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We developed a named entity (NE) framework for information extraction from semi-structured clinical
notes retrieved from The Cancer Genome Atlas—Thyroid Cancer (TCGA-THCA) database and
examined Large Language Models (LLMs) strategies to classify the 8th edition of American Joint
Committee on Cancer (AJCC) staging and American Thyroid Association (ATA) risk category for
patients with well-differentiated thyroid cancer. The NE framework consisted of annotation guidelines
development, ground truth labelling, prompting approaches, and evaluation codes. Four LLMs
(Mistral-7B-Instruct, Llama-3.1-8B-Instruct, Gemma-2-9B-Instruct, and Qwen2.5-7B-Instruct) were
offline utilised for information extraction, comparing with expert-curated ground truth. Our framework
was developed using 50 TCGA-THCA pathology notes. 289 TCGA-THCA notes and 35 pseudo-
clinical cases were used for validation. Taking an ensemble-like majority-vote strategy achieved
satisfactory performance for AJCC and ATA in both development and validation sets. Our framework
and ensemble classifier optimised efficiency and accuracy of classifying stage and risk category in
thyroid cancer patients.

Thyroid cancer is the most prevalent endocrine cancer and the 7th most
common cancer type across the globe1,2. Although the mortality rate of
thyroid cancer is relatively low (0.44 per 100,000) compared to other
cancers, its incidence has surged by 313% over the past 40 years, reaching
9.1 per 100,000 worldwide in 20222,3. Differentiated thyroid cancer, pre-
dominantly papillary (~84%) and follicular (~4%) thyroid cancer, is the

most commonpathological subtype accounting for over 90%of all thyroid
cancer cases3,4.

The 8th edition of the American Joint Committee on Cancer (AJCC)/
Tumour-Node-Metastasis (TNM) staging system and the American
Thyroid Association (ATA) risk stratification system are frequently used by
clinicians who manage thyroid cancer5–7. The 8th edition of AJCC/TNM
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staging system is optimised to predict the survival of patients with thyroid
cancer. It retains the basic anatomic pathology T-N-M staging approach
and stratifies patients by the age of 556. Meanwhile, the ATA risk stratifi-
cation system predicts the risks of disease recurrence or relapse and cate-
gorises patients into three risk groups (i.e., low, intermediate, and high)
based on the characteristics of thyroid cancer such as tumour size, presence
of aggressive cancer variants, extra-thyroidal extension, vascular invasion,
lymph node involvement, etc5.

Information that determines cancer staging and ATA risks of patients
with thyroid cancer is usually stored in lengthy unstructured or semi-
structured clinical notes. As a result, clinicians take considerable time to
manually retrieve critical information from multiple clinical notes to make
decisions, potentially hindering prompt treatment provision and compro-
mising thequality of patient care.Moreover, extractionof clinical information
for research purposes from a large amount of unstructured data could be
labour intensive. With the recent advancement in artificial intelligence (AI),
Large Language Models (LLMs) demonstrated their capabilities to efficiently
extract data from clinical notes8–10. LLMs accomplished various tasks of zero-
shot learning, information extraction, and text summarisation11,12. Further-
more, providing LLMs with specialised, domain-specific datasets would fur-
ther endow theLLMswith domain-specific knowledge andpotentially reduce
model biases13. In this regard, a framework that leverages the power of LLMs
could in principle reduce the time and effort required for manual review,
thereby helping clinicians optimise treatment decisions in a timelymatter and
improve patient outcomes.Moreover, an efficient and accurate tool could aid
the conversion of huge unstructured clinical data into well-formatted struc-
tured databases, hence accelerating research in various medical fields.

There are three existing frameworkswithdifferentLLMsandprompting
strategies developed using pathology reports for patients with thyroid cancer.
A rule-based classificationwas built to extract stage-related information from
full or semi-structured free-text clinical documents and transform the data to
a standardised commondatadictionary, indicating that these tools couldhelp
with data standardisation for observational research14. Another rule-based
pipeline, ThyroPath, was developed for information extraction and tested on
structured reports for risk classification of papillary thyroid cancers on a scale
modified from the ATA risk categories10. Lee et al. developed a tool using a
localised FastChat-T5 3B LLM to extract information from surgical pathol-
ogy reports through a medical question answering (MQA) approach. The
tool achieved an overall accuracy of 90% and significantly reduced the time
spent on report reviewing compared with human15.

Todate,no existingnamedentity (NE) frameworkhasbeen specifically
developed for extracting information from semi-structured or unstructured
clinical notes to assess both the AJCC/TNM cancer staging and ATA risk
categories in both types of well-differentiated thyroid cancers (papillary and
follicular thyroid cancer). In this study, we addressed this gap by (1)
developing an NE framework which consists of annotation guidelines,
ground truth labels, and prompt and evaluation codes, and (2) examining
different LLM strategies based on the developed NE framework. This fra-
mework enables extraction of local cancer-related information from semi-
structured free-text clinical notes, followed by an ensemble of offline LLMs,
thereby providing a secure and accurate tool for cancer staging and risk
classification in patients with well-differentiated thyroid cancer.

Methods
Ethical considerations
This study received approval from the Institutional Review Board of The
University of Hong Kong/Hospital Authority Hong Kong West Cluster
(UW 24-319). Informed consent from patients was not required because of
using the pseudo clinical notes and open-source clinical note dataset.

Data source
Pathology reports and clinical characteristics of all 507 patients with thyroid
cancer were obtained from a public dataset—The Cancer Genome Atlas
Thyroid Cancer (TCGA-THCA) programme. TCGA is a landmark cancer
genomics programme. It molecularly characterised over 20,000 primary

cancer and matched normal samples from 11,000 patients spanning 33
cancer types16. TCGA-THCA is a subproject that focuses on thyroid cancer
under the TCGAprogramme. TCGAdata are available without restrictions
on their use in publications or presentations17, and they can be downloaded
from National Cancer Institute (NCI) Genomic Data Commons (GDC)
Data Portal (https://portal.gdc.cancer.gov).

Pathology reports sourced from TCGA-THCA programme are semi-
structured data with subtitles and contain necessary information for cancer
staging and ATA risk classification, including tumour sizes, number of
lymph node resected and involved, histological subtypes of thyroid cancer,
extrathyroidal extension status, presence of capsular and vascular invasion,
margin involvement, distant metastasis, mutation status, etc. The TCGA-
THCA programme also provided patients’ age and cancer stages using
AJCC editions 4, 5, 6 and 7.

Among all the 507 patients from TCGA-THCA, 351 patients who
were staged with the 7th edition of AJCC were included for further
screening. Then, 12 patients were removed because their pathology
reports did not provide sufficient information for cancer staging and/or
ATA risk classification upon manual review (n = 11) or age below 18
(n = 1). A total of 339 patients remained, and they were split into two
groups – 50 in the development set and 289 in the validation set. The
ground truth for both 8th edition of AJCC cancer staging and ATA risk
categories was generated for all 339 patients. Among these patients, 286
were classified as stage I, 47 as stage II, 4 as stage III, and 2 as stage IVB
according to 8th Edition of AJCC system. The stage distribution aligned
with large population-based epidemiological data (e.g. cancer registries),
where stage I and II accounted for over 90% of all new thyroid cases18–20.
In terms of ATA risk categories, 143, 122, and 74 were classified as ‘low’,
‘intermediate’, and ‘high’ risks, respectively.

For the NE framework development, a representative sample of 50
pathology reports with sufficient patients within each stage was included.
Although a larger sample size is generally preferable, there is no theoretical
minimal sample size for the NE framework development. As such, in order
to reservemost of the samples for further validation, we selected 50 patients
for training by oversampling patients with stage III or above and main-
taining the percentage of patients with stage I and II at around 90%. The
resulting training data comprised 31, 15, 2, and 2 patients with stage I, II, III,
and IV, respectively.

The remaining 289 TCGA reports were used for further validation on
the 8th edition of AJCC cancer staging and ATA risk classification. Figure 1
shows the flowchart for the compilation of our training and validation data.

NE framework development
The NE framework included annotation guidelines, independent annota-
tion by two annotators, ground truth labelling by clinicians, and prompts
with various strategies for local LLMs to extract cancer-related disease
information from clinical notes, and classification rules for classifying
cancer staging and risk level using the LLM outputs.

For annotation, our team, consisting of endocrine surgeons (M.F. and
Y.L.), clinical oncologist (V.L.), and an expert in developing and imple-
menting AI models in clinical settings (Z.W.), co-developed the annotation
guidelines (Supplementary Note 1). Necessary information extracted for
classifying cancer stage according to the 8th edition of AJCC cancer staging
system7 andATArisk category5was detailed in the annotation guidelines. In
total, there were 29 named entities, 1 relation, and 1 attribute. Using the text
annotation tool Brat (http://brat.nlplab.org/)21, our annotators (T.W. and
W.Y.C.) who are experienced medical researchers performed annotation
independently. If there was any disagreement, two expert annotators (M.F.
and Y.L.) would discuss with the annotators and resolve it with their
expertise. A F1-score (equivalent to kappa agreement rate) of over 80%was
assessed upon the completion of human annotation22,23. Annotated data for
each case were stored in .ann files. The step-by-step annotation process and
examples were provided in Supplementary Note 2.

To establish the ground truth, the semi-structured clinical notes of all
339TCGAcases (50 for development and289 for validation)weremanually
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reviewed, and each assigned with an 8th edition of AJCC cancer staging and
ATA risk category. The ground truth of each case was verified and validated
by two endocrine surgeons (M.F. andY.L.) (SupplementaryData 1). The age
of patients was obtained from cross-referencing with the TCGA dataset
using unique patient study identifiers.

To perform information extraction, we formulated an inference prompt
that directed the LLMs to identify all the named entities of interest from a
clinicalnote.This inferenceprompt comprisedan instructional segment anda
contextual segment constituted by the semi-structured clinical note.A specific
instruction was designed for each NE in the inference prompt, such as
determining whether a unit should be included in the output, so that the
model was more likely to extract pertinent information. The Python package
‘Langchain’ was adopted to create the inference prompt templates which
would subsequently be run in LLMs24. To ensure that the LLMs would gen-
erate the same output given the same data, we set the temperature value to
025,26. Besides, we adopted JSON parser in ‘Langchain’27,28 which allows us to
only capture the JSONoutputs and ignore the irrelevant text generated by the
LLMs. Eight prompting approaches were developed and applied to LLMs.
First, zero-shot promptingwas used as the baseline performance of extracting
disease information. The second approach was zero-shot COT prompting,
encouraging LLMs to explain their reasoning process in a stepwise approach,
without providing any examples29,30. Few-shot prompting with annotation
dataof50TCGApathology reports (thedevelopment set asmentionedabove)
was used for the third to fifth approaches. The third approach was providing
all the annotated information in the corresponding entity in the inference
prompt. The fourth approach was adding the annotated information in the
corresponding entity but reducing the amount of information by eliminating
those with similar meaning. Using ‘CompResectPath (Completeness of resec-
tion from a pathologist perspective)’ as an illustration, both wordings ‘free of
tumor’ and ‘FREE’were provided as examples of clear surgical margin in the
third approach, but only ‘free of tumor’was kept in the fourth approach. The
fifth approach was only adding the annotated information about the site of
gross extrathyroidal extension, level and site of lymph node, and histologic
subtype of thyroid cancer because such information was frequently being

overlooked by the zero-shot algorithms. The sixth to eighth approaches
combined COT prompting (i.e., the second approach) with various extent of
annotated data (i.e., the third to fifth approaches). A step-by-step process of
designing few-shot prompts using annotated data were provided in Supple-
mentary Note 3, and an example detailing the inputs and outputs of LLMs
using different prompts was presented in Supplementary Note 4.

We prepared aMicrosoft Excel® template, which contained our self-
developed algorithms (i.e. Formula and VBA coding), to store and clean
the LLM raw outputs, and then to classify the AJCC 8th edition cancer
staging and theATA risk category of each patient (SupplementaryData 1).
The cleaning steps involved standardising length unit (e.g., converting
tumour size from millimetres to centimetres) and removing unnecessary
information from the raw outputs, including extra symbols, words, and
irrelevant information in various entities (e.g., lymph node information
in “distance metastasis”). The embedded Excel algorithms then used
these processed data to perform cancer staging and risk classification.
The 8th editionAJCCcancer staging system31 is one of themostwidely used
staging systems for thyroid cancer. It categorises each patient according to
tumour (e.g., tumour dimensions, margins, involvement of adjacent
structures), lymph node (number and location), and distant metastases
status. It is used to predict disease survival. The ATA risk stratification
system is another commonly used system to predict disease recurrence
and guides subsequent adjuvant treatment with thyroxine suppression
and/or radioactive iodine. It categorises each patient into one of the
three risk groups (‘low’, ‘intermediate’, and ‘high’) based on a wide range
of tumour features, such as tumour size, extra-thyroidal extension,
aggressive tumour variants, margins, lymph node involvement, etc5.
A NE framework together with a classifier or LLM strategy addressing the
above two systems would be the most relevant to clinical practice as they
are widely adopted worldwide.

