
1 
 

 

 

Are Target Trial Emulations (TTEs) the “gold standard” for observational studies? 

 
Neil Pearce1, Jan P. Vandenbroucke1,2,3 

 

 

[1] Department of Medical Statistics 

London School of Hygiene and Tropical Medicine, UK 

  

[2] Leiden University Medical Center 

Dept. Clinical Epidemiology 

PO Box 9600 

2300 RC Leiden, The Netherlands 

 

[3] Department of Clinical Epidemiology, Aarhus University, Denmark.  

 

 

Correspondence to: 

Professor Neil Pearce 

Department of Medical Statistics 

London School of Hygiene and Tropical Medicine, UK 

Email: neil.pearce@lshtm.ac.uk 

Phone: 020-79588151 

 

November 2022 

(Revised January 2023) 

 

  



2 
 

Abstract 

There has been considerable debate in epidemiology about whether the randomized 

controlled trial (RCT) is the “gold standard” for epidemiological studies. In particular, it has 

been argued that observational studies that are intended to address a causal question 

should be based on a hypothetical “target trial” which the observational study should attempt 

to emulate. Some studies take this approach further, and use epidemiological data sets to 

create matched-TTE, i.e. a cohort in which the “exposed” and “non-exposed” are made alike 

as much as possible, by matching “exposed” and “non-exposed” on a number of key 

variables. In this paper, we argue that although target trial emulations are appropriate and 

valid in some circumstances, that other approaches involving observational data may be 

more valid and appropriate in other situations. Our main concern about the TTE approach, is 

that in similar way as standard observational analyses, it cannot adequately deal with 

situations in which confounding is intractable, whereas other approaches can deal with this 

situation much more validly. In addition, there are two specific disadvantages of the 

matched-TTE design in that: (i) it is likely to yield similar effect estimates, but wider 

confidence intervals, compared to  “standard” analysis which adjusts for the (matched) 

confounders using all of the available data; (ii) it makes it more difficult, if not impossible, to 

assess the likelihood, and likely strength and direction, of residual confounding. More 

generally, we argue that causal inference usually involves an approach that incorporates 

evidence from a wide variety of study designs and populations, rather than focussing on a 

single “ideal study”. The target trial framework can be very useful when thinking about the 

design of a single study, in the particular circumstances that allow for a TTE approach (e.g. 

the required data are available and confounding can be controlled with statistical 

adjustment). However, thereby it does not provide the starting point, nor the “gold standard” 

analysis, for causal inference in general.  
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There has been considerable debate in epidemiology about whether the randomized 

controlled trial (RCT) is the “gold standard” for epidemiological studies; some of the debate 

is old, but some is new [1, 2]. Almost all are agreed that a well-conducted RCT, where 

possible and appropriate, is to be preferred because an experimental set-up enables control 

of several key features of a study, and randomization ensures that any differences in 

outcome risk between the groups being compared are due to chance. It is thus tempting to 

apply the RCT paradigm to observational studies, i.e. to propose that if an RCT is not 

possible for a particular issue, then an observational study that closely mimics the RCT 

approach is the most preferable.  

Therefore, it has been argued that observational studies that are intended to address a 

causal question should be based on a hypothetical “target trial” which the observational 

study should attempt to emulate[3], and recent years have seen the publication of a number 

of “target trial emulation” (TTE) studies. Some studies take this approach further, and use 

epidemiological data sets to create a cohort in which the “exposed” and “non-exposed” are 

made alike as much as possible, by matching “exposed” and “non-exposed” on a number of 

key variables [4]. We use the term “matched-TTE”, which to our knowledge has not been 

used previously, to specifically refer to this matched approach, which is a subgroup of the 

more general TTE approach. 

Many TTE studies are excellent and have produced apparently valid findings[5]. This 

approach can be applied in a variety of settings including pharmacoepidemiology[6], and 

health policy[7].  However, there are several key limitations of this approach which mean that 

it cannot be universally adopted as the “gold standard” for observational studies. In 

particular, we argue that although target trial emulations are appropriate and valid in some 

circumstances, that other approaches involving observational data may be more valid and 

appropriate in other situations. More generally, we argue that causal inference usually 

involves an approach that incorporates evidence from a wide variety of study designs and 

populations, rather than focussing on a single “ideal study”[1, 2]. Although the target trial 

framework can be very useful when thinking about the design of a single study, this does not 

mean that it provides the starting point, or the “gold standard” analysis, for causal inference 

more generally. Indeed, the TTE approach considerably narrows the methodological 

framework, and the methods considered to be valid, for causal inference. This is exemplified 

by ‘scoring systems’ for reviews that are based on a how closely a study mimics a RCT[8]. 

