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Abstract 

Childhood cancers are a heterogeneous group of rare diseases, accounting for less than 2% of all cancers diagnosed worldwide. Most 
countries, therefore, do not have enough cases to provide robust information on epidemiology, treatment, and late effects, especially 
for rarer types of cancer. Thus, only through a concerted effort to share data internationally will we be able to answer research ques
tions that could not otherwise be answered. With this goal in mind, the US National Cancer Institute and the French National Cancer 
Institute co-sponsored the Paris Conference for an International Childhood Cancer Data Partnership in November 2023. This meeting 
convened more than 200 participants from 17 countries to address complex challenges in pediatric cancer research and data sharing. 
This Commentary delves into some key topics discussed during the Paris Conference and describes pilots that will help move this 
international effort forward. Main topics presented include: (1) the wide variation in interpreting the European Union’s General Data 
Protection Regulation among Member States; (2) obstacles with transferring personal health data outside of the European Union; (3) 
standardization and harmonization, including common data models; and (4) novel approaches to data sharing such as federated 
querying and federated learning. We finally provide a brief description of 3 ongoing pilot projects. The International Childhood 
Cancer Data Partnership is the first step in developing a process to better support pediatric cancer research internationally through 
combining data from multiple countries.

Background
Childhood cancers are a heterogeneous group of rare diseases 
occurring in people younger than 20 years of age. They represent 
less than 2% of all cancers, with an estimated 275 713 new cases 
and 105 345 deaths worldwide in 2022.1 The relatively small 
number of cases, even in populous regions, can 
considerably hamper research efforts to understand the etiologic 
mechanisms underpinning these cancers. High-dose ionizing 
radiation, chemotherapy, and prenatal exposure to diethylstil
besterol are the only risk factors that have emerged as defini
tively causal for childhood cancer.2,3

Advances in diagnosing and treating childhood cancers in 
recent decades have led to significant survival improvements, 
with more than 80% of children diagnosed in developed countries 
becoming 5-year survivors.4 This good news, however, predomi
nantly applies to the most common cancers in children, such as 
acute lymphoblastic leukemia, where more is known about 

therapeutic response. Progress for rarer childhood cancers, such 
as choroid plexus carcinoma, has lagged behind, and only a 
global collaboration that benefits from increased sample sizes 
and more research consortia could contribute to meaningful 
advances.5 Furthermore, as more children survive their cancers, 
short- and long-term sequelae of therapies, such as subsequent 
cancers, are increasingly being observed in clinical practice and 
epidemiological studies,6,7 making it imperative to follow these 
patients adequately throughout their lifespan.

Since most countries do not have enough childhood cancer 
cases to achieve the sample size and genotypic diversity neces
sary for robust analyses on epidemiology, treatment, and late 
effects, the US National Cancer Institute (NCI) and the French 
National Cancer Institute (INCa) obtained institutional support 
from the European Commission to co-sponsor the Paris 
Conference for an International Childhood Cancer Data 
Partnership. This meeting, held in Paris in November 2023, 
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addressed complex challenges in childhood cancer research and 
data sharing within the framework of the G7 Cancer initiative. 
This new international collaboration, led by INCa, involves 7 
other organizations (including NCI) and is at the forefront of the 
fight against cancer.8 A major priority for G7 Cancer is to formu
late an international data strategy for childhood cancer.

The Paris Conference convened more than 200 participants 
from many disciplines in pediatric oncology, including clinicians, 
data scientists, cancer registry and research consortia leaders, 
and epidemiologists from 17 countries. Participants heard from 
keynote speakers, patient advocates, cancer survivors, and poli
cymakers, and engaged in fruitful discussions through 4 work
shops. A summary report was jointly released on February 15, 
2024—International Childhood Cancer Day. It describes key bar
riers, potential solutions, and next steps that could lead to a large 
international data resource for childhood cancer research. A 
major conclusion from the conference is that only through a con
certed effort to extend international collaboration and data shar
ing will we be able to answer research questions that could not 
otherwise be answered. The Conference also showcased well- 
established international collaborations focused on advancing 
childhood cancer research. A notable example is the University 
of Chicago’s Pediatric Cancer Data Commons (PCDC),9 the largest 
single unified platform for childhood cancer clinical trials 
research in the world.

This Commentary delves into some key topics discussed dur
ing these workshops and describes pilots that will help move this 
effort forward. Table S1 provides the definitions of all the acro
nyms used in the text.

Legislation
Working Group members agreed that considerable variation exists 
in interpreting the European Union’s General Data Protection 
Regulation (GDPR)10 with respect to how consent, public interest, 
and anonymized data should be defined and applied in secondary 
analysis of health data for research. The precise meaning of these 
concepts in the cancer research context and the criteria for cor
rectly interpreting them should be clear and consistent across 
member states. This consensus aligns with the European Society 
for Paediatric Oncology (SIOPE) recommendations.11 Many other 
countries’ data privacy laws bear similarities to GDPR or were 
inspired by its provisions. Examples include Brazil’s General Data 
Protection Law,12 Japan’s Protection of Personal Information Act,13

and the United Kingdom’s Data Protection Act (UK GDPR).14 In 
this Commentary, we focus on GDPR because it is widely consid
ered a reference legal instrument.

Nordic countries interpret the GDPR provisions more conser
vatively and strictly, and national laws have also made it harder 
for them to provide patient-level data for international studies.15

These countries have recently tended to prefer a federated 
approach for access to such data.16

In the United States, there were similar challenges with inter
preting the privacy provisions of the Health Insurance Portability 
and Accountability Act (HIPAA).17 To prevent cancer data report
ing and cancer research from being halted due to misinterpreta
tion, the North American Association of Central Cancer 
Registries (NAACCR) and HIPAA experts developed a summary 
that provided clear, concise answers to questions about the 
HIPAA privacy rules in relation to cancer registries and data shar
ing.18 This document contributed to a harmonized interpretation 
of HIPAA across all North American central cancer registries.

The wide variation in interpreting GDPR also applies to 
informed consent. Article 89 GDPR states that “processing per
sonal data is generally prohibited, unless it is expressly allowed 
by law, or the data subject has consented to the processing.” 
Cancer registries are usually mandated by law to collect personal 
health data for the purpose of cancer prevention and control as 
well as for scientific research conducted in the public interest, so 
they operate under a consent waiver.

Cancer registration systems requiring informed consent 
underestimate the true population burden of cancer.19 In 
Germany, for example, laws passed in the mid-1980s requiring 
informed consent from Hamburg and Saarland residents diag
nosed with cancer resulted in unacceptably low completeness, 
with neither region able to collect more than 70% of cancer 
cases.20 The Working Group discussed the role of individual 
patient consent in research that is conducted outside of the regis
try’s auspices but still for the common good, such as the secon
dary use of personal health data aimed at building data 
resources that will benefit other patients in the future. It may be 
argued that patients who benefit from a healthcare system have 
a responsibility to contribute data for the common good without 
needing their consent.21

The Working Group also discussed the concept of broad con
sent for genomic research and how it is being interpreted differ
ently across countries and institutions, hindering secondary use 
of clinically acquired data. In brief, broad consent is the act of 
gaining research participants’ consent for multiple potential 
future research purposes without the obligation to recontact 
them to request permissions for each new project.22 It is not a 
waiver but a more flexible alternative to study-specific consent, 
which requires the research subject to provide consent only to 
specifically elaborated research projects. For studies requiring 
approval from an independent ethics committee, also known as 
institutional review board (IRB) in the United States, researchers 
usually have 3 options for obtaining consent23: obtain a waiver of 
consent, obtain a study-specific consent, or use the broad con
sent option. The latter provides the most utility to the research 
process while protecting the subject’s autonomous wish to par
ticipate in studies that are conducted for the common good. 
Although GDPR does not specifically include the concept of broad 
consent, Recital 33 (Consent to Certain Areas of Scientific Research) 
has usually been interpreted as the provision supporting it.24 The 
European Data Protection Board, however, has adopted a more 
strict interpretation of Recital 33.25