LLM strategies
We selected four offline LLMs for information extraction from semi-
structured clinical notes in this study:Mistral-7B-Instruct-v0.3 (Mistral AI),
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• The 8th edition of AJCC cancer staging
- Stage I (n=255)

- Stage II (n=32)

- Stage III (n=2)

- Stage IVA (n=0)
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• The 8th edition of AJCC cancer staging
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- Stage IVA (n=1)
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Validation setDevelopment set

One pseudo case with non-invasive follicular thyroid

neoplasm with papillary like nuclear features was not

graded for the 8th edition of AJCC cancer staging and

ATA risk

Fig. 1 | Flowchart of patient selection process. Flowchart depicting patient
selection and the data source used as development set and validation set. Cancer
stages andATA risks of all TCGA-THCApatients and pseudo cases were verified by

endocrine surgeons. A pseudo case of non-invasive follicular thyroid neoplasmwith
papillary like nuclear features is not grade with AJCC staging and ATA risk.
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Gemma-2-9B-Instruct (Google), Llama 3.1-8B-Instruct (Meta), and
Qwen2.5-7B-Instruct (Alibaba). We chose these LLMs because of their
state-of-the-art technology, openness, and lightweight nature which mini-
mised the requirement of computational power and storage32,33. Most
importantly, all these LLMs supported local deployment, enabling offline
prompting and preserving patient privacy when real clinical notes are used.
Ollama, an open-source software platform, was used to operate the local
LLMs in this study34.

In addition, majority-voting strategy was adopted to evaluate the
ensemble performance of LLMs and approaches35. Two majority-voting
approaches were conducted, namely (1) at outcome level and (2) at factor
level. For outcome level, we usedmajority-voting to generate the ensemble
outputs for ATA risk and AJCC 8th edition cancer staging from the clas-
sification results on the outputs given by all model-prompt combinations.
For factor level, we applied majority voting on each relevant factor that
was used for classification of ATA risk and AJCC 8th edition cancer sta-
ging. As a result, one set of ensemble factors were obtained. The ensemble
factors were then used to generate the ensemble cancer staging and risk
classification.

Evaluation of the LLMs with framework development set
To assess the performance of the LLMs in framework development, we
compared the LLM-extracted 8th edition of AJCC cancer staging and ATA
risk categories against the ground truth of the representative sample of 50
TCGA reports as the framework development set. The F1-score, a com-
monly used performancemetric for extraction tasks, was applied to provide
a balanced assessment of model precision and recall. To adjust for differ-
ences in sample size among each risk level and staging category, weighted
average of F1-score, precision and recall were calculated. A higher score
indicates a better performance of the LLMs that meet our expected
standards.

Evaluation and validation of LLMs with validation set
Two data sources were used as the validation set for further evaluating and
validating the NE framework. First, 289 pathology reports from the TCGA-
THCA programme (as mentioned above) were used for validation on the
AJCC 8th edition stage and ATA risk categories. Second, clinical notes of 35
pseudo cases, which were created and labelled with ground truth by two
endocrine surgeons (M.F. and Y.L.), were used for validation. Unlike
TCGA-THCA dataset that documented all clinical features in pathology
reports, each pseudo case had one operation record, which was the main
source of surgical margin status and presence of gross extrathyroidal
extension, and at least one corresponding histopathology report, where
most other clinical features can be found at. In local clinical practice, the
clinicianswould refer to both types of clinical notes tomakedecisions. There
were some differences in the formats or expression of entities between
TCGA clinical notes and local clinical notes. For example, majority of
TCGA clinical notes only included the site of extrathyroidal extension
without specifying whether it being gross or microscopic, whereas local
clinical notes would provide information on the extent of extrathyroidal
extension (gross or microscopic). The pseudo clinical notes were created to
resemble the format and contents of semi-structured clinical notes in Hong
Kong, as we intend to also apply our established NE framework and LLM
strategies to local clinical practice, while real clinical notes were currently
inaccessible for this study due to data privacy concerns. Furthermore, there
were no patientswith stage IVAor non-invasive follicular thyroid neoplasm
with papillary like nuclear features in the TCGA-THCA dataset, and thus
the pseudo cases supplemented theTCGA-THCAdataset’s limitations. The
details on the pseudo clinical notes creation process are available in Sup-
plementary Note 5.

The flow of the data extraction using LLMs and classifying ATA risk
and AJCC staging was depicted in Fig. 2 and an example was used in
Supplementary Note 4.

Fig. 2 | Flow of data extraction using LLMs and classifying ATA risk and AJCC staging from the LLM output. Schematic diagram depicting the flow of data extraction
using LLMs and the utilization of self-developed Microsoft Excel template for data cleaning and classification.
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Results
Patient characteristics of the development set
The characteristics of the 50 selected TCGA-THCA patients for the NE
framework development were displayed in Table 1. The mean age of the
patients were 54.3 (SD 13.9) years. Themajority of the patients were female,
white. Both papillary and follicular carcinomas were included, at

proportions consistent with real-world observations. After the validation by
the two endocrine surgeons (M.F., and Y.L.), there were 31, 15, 2, and 2
patients staged as I, II, III, and IVB based on the 8th edition of the AJCC
system respectively. Each of the threeATA risk category (low, intermediate,
high) has around one-third of patients.

Results on the LLMs performance with development set
The kappa agreement rate between the two annotators was 84.3%, ensuring
acceptable inter-rate reliability. All LLMswith few-shot prompting attained
F1-scores of 90.3–100.0% for the 8th edition of AJCC cancer staging, and
88.0–100.0% forATA risk classification (Fig. 3 and SupplementaryTable 1).
The F1-scores on ATA risk and AJCC overall staging were 100.0% and
94.1% for the ensemble classifier, respectively (Fig. 4 and Supplementary
Table 1). Of note, all zero-shot and few-shotmodels achieved an F1-score of
100.0% for the M stage (Supplementary Table 2). However, while most
models demonstrated an F1-score of approximately 90.0% for the T and N
stages, the F1-score of Mistral-7B-Instruct-v0.3 using COT and few-shot
prompting with non-repeated annotated data was below 80.0% for the N
stage (Supplementary Table 2). Gemma-2-9B-Instruct using few-shot
prompting with part of annotated data seemed to be the best model,
reaching F1-scores of 100.0% for both ATA risk and 8th edition of AJCC
cancer staging (Fig. 3 and Supplementary Table 1).

