
REVIEW: Concurrent outbreaks of mpox in Africa – an update 1 

Camila G. Beiras PhD,1,2 Emile Malenbi MD,3 Roser Escrig-SarretaMSc,1 Steve Ahuka MD,3,4,5 2 
Placide MbalaMD,3,4,5 Hypolite M Mavoko6, Ana B. Abecasis PhD7, Lorenzo Subissi PhD,8 3 
Michael Marks PhD,9 and Oriol Mitjà PhD1,2,10 4 

 5 

1. Skin NTDs and STI Section, Fight Infections Foundation, University Hospital Germans 6 
Trias i Pujol, Badalona, Spain. 7 

2. Universitat Autónoma de Barcelona, 08193 Bellaterra (Cerdanyola del Vallés), Spain 8 
3. Program National Lutte Contre MPX-VHF, Kinshasa, Democratic Republic of the Congo 9 
4. Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of 10 

the Congo  11 
5. Service de Microbiologie, Département de Biologie Médicale, Cliniques Universitaires 12 

de Kinshasa, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo 13 
6. Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic 14 

Republic of the Congo 15 
7. Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and 16 

Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, 17 
IHMT, Universidade NOVA de Lisboa, Lisbon, Portugal. 18 

8. WHO Health Emergencies Programme, World Health Organization, Avenue Appia 20, 19 
CH 1211, Geneva, Switzerland 20 

9. London School of Hygiene and Tropical Medicine, London, UK 21 
10. Universitat de Vic-Universitat Central de Catalunya, Vic, Spain. 22 

 23 

Correspondence to: 24 

Dr. Oriol Mitjà 25 

Hospital Universitari Germans Trias i Pujol, Badalona 08916, Spain  26 

omitja@lluita.org 27 

 28 

  29 



ABSTRACT 30 

In this review, we examine the concurrent outbreaks of mpox in Africa, focusing on clade 1a, 31 
the newly emerged clade 1b, and clade 2b lineage A, and how they differ from the 2022 global 32 
outbreak caused by clade 2b lineage B.1. Historically, clades 1a and 2a have caused sporadic, 33 
limited outbreaks in Central and West Africa, respectively, primarily through zoonotic 34 
transmission. Clade 2b first caused an outbreak in Nigeria in 2017 and later spread globally via 35 
sexual contact in 2022. Recently, the WHO declared a global health emergency due to the 36 
newly identified clade 1b outbreak in eastern DRC, which has now expanded to several other 37 
countries and is spreading through direct and sexual contact in urban centers and refugee 38 
camps. Clades, route of exposure, infectious dose, and host immune response are the main 39 
factors influencing clinical presentation. For clade 1a and 2a, zoonotic transmission plays an 40 
important role, while for clade 1b and 2b, the spread is achieved through sustained human-to-41 
human transmission without zoonotic exposure. For both clade 1a and 2a, lesions follow a 42 
generalized centrifugal distribution, while for clade 2b they are mainly localised to the 43 
anogenital area. For clade 1b, data is still emerging, but current cases show a mix of localized 44 
lesions and centrifugal distribution. Ty. Diagnostic challenges include false negative results for 45 
clade 1b with existing PCR assays and limited testing access in remote areas. Tecovirimat, the 46 
primary antiviral during the 2022 outbreak, has shown variable efficacy across clades, with 47 
reduced effectiveness against clade 1a. The MVA-BN vaccine has been shown to be up to 90% 48 
effective against clade 2b after two doses and is safe for children, though effectiveness drops to 49 
20% when used as post-exposure prophylaxis. Given the evolving nature of the mpox virus, 50 
ongoing research and strong public health responses are critical to managing potential future 51 
outbreaks. 52 

 53 

SEARCH STRATEGY 54 

This review is aimed at updating the extensive description of the 2022 global clade 2b lineage 55 
B.1 monkeypox virus outbreak published in a The Lancet Seminar, placing particular attention 56 
to the new discoveries and insights on the outbreak reported in the Democratic Republic of 57 
Congo. We searched PubMed for peer-reviewed articles published in the past two years with 58 
any of the following terms: “mpox”, “monkeypox virus”, ”smallpox”, “vaccinia”, “orthopoxvirus”, 59 
“tecovirimat”, “cidofovir”, and “modified vaccinia Ankara”, in combination with the words 60 
“pathophysiology”, “animal model”, “immunology”, “sexually-transmitted infections“, “HIV”, 61 
“immunosuppression”, “global outbreak”, “risk factors”, “treatment”. Additionally, we searched 62 
the website of key institutions for recent releases and announcements regarding mpox, 63 
including the following: US Food and Drug Administration, World Health Organization, the US 64 
Centers for Disease Control and Prevention, the African Centre for Disease Control, and the 65 
European Centre for Disease Prevention and Control, the African Medicines Agency, and the 66 
Autorité Congolaise de Règlementation Pharmaceutique. We prioritized new information, 67 
regardless of language, that emerged after November 2022. 68 
 69 
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INTRODUCTION 73 

