Geospatial analysis of malaria mortality in the kintampo health and demographic surveillance area of central Ghana

Kenneth Wiru ORCID logo ; Felix Boakye Oppong ; Stephaney Gyaase ; Oscar Agyei ; Sulemana Watara Abubakari ; Seeba Amenga-Etego ; Charles Zandoh ; Kwaku Poku Asante ; (2021) Geospatial analysis of malaria mortality in the kintampo health and demographic surveillance area of central Ghana. Annals of GIS, 27 (2). pp. 139-149. ISSN 1947-5683 DOI: 10.1080/19475683.2020.1853231
Copy

Malaria remains a menace to the existence of humanity in most contexts. Geospatial analysis of malaria mortality is crucial to identifying clusters of high disease burden and areas with limited access to malaria care for targeted control and remedial interventions. This study identified spatial and space-time clusters of malaria mortality in the Kintampo area of central Ghana. We used 1301 malaria deaths archived from 2005 to 2017 and Global Positioning System (GPS) point locations of the sub-districts in which these deaths occurred for our analysis. Mortality risks were smoothed and mapped using the Spatial Empirical Bayesian smoothing technique in Geoda (version 1.12.1.161) whereas spatial and spatio-temporal clustering analysis was done using SaTScan (version 9.6). Malaria mortality risks ranged between 1.2 and 2.4 deaths per 1000 population for persons of all ages and between 3.3 and 6.0 deaths per 1000 population for children under five years of age by sub-district. Two spatial clusters were detected for all-age malaria mortality with only the primary cluster (RR = 1.42, p = 0.001) being statistically significant. Also, two statistically significant space-time clusters were detected for all-age malaria mortality in the study area. The most likely cluster occurred between 2006 and 2011 in five sub-districts with a relative risk of 2.12 (p < 0.001) whilst the secondary cluster which had a relative risk of 2.47 (p < 0.001) occurred between 2005 and 2010 in four sub-districts. Similarly, only the most likely spatial cluster of under-five malaria mortality was statistically significant (RR = 1.36, p = 0.024). Furthermore, three spatio-temporal clusters of under-five malaria mortality were detected in the study area. The primary and second secondary clusters were statistically significant whilst the first secondary cluster had borderline significance. The primary cluster (RR = 4.49, p = 0.002) occurred in two sub-districts between 2006 and 2007. The first secondary cluster (RR = 2.21, P = 0.005) covered four sub-districts and was detected between 2006 and 2011 whereas the second secondary cluster (RR = 2.51, p = 0.003) covered two sub-districts between 2008 and 2013. Ultimately, our analysis identified a number of substantial spatial and apace-time clusters of malaria mortality in the study context, which could aid in the strategic planning, implementation and monitoring of targeted malaria control interventions.

picture_as_pdf

picture_as_pdf
Wiru-etal-2020-Geospatial-analysis-of-malaria-mortality-in-the-kintampo-health-and-demographic-surveillance-area-of-central-Ghana.pdf
subject
Published Version
Available under Creative Commons: Attribution 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads