-wide screening could enact a substantial and cost-eKective 

reduction of TB burden [24]. Using a model that reflected the spectrum of TB, I calibrated 

parameters to align with TB epidemiology in Viet Nam and the outcomes observed in the 

ACT3 trial [22,24]. An algorithm combining CXR with a confirmatory bacteriological test using 

Xpert MTB/RIF Ultra proved to be the most cost-eKective compared to a business-as-usual 

approach [24]. This two-step screening strategy also resulted in a lower number of false 

positive diagnoses, given the combined accuracy of the tools used [24]. 

 

One of the main drivers behind the impact observed in the population-wide screening 

algorithms was the TB natural history model, which incorporated earlier TB states into 

intervention strategies, reflecting the current understanding of the disease spectrum 

[15,16,24]. TB prevalence surveys have consistently shown that around half of individuals 

diagnosed are not experiencing symptoms [25]. Although these individuals are not typically 

targeted by conventional symptom- and facility-based diagnostic approaches, they can 

contribute significantly to Mtb transmission [19,26]. Screening, particularly through CXR-

based algorithms, also identified individuals with bacteriologically unconfirmed TB. While 

these individuals are not actively contributing to transmission, they represent a significant 

reservoir at risk of progressing to infectious disease [13]. Here, early treatment not only 

prevented future suKering for the individuals but also provided societal benefits by reducing 

potential transmission. 

 

Ultimately, the eKectiveness of the screening algorithms depended on the probability of a 

positive test result from the tools employed. Somewhat counterintuitively, a highly specific 

test may be preferred, as widespread implementation could otherwise result in many 

individuals being mistakenly placed on treatment due to false positive results [27]. However, 

this assumes that screening positivity directly leads to treatment without further evaluation, 

which is often not the case. For instance, in the ACT3 trial, individuals with a positive screen 

were asked to provide two additional spontaneously expectorated sputum samples for 

microscopy, culture, and drug-susceptibility testing [22]. They also attended a clinical 

assessment, which often included a CXR [22]. Based on the combined findings from these 
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assessments, the attending clinician determined whether to recommend TB treatment [22]. 

This additional post-screening evaluation step likely reduced the number of false positives 

and overtreatment, resulting in a more favourable ratio of true to false positives and lowering 

treatment costs, as suggested by the sensitivity analysis. Nevertheless, these interventions 

are not consistently reported or standardised, making it diKicult to quantify their processes 

(e.g., determining specific ‘test positivity’ values and costs at each step) and incorporate 

them accurately into mathematical models 

 

Furthermore, current pooled data on test positivity for individuals without TB are derived 

from clinical settings rather than the community, potentially underestimating the specificity 

of the test employed [28]. This leads to elevated estimated treatment costs, not only for 

individuals with TB but also for those without the disease who may be subjected to 

unnecessary treatment [27]. Moreover, treatment is not without risk, as individuals may 

experience side eKects, incur additional costs, and face stigma associated with TB 

treatment [29–31]. 

 

The implementation of population-wide screening interventions is inherently tied to 

economic considerations. These interventions are expensive and require strong 

governmental commitment along with institutional or external funder support. Such funding 

demands in the medium-term could pose challenges. However, while the average front-

loaded investment during the intervention years represents a significant burden for national 

TB programmes, economic benefits are quickly realised once the intervention concludes 

[24]. Advocating for TB eradication on economic grounds is compelling [32], as trends 

indicate that cost savings will persist alongside the long-lasting societal benefits of the 

intervention [24].   

 

7.3 Strengths 

Some overall strengths of the thesis are: 

§ The thesis incorporates a broad analysis of TB, addressing both the dynamic nature of 

Mtb infection and TB disease while fully acknowledging current shifts away from the 

binary paradigm. Consequently, the mathematical models used oKer timely and novel 

insights into TB epidemiology, aligning with evolving perspectives on the disease.  
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§ Models and parameters used were grounded in data, building upon recent work on the 

spectrum of TB [13,33]. When data was lacking, broad assumptions were made to fully 

explore the impact of parameter uncertainty on the overall results [10,24].  

 

7.4 Limitations 

Some overall limitations of the thesis are: 

§ Despite eKorts to ground models in available data, gaps in empirical evidence required 

assumptions for parameters like self-clearance rates and test performance in 

community settings [10,24]. While sensitivity analyses helped address uncertainties, 

some key outcomes—such as estimates of viable Mtb infection burden and intervention 

cost-eKectiveness—may need to be revisited as more robust data emerge. This 

limitation highlights the inherent challenges of modelling in areas where data are 

scarce, yet it underscores the importance of ongoing research to refine these estimates. 