Validation of LLMs with validation set
The characteristics of 289 TCGA-THCA patients and 35 pseudo cases
within the validation set are presented inTable 1. For the 289TCGA-THCA
patients, the F1-scores of all four LLMs ranged from 88.5 to 96.5% for ATA
risk classification and 94.2–99.7% for AJCC cancer staging, and the
ensemble classifiers achieved F1-scores of 95.2–95.5% and 98.1% in ATA
risk classification and AJCC cancer staging, respectively (Figs. 4, 5, and
Supplementary Table 3). Most prompting strategies attained an F1-score of
100.0% for theM stage, and all strategies achieved an F1-score of over 90.0%
for the T stage (Supplementary Table 4).While the F1-scores ofMistral-7B-
Instruct-v0.3 for theN stagewere 80.1–86.5%, those of othermodelswere all
above 90.0% (Supplementary Table 4).

For the 35 pseudo cases, the F1-scores for the ensemble classifier on
ATArisk andAJCCstagingwere88.5%and90.4–92.9%, respectively. (Fig. 4
and Supplementary Table 5). Mistral-7B-Instruct-v0.3 outperformed the
other models in ATA risk classification (with highest F1-score of 94.3%),
while Llama-3.1-8B-Instruct had the best performance in AJCC cancer
staging (withhighest F1-score of 97.5%) (Fig. 6 andSupplementaryTable 5).
Except Llama-3.1-8B-Instruct using COT and few-shot prompting with
part of annotated data had an F1-score of 96.7%, all other prompting
strategies achieved F1-scores of 100.0% for the M stage (Supplementary
Table 6). The F1-scores for the T and N stages ranged from 60.1 to 81.9%
and 71.9 to 97.2%, respectively (Supplementary Table 6).

Misclassification investigation
The confusionmatrices of AJCC cancer staging and ATA risk classification
were created for the misclassification investigation (Supplementary Tables
7–12). Within the framework development set, Mistral-7B-Instruct-v0.3
had better performance in classifying patients with ‘intermediate’ and ‘high’
ATA risks, as most prompting strategies employed in the other three LLMs
reported misclassifications within those two ATA risk categories. However,
Mistral-7B-Instruct-v0.3 was found to have more misclassifications when
classifying patients with ‘low’ risks (Supplementary Table 7). All four LLMs
had misclassifications with ‘Stage III’ of the 8th edition of AJCC cancer
staging (Supplementary Table 8). For the validation set, most LLMs
reported misclassifications across all three ATA risk categories and ‘Stage
III’ among the 289 TCGA patients (Supplementary Table 9–10). The LLMs
reported misclassification among cases with ‘intermediate’ and ‘high’ risk
categories of ATA for the 35 pseudo cases. Of note, only few models suc-
cessfully classified patients with Stage IVA. This may be due to the absence
of stage IVA patients in the initial NE framework development taken from
TCGA (Supplementary Table 11–12).

Table 1 | Characteristics of the TCGA-THCA patients and
pseudo cases

Characteristics Development set Validation set

TCGA-THCA
patients (n = 50)

TCGA-THCA
patients
(n = 289)

Pseudo
cases
(n = 35)

Age, mean (SD) years 54.3 (13.9) 47.4 (14.9) 54.9 (13.6)

Gender, n (%)

Male 15 (30%) 87 (30%) 8 (23%)

Female 34 (68%) 202 (70%) 24 (69%)

Unknown 1 (2%) 0 (0%) 3 (9%)

Race, n (%)

White 36 (72%) 174 (60%) 0 (0%)

Black or African
American

5 (10%) 8 (3%) 0 (0%)

American Indian or
Alaska Native

0 (0%) 1 (0%) 0 (0%)

Asian 1 (2%) 29(10%) 35 (100%)

Unknown 8 (16%) 77 (27%) 0 (0%)

Histology, n (%)

Papillary carcinoma 48 (96%) 289 (100%) 30 (86%)

Follicular carcinoma 2 (4%) 0 (0%) 3 (9%)

Both papillary and
follicular carcinoma

0 (0%) 0 (0%) 1 (3%)

NIFTP 0 (0%) 0 (0%) 1 (3%)

7th edition of AJCC cancer staging, n (%)c

Stage I 14 (28%) 172 (60%)

Stage II 7 (14%) 26 (9%)

Stage III 16 (32%) 62 (21%)

Stage IVA 11 (22%) 28 (10%)

Stage IVC 2 (4%) 1 (0%)

8th edition of AJCC cancer staging, n (%)a,b,c

Stage I 31 (62%) 255 (88%) 19 (56%)

Stage II 15 (30%) 32 (11%) 9 (26%)

Stage III 2 (4%) 2 (1%) 4 (12%)

Stage IVA 0 (0%) 0 (0%) 1 (3%)

Stage IVB 2 (4%) 0 (0%) 1 (3%)

ATA risk level, n (%)a,b

Low 16 (32%) 127 (44%) 13 (38%)

Intermediate 17 (34%) 105 (36%) 10 (29%)

High 17 (34%) 57 (20%) 11 (32%)

AJCC American Joint Committee on Cancer, ATA American Thyroid Association, NIFTP Non-
Invasive Follicular Thyroid Neoplasm with Papillary Like Nuclear Features, SD Standard Deviation,
TCGA-THCA The Cancer Genome Atlas—Thyroid Cancer.
aBoth the 8th edition of the AJCC cancer staging and ATA risk were verified and confirmed by
endocrine surgeons.
b8th edition of AJCC cancer staging and ATA risk were not graded for the pseudo case with NIFTP.
cThe 8th edition of AJCC cancer staging system raises the age threshold for high risk of disease-
specificmortality from45 to 55 years, i.e., the proportionof relatively youngpatientswhosemortality
risk can be defined solely on the basis of the absence or presence of distantmetastases (stage I and
II, respectively) increases. Therefore, many patients down-staged after the application of the
updated AJCC guidelines. Similar findings can be found in other literatures18,47.
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We further investigated the reasons behind the misclassification and
noticed that LLMs tended to generate incorrect answers when identifying
the extent of extrathyroidal extension, the largest size and number of the
involved lymph nodes, aggressive variants of papillary thyroid cancer
(histologic subtype), thepresenceof vascular invasion, and the completeness
of surgical margin (Supplementary Tables 13–15). Supplementary Figures
1–3 visualise the number of errors leading to misclassification of AJCC
cancer staging and ATA risk classification. All 4 LLMs had examples of
misclassifying the entity “extrathyroidal extension”, leading to incorrect
AJCC cancer staging. This is because, in many of the TCGA pathology
reports, the entity ‘extrathyroidal extension’ was described in various and
rather ambiguous ways, without explicit description on it being gross or
microscopic (e.g. ‘extrathyroidal extension: invades: perithyroidal tissue’,
‘extrathyroidal extension: focally present’, ‘left with extrathyroidal

extension’, ‘extrathyroidal extension: yes’, etc.). Since the extent of extra-
thyroidal extension (gross vs microscopic) was an important discriminant
factor for the ATA risk categories (‘intermediate’ or ‘high’) and T stage (T2
vsT3 or above) of the 8th edition ofAJCC cancer staging, errors in this entity
would affect the model performance. In addition, each LLM failed to cor-
rectly capture the largest size and/ornumber of involved lymphnodes for up
to 2 TCGA patients. Indeed, each pathology report may provide sizes of
multiple items, such as specimens, both involved and uninvolved lymph
nodes, and tumours. This complexity could potentially lead to confusion for
LLMs extracting the largest dimensions of the involved lymph node.
Moreover, the LLMs may be confused with the number of lymph node
involved and the number of lymph node resected, and it may have diffi-
culties in providing the total number of involved lymph nodes if this
information was presented separately according to the anatomic positions

