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Abstract 

Background Mixed infection with multiple strains of the same pathogen in a single host can present clinical 
and analytical challenges. Whole genome sequence (WGS) data can identify signals of multiple strains in samples, 
though the precision of previous methods can be improved. Here, we present MixInfect2, a new tool to accurately 
detect mixed samples from Mycobacterium tuberculosis short-read WGS data. We then evaluate three approaches 
for reconstructing the underlying mixed constituent strain sequences. This allows these samples to be included 
in downstream analysis to gain insights into the epidemiology and transmission of mixed infections.

Methods We employed a Gaussian mixture model to cluster allele frequencies at mixed sites (hSNPs) in each sample 
to identify signals of multiple strains. Building upon our previous tool, MixInfect, we increased the accuracy of classify-
ing in vitro mixed samples through multiple improvements to the bioinformatic pipeline. Major and minor proportion 
constituent strains were reconstructed using three approaches and assessed by comparing the estimated sequence 
to the known constituent strain sequence. Lastly, mixed infections in a real-world Mycobacterium tuberculosis popula-
tion from Moldova were detected with MixInfect2 and clusters of recent transmission that included major and minor 
constituent strains were built.

Results All 36/36 in vitro mixed and 12/12 non-mixed samples were correctly classified with MixInfect2, and major 
strain proportions were estimated with high accuracy (within 3% of the true strain proportion), outperforming previ-
ous tools. Reconstructed major strain sequences closely matched the true constituent sequence by taking the allele 
at the highest frequency at hSNPs, while the best-performing approach to reconstruct the minor proportion strain 
sequence was identifying the closest non-mixed isolate in the same population, though no approach was effective 
when the minor strain proportion was at 5%. Finally, fewer mixed infections were identified in Moldova than previ-
ous estimates (6.6% vs 17.4%) and we found multiple instances where the constituent strains of mixed samples were 
present in transmission clusters.

Conclusions MixInfect2 accurately detects samples with evidence of mixed infection from short-read WGS 
data and provides an excellent estimate of the mixture proportions. While there are limitations in reconstructing 
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the constituent strain sequences of mixed samples, we present recommendations for the best approach to include 
these isolates in further analyses.

Keywords Mycobacterium tuberculosis, Mixed infection, Genomic epidemiology, Tuberculosis, Whole genome 
sequencing, Bioinformatics

Background
Mixed Mycobacterium tuberculosis (Mtb) infections 
occur when multiple, distinct strains of the pathogen are 
present simultaneously in a single host [1]. These com-
plex infections can be common and have been estimated 
to occur in upwards of 20% of patients with culture-
positive tuberculosis (TB), particularly in high-burden 
settings with high levels of exposure to infectious individ-
uals [2–7]. Characterizing the full pathogen strain diver-
sity within individuals can have important implications 
for patient-level outcomes (e.g., hetero-resistance) and 
for accurate transmission inference [1, 8–10].

Whole-genome sequencing (WGS) data can be used to 
identify mixed Mtb infection by detecting genomic loci 
with evidence of more than one allele. A high proportion 
of these heterogeneous single-nucleotide polymorphisms 
(hSNPs) can be indicative of multi-strain infection [6, 
11], while some may represent within-host clonal hetero-
geneity or random sequencing errors. However, in most 
standard analysis pipelines, samples with a high number 
of hSNPs are often either removed from further analy-
sis to account for potential mixed infections or a single 
consensus sequence is produced for each isolate. In the 
latter case, the final sequence is composed of consensus 
SNPs (cSNPs) with only one nucleotide supported at a 
locus; when hSNPs occur, the nucleotide with the high-
est allele frequency above a given threshold is used [12, 
13]. Consequently, the sequence may contain an excess 
of ambiguous base calls where the major allele frequency 
at hSNPs is below the chosen threshold to confidently 
assign a consensus nucleotide.

Failing to account for mixed infection can impact the 
accuracy of phylogenetic trees and subsequent phylody-
namic analysis, as well as transmission reconstructions 
supported by genomic data. When a single consensus 
sequence is used for mixed samples, a potential varia-
tion that would increase the genomic divergence between 
hosts may be ignored, incorrectly linking individuals in 
transmission chains [8, 11, 14]. Furthermore, true trans-
mission events may be rejected when the transmission 
of a minority strain from an infected individual occurs 
[15]. When isolates with excess hSNPs are removed 
from the analysis entirely, they will necessarily be miss-
ing from all inferred transmission pairs, whose accuracy 
may therefore suffer. To accurately reconstruct transmis-
sion networks that include hosts with mixed infection, 

constituent strains must be delineated from the sequenc-
ing data and the distinct consensus sequences recon-
structed and included in onward analysis.

Previous methods have been developed that detect 
mixed infections from microbial WGS data. These 
approaches work either by using probabilistic models to 
identify clusters in the sequencing reads or hSNP allele 
frequencies in assemblies [6, 9, 16, 17] or by computing 
the likelihood of more than one sequence being present 
in the sequence data by matching to a reference database 
[11, 18]. Some of these methods also estimate the con-
stituent sequences in mixes by grouping reads or alleles 
based on cluster designation [16] or by assigning the con-
stituent strains as the closest matched strain in a data-
base, which requires the constituent strain to be present 
in this database [18]. A key limitation for determining 
the accuracy of these approaches has been the absence of 
real-world mixed samples to use as a gold standard for 
detecting mixtures and their proportions. Typically, these 
tools have been evaluated using synthetic sequences that 
may not reflect relevant properties of sequence data from 
mixed infections.