Epidemiological, animal, and molecular evidence suggest that two clades of monkeypox virus 74 
(MPXV) have existed in different regions of Africa in the past decades.1 Clade 1, present 75 
primarily in Central Africa, has been associated with higher virulence in both animal and 76 
observational studies and in humans.1,2 In contrast, clade 2, which affects countries in West 77 
Africa, lacks several genes present in clade 1 MPXV and is associated with less severe 78 
outcomes2,3 (Figure 1). 79 

Recently, phylogenetic analyses have revealed the presence of subtypes in both clade 1 and 80 
clade 2 . Clade 1a is the predominant strain in Central Africa, particularly in the northern and 81 
central regions of the Democratic Republic of the Congo (DRC). Clade 1b, discovered in 2023, 82 
was identified through genomic analysis of strains from previously non-endemic provinces in 83 
the eastern part of the DRC.4 Clade 2a circulated in West Africa before a large outbreak in 84 
Nigeria in 2017, where Clade 2b became dominant. A global multi-country outbreak in 2022, 85 
which affected non-endemic areas, revealed the divergence of Clade 2b into two lineages: 86 
Clade 2b A, dominant in the 2017 Nigerian outbreak, and Clade 2b B.1, dominant during the 87 
global outbreak in 2022. Initial analyses of the 2022 outbreak strains revealed more mutations 88 
than expected,5,6 suggesting that the virus might be adapting to humans more rapidly. The total 89 
nucleotide difference between the common ancestor of clades 1 and clade 2a genomes is of 90 
2·2x10-03 substitutions per site, while the corresponding value for clades 2a and 2b is 91 
approximately 0·9x10-03.7,8 92 

 93 

Figure 1. Global Phylogenetic (with geographic and temporal identification) of mpox Clades 94 
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 98 

MODE OF TRANSMISSION 99 



Knowledge about the mode of transmission, viral shedding, and infectious period of MPXV 100 
varies significantly across viral clades and remains limited for some of them. The extremely low 101 
secondary attack rates (up to 0.9% in vaccinated individuals and 7.2 in unvaccinated) reported 102 
during outbreaks in West Africa in the 1980s and previous sequencing studies have suggested 103 
that clades 1a and 2a are primarily transmitted through zoonotic spillovers, with little or no 104 
human-to-human transmission.9–11 In contrast, clades 1b and 2b have been linked to more 105 
significant outbreaks, providing clear evidence of human-to-human transmission. Even in these 106 
cases, the reproduction numbers reported indicate that MPXV is less transmissible than 107 
smallpox: the reported reproduction numbers (R0) ranged 0·8 – 2·1 for MPXV and 4 – 6 for 108 
smallpox.12  109 

The potential sites of viral shedding and entry routes also vary across clades. Direct contact is 110 
generally accepted as the primary route of MPXV transmission, which usually occurs when a 111 
person touches infectious materials (e.g., infected skin), or bushmeat, and subsequently 112 
touches their facial mucosa (i.e., eyes or mouth).12–14 Contact with fomites has also been 113 
proposed as a potential transmission route, and analyses of virus stability on several surfaces 114 
found that viral particles remain stable for 1-to-2 days on porous and water-absorbent surfaces 115 
and up to 5 days on glass or stainless steel.15 Alternatively, transmission can also occur through 116 
a breach in the recipient's skin or genitalia, providing a direct entry point for the pathogen.16 117 
Foodborne transmission (including bushmeat consumption) has been traditionally suspected, 118 
though this indirect route of transmission has not been fully confirmed.14  119 

Clade 1a, found in patients infected in the DRC between 2007 and 2011, primarily due to 120 
zoonotic spillovers, was associated with early detection of high levels of viral DNA in the throat 121 
and blood, even before the rash appeared.17 This could suggest viral entry through the 122 
oropharynx or respiratory tract, often presenting with initial symptoms like a sore throat, 123 
followed by viremia and disseminated skin lesions. The presence of viral DNA in these patients 124 
was highest and more prolonged in skin scabs, where it could be detected for up to 20 days, 125 
which could be a potential source of viral shedding and onward transmission. 126 

Clade 1b (DRC, 2023), and clade 2b lineage A (Nigeria, 2017), both were assumed to spread 127 
through general direct contact, with an important component of sexual transmission but 128 
affecting all age ranges.11,18 Conversely, clade 2b lineage B.1, responsible for the 2022 outbreak 129 
in non-endemic countries, was markedly associated with sexual contact. Transmission in these 130 
cases often required intimate contact, which could be facilitated by breaches in the skin or 131 
genital mucosa, leading to more localized infections at the entry point.19 Whether the 132 
differences between Clade 1b and 2b A and Clade 2b B.1 are driven by the virus or primarily 133 
reflect the networks within which transmission took place remains unclear. 134 