Fig. 3 | Heatmap of performance of Large Language Models on classification of
ATA risks and AJCC staging in 50 TCGA pathology reports for NE framework
development. LLMs with various prompting strategies attained satisfactory

performance in NE framework development. a Performance on ATA risk classifi-
cation with F1-scores 88.0–100.0%. b Performance on AJCC staging with F1-scores
of 90.3–100.0%.
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without a summary total of all involved lymph nodes.While the accuracy in
identifying the lymph nodes status and anatomical location was crucial for
accurately assigning the N stage in AJCC cancer staging, the number and
size of involved lymph nodes affected the results of ATA risk classification.
Other common reasons that led to misclassification of ATA risk categories
included: with certain prompting strategies, some LLMs failed to extract the
aggressive histological variants (e.g., Mistral-7B-Instract-v0.3 using COT
and few-shot prompting with non-repeated annotated data used in the
development set, all 4 LLMs used in the 289 TCGA validation set, etc),
presence of vascular invasion (e.g., all 4 LLMs used in the 289 TCGA
patients and Qwen2-7B-Instruct using zero-shot prompting used in the 35
pseudo cases from the validation set), and/ormisjudged the surgicalmargin
status (e.g., Llama-3.1-8B-Instruct used in the development set and 289
TCGA patients from the validation set, etc).

Discussion
Our works have developed an NE framework and LLM strategies with an
adoption of an ensemble-like majority-voting strategy to automatically
perform AJCC cancer staging and ATA risk classification for patients with
thyroid cancer based on semi-structured free-text clinical notes. The LLMs
achieved an accuracy exceeding 90.0% in cancer staging and ATA risk
classification for the 50 TCGA-THCA patients, and achieved F1-scores of
94.1% and 100.0% respectively when employing an ensemble classifier. For
further validation, the ensemble classifier achieved F1-scores exceeding
95.0% in both cancer staging andATA risk classification for the 289TCGA-
THCA patients, and attained around 90.0% for the 35 pseudo cases.

The value of our study lies in its pioneering development of an NE
framework, tailored for both AJCC cancer staging and ATA risk classifi-
cations, the two systems clinicians most frequently use to assess prognosis
and determine subsequent adjuvant treatment and follow-up plans for
patients with thyroid cancer. Furthermore, this study provided an example
of annotation guidelines for future studies requiringhumanannotation.The
use of lightweight LLMs that support local deployment could preserve the

privacy of patients when the real clinical notes were used36. In addition,
sharing human-annotated data on openly available TCGA pathology
reports also enhanced data availability and encouraged research develop-
ment in the fields of digital health. Although our framework was developed
merely for clinical application in patients with thyroid cancer, this could
potentially be extended to other cancer types or even other diseases. Beyond
zero-shot prompting, COT prompting with or without varying degrees of
annotated data was applied to enable reasoning capabilities within LLMs
and investigate potential improvements in model performance.

The results of this study showed that the offline lightweight LLMs,
namelyMistral-7B-Instruct, Gemma-2-9B-Instruct, Llama 3.1-8B-Instruct,
and Qwen2-7B-Instruct, and the ensemble classifier are promising in sol-
ving practical extraction and classification tasks in an efficient and secure
way12, suggesting the feasibility of adopting these tools in real clinical settings
and research. The application of the LLMs can efficiently reduce the time
clinicians spend on reviewing and cross-referring multiple lengthy clinical
notes, thereby enhancing the efficiency of consultation and treatment, and
improving patient care. However, the traceability into how the LLMs and
ensemble classifiers generated the staging and ATA risk outputs was
essential, as itmay affect the clinicians’decision to adopt our tool. Therefore,
further improvements in highlighting the stage- or risk-related text used for
risk classification in the original pathology reports would greatly enhance
the LLM output’s traceability and transparency, vital for instilling clinician
confidence and acceptance of its applicability. Conceivably, these features
and interface are still under development but will be critical for imple-
mentation in real clinical settings.

In comparison to themethodologies and performanceof other existing
tools tailored for thyroid cancer patients, the ensemble classifier utilizing all
LLMs exhibited a comparative accuracy of about 90% in both the cancer
staging and ATA risk classification. Another rule-based pipeline, Thyr-
oPath, had an 93% accuracy in risk classification based on the 2015 ATA
guidelines using structured pathology reports. However, the task was not
tested in non-structured pathology reports, characterised by free-text

Fig. 4 | Heatmap of performance of ensemble classifiers on classification of ATA
risks and AJCC staging in the development and validation sets. Ensemble clas-
sifiers attained satisfactory performance on the two datasets. a Performance onATA

risk classificationwith F1-scores at least 88.5%. bPerformance onAJCC stagingwith
F1-scores of at least 90.4%.
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narratives and diversity in reporting variables, due to significant
heterogeneity10. Our NE framework and LLM strategies, in contrast, were
accurate in extracting information from free-text narratives and achieved
satisfactory outcomes. Moreover, with the advances in machine learning
techniques, there has been a continuing transition from traditional rule-
based approaches to learning-based approaches, which do not require
explicit manual coding of rules for each entity37,38. Consistent with Lee and
colleagues, our study also illustrated that lightweighted localisedLLMscould
read and extract information from pathology reports within a short period
of time15. Alternative prompt designs and strategies, particularly the multi-
step extraction strategy, may boost the performance of LLMs39,40. However,
when applied to the clinical notes in our study, such strategy yielded either
similar or inferior performance compared to the prompting strategies that
we have considered. This could be due to the absence of contextual

information from other questions when extracting named entities indivi-
dually, causing the LLMs to miss certain named entities. Unlike other
existing framework or pipelines, ours incorporated annotated data and our
results emphasised the value of integrating annotated data in maximising
overall performance.