WGS data are available for 36 two-strain TB samples 
that were produced in vitro from Mtb isolates collected 
in Malawi [19, 20] in different majority and minor strain 
proportions [6]. These samples likely represent a closer 
approximation to true mixed TB infection and can be 
used to evaluate approaches for identifying multi-strain 
samples and reconstructing their constituent strains. 
Here, we present a new tool for identifying multi-strain 
Mtb samples from short-read WGS data, MixInfect2, 
that builds upon a previously published method [6] 
to improve the accuracy of mixed infection detection. 
We compare this new method to three previous tools 
for identifying mixed infection (MixInfect [6], Split-
Strains [16], and QuantTB [18]) and then assess differ-
ent approaches for reconstructing the constituent strain 
sequences of the 36 in  vitro mixed samples at varying 
major and minor strain proportions. Finally, we apply the 
optimal approach to a real-world dataset of over 2000 
Mtb isolates collected from the Republic of Moldova 
between 2018–2019 to predict the constituent strain 
sequences of mixed samples and place these strains into 
putative transmission clusters. This work allows us to 
gain insights into the epidemiology and transmission of 
mixed Mtb infection.
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Methods
Sample data and genomic sequence analysis
WGS data was obtained for 36 in vitro mixed Mtb sam-
ples and their 12 non-mixed constituent strains (ENA 
project ID PRJEB2794 [6]). Mixed samples were pro-
duced using Mtb DNA obtained from 12  TB culture-
positive patients that were part of a larger cohort of 2056 
isolates from the Karonga district of Malawi between 
1995 and 2014, for which WGS data is also available 
[19]. To create the mixed samples, known concentrations 
of DNA from two isolates were combined at appropri-
ate volumes in vitro to produce samples with major and 
minor strain proportions of 70/30, 90/10, and 95/5. The 
12 constituent strains were also sequenced without mix-
ing to represent “pure” strains. These samples also rep-
resented both within and between major MTBC lineage 
mixes. Full details of the sample preparation and Illumina 
short-read sequencing of both the in vitro mixed samples 
and all Karonga strains are available at Sobkowiak et al. 
[6].

We used an Illumina short-read WGS dataset of 2220 
Mtb isolates collected between 2018 and 2019 in the 
Republic of Moldova to investigate the prevalence and 
potential transmission of mixed infection in this popu-
lation [21]. These isolates represent around 80% of the 
2770 individuals notified with culture-positive TB in 
that period [22]. Further details on the sample data and 
sequencing of Moldova isolates are available at Yang et al. 
2022 [21].

For each isolate, WGS data were inspected using 
FASTQC software and aligned to the H37Rv reference 
strain (NC_000962.3) using the BWA-MEM algorithm 
[23]. BAM files were created and sorted using SAMtools 
[24], and the final alignment files were assessed for map-
ping quality using the SAMtools “flagstat” command. 
Variant calling was carried out using the GATK “Hap-
lotypeCaller” and “GenotypeGVCFs” commands [25], 
with joint calling for all isolates in each of the Karonga 
and Moldova datasets carried out separately. SNPs were 
removed if they failed quality control using the follow-
ing filters with the “VariantFiltration” option in GATK: 
QD < 2.0, QUAL < 30.0, SOR > 3.0, FS > 60.0, MQ < 40.0. 
Finally, SNPs identified in pe/ppe genes, known anti-
microbial resistance genes, and repetitive regions were 
removed (Additional File 2: Table S3).

Detecting mixed infection and estimating proportions
Our new method to identify mixed infection from WGS 
data extends a previously developed tool, MixInfect [6], 
that uses a Gaussian mixture model (GMM) to cluster the 
allele frequencies at hSNPs and determine the number of 
groups in the data with the highest likelihood. Where a 

model with two or more groups is selected based on the 
Bayesian information criterion (BIC) value, a sample 
is declared to be a “mix”; otherwise, it is inferred to be 
“pure” and contain only one strain. In predicted mixed 
samples, the proportion of majority and minority strains 
is estimated by taking the mean allele frequencies of sites 
assigned to each group. We have made four key modifi-
cations, enumerated below, that improve the accuracy of 
detecting mixed samples by reducing the number of false 
positive SNP calls. We call our new tool MixInfect2.

1. The variant call file (VCF), built from either a single 
sample or multiple samples, is used to determine 
cSNPs and hSNPs rather than the per-sample align-
ment (BAM) file. This allows for fewer false positive 
SNP calls as the filtration steps in variant calling are 
applied.

2. hSNPs found within a 100-bp window are combined 
and the median major and minor allele frequencies 
taken as a single data point. This will minimize the 
impact of regions of potential alignment or sequenc-
ing error, which will reduce the number of false posi-
tive hSNPs.

3. hSNPs are classified directly from allele frequencies 
per site given a minimum read depth of the minority 
variant of 10 reads rather than relying on imposing 
a diploid genome option to determine mixed sites in 
variant calling.

4. For population-level analysis rather than single sam-
ples, hSNPs found at a higher frequency than a given 
threshold across all samples, including “pure” strains, 
can be masked. This option removes hSNPs that 
are present at high frequencies in the dataset due to 
systematic sequencing or alignment issues. It also 
removes hSNPs that may be present due to higher 
levels of within-host variation, such as from loci 
under selection, rather than through the presence of 
multiple, distinct strains from mixed infection.