These take the TTE approach to its logical conclusion in that a single ideal study design is 

seen as the “gold standard” whereas other types of evidence are either scored lower or 

ignored. In particular, triangulation [9] (which we consider to be the best approach for many 

situations) does not feature in the TTE methodological framework[8, 10].  
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Actually, the idea that one should think about the corresponding RCT, when designing an 

observational study is not new. As early as 1953, Dorn[11] recommended that one should 

ask the question “how would the study be conducted if it were possible to do it by controlled 

experimentation?” (quoted by Cochran in 1965[12]). We agree, and have used this approach 

to solve difficult design problems in our own research, e.g. when designing studies of the 

role of beta agonists in asthma death[13] – and the value of prophylactic administration of 

antibiotics before dental treatment in persons with pre-existing heart valve disease [14]. 

Thinking about the corresponding RCT can be useful in terms of thinking about eligibility for 

the study, definitions of exposure, selection of controls, and other issues. However, this does 

not mean at all that observational studies should be closely tailored and restricted to mimic 

an RCT, nor that this should involve a cohort study design. In fact, our own useful 

applications of RCT-thinking to design an observational study[13, 14] as with others[15], 

were actually case-control studies; imagining an RCT in the relevant source population and 

risk period made it clearer how to sample cases and controls and how to define exposures. 

In this paper, we focus on a  key shortcoming of the TTE approach in terms of how it limits 

conceptions of possible study designs, and thereby negates alternative approaches that may 

be more valid in particular circumstances. We then offer some specific criticisms of the 

matched-TTE approach. 

General limitations of the TTE approach 

The key disadvantage of the TTE approach is that it assumes that any causal analysis of 

observational data has to be framed within this RCT paradigm, focussing on a single “ideal 

study”. In contrast, we would argue that there are many situations where confounding in a 

TTE study, in similar way as standard observational analyses, may simply be intractable – 

while other types of approach will work. 

By way of example, a TTE analysis which compares the effectiveness of the Pfizer and 

Moderna vaccines[4] is unlikely to have substantial residual confounding, because all study 

participants have been vaccinated, and (conditional on factors such as age and time) it is 

essentially a natural experiment as to whether the study participants received one or the 

other vaccine. However, the situation is quite different when comparing vaccinated and 

unvaccinated. Then, there will usually be substantial differences in lifestyle, socioeconomic 

factors, and health-seeking behaviour between the two groups, and also between those who 

get tested for COVID-19 and those who do not. These are likely to be impossible to entirely 

or substantially eliminate with standard  adjustment methods, e.g. using multiple regression 

and adjusting for measured confounders individually or with propensity scores.  
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One recent example is the study of Whiteley et al [16], which used a standard cohort study 

analysis, adjusting for potential confounders. The authors compared the association of 

Covid-19 vaccines ChAdOx1 and BNT162b2 with major venous, arterial and 

thrombocytopenic events. For those aged <70 years, the adjusted hazard ratios (HRs) were 

close to 1.0 for both vaccines for venous thromboses and arterial thromboses, but strong 

protective effects were reported for those aged 70 years or more. These findings are unlikely 

biologically, and the authors commented that “adjusted associations in this study may still be 

biased by unmeasured confounding by patient characteristics that predict both vaccination 

and thrombosis and that are difficult to ascertain in electronic health records”. While this was 

a standard cohort study, the elements that constitute a TTE design, however, would not 

have altered anything to this intrinsic intractability of confounding in those data, as the final 

analysis would have met the same problems.  

Similar examples of apparently intractable confounding include studies of breast cancer 

recurrence among women receiving adjuvant chemotherapy[17], the association of religious 

service attendance with mortality[18], the effects of vegetarian diet[19], anti-

hypertensives[20], screening colonoscopy[21], and vitamin E supplements[22]. In most 

instances, the findings of observational studies of these issues have been contradicted by 

findings from RCTs and/or from Mendelian Randomization studies. Similar problems arise 

due to confounding by indication when studying effects of treatments [17, 23, 24], with a key 

distinction being between studies of ‘intended and non-intended effects’[25]. Recent papers 

have shown that the ‘intractability’ of confounding by indication still exists, despite the 

application of the most modern forms of analyses[17, 18]. One notable recent example is the 

study of Danaei et al[20] who use a a TTE design and found the expected protective effects 

of statins on mortality (that is: as expected from the results of RCTs), but found that the use 

of anti-hypertensives increased mortality, in contrast with the established findings of many 

RCTs. 