§ TB along the spectrum of disease has complex pathways [13]. While the models 

incorporated the spectrum of TB, necessary simplifications were made to ensure 

tractability. This limits the ability to capture individual variability in factors like 

progression, regression rates, and test performance, potentially aKecting the precision 

of findings for diverse populations. Despite these constraints, the broader insights 

provided by the models remain highly relevant for informing strategic TB prevention and 

care planning. 

§ The focus on Viet Nam for population-wide screening interventions limits the 

generalisability of findings to other high-burden countries with diKering epidemiological 

and healthcare contexts. Intervention feasibility, cost-eKectiveness, and outcomes may 

vary in other settings. While the findings provide a compelling case for Viet Nam, further 

calibration in diverse contexts is necessary to create a comprehensive investment case 

and inform global policy. This limitation is moderate, as Viet Nam serves as a valuable 

exemplar for high-burden countries, but broader applicability remains constrained. 

§ Modelling for population-wide screening assumed ideal conditions, which may not 

reflect real world implementation. Practical challenges such as logistical, social, and 

economic barriers—and changes in these factors over time—could influence the 

feasibility, sustainability, and eKectiveness of the interventions. This limitation is 

significant, as it underscores the potential gap between theoretical projections and 

actual outcomes, emphasising the importance of validating findings through real-world 

data and pilot implementations to ensure practicality and scalability. 
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7.5 Future recommendations 

The research projects embedded in this thesis have made substantial contributions to TB 

research, with each chapter oKering a unique perspective and path forward to TB elimination. 

Future recommendations include: 

 

7.5.1 Test for viable Mycobacterium tuberculosis infection 

Immunoreactivity tests, while still useful in specific scenarios (e.g., recent conversion or 

known exposure), are insuKicient to accurately identify viable Mtb infection. [11]. Future 

research should prioritise the development of diagnostic tools capable of identifying viable 

Mtb in individuals who are not actively expelling bacilli. These tools could include biomarkers 

specific to Mtb that indicate active biological processes, rather than relying solely on the 

direct detection of the bacteria or its DNA. Such a tool would be critical for identifying 

individuals who would benefit from TPT, as well as for diagnosing those with macroscopic 

evidence of lung disease when conventional bacteriological methods fail [15]. Ultimately, 

this test, apart from feasible, would need to be widely available and aKordable, in order to 

complement existing TB prevention and care strategies.  

 

7.5.2 Interpreting immunoreactivity tests 

In lieu of the above, we can still eKectively utilise the readily available Mtb immunoreactivity 

tests. Firstly, long-held assumptions about immunoreactivity should no longer guide clinical 

management [2]. For instance, a single positive immunoreactivity test does not necessarily 

indicate current infection or a lingering risk of disease progression; relying on this may cause 

unnecessary anxiety for individuals, as immunoreactivity is a poor predictor of long-term 

progression risk [2,34]. Further assessment and follow-up retesting are warranted to 

accurately determine risk. Similarly, a negative immunoreactivity test should not be 

interpreted as proof that exposure has never occurred, as reversion may have taken place. 

Instead, it should be viewed as a baseline, enabling recency of exposure to be evaluated in 

future tests if needed. In general, we must acknowledge that a single immunoreactivity test 

provides only a limited snapshot of what is a dynamic process [2]. Ideally, immunoreactivity 

testing should be incorporated into an integrated monitoring procedure for high-risk groups, 

particularly those at heightened risk of exposure to Mtb and progression to TB disease, where 

timely assessments of recent exposure can guide the provision of TPT [8]. 
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7.5.3 Reintroducing immunoreactivity surveys 

Immunoreactivity surveys can provide valuable insights into Mtb exposure at the population 

level. Re-introducing immunoreactivity surveys should be considered by the TB community 

as part of monitoring eKorts towards TB eradication. In recent times, immunoreactivity 

surveys have been largely abandoned due to test limitations, operational challenges, and 

diKiculties in interpreting results [8]. However, at a fraction of the cost of TB prevalence 

surveys, immunoreactivity surveys present a feasible alternative for resource-limited settings 

or regions with lower TB prevalence [8]. When conducted as repeat surveys, they can provide 

valuable insights into transmission trends, oKering guidance for TB prevention and care 

strategies [9]. Evidence indicates a strong correlation between immunoreactivity trends and 

TB burden [22,35], making these surveys a relatively cost-eKective option for TB surveillance 

in scenarios where prevalence surveys are not feasible. Additionally, immunoreactivity 

surveys can help categorise trends by age groups and risk factors, further enhancing their 

utility [8].  