We used the in  vitro mixed samples to compare the 
performance of MixInfect and MixInfect2 when detecting 
mixed samples and estimating the major strain propor-
tion of mixes. We also compared the results of in  vitro 
mixed sample classification using MixInfect2 to Split-
Strains [16], which takes a similar approach in clustering 
read frequencies at mixed SNPs to detect mixed infec-
tion, and QuantTB [18], which determines the number of 
strains in a sample by estimating the number of potential 
genomes present using a reference database.

Reconstructing constituent strains of mixed infection
Different approaches have been used previously to 
reconstruct full constituent sequences or assign specific 
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variants to different strains in mixed TB infections. 
These fall into two broad categories; either constituent 
sequences are inferred by assigning sequencing reads 
or nucleotides at mixed sites to major and minor strain 
sequences using allele frequencies [9, 16] or by consid-
ering constituent strain sequences as the closest match-
ing strain from a reference database [18, 26]. Here, we 
tested the following three approaches for predicting 
the major and minor constituent sequences for each 
in vitro mixed sample and calculated the SNP distance 
between the final inferred sequence and the true con-
stituent strain sequence.

1. “Consensus allele frequency”: the highest frequency 
allele (> 50%) at hSNPs was assigned to the major 
strain and lowest frequency allele (< 50%) assigned 
to the minor strain. Where allele frequencies were 
equal, an ambiguous call “N” was assigned. All invari-
ant sites were called as the reference nucleotide, and 
all cSNPs called as the respective alternative nucleo-
tide in each sequence per sample.

2. “Closest strain”: the constituent strains of mixed sam-
ples were predicted to be the sequence of the closest 
“pure” (non-mixed) strain (by SNP distance) found 
in the reference database, which comprised all non-
mixed samples in the population. The pairwise SNP 
distance was calculated between each pure strain 
sequence and the mixed sample at both cSNPs and 
hSNPs. In hSNPs, if any allele supported by 10 reads 
at that site in the mixed sample was present in the 
pure strain, the distance at that position was 0

The major constituent strain sequence was estimated 
to be the sequence of the “pure” strain in the database 
in which the majority of alleles at hSNPs of the mixed 
sample were the highest allele frequency (>50%), then 
which had the minimum SNP distance to the mixed 
sample and then had the lowest proportion of ambigu-
ous base calls. The minor constituent strain sequence 
was predicted in the same way but chosen from the 
“pure” strains in the database in which the majority of 
alleles at hSNPs of the mixed sample were found at the 
lowest allele frequency (<50%). If more than one “pure” 
strain met these criteria as either the major or minor 
constituent strain, any allele differences between the 
chosen “pure” strains were called either as the cSNP 
allele from the mixed sample variant call or given an 
ambiguous base call, “N”, at hSNPs in the final recon-
structed sequence. If no “pure” strains were present 
in the database that had the majority of alleles at the 
hSNPs of the mixed sample at either the high or low 
allele frequency, a constituent strain sequence was not 
predicted.

3. “Closest strain + SNPs”: the closest major and minor 
strain in the reference database was found using the “clos-
est strain” method described above. The allele at hSNPs 
in major and minor constituent sequence was called as 
the nucleotide at this position in the closest non-mixed 
strain. For the sequence at other sites, invariant sites 
were called as the reference nucleotide and all cSNPs in 
the mixed sample called as the alternative nucleotide.

All scripts to run MixInfect2, including identifying 
mixed infections and reconstructing constituent strains, 
can be found at https:// github. com/ benso bkowi ak/ MixIn 
fect2. The version used in this study was MixInfect2 
v.1.0.0 [27].

Transmission analysis of Moldovan M. tuberculosis isolates
Mixed infections were detected in the 2220 Mtb iso-
lates collected in Moldova and the constituent strains 
predicted using the best-performing approach identi-
fied from the analysis of in  vitro mixed samples. Line-
age calling and antimicrobial resistance profiling of the 
constituent sequences was carried out by detecting the 
presence of lineage-specific SNPs and rifampin and iso-
niazid resistance-conferring mutations in a database 
constructed from SNP sets contained in TB profiler [28]. 
Putative clusters of recent transmission were produced 
by linking sequences in the same group with a pairwise 
distance of ≤ 5 SNPs, which has been used previously to 
identify recent transmission [29].

The MixInfect2 tool was written in R and uses a Gauss-
ian mixture model from the “mclust” package v.6.1.1 
[30]. All statistical analyses (Kruskal–Wallis and Chi-
square tests) were performed using the “stats” package 
in R v.4.2.2. Binary alignment (BAM) files were inspected 
using Tablet [31].

Results
Detecting mixed infection usingin vitromixed samples
We compared the accuracy of our new tool, MixInfect2, 
against previous methods (MixInfect [6], SplitStrains 
[16], and QuantTB [18]) for detecting mixed infections 
and to estimate the major strain proportion from the 
dataset of 36 in vitro mixed samples and 12 non-mixed 
(“pure”) strains. The average coverage in all these samples 
was relatively high, ranging from 356- to 482-fold. We 
found that MixInfect2 accurately classified 36/36 mixed 
samples as combinations of two strains and all pure 
samples as single strains in the dataset (Fig. 1). In com-
parison, QuantTB identified four mixed samples as non-
mixed (two at 90/10 and two at 95/5 mixing proportions) 
and two pure samples as mixes, as well as incorrectly pre-
dicting that six mixed samples were comprised of three 
strains. SplitStrains software correctly classified all mixed 
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samples, but all pure samples were also predicted to be 
mixed strains, and MixInfect incorrectly predicted one 
90/10 and eight 95/5 mixed samples as pure strains.