Airborne transmission has been suggested based on observation of animals in experimental 135 
settings,20 the potential for airborne transmission of smallpox, and the stability of 136 
Orthopoxviruses in the environment.21 The detection of MPXV in upper respiratory samples 137 
during the 2022 outbreak in non-endemic areas19 and viable viral particles in hospital 138 
surfaces22 has raised further concerns about the possibility of airborne transmission. 139 
Epidemiological data to date, including the absence of illness among neighbours21 and no 140 
transmission among healthcare workers without face masks,23 suggests that airborne spread is 141 
unlikely to be an important route of onward transmission. However, this statement should be 142 
taken cautiously due to limited evidence.  143 



The incubation period varies between studies, though is generally shorter for clade 2b (7 – 10 144 
days post-exposure) than clades 1a and 1b (mean 5 – 13 days; range 4 – 21).24However, it is 145 
unclear if this is due to the intrinsic characteristics of the virus or the route of exposure (sexual 146 
contact providing more direct access to the skin and, therefore, resulting in a shorter 147 
incubation period). The transmission window has been more accurately investigated in clade 148 
2b lineage B.1., responsible for the 2022 outbreak. The potential period of infectiousness 149 
varied across different body compartments, with the DNA virus remaining detectable in skin 150 
lesions for up to 25 days, while the oropharynx, rectum, and semen cleared the virus within 13 151 
to 16 days.19 A study in the DRC, conducted during a period of Clade 1a dominance, found 152 
higher and more persistent oropharyngeal viral loads compared to clade 2b B.1., with similar 153 
viral shedding load and time in skin lesions.17 The higher basic reproductive number (R₀ ~2.5) 154 
observed during the MPXV 2b B.1 outbreak is likely attributable to a high number of contacts 155 
within affected networks rather than an intrinsic increase in the virus transmissibility (i.e., 156 
higher secondary attack rate).  157 

 158 

EPIDEMIOLOGY AND DEMOGRAPHIC DIFFERENCES 159 

Clade 1a primarily circulates in Central Africa, especially in northwestern DRC, southern Central 160 
African Republic, and northern Republic of Congo,17,25,26 in rural and rainforest areas (Table 1). 161 
The virus is primarily transmitted through zoonotic spillover, typically occurring through close 162 
contact with infected animals, such as during hunting and handling of bushmeat, followed by 163 
limited human-to-human spread. Genetic analysis of 348 high-quality genomes collected 164 
between 2018 and 2022 revealed substantial genetic diversity within clade 1a, with different 165 
genomes associated with distinct epidemic events, suggesting multiple independent zoonotic 166 
introductions into human populations.27 167 

Historically, mpox cases in Central Africa were infrequent from 1970 to the 2000s.28 However, 168 
after 2010, the number of cases began to rise significantly.29 This trend escalated throughout 169 
2023, reaching 21,835 cumulative suspected cases and 716 deaths by September 2024 in DRC 170 
(Figure 2, A).30 In this last outbreak, children under 15 years old accounted for 70% of cases and 171 
over 80% of deaths.31 The most affected provinces in DRC were Équateur, Sud-Ubangi, Tshopo, 172 
and Tshuapa (Figure 2,B).30 Although testing is limited, the positivity rate among tested 173 
individuals is high, ranging from 50% to 90%, depending on the reports.31 The increasing 174 
numbers of clade 1a cases reported in the DRC differs from trends in other countries and may 175 
be linked to the cessation of smallpox vaccination,29 enhanced surveillance, increased human-176 
wildlife interactions due to hunting and farming deeper into forests, and movement of the 177 
animal reservoirs in more close proximity to humans. Population growth, urbanization, and 178 
greater mobility may also be contributing to more frequent, though localized, outbreaks. These 179 
factors may all be amplified by ongoing humanitarian crises in the region. 180 

The outbreak caused by clade 1b in DRC  began in September 2023 in the province of South 181 
Kivu, a region previously unaffected by mpox, except for isolated cases in 2011.32 Genomic 182 
analysis of 47 genomes revealed that 22 genomes from Kamituga —a medium-sized town in 183 
South Kivu — were classified as belonging to the newly identified clade 1b.27 By September 1, 184 
2024, the number of confirmed mpox cases in the South Kivu province amounted to 2,969.30  185 
Sexual contact has been identified as a significant mode of transmission in this outbreak and 186 
likely contributing to the rapid spread in densely populated urban centres and across borders; 187 
29% of individuals with confirmed mpox were sex workers.4 However, children have also been 188 



affected, and clade 1b has emerged in a refugee camp near Goma, with close contact 189 
suspected as the primary mode of transmission. The public health response in East DRC is 190 
difficult due to compromised healthcare infrastructure and the ongoing civil unrest, which 191 
makes it challenging to transport samples and obtain necessary reagents. The virus has since 192 
spread to neighbouring countries, including Rwanda, Uganda, Kenya, and Burundi.33 In Burundi, 193 
40% of cases are among children under 10 years old, further indicating spread within the 194 
community.34 195 

 196 

Table 1. Epidemiology and transmission of Monkeypox Virus Clades 197 

Category Clade 1a Clade 1b Clade 2a Clade 2b, 
lineage A 

Clade 2b, 
lineage 
B.1. 

Period 1970-2024 2024 2003 2017-2024 2022-2023 
Geographical 
Distribution 

Central Africa 
(West/Central 
DRC) 

East DRC, 
regional 
spread 

West Africa, 
some 
international 

Nigerian 
outbreak 
2017-2019  

Global 
since 2022 

Transmission 
Dynamics9,12,28,35 

Zoonotic (70%), 
limited human 
spread 

Human-to-
human 
spread 

Zoonotic 
(100%) 

Zoonotic and 
widespread 
human-to-
human 

Sexual 
contact 

Historical trends Low until 2010, 
then rise 

Emerged 
2023, 
spreading 

Small outbreaks 2017 Nigeria 
outbreak  

2022 global 
outbreak 

Demography Mostly children Mostly adults Adults and 
children 

Mostly adults Mostly 
adult MSM 

Genomics4,8 High diversity, 
multiple 
zoonotic 
introductions.  
Infrequent 
APOBEC3-type 
mutations (8% 
of all 
mutations) 
 

Low diversity, 
limited 
spread. 
Significant 
mutations 
observed. 
Frequent 
APOBEC3-
type 
mutations 
(55% of all 
mutations). 

High diversity, 
multiple 
zoonotic 
introductions. 
Limited 
APOBEC3 
activity (13% of 
all mutations). 
 

Very frequent 
APOBEC3-
type 
mutations 
(90.8% of 
mutations) 

High 
diversity. 
Frequent 
APOBEC3 
mutations 
(84.8% of 
observed 
mutations) 

DRC: Democratic Republic of Congo. MSM: men who have sex with men 198 

 199 

Figure 2. Incidence of mpox in the Democratic Republic of Congo. 200 



 201 

Figure legend:  A) Annual reported cases of mpox in the Democratic Republic of Congo (DRC) 202 
from 2016 to 2024, with a notable increase in 2023. B1) Geographic distribution of mpox clades 203 
in DRC (2024): clade 1, in Central and Northern DRC; clade 1b, concentrated in the South Kivu 204 
region. B2a) Number of reported cases of Mpox in Equateur province in 2024 by 205 
epidemiological week (clade 1a). B2b) Number of reported cases of Mpox cases in South Kivu in 206 
2024 by epidemiological week: Initial cases in Kamituga (January 2024) were followed by rapid 207 
expansion to other health zones, especially during May and June 2024.  Comparison of case 208 
numbers between South Kivu and other provinces, highlighting a high but stable number of 209 
cases in other regions and a significant increase in South Kivu during 2024. 210 

 211 

Clade 2a, primarily found in West Africa, caused several isolated cases linked to zoonotic 212 
transmission between 1970 and 2000 in countries including Cote d’Ivoire, Liberia, and Sierra 213 
Leone.32 In 2003, the U.S. experienced an outbreak of 71 cases across six states, traced back to 214 
prairie dogs infected by animals imported from Ghana, with all human cases associated with 215 
zoonotic transmission.36–38  216 

Clade 2b lineage A.1 was identified during a large outbreak that occurred in Nigeria from 2017 217 
to 2019, with over 300 confirmed cases.11,18 This outbreak provided evidence of sustained 218 
human-to-human transmission, although ongoing zoonotic transmission has also been 219 
reported.39 Sporadic cases of clade 2b have been reported in Western countries, often linked to 220 
international travel.40,41 In Nigeria, the ongoing human epidemic is currently driven by clade 2b 221 
lineage A.2.3. 222 

A new variant Clade 2b lineage B.1. triggered a global epidemic that began in May 2022. This 223 
lineage spread to 113 countries, affecting over 100,000 people and resulting in 152 deaths.16,24 224 
Transmission was human-to-human, with rapid spread through dense human networks, 225 
especially among populations with sexual contact with multiple partners, predominantly 226 
affecting men who have sex with men (87%), with approximately 50% of cases occurring in 227 
people living with  HIV.42 The global spread was further facilitated by international travel and 228 
interconnected communities.43,44 Several factors likely contributed to this unusually large 229 
outbreak, including chance events like large festivals where many people gathered, the 230 



structure of the sexual networks involved, and viral adaptation.44 Clade 2b MPXV has a high 231 
frequency of APOBEC3-induced mutations, indicating extensive adaptive microevolution in 232 
humans.8,45 Cases in the global outbreak dropped sharply after three months, likely due to a 233 
combination of public health and social measures such as changes in sexual behaviour, 234 
vaccination of individuals at higher risk, and immunity amongst those who acquired mpox. 235 
However, the virus continues to circulate in many countries. In some countries, such as  South 236 
Africa, this has been associated with a high CFR (i.e., up to 15%), likely driven by infections in 237 
people with unmanaged or recently diagnosed HIV infection.46 Whether differences in 238 
transmission patterns simply reflect entry of the virus into different networks or is also partly 239 
driven by viral mutations remains unclear.  240 