The major obstacles in developing our NE framework included the
availability of ground truth and human-annotated data, prompt design, use
of annotated data, and the inherent nature of LLMs. Firstly, our study
highlighted the significant time and costs associated with ground truth
generation—Endocrine surgeons (M.F. and Y.L.) manually reviewed
information from clinical notes and classified the cancer staging and risk
category for each patient, despite the availability in the current study.
Similarly, the scarcity of high-quality, human-annotated data has been
widely recognised as a challenge, with several literatures emphasising the

Fig. 5 | Heatmap of performance of Large Language Models on classification of
ATA risks and AJCC staging in 289 TCGA pathology reports for validation.
LLMs with various prompting strategies attained satisfactory performance in 289

TCGA pathology reports for validation. a Performance on ATA risk classification.
with F1-scores 88.5–96.5%. b Performance on AJCC staging with F1-scores
94.2–99.7%.
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expenses and difficulties in acquiring large-scale, well-annotated
datasets41,42. Secondly, prompt design was a heuristic research process
with many factors42. Numerous attempts were made to obtain a better
model performance bymodifying and testing the prompts. For example, we
found that LLMswould return inconsistent formats of the T stage (e.g., ‘T3’,
‘pT1b’, and ‘4a’) or even hallucinate to produce unrelated outputs. To
restrict the output formatting, we asked the LLMs to return desirable out-
puts by giving examples: ‘T1a’, ‘T1b’, ‘T2’, ‘T3a’, ‘T3b’, ‘T4a’, and ‘T4b’.
Furthermore, we also applied COT and few-shot prompting by giving
examples and outlining the reasoning process to enhance its problem-
solving skills. Regarding the use of annotated data, we tested the perfor-
mance of LLMs by using various extents of annotated data – we contrasted
the outcomes by inputting all annotated data, annotated data without
repetitive terms, and annotated data that were detected as challenging for

LLMs to capture. Our study results suggested that the performance varied
depending on the extent of annotated data employed. However, there was
nodefinite conclusion thatutilising a specific extent of annotateddatawould
yield the optimal model accuracy. Moreover, the direction of changes in
accuracy was inconsistent when using same extent of annotated data in
different LLMs. In addition, the current study suggested that utilizing var-
ious prompting approaches, including different zero-shot and few-shot
approaches, for the fourLLMsdidnotproduce remarkabledifferences in the
accuracy of cancer staging and risk classification. This is consistent with
other studies comparing different LLMs with different prompting approa-
ches, and the performance would be context-specific and LLM-specific43,44.
Therefore, it is imperative to conduct extensive experiments to acquire
preferable results. Lastly, due to the ‘black box’ nature of the LLMs, the
models lacked transparency on how the outputs were generated, and

Fig. 6 | Heatmap of performance of Large Language Models on classification of
ATA risks and AJCC staging in 35 pseudo cases for validation. The performance
of LLMs various in different approach and in individual LLM in the 35 pseudo cases

for validation. a Performance on ATA risk classification. Mistral-7B-Instruct-v0.3
outperformed other LLMs with F1-score of 94.3%. b Performance on AJCC staging.
Llama-3.1-8B-Instruct outperformed other LLMs with F1-score of 97.5%.
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sometimes it was difficult to explain the reasons why LLMs produced an
incorrect answer output even though the examples were given in
prompts45,46. Due to its intrinsic stochastic nature, LLMsmay respond to the
same question with varying formats or even content when the question was
repeatedly asked. Despite an overall model accuracy of over 90%, it is
advisable that outputs generated by LLMs undergo human verification at
this stage.

Several limitations of this study should also be acknowledged.
Firstly, given that the TCGA-THCA programmes did not collect
operation records and imaging reports for patients with thyroid cancer,
we were unable to definitively distinguish whether the reported extra-
thyroidal extension was microscopic or gross in nature for some of the
cases. Assumptions were made that the presence of extrathyroidal
extension invading the skeletal muscles indicated the presence of gross
extrathyroidal extension. Secondly, only 4 patients in the TCGA-THCA
cohort were stage III or IVB, while none were stage IVA based on the 8th

edition of AJCC cancer staging system. The small number of patients
with stage III or above in theNE development setmay affect the ability of
the LLMs and classifier to devise outcomes in patients with advanced
stages of cancer. Thirdly, we used the 8th edition of AJCC cancer staging
system and 2015 ATA guideline to categorise patients in this study.
However, the entities extracted under the NE framework and the clas-
sification rules may need to be updated when later versions of AJCC and
ATA guidelines are released. Lastly, this study focused on LLMs with
seven to nine billion parameters to balance the running time and com-
putational power. The performance of larger LLMs, such as Mistral
Large, Llama-3.1-70B and 405B, and Gemma-2-27B, was not evaluated.

In conclusion, this study initially constructed an NE framework,
consisting of an annotation guideline, ground truth labels, LLMprompting,
and evaluation codes; and secondly examined diverse LLM strategies,
including four lightweight offline LLMs and ensemble-like majority voting
strategies, to classify AJCC 8th edition thyroid cancer staging and ATA
thyroid cancer risk category from semi-structured clinical notes. Our
ensemble classifier optimised the efficiency and accuracy of cancer staging
and ATA risk classification for well-differentiated thyroid cancer.

Data availability
The Cancer Genome Atlas–Thyroid Cancer (TCGA-THCA) clinical notes
are available in the public database, GenomicData Commons data portal of
National Cancer Institute (https://portal.gdc.cancer.gov/projects/TCGA-
THCA). The pseudo clinical notes used in this study are available at Github:
(https://github.com/NLPcancer/NLP_thyroid_cancer).

Code availability
The underlying code for this study is available in the SupplementaryNote 4.
Python version 3.10 was used to perform the data analysis. All the Python
scripts, test results about reproducibility and replicability, and information
about Python dependencies and Ollama models used in this study are
available at Github: (https://github.com/NLPcancer/NLP_thyroid_cancer).

Received: 27 September 2024; Accepted: 19 February 2025;

References
1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics,

2023. CA Cancer J. Clin. 73, 17–48 (2023).
2. World Health Organization. Age-Standardized Rate (World) per 100

000, Incidence and Mortality, Both sexes, in 2022. 2024 [cited Aug 2,
2024]Available from: https://gco.iarc.fr/today/en/dataviz/bars?
types=0_1&mode=cancer&group_populations=1&sort_by=value1.

3. Boucai, L., Zafereo, M. & Cabanillas, M. E. Thyroid cancer: A review.
JAMA 331, 425–435 (2024).

4. Liu, Y. et al. Radioiodine therapy in advanced differentiated thyroid
cancer: Resistance and overcoming strategy. Drug Resist Updat. 68,
100939 (2023).