The Working Group recommended that ethical committees 
seek a common understanding of broad consent and be empow
ered to use it as an alternative to study-specific consent when
ever the research contributes to the common good and provided 
that personal data are processed in a lawful, fair, and transpar
ent way, as required by Article 5 GDPR. To help meet these condi
tions, the research team or consortium should aim to implement 
an electronic system to support the informed consent process. 
Compared to paper consent, electronic consent motivates partic
ipation, facilitates enrollment, helps keep track of who opts in 
and who opts out, creates transparency, and increases study 
knowledge and interactivity.26

With respect to GDPR, anonymized data (ie, data that have 
been processed to remove personally identifiable information to 
maintain anonymity) is not subject to the same restrictions 
placed on the processing of personal data, but there is a high 
threshold for rendering the data anonymous (Recital 26 GDPR), 
despite ongoing debate regarding whether data can be anony
mized completely.27 In addition to anonymized data, GDPR 
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provisions include identified data and pseudonymized data. In 
pseudonymized data, direct identifiers are replaced with a place
holder value (pseudonym) that does not directly identify the 
patient but for which a crosswalk to the patient identifier exists 
with the data owner (Recital 28 GDPR).

In the United States, the HIPAA standard is de-identification, 
not anonymization. These 2 terms, although often used inter
changeably, are not the same.28 Both techniques, however, 
require that a dataset be stripped of identifiable information. 
HIPAA provides for a research identification code to be assigned, 
allowing de-identified health information to be linked back to the 
identity of the patient to which it corresponds, as long as that 
crosswalk is not made available to the recipient of the dataset.29

This dataset would be de-identified under HIPAA and pseudony
mized under GDPR. De-identification can be achieved using 
either of 2 methods29: safe harbor (removal of all 18 HIPAA- 
defined identifiers) or expert determination. An example of de- 
identified data with a link back to the patient’s identity can be 
found in the PCDC resource in which some data contributors 
send an honest-broker identifier which allows them to send 
updates to the data.9 Only the data contributor has access to the 
crosswalk of the de-identified data to the individual patient. An 
example of anonymized data that is completely stripped of any 
identifiers or pseudonyms and is publicly available for download 
is the International Agency for Research on Cancer’s CI5Plus 
datasets.30 These methods of data transformation can reduce the 
risk of re-identification, but they cannot remove it entirely. The 
classic method of database reconstruction can infer individual- 
level responses from small counts in tabular data to re-identify 
individuals31 and novel technologies such as quantum comput
ing can break currently used cryptography intended to protect 
data.32

GDPR attempted to regulate data sharing, but in practice shar
ing data did not become easier within the European Union (EU) 
and it became almost impossible for Member States to transfer 
personal data outside of the EU. Justifications for transferring 
personal data outside of the EU follow a 3-tier hierarchy, as out
lined in Articles 45 (Adequacy decision), 46 (Appropriate safeguards), 
and 49 (Derogations) of GDPR. The Adequacy decision is the most 
appropriate but harder to pursue since the European 
Commission must determine that the non-EU country or organi
zation has an “adequate level” of data protection. Data transfers 
under an Adequacy decision are assimilated to intra-EU data 
transmissions, but the decision must be reviewed by the 
European Commission periodically. The absence of an Adequacy 
decision covering personal health data in the United States is 
impeding research progress in many critical fields. For instance, 
much of the EU contribution to the NCI Cohort Consortium on 
rare disorders, which includes childhood cancers, was halted 
after GDPR came into effect, mainly due to European researchers’ 
inability to share data with NCI.33

Notwithstanding these legal obstacles to international data 
sharing, the EU and United States continue to strengthen cooper
ation in the health arena, namely to facilitate health information 
exchange to support research, innovation, and public health 
advances, in compliance with the legal frameworks on both sides 
of the Atlantic.34 This cooperation builds trust at the highest 
level, increasing the likelihood of sustainable partnerships.35

The Working Group recommends that the European Network 
of Cancer Registries and other stakeholders like SIOPE collabo
rate with the European Data Protection Board to develop crucial 
guidance for processing personal data in scientific research to 
better harmonize interpretation and implementation of GDPR 

across Member States. This work should account for the rules 
and provisions of the future European Health Data Space,36

which was designed to facilitate data access for research and 
innovation across Europe.