CLINICAL PRESENTATION AND SEVERITY OF OUTCOMES 241 

Mpox has traditionally caused a systemic illness that includes fevers and myalgias, with a 242 
characteristic rash that is important to differentiate from that of other vesicular eruptions (e.g., 243 
chickenpox, smallpox). The reported clinical presentation of the disease varies significantly 244 
between clades.24 It is not entirely clear to what extent these differences are influenced by viral 245 
clade, the patient’s immune status, the route of exposure, or the infectious dose.  246 

Across all clades, systemic symptoms such as fever, fatigue, and headache are common, 247 
reflecting some degree of systemic inflammatory response (Table 2). Lymphadenopathy is a key 248 
feature of mpox,  with clades 1a, 2a, and 2b lineage A, presenting with generalized 249 
lymphadenopathy,17,18,39 whereas clade 2b lineage B.1 more frequently presents with localized 250 
lymphadenopathy near skin lesions.16,47,48 251 

The type of rash and local or systemic complications also varied in different outbreaks (Table 2). 252 
In clade 1a cases from DRC, skin lesions are primarily concentrated on the head, arms, and legs, 253 
spreading in a centrifugal pattern;10,17,28,49 more than 90% of patients presented with more than 254 
100 lesions, and 70-80% typically experienced lymphadenopathy (Figure 3A). Severe 255 
complications, including secondary bacterial infections with sepsis (20%) and involvement of 256 
the respiratory (11%) or gastrointestinal tracts (8%), are common.10,17 Ocular manifestations 257 
were also less frequently reported in the 2022 outbreak compared with previous outbreaks.50 258 

The clinical presentation of clade 2a MPXV infection was described in a few cases from West 259 
Africa; most of them were classified as mild or moderate, as opposed to cases linked to central 260 
Africa (clade 1), which were mostly classified as severe.51  Clade 2a clinical presentation was 261 
more extensively described in the 2003 zoonotic outbreak in the U.S.37 Patients presented with 262 
fever (85%), and generalized lesions mostly on the arms and legs (81%), and a small proportion 263 
had >100 lesions (20%) or a secondary complication (9%), mostly mild. Similarly, clade 2b 264 
lineage A also presents with generalized, though  fewer in number lesions, and severe 265 
complications are reported to be less frequent.11,18  266 

The clinical presentation of clade 2b lineage B.1. was described in detail during the 2022 267 
outbreak.16,27,47,48 Lesions are localized to specific areas, such as the genital, anal, and oral 268 
regions, reflecting transmission primarily through sexual contact. Sixty percent of cases present 269 
with less than 10 lesions, and very few have more than 100 lesions, with 50% experiencing 270 
lymphadenopathy. This clade generally does not lead to severe systemic complications, except 271 
for some rarely described events of vision loss, encephalitis, or myocarditis.52,53 However, in 272 
individuals with advanced HIV (CD4 count <200 cells/µL), clade 2b can cause more severe 273 
outcomes, with some developing a fulminant condition, including necrotizing skin lesions 274 
(36%), lung nodules (15%), bowel obstruction (20%), or sepsis (28%).54 Likewise, clinical reports 275 



of the 2022 outbreak in Nigeria showed severe outcomes in patients co-infected HIV or 276 
varicella zoster virus.55,56 Solid organ transplant recipients with clade 2b infection also 277 
experienced severe outcomes.57 278 

In the recently described clade 1b, the median age of affected individuals is 22 years, with 50% 279 
being female and 30% being sex workers, though children are also affected.4,27,49 Genital lesions 280 
were reported in 63% – 85% of cases. While 91% of patients were hospitalized, primarily for 281 
isolation, only 10% experienced severe respiratory issues. (Figure 3B) Clinical data are still 282 
emerging. 283 

 284 

Figure 3. Comparison of Disseminated and Genital Mpox Presentations in clades 1a and 1b285 

 286 

A) A child with disseminated mpox lesions associated with clade 1a, showing widespread 287 
umbilicated vesicles on the torso and limbs. B) A female patient with genital mpox lesions 288 
associated with clade 1b, characterized by vulvar coalescent whitish vesicles with umbilicated 289 
center. 290 

 291 

Table 2. Clinical presentation and complications of Monkeypox Virus Clades* 292 

Feature Clade 1a Clade 1b Clade 2a 
Clade 2b 
lineage A 

Clade 2b 
lineage B.1. 

Population features      

Age 10% adults 
85% adults in 
DRC, 60% in 
Burundi.  