Thus, there are important situations where even the best possible TTE study that relies on 

emulating conditional randomization cannot answer a causal question. Of course, this 

shortcoming also applies to “standard” cohort and case-control studies, that do not 

necessarily involve a TTE paradigm, but the formalism of the TTE approach may suggest a 

level of methodological rigour that simply cannot be obtained in such situations. This point is 

acknowledged by Hernan and Robins[3] for situations in which an active treatment is 

compared with no treatment or usual care, but they do not acknowledge the implication, i.e. 

that this may be a situation where the TTE approach simply won’t work (e.g. in the case of 

anti-hypertensives[20]), no matter how well it is applied. In contrast, other well-established 

methods can be tried to validly assess causality in such situations. For example, the test-



6 
 

negative design (TND)[26] has been shown to work well, in assessing factors such as 

vaccine effectiveness or risk factors for Covid-19[27, 28] and in other conditions[26], since 

any biases in terms of health-seeking behaviour will usually apply reasonably equally to the 

test-positive cases and the test-negative controls. Thus, even in a single study, a test-

negative design may produce a reasonably valid effect estimate when a TTE approach 

would suffer from intractable confounding due to differences in health-seeking behaviour. 

Other approaches that make use of external interventions on groups, e.g. a difference-in-

differences approach [4], may be useful to study COVID-19 interventions such as mask-

wearing (where one expects similar intractability of confounding as with vaccination)[29]. 

Useful other approaches in single studies include the use of instrumental variables, 

regression discontinuity, and Mendelian Randomization[10]. Some of these approaches can 

be mapped onto a target trial framework[5-7, 30]. However, we would argue that these other 

approaches go beyond a TTE framework, and provide additional information and checks for 

bias [10] which cannot be achieved within the TTE framework. Moreover, in still other 

situations, any single study may struggle to yield valid causal assessments, but approaches 

that make comparisons across studies, such as triangulation [9] (i.e. the comparison of 

studies in which the expected biases are likely to be in opposite directions), may be of great 

value for identifying and controlling for confounding that is apparently intractable[31].   

Specific problems of the matched-TTE design 

There are also two specific limitations of the matched-TTE design which should be 

considered. 

The first disadvantage of the matched-TTE approach is that it involves throwing away a 

great deal of useful data in the process of matching the exposed and non-exposed groups. 

Matching can be employed in cohort studies, whether or not they follow a TTE paradigm, 

although it has different implications than in case-control studies in which it is used more 

often. Matching in cohort studies [32, 33] is usually only done in specific situations, for 

example when the number of study participants on which particular information can be 

obtained is limited  (e.g. for reasons of logistics or cost), which is then solved by selecting an 

equal number of exposed and non-exposed subjects at baseline for each age-sex stratum 

and only in these persons the additional information is collected[33]. Even in this situation, 

matching can sometimes harm efficiency, although it introduces no bias[32, 33]. However, it 

is of greater concern when the use of matching involves throwing away potential study 

participants for whom all relevant information has already been collected, because standard 

adjusted analyses would result in equal validity and greater precision.  
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To take a hypothetical example, suppose that matching was simply on age, which had two 

categories – old and young. If the exposed group was mostly old, and the non-exposed 

group was mostly young, then this can be handled in a conventional analysis adjusting for 

age. A matched-TTE approach would involve matching by age, which would involve 

discarding many exposed older persons (since matches would not be available for all of 

them), and also discarding many non-exposed younger persons. The matched analysis 

would therefore obtain virtually identical effect estimates to the age-adjusted analysis (i.e. no 

gain in validity), but with wider confidence intervals because of participants being discarded. 

This simplified example shows that in essence the matched analysis is the same analysis as 

stratification by age, but with lesser numbers. These problems become more acute as the 

number of matching factors increases.  

For example, in their study of the comparative effectiveness of BNT162b2 and mRNA-1273 

vaccines in US veterans, Dickerman et al[4] reduced the analysed participants from 764,803 

to 439,684, a reduction of 43%, in the process of producing 219,842 pairs (comparing the 

two vaccines), matched on calendar date, age, sex, race, urbanicity of residence, and 

geographical location. The matched pairs population experienced 2016 SARS-Cov-2 

infections, 559 of which were detected as symptomatic, 411 resulted in hospitalization, 125 

in ICU admission, and 81 in death. The corresponding figures for the 43% of potential 

participants who were excluded are not reported, but assuming that their rates of infection 

are similar, this means that a substantial number of events were excluded from the analysis, 

including for categories (e.g. death) where the number of events was relatively rare. As a 

result, the 95% confidence intervals for these outcomes were relatively wide (for death, the 

risk ratio comparing the two vaccines was 1.11; 95%CI 0.69-1.91). 

In fact, there is no benefit in terms of validity of this approach, and there may be a 

considerable disadvantage in terms of precision. It is age-old epidemiologic knowledge that 

matching in a cohort study removes confounding by the matching factors at time zero, 

although it may still be necessary to control for the matching factors because of differential 

censoring[33]. However, as in the simplified example above, the same aim can be achieved 

by not matching, using the whole data set and simply controlling for the same factors in the 

data analysis, usually with a gain in precision. This will usually produce an almost identical 

point estimate (e.g. the risk ratio) to the matched-TTE approach (effect estimates may not be 

exactly the same because of a different distribution of effect modifiers), but with better 

precision. The matching that produces similarities at baseline is nice ‘optically’ but does in 

essence not differ from any other stratified analysis by multiple strata. One needs to stratify 

on the relevant factors in order to do the matching, and all the matching does is “throw away” 

some of the data from each strata.  