Standardization, harmonization, and 
interoperability
Standardization enables registries and research consortia to 
achieve high-quality, comparable data, while harmonization sets 
rules for data handling across the cancer data continuum—start
ing with how they are collected at the point of care, combined 
from different sources, and finally processed and released for 
analysis.37 The International Classification of Diseases for 
Oncology is a classic example of a fundamental standard that 
allows registries to give the same name and code to any cancer 
type occurring anywhere in the world.38 This is the first step in 
producing comparable measures of cancer. In North America, all 
entities contributing to cancer surveillance follow NAACCR 
standards, which ensures data comparability across the conti
nent.39 This standard has been used to rapidly build up secon
dary research data products by NAACCR and NCI that deliver 
standardized data to researchers for analysis despite widely 
varying state and federal laws. Standardization and harmoniza
tion greatly enhance interoperability, that is, the ability to share 
and reuse data across multiple systems without losing semantic, 
contextual, or structural meaning.40 Altogether, these 3 proc
esses optimize health outcomes and stand to benefit patients 
and society the most.

A critical aspect of data comparability is ensuring consistency 
in how variables are defined and collected from disparate sour
ces. To this end, it helps to distinguish core data items from more 
complex, detailed data items which, in principle, only higher- 
resourced institutions can collect. Well-known projects such as 
the University College London’s International Benchmarking of 
Childhood Cancer Survival by Stage (BENCHISTA),41 the London 
School of Hygiene and Tropical Medicine’s worldwide surveil
lance of trends in cancer survival (CONCORD),42 and the 
International Agency for Research on Cancer’s Cancer Risk in 
Childhood Cancer Survivors (CRICCS)43 have defined both core 
and more detailed data items in their protocols. Depending on 
the data item type, a tiered approach could be adopted. For 
instance, the Toronto staging guidelines adopted a tiered hier
archical approach so that what has been collected with more 
detail can be collapsed and compared to what has been collected 
with less detail.44 This approach could help account for widely 
varying types of resources and allow researchers to compare 
information across registries/countries, regardless of their data 
collection capacity and without losing any data that have been 
collected with more detail.

Finally, setting minimum standards and harmonizing the data 
across cancer surveillance systems (ie, registries) and other 
organizations/initiatives that collect information on childhood 
cancers (eg, clinical trials cooperative groups) will be critical for 
establishing common data models (CDMs). CDMs are used to 
standardize and facilitate the exchange, pooling, sharing, or stor
ing of data from multiple sources, which can then be used for 
observational and longitudinal studies.45,46

Several CDMs are available for data harmonization and obser
vational healthcare research. Important examples include the 
Observational Medical Outcomes Partnership (OMOP), maintained 
by the Observational Health Data Sciences Informatics (OHDSI) 
international collaborative,47 and the National Patient-Centered 
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Clinical Research Network (PCORnet), maintained by the Patient- 

Centered Outcomes Research Institute (PCORI).48 The former is 

being adopted internationally, although some US studies like the 
National COVID Cohort Collaborative (N3C) have also selected 

OMOP as the canonical model due to its maturity, documentation, 

and open-source quality.49 Also, through its Oncology Workgroup, 
OHDSI has developed a specific extension for cancer,50 providing 

a platform for standardizing cancer data, including diagnoses, 
treatments, and outcomes, to enable the conduct of observational 

cancer studies and identify patient cohorts in a distributed 

research network.
Some national (eg, The Netherlands Cancer Registry) and 

regional (eg, Geneva Cancer Registry) cancer registries in Europe 
have started to map their data to the OMOP CDM to make the 

data comparable across different studies/entities using the same 

CDM. The OMOP CDM has also been adopted in some large-scale, 
EU-funded initiatives such as IDEA4RC,51 a collaboration among 