73% adults 70% adults 80-99% adults 

Mean age 14 years 22 years  -- 26–32 years 37–41 years 

Male/Female 
M: 50-64%  
F: 26-50% 

M: 48% 
F:52% 

M:53% 
F:47% 

M: 53–78%  
F: 22-47% 

M: 97–100%  
F:0-3% 

Smallpox vaccination 
in childhood 

2% Unknown Unknown 20% 11–18% 

Exposure to animal 
products 

100% 0% 100% No No 

Living with HIV 0.5% 7% unknown ND 36–67% 

      

Systemic symptoms      

Fever 44-50% 60% 85% 45-90% 54-72% 
Fatigue or myalgia 85% -- 71% 73-85% 24-81% 



*Data were retrieved from published retrospective cohorts3,10,11,16–18,28,37,47,48  293 

The case fatality rate (CFR) has been higher in clade 1 compared to clade 2.  During the 2023 294 
outbreak in the DRC (clade 1a), the estimated overall CFR was 4%, rising to 11% in children 295 
under five years old.49 In earlier studies, the CFR reported for Central Africa ranged from 4% to 296 
12%, with deaths generally occurring in the second week of illness.10,28,58 The 2017 Nigeria 297 
outbreak (clade 2b lineage A) resulted in a fatality rate of 3·6%, which was likely magnified due 298 
to several deaths occurring in immunocompromised persons with HIV.11,59 Based on the 299 
adverse outcomes reported, other groups, such as pregnant women, are likely at higher risk of 300 
death, though the CFR is less well established than associations with age and HIV.60 In contrast, 301 
there were no deaths in the 2003 outbreak in the U.S. (clade 2a).38,61 During the multi-country 302 
2022 outbreak (clade 2b lineage B.1.) only a few deaths have been reported.62 Most of these 303 
cases have been reported in immunocompromised persons with advanced HIV (CFR 15%, CD4 304 
counts <200 cells/µL).54,57,63  305 

The higher severity of clade 1 compared to clade 2 has also been observed in pregnancy. 306 
Although data from the 2022 outbreak are limited for this population group because it affected 307 
mostly men, no deaths or vertical transmission was reported among pregnant women infected 308 
with MPXV.60,64 Conversely, MPXV infections among pregnant women occurred in outbreaks 309 
dominated by clade 1 resulted in stillbirth or miscarriage in 75% of the cases.60,65 The CFR 310 
among pregnant women has not been fully established.  311 

Whether the observed differences in severity of outcomes and CFR of clade 1 and clade 2 312 
MPXV are primarily driven by differences in the virus, population characteristics (e.g., age, and 313 

Headache 24% -- 65% 48-79% 25-53% 
Sore-throat or cough 78% -- 50% ND ND 

Lymphadenopathy 
51-98% 
(submaxillary, 
cervical) 

42% 71% 
57–87% 
(cervical, 
50%) 

60% (inguinal) 

Clinical features of 
the rash 

     

Severe Rash  (>100 
lesions) 

93%  unknown 20% 20–42% 0–4% 

Distribution 
Generalized 
(100%)  

 
Generalized 
(75%) 

Generalized Localised  

Primary site of 
lesions 

Face  
Oral (40%), 
genital (80%) 

Arms 
Site of animal 
contact 

Anogenital 
(70-87%) 

    Face 100% -- 62% 96–98% 20–39% 
    Arms and Legs 100% -- 81% 81–91% 50–60% 
    Palms and soles 70-81% -- 28%   
    Trunk 70-100% -- 56% 80–93% 25–57% 
    Genitalia 27% --  67–68% 55–61% 
    Perianal ND --  ND 34–44% 
    Oropharyngeal 28-52% --  38% 14–43% 
Severe 
Complications 

     

Secondary bacterial 
infection 

19% -- 6·3% 19% 3-4% 

Respiratory 
11% 
(abnormal 
lung sounds) 

-- 
6·3% 
retropharyng
eal abscess 

12% 
bronchopneu
monia 

0% 

Rectal (proctitis) 0% -- -- ND 11-25% 
Gastrointestinal 7-8% -- -- ND ND 
Ocular 4-6% -- 6·3% 0.4% 1% 
Neurological 0·4-6% -- -- 0.4% 0% 
Hospital admission 6% -- 24% 26% 1–13% 
Fatality rate 1–12% 0·6% 0% 3·6% <0·1% 



co-morbidities) or access to timely diagnosis and supportive care is not yet fully understood. 314 
For example, in the 2022 global outbreak, reported CFRs varied depending on the prevalence 315 
of untreated, advanced HIV amongst the affected populations.24 Further study is required to 316 
better delineate the role of viral, host and health system factors in explaining observed 317 
differences. 318 

People with prior mpox infection or previous vaccination tend to have milder symptoms. In a 319 
report of 37 cases of reinfection or post-vaccination infection, symptoms were less severe than 320 
in the 2022 global outbreak. Reinfections had a shorter disease course with less mucosal 321 
involvement, while post-vaccination cases showed few lesions, minimal mucosal disease, and 322 
low analgesia needs.66  323 