Furthermore, the estimated major strain proportion of 
all in vitro mixed samples was close to the known major 
strain proportion using MixInfect2 (Fig.  1), and our 
new approach outperformed the other methods over-
all. In 70/30 major/minor strain proportion mixes, the 
median major strain proportion predicted by MixInfect2 
was 69.0% (IQR 67.3–71.2), with the absolute differ-
ence between the predicted and known proportion sig-
nificantly different to estimates from both QuantTB and 
SplitStrains (t-test P < 0.05). In 90/10 mixes, the median 
major strain proportion predicted by MixInfect2 was 
89.2% (IQR 88.5–89.9), with the predictions significantly 
different to QuantTB and MixInfect (t-test P < 0.05). 
Finally, in 95/05 mixes, the median major strain propor-
tion was estimated as 92.1% (IQR 91.8–92.3) and this was 
significantly different to QuantTB and SplitStrains (t-test 
P < 0.05).

Reconstructing constituent strain sequences of in vitro 
mixed samples
We next compared three approaches for reconstructing 
both the major and minor constituent strain sequences 
of in vitro mixed samples as detailed in the “ Methods” 
section: (1) consensus allele frequency, (2) closest strain, 
and (3) closest strain + SNPs. For approaches that used a 
reference dataset to find the closest strain in non-mixed 

samples from the population, we included the sequences 
from a larger cohort of 2056  TB culture-positive indi-
viduals in the Karonga District of Malawi from which 
the constituent strains of the in vitro mixed samples were 
obtained. Of these isolates, 80 assemblies failed quality 
control, and 189 samples were identified as mixed infec-
tion using MixInfect2 and were removed, along with the 
12 strains that matched the pure strains in the in  vitro 
mixed dataset to avoid replication of these strains in the 
database. This resulted in a final reference database of 
1775 non-mixed clinical strains and 12 pure strains from 
the in vitro dataset.

Reconstructing major strain sequences
Figure 2 shows the median SNP distance between the 
inferred major strain sequence and known constituent 
sequence for the 36 in  vitro mixed samples predicted 
using the three approaches for reconstructing mixed 
sequences. We first tested the three approaches when 
the constituent strains of mixed samples (the pure 
strains from the in vitro dataset) were included in the 
reference dataset (Fig.  2A). The inferred sequence of 
the major strains was very close to the true sequence 
when estimated by all approaches (Fig.  2A), with all 
sequences predicted to be within 5 SNPs of the known 
sequence. The median SNP distance between the pre-
dicted sequence and true sequence was 0 SNPs for 
all methods, apart from the “closest strain + SNPs” 

Fig. 1 The estimated major strain proportion against the known major strain proportion of the 36 in vitro mixed samples and 12 single strain 
samples was estimated using MixInfect2, MixInfect, SplitStrains, and QuantTB. Dashed red lines represent the true major strain proportion
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method at 95% major strain proportion, which was 1 
SNP, and there was no significant difference between 
the tested approaches (Kruskal–Wallis p > 0.05).

When the constituent strains of the mixed samples 
were not included in the reference dataset, the “clos-
est strain” and “closest strain + SNPs” methods per-
formed slightly worse than when consensus strains 
were included (Fig.  2B). Although there was still no 
significant difference among the tested methods 
when comparing the median SNP distance between 
the inferred and known sequences (Kruskal–Wallis 
p > 0.05), the average SNP distance was larger using 
these two methods when constituent sequences were 
removed from the database. Compared to the results 
when including the known constituent “pure” strain 
in the database, the median SNP distance between the 
inferred sequence and true constituent strain sequence 
increased to 1.5–2.5 SNPs, with a maximum of 136 
SNPs difference. As the “consensus allele frequency” 
approach does not use a reference database, predicted 
sequences did not change with this approach when 
removing the constituent strains, resulting in the same 
median of 0 SNP distance and maximum of 5 SNP dis-
tance between predicted and known sequences. As 
such, the “consensus allele frequency” appears to offer 

the best approach to reconstruct the majority strain 
sequence of mixed infection.

Reconstructing minor strain sequences
The performance of the tested approaches for recon-
structing the minor strain sequences of the in  vitro 
mixed samples was impacted more by the proportion of 
the minor strain in the mix than for the major constitu-
ent strain. At the 30% minor strain proportion, the “clos-
est strain” method inferred minor strain sequences that 
most closely matched known constituent sequences, with 
a median of 0 SNPs and a maximum of 3 SNPs differ-
ence (Fig.  3A). The “closest strain + SNPs” method also 
found closely linked sequences with a median 0 SNP dis-
tance between predicted and known sequences but with 
a higher maximum distance of 7 SNPs. The “consensus 
allele frequency” method performed significantly worse 
(Kruskal–Wallis p < 0.05), with a median of 5.5 SNPs 
between the predicted and known constituent sequences. 
Removing the true constituent sequences from the data-
set when searching for the closest strains increased the 
median SNP distance of the “closest strain” and “closest 
strain + SNPs” methods to 2 SNPs (Fig. 3B). This was still 
lower than the “consensus allele frequency” approach but 
the difference between the tested methods was now not 
significant (Kruskal–Wallis p > 0.05).