25 European institutes to establish a data space for rare cancers. 

In the United States, there has been an effort to map the com
mon data elements (CDEs) in NCI’s cancer Data Standards 

Registry and Repository (caDSR) to the OMOP CDM. The caDSR 

CDEs have been adopted to harmonize data submitted by cancer 
centers and registries to the NCI-led National Childhood Cancer 

Registry.
The complexity of some of these CDMs may impose significant 

obstacles for researchers and clinicians, so it may be more acces
sible to develop ad hoc solutions. The INCa’s Interoperability and 

Data Sharing of Clinical and Biological Data in Oncology (OSIRIS) 

CDM uses a minimum dataset, with only 60 clinical data items.52

Although limited, it is flexible and extensible so that other data 

items can be added based on consensus between experts and 

stakeholders. The OHDSI Oncology Workgroup is working to 
achieve interoperability between the OSIRIS CDM and the OMOP 

CDM.

Novel approaches to data sharing
Developing large, centralized databases with harmonized data 

from multiple medical institutions or research studies is an effec

tive way to develop population-based resources for childhood 
cancer research. Because preserving patient privacy is critical to 

this process, data owners and processors are particularly atten

tive to this aspect, so much so that, to our knowledge, no 
breaches of cancer registry data have occurred. Data privacy and 

security have been one of the principles of cancer registration 

since its onset.53

Despite the success of centralized approaches, interest in the 
data visiting approach has grown, whereby data users query data 

from the source using the data owner’s protected platform. 

Secure data infrastructures that support data visiting allow the 
owner to retain physical and operational control over their data 

by keeping them behind their existing firewalls.54 Data visiting 

can be implemented with privacy enhancing technologies (PETs) 
and permit training and/or deployment of algorithms without 

physically transferring sensitive data.
The Working Group discussed 2 increasingly used mecha

nisms for distributed data sharing under the data visiting 

paradigm—federated querying and federated learning (FL)—as 
well as emerging PETs used to improve privacy, including syn

thetic data generation. Next, we briefly describe each approach, 

including some pros and cons.

Federated queries
Federated querying (FQ) is a decentralized, distributed approach 
where a trusted third party has been granted access to the data 
extracts (ie, queries) from external databases across multiple 
medical institutions.54 Using any number of CDMs agreed on by 
the partners, the trusted broker authenticates and deploys 
approved queries across distributed databases to generate a vir
tual analytical file that is stored in a virtual machine and used 
for downstream analysis. Access to this file is limited to the vir
tual environment (web interface), providing a bridge between 
systems while avoiding the “download and compute locally” 
approach. Privacy is guaranteed because the retrieval of informa
tion is limited to what is specified in the query, with the data 
remaining in its original location, giving the owner and trusted 
broker complete control over data use and reuse. Many of the 
federated query systems in the health space take extra measures 
to ensure privacy55: (1) only releasing the amount of data neces
sary to answer the question; (2) limiting the use of row level 
information when it is not necessary for the research question; 
and (3) masking or not returning information when the query 
results in small cell counts. PCORnet is an example of FQ done in 
the context of federated ecosystems.48

Federated learning
FL is a decentralized, distributed approach under the machine 
learning (ML) framework that allows multiple institutions or net
works to collaboratively train a model (eg, logistic regression or 
survival) without moving patient data beyond their systems’ fire
walls.56 This feature minimizes access to or release and transfer 
of protected health information. The ML process occurs locally at 
each institution, and only the model parameters (ie, gradients) 
needed to update a global model are transferred back and forth 
between the sites and the central server coordinated by the 
trusted broker. Some systems do not require a central server,57

but our discussion is limited to the centralized aggregation para
digm. Once the global model has been trained with heterogene
ous data from multiple institutions, it can be used, for example, 
to improve mortality prediction models.58 Some notable studies 
using FL for cancer research include the Federated Tumor 
Segmentation (FeTS) initiative and the EU-funded FLORENCE 
project. FeTS is one of the largest FL studies worldwide. Its aim is 
to generate an automatic tumor boundary detector for glioblas
toma, a rare, highly fatal brain tumor.59 FLORENCE is a FL project 
successfully used to enhance colorectal cancer care in the Nordic 
countries.60