DIAGNOSTICS 324 
Mpox diagnosis primarily relies on the detection of viral DNA through real-time polymerase 325 
chain reaction (rt-PCR), allowing for the detection of the virus in various specimen types, 326 
including swabs from skin lesions, oropharyngeal, genital, and anal regions. Accurate diagnosis 327 
is highly dependent on proper sample collection, storage, and transport. Self-collected swabs 328 
have emerged as a practical option in some settings.67 Of note, in many settings, diagnosis is 329 
made via clinical assessment alone due to inadequate access to diagnostic testing. Clinical 330 
diagnosis may be less reliable in children due to the wide range of other causes of fever-rash 331 
illnesses in this age group. 332 

rt-PCR assays recommended by the CDC have been proposed, which can distinguish MPXV 333 
from other orthopoxviruses, but also between clade 1 and clade 2.68 These include primers for 334 
generic MPXV detection (G2R_G), as well as clade1 (C3L) and clade 2 (G2R_WA) specific 335 
detection.69 However, clade 1b is associated with specific diagnostic challenges, as it can be 336 
missed by certain PCR assays due to deletion of the C3L gene, leading to false negatives.70 To 337 
ensure accuracy, it is crucial to use PCR tests with multiple targets, including very conserved 338 
regions, and to employ kits specifically validated for detecting clade 1b. Identification of clades 339 
is vital for precise diagnosis and epidemiological monitoring. When possible, direct sequencing 340 
may be used to confirm clade identity and the development of multiplex assays that can detect 341 
multiple clades simultaneously should be prioritized. 342 

In the DRC, a robust network of GeneXpert machines is available, providing valuable diagnostic 343 
capacity. However, the current GeneXpert MPX/OPX assay is designed to detect non-variola 344 
Orthopoxvirus and MPXV clade 2. While the first target is useful for the DRC, the second one 345 
has no utility in areas where only clade 1 circulates. In these settings, MPXV clade 1 infection is 346 
being indirectly inferred when clade 2 results are negative.71 This shortcoming underscores the 347 
need for updating and expanding the diagnostic toolkit to ensure comprehensive detection of 348 
all relevant clades. 349 

Rapid antigen tests are available, but they often show very low sensitivity.72 The use of 350 
polyclonal antibodies in these tests is recommended to enhance their performance since 351 
monoclonal antibodies may lose effectiveness due to mutations.  In addition to these antigen 352 
tests, molecular diagnostic options are advancing: the WHO recently approved the Alinity m 353 
MPXV assay by Abbott Molecular Inc. for emergency use, marking the first commercial 354 
molecular assay for mpox.  More independent evaluations are needed to better understand the 355 
utility of rapid antigen and molecular tests for mpox. 356 

THERAPEUTICS 357 



Mpox treatment primarily involves supportive care to manage symptoms and complications, 358 
such as pain relief, hydration, and treating secondary infections. No drugs are specifically 359 
approved for mpox, but antivirals like tecovirimat, cidofovir, and brincidofovir have shown 360 
some evidence for efficacy in preclinical studies and are available under compassionate use 361 
protocols, particularly for severe cases.73  362 

Tecovirimat, widely used during the 2022 outbreak, acts by inhibiting the function of envelope 363 
proteins required for the production of extracellular virus.74 In some countries (e.g., the UK and 364 
European Union) tecovirimat is approved for the treatment of mpox, while in the U.S., it is an 365 
investigational agent that needs to be accessed through either the CDC’s Expanded Access-366 
Investigational New Drug (EA-IND) protocol or the open-label arm of the STOMP trial.74 In 367 
highly immunocompromised patients, combination therapy has been used. Case reports have 368 
shown that mpox patients living with HIV with very low CD4 counts (<200 cells/µL) and 369 
uncontrolled HIV loads can have a prolonged course of disease and high mortality, even with 370 
treatment.75 The use of tecovirimat is being further evaluated in six ongoing placebo-controlled 371 
randomized controlled trials (RCTs), most of which are expected to be completed by 2025. Early 372 
results from an RCT in the DRC did not demonstrate clear benefits of tecovirimat for treatment 373 
of patients with mpox clade 1 infections.76 The overall mortality rate of the trial was lower than 374 
expected (1·7%), likely due to the enhanced care provided, emphasizing the importance of 375 
high-quality supportive care in managing mpox. 376 

Brincidofovir, though less commonly used than tecovirimat, remains a potentially viable 377 
option,77 especially when tecovirimat is ineffective or unavailable. It acts by interfering with 378 
viral lipid metabolism, and it is typically considered for patients who do not respond to 379 
tecovirimat, experience disease progression, or have contraindications.  Pre-clinical research on 380 
antivirals against mpox is ongoing, and the number of mpox-related patents has increased 381 
rapidly in the past few years.73,78  382 