8 
 

A second disadvantage of the matched-TTE approach is that the assessment of residual 

confounding becomes much more difficult. In a standard observational study, one usually 

presents effect estimates both unadjusted and adjusted for potential confounders. This 

3enables us to see the direction and magnitude of the changes with adjustment (we leave 

aside, issues of collapsibility and the validity of the change-in-estimate approach[34, 35], and 

focus on the situation where the risk ratio is the main effect estimate), which in turn provides 

clues as to the likelihood of residual confounding. For example, if the unadjusted risk ratio for 

the main exposure is 2.0, and this only reduces to 1.9 after confounder adjustment, it is 

unlikely that there is substantial residual confounding, at least with regards to variables 

which are associated with the confounders that have been adjusted for. On the other hand, if 

the main effect estimate changes from 2.0 to 1.4 after confounder adjustment, it is highly 

likely that it would having changed further (perhaps going right down to 1.0) if there had 

been better information on the confounders (i.e. less non-differential misclassification).  

Of course, such sensitivity analyses may not be conclusive, e.g. when all measured 

confounders are poorly measured or proxied. However, at least we can do such sensitivity 

analyses, and assess the results, in an unmatched analysis. In a3 matched-TTE it is 

impossible to make this sort of assessment since the confounders have been matched 

between exposed and non-exposed, and the unadjusted and adjusted effect estimates will 

be virtually identical. One is then left with the need to simply assume that there is no residual 

confounding, with few means to assess this – Hernan and Robins[3] mention several 

possible approaches such as using “reversed” strategies, or negative control outcomes, but 

do not consider the more straightforward approach of assessing the effects of confounder 

adjustment – something that is not possible in a matched-TTE design. 

Discussion 

A key feature of the TTE approach, and particularly the matched-TTE approach, is that it 

“looks like” an RCT, as persons in the intervention and control group have been made as 

much alike as possible, and it is therefore easier to market to policy makers as providing 

valid and useful findings. The TTE approach has produced useful and apparently valid 

findings, e.g. in re-analyses of data on postmenopausal hormone therapy and coronary heart 

disease[36], although it is notable that very similar findings have been produced with a more 

conventional observational study analysis, adjusting for potential confounders and for time 

since first exposure[37, 38].  

Our concern is that although the target trial framework can be very useful when thinking 

about the design of a single study, in the particular circumstances that allow for a TTE 

approach (e.g. there required data are available and confounding can be controlled with 
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matching or standard adjustment methods), that this does not provide the starting point, or 

the “gold standard” analysis, for causal inference more generally. In particular, starting with 

the TTE approach considerably narrows the context, and the methods considered to be 

valid, for causal inference. 

A key concern about the TTE approach is that it cannot adequately deal with situations in 

which confounding is intractable, whereas other approaches (test-negative design, 

difference-in-differences, triangulation) can deal with particular confounding scenarios much 

more validly. 

In addition, there are at least two specific disadvantages of the matched-TTE design in that: 

(i) it is likely to yield similar effect estimates, but wider confidence intervals, compared to a 

more “standard” analysis which adjusts for the (matched) confounders using all of the 

available data; (ii) it makes it more difficult, if not impossible, to assess the likelihood, and 

like strength and direction, of residual confounding.  

The idealization of the TTE in teaching as well as in scoring systems sends a strong signal 

to newer generations of epidemiologists, in that it places the TTE as the first study design to 

always think about, or even as the “ideal” study design. This will preclude them of seeing 

other opportunities for interesting and possibly valid comparisons. These include TND 

studies and other imaginative case-control approaches [39], and natural experiments[4, 8]. 

In cohort applications, it may also limit studies to those in which follow-up is available from 

‘first exposure onwards’, which would seriously handicap chronic disease epidemiology [40], 

while quite satisfactory methods are available to adjust for time since first exposure when 

this is appropriate. 

In conclusion, the TTE approach, and particularly the matched-TTE approach, has 

considerable appeal in terms of “marketing” observational studies to policy makers and other 

non-epidemiologists. However, it cannot deal with situations of intractable confounding - as 

standard analyses never could - in contrast with other commonly used study designs. In 

addition, the matched-TTE approach has little scientific benefit since it will usually produce 

the same findings as an unmatched-TTE approach, or a more conventional data analysis, 

while having lower precision, and less ability to assess residual confounding. The TTE 

approach is a useful approach in some circumstances, and complements other important 

methods, but it is not “the solution”. 
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