Neither FQ nor FL are devoid of security risks. Privacy leakage 
can still happen if further security measures are not added to 
protect raw data before and during the processing stage (input 
privacy) or data that is shared or released after processing, 
including trained models and model parameters (output privacy). 
Extra layers of privacy are usually achieved by stacking addi
tional PETs on top of the federated architecture. Techniques to 
improve input privacy include homomorphic encryption,61 which 
enables computation directly on encrypted data, and multi-party 
computation,62 which allows multiple nodes to collaboratively 
compute a function over their inputs while keeping those inputs 
private. Techniques to improve output privacy include differen
tial privacy (DP)63 and synthetic data (discussed below). DP is an 
umbrella term for techniques that, through the injection of ran
dom changes, introduce distortions to the data to try and make it 
unrecognizable while retaining the statistical properties of the 
original dataset (this is the concept of “adding noise” to the data).
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The federated approaches described above allow each partici
pating site to keep physical and operational control over their 
data, which helps overcome participation barriers. Such 
approaches would also save costs and time by removing the 
requirement to transfer huge volumes of raw data to a trusted 
third party, who must also integrate, manage, and store those 
data. Finally, once issues with the privacy/accuracy trade-off 
have been resolved, federated approaches will benefit from 
increased sample sizes and number of institutions in the distrib
uted network. This is particularly important when studying rare 
diseases such as childhood cancer. The downside of most of 
these emerging techniques is that they achieve more robust pri
vacy protection at the expense of accuracy, leading to a privacy/ 
utility trade-off.64 They also lead to higher computational and 
research costs, limiting their applicability in low-resource set
tings.

Synthetic data
As mentioned, synthetic data generation is an approach to 
improve output privacy. It involves creating an artificial dataset 
that retains the statistical properties of a real-world dataset.65

Privacy is protected because the data does not represent real 
individuals and, therefore, does not contain sensitive data or per
sonal identifiers. Synthetic data is useful for gaining insights into 
the disease represented in the dataset, conducting experiments, 
and validating models. However, since it only approximates the 
original data, it should not be used to answer epidemiological 
questions or make clinical decisions. For that, researchers need 
to rely on real data. The challenge with creating a high-fidelity 
synthetic dataset is that there are interdependencies between 
the variables in real-world data that need to be protected so the 
synthetic data retains its utility.66 This could be a limitation 
when creating a synthetic dataset for rare diseases such as child
hood cancer, where a proper balance between utility and privacy 
is harder to achieve due to small counts. Building a dataset to 
answer a specific research question or conduct a specific analysis 
could help overcome this limitation. When there is a concern 
that the synthetic data could be correlated with external data to 
infer sensitive information (a likely scenario when studying rare 
diseases), additional privacy techniques such as DP may be 
needed to add an extra layer of protection. Examples of synthetic 
data include one of the 3 data types available in the N3C study49

and Simulacrum,67 a dataset that imitates some of the data col
lected and curated by NHS England’s National Disease 
Registration Service. Synthetic data are expected to fall under the 
new data governance requirements in the upcoming EU’s 
Artificial Intelligence Act.68

Steps forward
As an outcome of the Paris Conference, the NCI and INCa have 
implemented several workstreams and are working with part
ners to build and develop pilot projects. The projects will provide 
use cases to assess what types of data sharing and research are 
feasible for sharing childhood cancer data internationally. The 
use cases are generally based on examples of successful, 
smaller-scale projects. The overarching goals of these pilots are 
to: (1) provide use cases based on successful prior work that dem
onstrates the scalability of methods; (2) provide proof of concept 
to demonstrate data sharing feasibility; (3) demonstrate the abil
ity to enable data access by a broader external research com
munity; and (4) address research questions that could not be 

answered without international data sharing. Below we describe 
3 of the ongoing pilots.