 383 

VACCINES 384 

All available vaccines are currently based on attenuated vaccinia-virus strains rather than MPXV 385 
itself. The first-generation monkeypox vaccine, Dryvax, was effective in reducing transmission in 386 
an African study by lowering the secondary attack rate among household contacts.10 However, 387 
it was withdrawn due to outdated manufacturing methods. Currently, the available vaccines 388 
are ACAM2000 and LC16m8, both replicating vaccines derived from an attenuated viral isolate, 389 
and Bavarian Nordic's Modified Vaccinia Ankara (MVA-BN), a replication-deficient vaccine. A 390 
number of novel vaccines, including mRNA candidates, are in development, but none are 391 
sufficiently advanced for widespread deployment at this time.  392 

The MVA-BN vaccine has shown effectiveness in preventing clade 2b mpox based on 393 
observational studies, though no RCTs have been conducted. A case-control study across 12 394 
U.S. jurisdictions estimated the vaccine effectiveness at 75·2% after one dose and 85·9% after 395 
two doses,79 and that the vaccine is effective across various administration routes 396 
(subcutaneous, intradermal, and heterologous) and provides substantial protection, even 397 
among immunocompromised individuals, albeit with slightly lower effectiveness in this group. 398 
Another U.S.-based study reported adjusted vaccine effectiveness of 35·8% for one dose and 399 
66% for two doses.80 MVA-BN vaccine effectiveness for post-exposure prophylaxis is much 400 
lower at only 20% (95%CI -24% – 65%).81  401 



Safety data indicate that the vaccine is well-tolerated in children, with most adverse events 402 
being mild and self-limiting.82 In a large-scale safety monitoring study involving nearly 1 million 403 
doses of MVA-BN administered in the U.S., the vaccine was well-tolerated across all ages, 404 
including children, with no serious adverse events in those under 18, confirming its safety in 405 
children.82 Another study on children further validated its safety and reactogenicity.83 Data on 406 
the efficacy of MVA-BN in the context of clade 1 MPXV is currently limited. However, given its 407 
proven efficacy in adults against clade 2 MPXV, and favourable safety profile in children, the 408 
vaccine is likely to be a mainstay of control efforts in the current outbreak in DRC.  409 

The LC16m8 vaccine, based on a live attenuated strain of vaccinia, was licensed in Japan in 410 
1975 without age restrictions after the last smallpox cases were reported in Japan. In August 411 
2022, its use was expanded to include the prevention of mpox. There are no direct studies on 412 
its effectiveness against smallpox. Animal studies showed that LC16m8 provided strong 413 
protection in mice, rabbits, and monkeys against lethal challenges with the MPXV.84 In 414 
immunogenicity studies, seroconversion was elicited in 90·2% [95% CI, 81·2% – 99·3%]) 415 
vaccinia-naive participants and 60·0% [95% CI, 52·3% – 67·7%]) of previously vaccinated 416 
participants. No severe adverse events were observed.85  417 

There is limited data to inform the optimal vaccine roll-out strategy. Given the extent of the 418 
current outbreak, widespread vaccination for the population at risk is likely recommended. 419 
Identification of critical populations (such as health care workers and infants) who most 420 
urgently require vaccination is an important priority. Given the likelihood of a limited vaccine 421 
supply, evaluation of strategies such as delaying the second dose of vaccine to facilitate more 422 
rapid roll-out should be strongly considered.  423 

 424 

BROADER PUBLIC HEALTH RESPONSE 425 

Along with biomedical interventions, such as vaccines and therapeutics, a number of other 426 
elements are critical for the control of mpox. Although not specifically tested in the mpox 427 
context, isolation and contact-tracing strategies, both in the community and healthcare 428 
settings, have proven essential to minimise the risk of onward transmission in viral 429 
outbreaks.86,87 Although critical, such measures require education and adequate facilities and 430 
staffing and can be, therefore, challenging to implement, especially as the number of cases 431 
requiring isolation and contact tracing increases.  432 

The development of appropriate messaging and involvement of communities themselves in the 433 
outbreak response is a critical and often overlooked component. Such issues are especially 434 
marked in the current mpox outbreak where the visible nature of the illness and its 435 
transmission, at least in part through sexual contact, can both be associated with significant 436 
stigma. However, as demonstrated in previous ebola outbreaks, sustained community 437 
engagement and education are vital to ensure the success of control measures. 438 

CONCLUSIONS 439 

Recent years have witnessed large-scale outbreaks of both clade 1 and clade 2 of MPXV, with 440 
different transmission patterns and clinical characteristics between viral variants. There is an 441 
urgent need to evaluate and deploy public health measures to control the simultaneous 442 
outbreaks now occurring worldwide. Sustained term investment in outbreak preparedness and 443 
increasing access to mpox vaccination in Africa are urgently required to provide lasting 444 



protection to affected and at-risk populations. Future research should also investigate the 445 
contribution of viral characteristics and external factors (e.g., population characteristics and 446 
access to healthcare resources) to the different outcomes observed between viral variants. 447 
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