Fig. 2 Boxplots showing the SNP distance between the predicted and known major constituent strains of in vitro mixed samples using the three 
tested approaches. Boxes are colored by the different approaches used to predict the constituent strain sequence. Plot A shows the results 
when the known constituent sequences are included in the reference database, and plot B shows the results when these sequences are removed. 
Note that the vertical axis has been transformed by the square root for visualization
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When the minor strain proportion was at 10% in the 
in vitro mixed samples, the “closest strain” approach per-
formed significantly better than other methods (Kruskal–
Wallis p < 0.05), with a median SNP distance between the 
predicted and known constituent sequence of 0 SNPs. 
This is compared to 131.5 SNPs using the “consensus 
allele frequency” method and 93.5 SNPs using the “clos-
est strain + SNPs” method (Fig. 3A). While there was one 
outlier sequence with a large SNP distance between the 
predicted and true sequence using the “closest strain” 
approach (maximum 187 SNPs), all other sequences were 
predicted within 3 SNPs of the true sequence. In addi-
tion, when the known constituent sequence was removed 
from the dataset, this method still outperformed the 
other approaches significantly and the median SNP dis-
tance between predicted and true sequences was 2 SNPs 
(Fig. 3B).

At a 5% minor strain proportion in mixed samples, the 
median SNP distance between the predicted sequence 
and known constituent strain sequence was high using 
all tested approaches (Fig. 3). Inspection of the VCF file 
showed that many sites that differed between the minor 
and major constituent strains in the 95/5 samples were 
called as a cSNP matching only the allele of the major 
strain sequence instead of hSNPs. This was due to the 
very low number or absence of reads carrying the allele 
from minor constituent strain. This was also evidenced 
by the large difference in the SNP distance between the 

closest strain identified in the reference database and the 
known constituent strain in most of the in  vitro minor 
strains at a 5% mixing proportion (Additional File 1: Fig. 
S1). In these samples, the closest strain identified was 
often very divergent from the known constituent strain 
and in some instances was closer to the major constitu-
ent strain, which was a different MTBC major lineage 
in some of the mixed samples. Thus, it appears that a 
minor strain proportion of 5% is too low to accurately 
infer the minor strain sequence using the WGS data and 
approaches considered here.

Sensitivity analysis
To assess how the size and composition of the dataset 
affected the performance “closest strain” and “closest 
strain + SNPs” methods, we downsampled the dataset of 
“pure” isolates in the Karonga dataset to 50% and 75% 
of the original size and re-calculated the SNP distance 
between the predicted and known major and minor 
sequences for all in  vitro mixed samples. This process 
was repeated 100 times at 50% and 75%, randomly select-
ing “pure” strain sequences to include in the new dataset. 
We found that the median SNP distance of the “closest 
strain” method increased from 0 SNPs at all major strain 
proportions to 3 SNPs with a 50% downsampled dataset 
(Additional File 1: Fig. S2A) and 4 SNPs with the 75% 
downsampled dataset (Additional File 1: Fig. S2C). The 
median SNP distance between predicted and known 

Fig. 3 Boxplots showing the SNP distance between the predicted and known minor constituent strains of in vitro mixed samples using the three 
tested approaches. Boxes are colored by the different approaches used to predict the constituent strains. Plot A shows the results when the known 
constituent strains are included in the list of “pure” strains, and plot B shows the results when these strains are removed. Note that the Y-axis 
has been transformed by the square root for visualization
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major strain sequences increased from 0 SNPs using the 
“closest strain + SNP” approach to 2–5 SNPs in the 50% 
and 4–5 SNPs in the 75% downsampled dataset. Further-
more, the maximum distance to the true sequences when 
using these approaches increased dramatically in the 
downsampled datasets where sequences that were closely 
related to the major strain in the mixed sample may not 
have been included. As such, using the “consensus allele 
frequency” approach appears to be the best option to 
predict major constituent strain sequences to mitigate 
the possibility that close “pure” strains are not included 
in the dataset.

For the minor strain sequence prediction, the optimal 
method to reconstruct the sequence appeared to depend 
more on the completeness of sampling and sequenc-
ing of the infected population. While the “closest strain” 
approach performed the best in the 30% minor strain 
proportion samples with the full dataset, when the data-
set is downsampled by 50% and 75%, “consensus allele 
frequency” achieves only a slightly higher median SNP 
distance between predicted and known sequences than 
the other approaches (5.5 SNPs compared to 2–4 SNPs) 
but with far fewer samples with a predicted sequence a 
large distance from the true constituent sequence (Addi-
tional File 1: Fig. S2B and S2D). At 10% minor strain 
proportion, the “closest strain” approach still performs 
best for estimating the minor strain in both the 50% 
and 75% downsampled datasets, but again, the number 
of predicted sequences that were a large SNP distance 
to the known sequence was high. Therefore, in popula-
tions where sampling or sequencing is sparse and the 
likelihood of including the constituent strain or a closely 
related sequence is low, it may be problematic to predict 
minor strain sequences, particularly for low minor strain 
proportions. In this instance, it may be optimal to use 
the “consensus allele frequency” method to predict both 
major and minor constituent sequences but not attempt 
to reconstruct minor strains at low mixing proportions to 
reduce the chances of poorly predicting the minor strain 
sequence.

In our bioinformatic pipeline, hSNPs were defined 
as sites with more than one allele supported in aligned 
reads and a minimum minor allele depth of 10 reads. 
We assessed the impact of characterizing hSNPs in this 
way by comparing the SNP distance between the pre-
dicted sequence and the true constituent strain sequence 
using the “closest strain” approach when changing the 
metrics used to call hSNPs. These included lowering 
the minimum minor allele read depth to 5 reads, using a 
minimum allele read proportion (rather than raw depth) 
of 0.01, 0.02, 0.05 and 0.1 and using the heterogeneous 
base call (e.g., “0/1”) by setting the ploidy option the var-
iant-calling software to diploid. We found no significant 

change in the results of reconstructing the major and 
minor constituent strains of the in  vitro mixes using 
the “closest strain” approach using the different hSNPs 
calling methods, apart from an increase in the distance 
between the predicted and known sequence at the 10% 
minor strain proportion when using a minimum minor 
allele proportion of 0.1 (Additional File 1: Fig. S3).

Mixed TB infection and transmission in Moldova
We used a real-world dataset of 2220 Mtb isolates from 
the Republic of Moldova [21] to identify the proportion 
of mixed infection in this population and reconstruct 
the constituent strain sequences. A total of 146 of 2220 
(6.6%) isolates were identified as mixed infection using 
MixInfect2 (Additional File 2: Table  S1), substantially 
fewer than previously predicted in this dataset using 
the earlier MixInfect approach (386/2220; 17.4%) [21]. 
All major constituent strain sequences were predicted 
using the “consensus allele frequency” approach as this 
achieved the best results in the in  vitro mixed samples. 
The “closest strain” approach was used to predict minor 
strain sequences with an estimated minor strain propor-
tion of ≥ 10%. With this approach, we also set a maximum 
distance threshold of 1000 SNPs to the closest strain in 
the reference database to reduce the chance of match-
ing a strain that is very divergent to the true constituent 
strain; if the closest strain was further, then no minor 
strain sequence was predicted. We did not reconstruct 
the major or minor strain in mixed samples with a major 
strain proportion estimate of ≥ 50% and < 60% (N = 15) as 
we have not reliably tested these methods when constitu-
ent strain proportions were close to parity. Eleven isolates 
with a high proportion of hSNPs (≥ 10% of total SNPs) 
that were not classified as mixed infection were flagged 
and removed from further analysis. This removal resulted 
in a final dataset of 2291 isolates: 2063 “pure” strain, 129 
major strain, and 99 minor strain sequences.

In the 99 mixed samples for which both the major and 
minor strain sequence was predicted, we found that 45 
(45.4%) contained a mix between different major line-
ages and a further 23 (23.2%) were mixes of lineage 4 sub-
lineages (all lineage 2 strains were of the Beijing lineage 
2.2). We also found evidence of hetero-resistance to iso-
niazid and/or rifampin in 27/99 mixed infections (27.3%), 
and while this can occur in single-strain infections when 
these SNPs can be under selection and not reached fixa-
tion, this proportion was higher than hetero-resistance 
found in 20/2063 non-mixed strains (Chi-square test 
295.08, P < 0.05). A maximum likelihood phylogeny that 
included both non-mixed and the predicted constituent 
mixed strain sequences showed that most mixed con-
stituent strains were closely related to other sequences in 
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the dataset, although there were a small number of major 
strains that appeared relatively genetically distant to any 
other strain in the dataset (Additional File 1: Fig. S4).

Finally, transmission clusters were constructed by link-
ing all sequences that were separated by a pairwise SNP 
distance of ≤ 5 SNPs, including the predicted major and 
minor mixed constituent strains. We identified 90 clus-
ters that contained at least one constituent strain of the 
mixed infections, including a large transmission clus-
ter containing 130 sequences with six major constituent 
and nine minor constituent strains of mixed infections 
and a large cluster of 66 sequences containing two 
major constituent and one minor constituent (Fig. 4). A 
total of 45 of 129 (34.9%) major constituent strains were 

predicted to be part of a transmission cluster compared 
to 951/2063 (46.1%) of pure strains (Chi-square test 5.71, 
P = 0.02). A total of 96 of 99 minor constituent strains 
were found in transmission clusters, although this high 
number of minor strains included in clusters was due 
to the “closest strain” method predicting the minor con-
stituent sequence to be nearly identical to the sequence 
of the closest “pure” strain in most instances. There also 
appeared to be one cluster comprising only one non-
mixed strain that was the closest strain sequence to 
14 minor strains. While it is possible that this strain is 
closely related to the minor strain in these mixed sam-
ples, this could also be explained by cross-contamination 
in these samples rather than clinical mixed infection. 

Fig. 4 Visualization of the eight largest transmission clusters (N > 10) in the Moldova Mtb dataset that contained at least one mixed constituent 
strain produced using TGV (https:// jodyp helan. github. io/ tgv/) [32]. The color of the node represents whether the sample is non-mixed (green), 
the major constituent strain of mixed infection (blue), or minor constituent strain of mixed infection (red). Edges represent any pairwise distance 
between sequences of ≤ 5 SNPs and the node shape denotes the MTBC major lineage, where circle nodes are lineage 4 strains and triangle nodes 
lineage 2 strains

https://jodyphelan.github.io/tgv/
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The full list of cluster designations with the number of 
sequences and constituent sequences of mixed infections 
can be found in Additional File 2: Table S2.