5. Haugen, B. R. et al. 2015 American Thyroid AssociationManagement
Guidelines for Adult Patients with Thyroid Nodules and Differentiated
Thyroid Cancer: The American Thyroid Association Guidelines Task
Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid
26, 1–133 (2016).

6. Tuttle, R. M., Haugen, B. & Perrier, N. D. Updated American Joint
Committee on Cancer/Tumor-Node-Metastasis Staging System for
Differentiated and Anaplastic Thyroid Cancer (Eighth Edition): What
Changed and Why? Thyroid 27, 751–756 (2017).

7. Tuttle, M. et al. AJCC 8th Edition Cancer Staging Manual. Springer
International Publishing: New York, New York, (2017).

8. Bitterman, D. S., Miller, T. A., Mak, R. H. & Savova, G. K. Clinical
natural language processing for radiation oncology: A review and
practical primer. Int. J. Radiat. Oncol. Biol. Phys. 110, 641–655
(2021).

9. Tan, W. M. et al. Automated Generation of Synoptic Reports from
Narrative Pathology Reports in University Malaya Medical Centre
Using Natural Language Processing. Diagnostics (Basel) 12
(2022).

10. Loor-Torres, R. et al. Use of Natural Language Processing to Extract
and Classify Papillary Thyroid Cancer Features From Surgical
Pathology Reports. Endocr. Pr. 30, 1051–1058 (2024).

11. Rajaganapathy, S. et al. Synoptic reporting by summarizing cancer
pathology reports using large language models.medRxiv,
2024.04.26.24306452 (2024).

12. Qin, L. et al. Large language models meet NLP: A Survey. arXiv,
2405.12819 (2024).

13. Alizadeh,M. et al. Open-Source LLMs for Text Annotation: A Practical
Guide for Model Setting and Fine-Tuning. J. Comput. Soc. Sc. 8, 17
(2025).

14. Yoo, S. et al. Transforming thyroid cancer diagnosis and staging
information from unstructured reports to the observational medical
outcomepartnership commondatamodel.ApplClin. Inf. 13, 521–531
(2022).

15. Lee, D. T. et al. Development of a privacy preserving large language
model for automated data extraction from thyroid cancer pathology
reports.medRxiv, 2023.11.08.23298252 (2023).

16. Center for Cancer Genomics & National Cancer Institute. The Cancer
Genome Atlas Program (TCGA). [cited Sep 5, 2024]Available from:
https://www.cancer.gov/ccg/research/genome-sequencing/tcga.

17. Center for CancerGenomics&National Cancer Institute. Citing TCGA
in Publications and Presentations. [cited Sep 5, 2024]Available from:
https://www.cancer.gov/ccg/research/genome-sequencing/tcga/
using-tcga-data/citing.

18. Lamartina, L. et al. 8th edition of the AJCC/TNM staging system of
thyroid cancer: what to expect (ITCO#2). Endocr. Relat. Cancer 25,
L7–L11 (2018).

19. Hong Kong Cancer Registry & Hospital Authority. Thyroid Cancer in
2022. 2024 [cited Nov 25, 2024]Available from: https://www3.ha.org.
hk/cancereg/pdf/factsheet/2022/thyroid_2022.pdf.

20. Lechner, M. G. et al. Changes in Stage Distribution and Disease-
Specific Survival in Differentiated Thyroid Cancer with Transition to
American Joint Committee on Cancer 8th Edition: A Systematic
Review and Meta-Analysis. Oncologist 26, e251–e260 (2021).

21. Stenetorp, P. et al. brat: a Web-based Tool for NLP-Assisted Text
Annotation. Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Linguistics, 102-107
(2012).

22. Hripcsak, G. & Rothschild, A. S. Agreement, the f-measure, and
reliability in information retrieval. J. Am. Med Inf. Assoc. 12, 296–298
(2005).

23. McHugh, M. L. Interrater reliability: the kappa statistic. BiochemMed
(Zagreb) 22, 276–282 (2012).

24. LangChain Inc. Introduction. 2024 [cited Aug 2, 2024]Available from:
https://python.langchain.com/docs/introduction/.

https://doi.org/10.1038/s41746-025-01528-y Article

npj Digital Medicine |           (2025) 8:134 10

https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://portal.gdc.cancer.gov/projects/TCGA-THCA
https://github.com/NLPcancer/NLP_thyroid_cancer
https://github.com/NLPcancer/NLP_thyroid_cancer
https://gco.iarc.�fr/today/en/dataviz/bars?types=0_1&mode=cancer&group_populations=1&sort_by=value1
https://gco.iarc.�fr/today/en/dataviz/bars?types=0_1&mode=cancer&group_populations=1&sort_by=value1
https://gco.iarc.�fr/today/en/dataviz/bars?types=0_1&mode=cancer&group_populations=1&sort_by=value1
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga/using-tcga-data/citing
https://www.cancer.gov/ccg/research/genome-sequencing/tcga/using-tcga-data/citing
https://www.cancer.gov/ccg/research/genome-sequencing/tcga/using-tcga-data/citing
https://www3.ha.org.hk/cancereg/pdf/factsheet/2022/thyroid_2022.pdf
https://www3.ha.org.hk/cancereg/pdf/factsheet/2022/thyroid_2022.pdf
https://www3.ha.org.hk/cancereg/pdf/factsheet/2022/thyroid_2022.pdf
https://python.langchain.com/docs/introduction/
https://python.langchain.com/docs/introduction/
www.nature.com/npjdigitalmed


25. Davis, J., Van Bulck, L., Durieux, B. N. & Lindvall, C. The Temperature
Feature of ChatGPT: Modifying Creativity for Clinical Research. JMIR
Hum. Factors 11, e53559 (2024).

26. OpenAI. Best practices for prompt engineering with the OpenAI API.
2023 [cited]Available from: https://help.openai.com/en/articles/
6654000-best-practices-for-prompt-engineering-with-the-openai-
api.

27. LangChain Inc. How to parse JSON output. 2025 [cited Feb 3, 2025]
Available from: https://python.langchain.com/docs/concepts/
output_parsers/.

28. Ollama. Structured outputs. 2024 [cited Feb 3, 2025]Available from:
https://ollama.com/blog/structured-outputs.

29. Mayo, M. Unraveling the Power of Chain-of-Thought Prompting in
Large Language Models. 2023 [cited 2024 23 September]Available
from: https://www.kdnuggets.com/2023/07/power-chain-thought-
prompting-large-language-models.html.

30. Miao, J. et al. Chainof thought utilization in large languagemodelsand
application in nephrology.Med. (Kaunas.) 60, 148 (2024).