One pilot involves sharing registry data between the United 
States, Canada, and France, including measures of rurality and 
socioeconomic status (SES). This pilot aims to: (1) demonstrate 
that international data sharing is feasible; (2) assess the differen
tial impact of SES and rurality on cancer outcomes across coun
tries; and (3) make the data accessible to outside researchers 
through Statistics Canada’s Data Analytics Services, a cloud- 
based, customizable, and highly secure data analytics platform. 
Low SES impacts survival outcomes in children with cancer,69

but measuring SES is not standardized across countries.
The second pilot is a collaboration between the United States 

and the United Kingdom that uses PETs to facilitate research on 
childhood cancers. Using some very rare pediatric cancers as a 
use case (eg, hepatocellular carcinoma), this pilot aims to: (1) 
enable cross-border pediatric oncology research; (2) demonstrate 
that data sharing is possible without exchanging raw data; (3) 
identify the best trade-off between privacy and accuracy by 
applying varying levels of differential privacy guarantees; and (4) 
prove the use of the most appropriate working technology in a 
real-world application that is economically viable and works as 
an enabler for research. PETs like FL and FQ can be an effective 
solution for securely accessing more diverse data while protect
ing patients’ privacy and complying with legal requirements.70

The third pilot involves expanding ExtractEHR beyond the 
United States to work with European data registries. ExtractEHR 
is an R software package that uses an application programming 
interface to extract data from electronic health record (EHR) sys
tems, including demographics, clinical notes, laboratory results, 
medications, pathology and radiology reports, procedures, and 
adverse events with a laboratory-defining component.71 This tool 
has been implemented across multiple US institutions and is 
being expanded to registries within the NCI’s Surveillance, 
Epidemiology, and End Results (SEER) Program. This pilot aims to 
implement ExtractEHR in a few European childhood cancer facili
ties to rapidly identify and extract rich, longitudinal clinical data 
for cancer surveillance, cohort studies, or clinical trial assess
ment/enrollment.

Conclusion
In this Commentary, we described the creation of a novel inter
national partnership to facilitate research on childhood cancers. 
We discussed some technical and legal challenges to interna
tional sharing of health data in the context of childhood cancer 
research, agreed on the need to an improved interpretation of 
GDPR, described novel methods and technologies, and high
lighted ongoing activities promoting international data sharing. 
A major conclusion from the Paris Conference for an 
International Childhood Cancer Data Partnership is that while 
technology is not the main barrier to sharing data internation
ally, possible methods and tools need to mature to reach a good 
balance between accuracy (closely related to data utility) and pri
vacy to help drive progress in this space.

The benefits to having centralized data are significant. First 
and foremost, the centralized approach passed the test of time 
long ago, with cancer registries and epidemiologists presenting 
an impeccable track record in maintaining the security of per
sonal data for informative and policy-relevant research over 
more than 60 years. With such a perfect track record, one may 
question whether the described novel approaches to data sharing 
are a defensible way to generate reliable information on data 
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quality and survival, whether they are an efficient use of analyti
cal resources, or whether they protect the autonomy of data sub
jects or the security of the data any better than traditional, 
centralized approaches. Secondly, centralized data allows one to 
perform standardized quality control of the data and set data 
benchmarks at a centralized, more detailed, case level to 
improve data quality control as the collected data items evolve.72

Finally, centralized data are needed to periodically test the accu
racy of novel approaches like FQ and FL so that the queries and 
models do not diverge from the baseline.

With the active support and participation of the G7 Cancer 
stakeholders, including NCI and INCa, as well as the research 
community, this unique opportunity to leverage childhood can
cer research internationally has the potential to address ques
tions requiring large data resources and consortia and achieve 
scientific benefits that could not otherwise be achieved. 
Examples of the latter include the development of international 
risk stratification standards permitting joint clinical trials or 
comparisons between trials and precise estimation of genomic 
subtypes’ prevalence across ethnicities, countries, and global 
regions.

Many obstacles and challenges lie ahead, but now is the time 
to act.
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