Discussion
Mixed microbial infections with two distinct strains 
present in a single host are not rare and can complicate 
population genomic analysis. Here, we have improved on 
the performance of previously developed tools to detect 
mixed TB infection from short-read WGS data and eval-
uated different approaches to reconstruct the constitu-
ent strain sequences in mixed samples. Their application 
allows us to identify mixed infection more accurately in 
Mtb populations directly from WGS data and include 
two sequences representing major and minor strain 
sequences from these individuals in further analysis 
rather than either erroneously inferring a single sequence 
or removing these samples entirely.

Our new tool, MixInfect2, identified all mixed and non-
mixed strains in a dataset of in vitro mixed samples and 
performed better at detecting these mixes from sequence 
data than three other methods (MixInfect, SplitStrains, 
and QuantTB). These in  vitro samples were previously 
analyzed using SplitStrains [16] SplitStrains  and MixIn-
fect [6], though the results for the 12 non-mixed strains 
in the dataset were not reported in the SplitStrains study. 
In our analysis, SplitStrains predicted that all non-mixed 
samples were mixed infections, and MixInfect incor-
rectly classified nine mixed samples as pure. These tools 
also used allele frequencies at mixed loci in sequence 
alignments to identify mixes, but the additional steps 
implemented in MixInfect2 to filter poor quality hSNPs 
and reduce false positive calls from the variant call file 
improved the accuracy in classifying mixed samples. 
The in  vitro samples were not previously analyzed with 
QuantTB, but we found that using a reference database 
to quantify the number of strains in each sample was 
not as accurate as MixInfect2, with some samples only 
matching one strain in the database and several samples 
predicted to have more than two strains.

With our improved method, we detected fewer mixed 
infections than previously estimated using MixInfect in 
the dataset of Mtb isolates collected in the Republic of 
Moldova [21]. This difference was due to the removal 
of potentially false positive hSNPs by the additional fil-
tering steps now applied in MixInfect2, notably combin-
ing hSNPs within a 100-bp window to prevent multiple 
variants found in close proximity in the genome to be 
treated as independent observations. While there may 
be instances where hSNPs are close on the genome, this 
will be more common in regions with systematic map-
ping or assembly issues caused by sequence duplica-
tion or non-specific mapping of the reads. Indeed, some 

samples previously detected as mixed infection in these 
data that were now classified as non-mixed still retained 
evidence of a high number of hSNPs, but inspection of 
the raw alignment (BAM) files found that most of these 
hSNPs were found in genomic regions with higher-than-
average coverage, likely due to mis-mapping or duplica-
tion events (Additional File 1: Fig. S5). Even so, with an 
increase in the sensitivity for detecting mixed infection 
using MixInfect2, there may be the potential to misclas-
sify mixes as non-mixed where the constituent strains are 
very close genetically and thus have few discriminating 
loci. Further work to validate our approach using in vitro 
mixed samples with constituent strains of varying genetic 
distances would be required.

We found that the majority of constituent strain 
sequences of the in  vitro mixed samples could be pre-
dicted by combining nucleotides from consensus calls 
(cSNPs and reference calls) and the highest frequency 
alleles at mixed sites (hSNPs) detected in VCF files. 
These predicted sequences were found to be very close 
(within five SNPs) to the known majority constituent 
strain sequence. However, inferring the minor strain 
sequence of the in vitro mixed samples was more difficult 
and the accuracy of the predicted sequence depended 
on the minority strain mixing proportion. When the 
minor strain proportion was at 5%, many alleles found 
in the minor constituent strain were instead called only 
as the allele of the major strain and any SNP differences 
between the major and minor strains were not detected. 
When the constituent strains of mixes are closely related, 
there will be a low number of sites that differ and thus 
a closer minor strain may be found even when there is 
a low minor strain proportion as fewer will be wrongly 
called, although actually detecting mixed infections in 
samples comprising very similar underlying strains will 
be more difficult. Given these issues, along with a poten-
tial loss of signal from low-frequency variants in the sam-
pling, sequencing, or bioinformatic stages of analysis, it 
is likely that some mixed infections could be missed if 
strains are present in very low frequencies in the host or 
where constituent strains are very closely related.

While the “closest strain” approach was found to esti-
mate the minor constituent strain best for most mixed 
samples with a higher minor strain proportion (≥ 10%), 
we also showed that reducing the size of the reference 
database of “pure” strains increased the distance between 
the inferred sequence and known constituent strain. This 
was due to the reduced likelihood of including a closely 
related strain to the minor strain in the smaller reference 
database. Therefore, it is important to ensure that the 
sampling density in a population is high in such analysis 
to increase the chance of capturing “pure” strains that are 
close to the constituent strain.
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Using the optimal methods identified for estimating the 
constituent strain sequences in mixed samples, we found 
evidence of recent transmission including hosts with 
mixed infection in Mtb isolates collected in the Republic 
of Moldova. The Moldova data includes sequences from 
a high proportion of the individuals diagnosed with TB 
in the country during the study period [21] and thus it 
is likely that closely related strains to the minor strain 
in mixed infections were present in the reference data-
base. We note that more variation may actually be pre-
sent in several of the minor strain sequences predicted 
here that would distance these sequences further from 
the closest strain; this could cause transmission infer-
ence based on the closest strain sequence to overestimate 
the proportion of minor strains that cluster. It could also 
be problematic to include these sequences in a full per-
son-to-person transmission network reconstruction as 
there would be less variation between the inferred con-
stituent sequence and the closest “pure” strain sequence, 
potentially linking hosts incorrectly in direct transmis-
sion events when in reality they are further away in the 
transmission chain. That said, given our results from 
the Karonga in vitro mixed dataset which show that the 
“closest strain” method predicts the true minor strain 
sequence closely in most instances, it is likely that a high 
number of the predicted minor strain sequences would 
still be found in transmission clusters.