31. Xu, S. et al. Validation Study of the AJCC Cancer Staging Manual,
EighthEdition, staging system for eyelid andperiocular squamous cell
carcinoma. JAMA Ophthalmol. 137, 537–542 (2019).

32. Jiang, A. Q. et al. Mistral 7B. arXiv, 2310.06825 (2023).
33. Qwen. Qwen2.5: A Party of Foundation Models! 2024 [cited Sep 24,

2024]Available from: https://qwenlm.github.io/blog/qwen2.5/.
34. Ollama. Ollama. 2024 [cited Dec 2, 2024]Available from: https://

ollama.com/.
35. Wang, X. et al. Self-consistency improves chain of thought reasoning

in language models. arXiv, 2203.11171 (2022).
36. Tai, I. C. Y. et al. Exploring offline large language models for clinical

information extraction: A study of renal histopathological reports of
lupus nephritis patients.Stud. Health Technol. Inf. 316, 899–903 (2024).

37. Van Vleck, T. T., Farrell, D. & Chan, L. Natural language processing in
nephrology. Adv. Chronic Kidney Dis. 29, 465–471 (2022).

38. Gonzalez-Hernandez, G., Sarker, A., O’Connor, K. & Savova, G.
Capturing the Patient’s Perspective: a Review of Advances in Natural
Language Processing of Health-Related Text. Yearb. Med Inf. 26,
214–227 (2017).

39. Kojima, T., Gu, S. S., Reid, M., Matsuo, Y. & Iwasawa, Y. Large
Language Models are Zero-Shot Reasoners. arXiv (2022).

40. Dagdelen, J. et al. Structured information extraction from scientific
text with large language models. Nat. Commun. 15, 1418 (2024).

41. Torres-Soto, J. & Ashley, E. A. Multi-task deep learning for cardiac
rhythm detection in wearable devices. NPJ Digit Med 3, 116 (2020).

42. Huang, J. et al. A critical assessment of using ChatGPT for extracting
structured data from clinical notes. NPJ Digit Med 7, 106 (2024).

43. Li, Y. A Practical Survey on Zero-Shot Prompt Design for In-Context
Learning. In:Mitkov, R. &Angelova, G., editors.Proceedings of the 14th
International Conference on Recent Advances in Natural Language
Processing. Varna, Bulgaria: INCOMA Ltd.; 2023. pp. 641-647.

44. Sivarajkumar, S., Kelley, M., Samolyk-Mazzanti, A., Visweswaran, S.
&Wang, Y. An Empirical Evaluation of Prompting Strategies for Large
Language Models in Zero-Shot Clinical Natural Language
Processing: Algorithm Development and Validation Study. JMIRMed
Inf. 12, e55318 (2024).

45. O’Neill, M. & OConnor, M. Amplifying Limitations, Harms and Risks of
Large Language Models. arXiv (2023).

46. Gougherty, A. V. & Clipp, H. L. Testing the reliability of an AI-based
large language model to extract ecological information from the
scientific literature. NPJ Biodivers. 3, 13 (2024).

47. Kim, T. H. et al. Prognostic value of the eighth edition AJCC TNM
classification for differentiated thyroid carcinoma. Oral. Oncol. 71,
81–86 (2017).

Acknowledgements
This research was supported by the Hong Kong Jockey Club Global Health
Institute (HKJCGHI), Hong Kong Special Administrative Region, China, and
the AIR@InnoHK administered by Innovation and Technology Commission
of TheGovernment of theHongKongSpecial Administrative Region, China.
The research team was also supported by Health and Medical Research
Fund (grant no.: CID-HKU2). ICHA, ICYT and KSML were supported by the
Enhanced New Staff Start-up Research Grant from Li Ka Shing Faculty of
Medicine, The University of Hong Kong. The results of the current study are
inwholeor part basedupondatageneratedby theTCGAResearchNetwork:
https://www.cancer.gov/tcga.

Author contributions
M.M.H.F., C.K.H.W. and J.T.W. conceived the research idea. I.C.Y.T.,
J.W.K.H., J.W.H.W., and B.H.H.L. provided critical input and advice.
E.H.M.T., T.W, I.C.H.A., W.Y.C, and X.L. collected and cleaned the TCGA-
THCA clinical note dataset. M.M.H.F. and Y.L. created the pseudo clinical
notes, and generated and verified the ground truth of TCGA-THCA and
pseudo clinical note datasets. M.M.H.F., C.K.H.W., Y.L., V.L., Z.S.Y.W.,
E.H.M.T., and T.W. created the annotation guidelines. E.H.M.T., T.W., and
W.Y.C. performed data annotation. E.H.M.T., T.W., Z.W., and I.C.H.A. ana-
lysed the data.M.M.H.F., C.K.H.W., E.H.M.T., T.W., Z.W., I.C.H.A., K.S.M.L.,
and J.T.W. interpreted the data. M.M.H.F., C.K.H.W., T.W., E.H.M.T., X.L.,
J.T.W. wrote the manuscript. All authors revised the manuscript, and
approved the final version of manuscript.

Competing interests
Z.W. is contributing to npj Digital Medicine as anAssociate Editor andGuest
Editor for the Collection on Natural Language Processing in Clinical
Medicine. Other authors declared no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41746-025-01528-y.

Correspondence and requests for materials should be addressed to
Joseph T. Wu or Carlos K. H. Wong.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41746-025-01528-y Article

npj Digital Medicine |           (2025) 8:134 11

https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://help.openai.com/en/articles/6654000-best-practices-for-prompt-engineering-with-the-openai-api
https://python.langchain.com/docs/concepts/output_parsers/
https://python.langchain.com/docs/concepts/output_parsers/
https://python.langchain.com/docs/concepts/output_parsers/
https://ollama.com/blog/structured-outputs
https://ollama.com/blog/structured-outputs
https://www.kdnuggets.com/2023/07/power-chain-thought-prompting-large-language-models.html
https://www.kdnuggets.com/2023/07/power-chain-thought-prompting-large-language-models.html
https://www.kdnuggets.com/2023/07/power-chain-thought-prompting-large-language-models.html
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://ollama.com/
https://ollama.com/
https://ollama.com/
https://www.cancer.gov/tcga
https://doi.org/10.1038/s41746-025-01528-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjdigitalmed

	Developing a named entity framework for thyroid cancer staging and risk level classification using large language models
	Methods
	Ethical considerations
	Data source
	NE framework development
	LLM strategies
	Evaluation of the LLMs with framework development set
	Evaluation and validation of LLMs with validation set

	Results
	Patient characteristics of the development set
	Results on the LLMs performance with development set
	Validation of LLMs with validation set
	Misclassification investigation

	Discussion
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