 

7.5.4 Expanding population-wide screening eQorts 

Historical evidence strongly supports symptom-agnostic population-wide screening 

interventions for TB [36], with contemporary findings from the ACT3 trial further highlighting 

their potential as an eKective strategy for reducing the TB burden [22]. Scaling such 

interventions, especially in high-burden settings, should be a priority. While these eKorts are 

resource-intensive, modelling suggests they yield significant impact on TB burden and cost 

savings in the years following implementation [24]. However, in low-resource settings, their 

feasibility depends on greater commitments from manufacturers to reduce costs and 

improve accessibility. Additionally, research should prioritise optimising screening 

algorithms to maximise both eKicacy and cost-eKectiveness. 

 

7.5.5 Reassessing test positivity 

The impact of a screening algorithm hinges on the performance of the test employed. In 

modelling, test positivity directly shapes outcomes, influencing the diagnosis of individuals 

with TB (linked to sensitivity) and significantly aKecting overtreatment of those without TB 

(linked to specificity). However, most estimates are drawn from clinic-based studies [28], 

which often overestimate sensitivity and underestimate specificity relative to the test's likely 

performance in community settings. This discrepancy leads to an underestimation of the 

cost-eKectiveness of mass screening eKorts. Accurate capture of test performance in 
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community settings is essential for improving model predictions. Furthermore, test 

performance can vary depending on the TB state of the individual, meaning that reporting TB 

as a singular outcome limits the ability to accurately represent the complexity of the disease 

in models. Additionally, diagnostic accuracy is frequently assessed against the imperfect 

gold standard of culture from a single spontaneous sputum sample, whereas using multiple 

samples or induced sputum can significantly improve yield [37]. This has important 

implications when evaluating trace positivity in Xpert MTB/RIF Ultra assays, raising the 

question of whether such results truly represent false positives or reflect the limitations of 

single-sample culture, potentially yielding false negatives. More refined diagnostic methods 

may even detect TB years before it becomes microbiologically evident [38]. Acknowledging 

the limitations of this standard, particularly in detecting bacteriologically unconfirmed TB, is 

crucial for making meaningful adjustments in models. Additionally, further research is 

needed to develop and validate improved diagnostic standards that can more eKectively 

identify individuals with TB, ensuring more accurate representation in both clinical practice 

and modelling eKorts. 

 

7.5.6 Reporting of post-screening procedures 

As noted previously, screening positive does not directly lead to treatment initiation but 

requires additional steps beforehand [22]. However, while screening procedures are typically 

standardised and explicitly reported, post-screening assessments are often left to staK and 

resources beyond the observation of the trial. Although this is understandable, studies 

should strive to carefully document and quantify these processes to enable their integration 

into mathematical models for more precise evaluations of interventions. Based on sensitivity 

analysis results [24], incorporating these factors could significantly enhance the cost-

eKectiveness of population-wide screening strategies. 

 

7.5.7 Enhancing modelling to guide interventions 

Mathematical modelling has proven to be an invaluable tool for simulating interventions and 

their outcomes, providing critical support for policy decision-making and guiding TB 

prevention and care strategies. As George Box famously stated, “all models are wrong, but 

some are useful” [39], stressing the need for modellers to strive for maximum utility. 

Continued refinement of models to incorporate updated assumptions and data, including 

transmission dynamics across the TB spectrum, will further strengthen evidence-based 

decision-making.  
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7.6 Conclusions 

While the global TB response remains far from achieving the End TB Strategy targets [40], 

recognising the dynamic nature of Mtb infection and the spectrum of TB disease is likely to 

propel progress. The evolving understanding of Mtb infection as a more active process, rather 

than a ‘latent’ one, already suggests that TPT strategies could be targeting a smaller population 

[41]. An accurate marker of viable Mtb infection would further aid this process, particularly given 

the likely rapid turnover of infections and self-clearance, with a larger group at high risk of 

progression to disease than previously believed [10,14]. This rapid turnover also underscores 

the need for interventions that reduce Mtb transmission. Population-wide screening using a 

symptom-agnostic approach can detect individuals with TB earlier in their disease pathway—a 

period with significant contribution to transmission [19]. These interventions, which have been 

employed in the past [36], are now supported by contemporary evidence [22]. However, curing 

someone of TB is sometimes not enough [42], and a sizeable population can present with 

ongoing challenges in the form of post-TB lung disease [43]. Furthermore, TB remains 

fundamentally a biosocial problem [44], requiring substantial eKorts to address various social 

determinants of health in order to truly achieve a world free of TB.    
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