In this study, we only tested short-read sequence data 
of between 100 and 150 base pairs as these data were 
available for the in  vitro mixed samples. Long-read 
sequencing may improve approaches to reconstruct 
constituent strains where a large number of variants 
from each strain in the mixed sample would be con-
tained on the same read to reduce the uncertainty when 
reconstructing full genomes. Also, we did not explic-
itly test how variation in the reference sequence used 
or per-sample read depth impacted the ability to call 
mixed infection, although the in  vitro mixed samples 
all had relatively high genomic coverage (median 462-
fold, range 386- to 584-fold). The distance of the ref-
erence strain can impact the number of false positive 
and negative SNPs called [33] and validation of mixed 
samples could be carried out by using varying reference 
strains to create the VCF file for input into MixInfect2. 
It is likely that deeper sequencing allows us to detect 
mixed infections with smaller minor strain proportions 
as more variation from these strains will be detected 
in the sequence data. Similarly, sequencing directly 
from sputum may allow for more within-host variation 
to be captured in the sequence data in the absence of 
potential bottlenecks introduced from culturing [13], 
although recent research has disputed this assertion 
[34]. Furthermore, evidence of more than one strain 

in a sample does not unequivocally show evidence of 
mixed infection within a host. Multiple concurrent 
strains may also result from cross-contamination of 
specimens within the laboratory. We note that this tool 
may be useful for flagging possible evidence of such 
contamination, particularly if there is evidence to sug-
gest mixtures of specimens that were simultaneously 
processed in a single laboratory.

In this work, we focused on reconstructing mixed con-
stituent sequences from short-read data for downstream 
analysis such as phylogeny building and transmission 
clustering and did not include drug-resistance confer-
ring loci, which are typically masked in these analyses. 
Assigning resistant mutations to constituent genomes 
can be more complicated than (theoretically) neutral 
mutations that are not under selection as resistant sites 
may exhibit higher levels of heterogeneity in clonal (non-
mixed) populations. As such, assigning these sites in 
mixes by taking the majority or minority read frequency 
may not accurately reconstruct the sequence at these loci. 
For example, in a mix of two strains at a 70/30 mixing 
proportion where the majority strain is hetero-resistant 
with 50/50 variant to wild-type reads and the minor-
ity strain 100% wildtype, the resistant reads (at ~ 35% 
in this loci) may appear to have come from the minor 
strain and this would erroneously be called as resistant. 
Similarly, acquired resistance would not be predicted in a 
constituent strain when using the closest strain approach 
to predict the sequence. However, long-read sequencing 
may improve our ability to predict resistance and het-
ero-resistance in constituent strains as longer reads can 
span multiple genes and so drug-resistant conferring and 
“neutral” mutations can be carried together on the same 
read.

In future work, validating our approach using in vitro 
mixed samples composed of more than two strains would 
extend the utility of our tool and reveal the extent to 
which these multi-strain infections exist in real popula-
tions. Similarly, mixed samples with constituent strains 
at a 50/50 mixing proportion and smaller minor strain 
proportions have not been tested here. Including new 
in  vitro mixed samples with these characteristics will 
determine the lower and upper limits of the detection of 
minor strains in mixed samples. Additionally, we could 
explore the signal from other genomic variants in mixed 
samples in addition to SNPs, such as small insertions and 
deletions or structural variants. Large duplication events 
occur in Mtb [35], though the same duplications were 
shown to be found to be present in multiple lineages and 
so it is unclear if these features provide a signal of mixed 
infection. Duplications could be identified and variants 
within these regions removed before running MixInfect2. 
However, our approach combines read frequencies from 
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hSNPs found within close proximity and thus reduces the 
impact of potential false positive hSNPs that may occur 
through non-specific mapping in duplicated genomic 
regions (e.g., Additional File 1: Fig. S5).

Conclusions
The results presented here provide a method for iden-
tifying Mtb mixed samples from short-read WGS 
data that enables these complex infections to be more 
accurately detected than previously possible. We have 
also evaluated methods to reconstruct the constitu-
ent strains of mixed infections, with recommenda-
tions for the approach to use that best predicts the true 
genomic sequence. Carrying out this analysis in a real 
TB population from Moldova showed that recent trans-
mission can involve both the major and minor constitu-
ent strains, suggesting that individuals infected with 
multiple strains can transmit to others and should be 
included in transmission investigations. This frame-
work could also be used to detect mixed infection and 
reconstruct the sequence of constituent strains for 
other pathogens in which polyclonal infection occurs, 
such as Mycobacterium avium [36], Staphylococcus 
aureus [37], and Helicobacter pylori [38]. To apply these 
methods to other taxa, a high-quality reference strain 
would be required and any potential recombination 
hotspots masked so only the core genome considered.
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