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A B S T R A C T

Purpose: Radiation treatment planning is highly complex and can have significant inter- and intra-planner 
inconsistency, as well as variability in planning time and plan quality. Knowledge-based planning (KBP) is a 
tool that can be used to efficiently produce high-quality, consistent, clinically acceptable plans, independent of 
planner skills and experience. In this study, we created and validated multiple clinically acceptable and fully 
automatable KBP models, with the goal of creating VMAT plans without user intervention.
Methods: Ten KBP models were configured using high quality clinical plans from a single institution. They were 
then honed to be part of a fully automatable system by incorporating scriptable planning structures, plan cre
ation, and plan optimization. These models were verified and validated using quantitative (model statistics) and 
qualitative (dose-volume histogram estimation review) analysis. The resulting KBP-generated plans were 
reviewed by physicians and rated for clinical acceptability.
Results: Autoplanning models were created for anorectal, bladder, breast/chest wall, cervix, esophagus, head and 
neck, liver, lung/mediastinum, prostate, and prostate with nodes treatment sites. All models were successfully 
created to be part of a fully automated system without the need for human intervention to create a fully opti
mized plan. The physician review indicated that, on average, 88% of all KBP-generated plans were “acceptable as 
is” and 98% were “acceptable after minor edits.”
Conclusion: KBP models for multiple treatment sites were used as a basis to generate fully automatable, efficient, 
consistent, high-quality, and clinically acceptable plans. These plans do not require human intervention, 
demonstrating the potential this work has to significantly impact treatment planning workflows.
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Introduction

Radiation treatment planning is highly complex, with many aspects 
of planning dependent on the treatment planner’s training, skills, and 
experience [1–4]. This dependency results in considerable inter- and 
intra-planner inconsistency and variability in plan quality and planning 
time [1,2,5,6]. Knowledge-based planning (KBP) has been shown to 
significantly reduce both planning time and plan variability and increase 
overall plan quality [2,4,7–9], and is available from commercial ven
dors, such as RapidPlan from Varian Medical Systems (Palo Alto, CA). 
KBP models use machine learning to evaluate patient geometry refer
enced against existing treatment plan doses to generate dose-volume 
histogram (DVH) estimates [10]. These generated DVH estimates can 
then be loaded into the optimization process to give patient-specific 
starting points for optimization of intensity-modulated radiation ther
apy or volumetric-modulated arc therapy [10]. Inputted data are used to 
customize models to individual clinic standards. Although generating a 
model has significant upfront cost, the ability to create a valid KBP 
model is possible for many cancer centers [8] because, in many cases, 
only 20 cases are needed, plus a recommended 20 additional cases for 
validation of the model [11].

While the KBP process is typically used to generate initial plan 
optimization objectives and constraints, additional modification is 
necessary to create an optimal plan for each individual patient [8]. The 
treatment planner still needs to continually review the plan and DVH 
estimates and refine the optimization objectives until an optimal plan is 
achieved. Olanrewaju et al. [3] and Rhee et al. [1], showed that it is 
possible, however, to refine the KBP model by the use of additional 
planning structures and objectives so that no subsequent manual opti
mization is necessary for the majority of patients. In that case, KBP can 
form the basis of a fully automated planning process that creates a 
clinically acceptable plan without user intervention. In this paper, we 
describe our work in development and validation of KBP-based plan 
optimization approaches for multiple cancer sites, with the goal of 
creating clinically acceptable plans without user intervention.

Methods and Materials

Separate KBP models were developed for multiple treatment sites 
using RapidPlan (Varian Medical Systems, v15.6.06). All procedures 
were performed in compliance with the Declaration of Helsinki and 
institutional guidelines, and the use of this work was approved by the 
University of Texas MD Anderson Institutional Review Board (IRB 
Number: PA16-0379), including a waiver for informed consent. For all 
treatment sites, the data collection, data extraction, model training, 
verification, and validation followed the same procedures, as described 
below.

Model generation

In the data collection phase, retrospective clinically treated cases 
were reviewed and selected based on commonalities in clinical variables 
such as modality, treatment site, prescription dose, and extent of dis
ease. Plans’ quality, including organs at risk (OAR) sparing and target 
coverage, conformality, and homogeneity, were assessed by dosimetrists 
based on clinical experience; suboptimal cases and those that were 
considered atypical (e.g., recurrent treatment, unique setups or targets) 
were filtered out of the cohorts. Each model was configured using 
anticipated necessary structures, such as targets, OARs, and planning 
structures (e.g., planning risk volumes, normal tissue, and ring struc
tures; more details can be found in Table 4 per model site in Appendix 
A). Clinical structures that were deemed relevant but were not included 
in the original plan (e.g., pelvic bone marrow) were added by the 
dosimetrist (all manually contoured except for the rectal model, which 
used deep-learning pelvic OAR contours [1]) during case evaluation; 
otherwise, all matched Plan Structures were the original clinical 

contours. Model Structures included were either anatomic structures 
that could be automated using deep learning models or planning 
structures (e.g., dummy structures created using Boolean operations) 
that can be automatically generated using operations in the treatment 
planning system through the Eclipse application programming interface 
(API). The goal was to use a minimum of 20 high-quality plans for each 
model in development and an additional 20 for validation cases 
(Table 1), although we typically used more, depending on the avail
ability of consistent plans for each site. For models with limited case 
availability, such as the anorectal short course model, the minimum 
number of cases that should be used in the DVH estimation was met first, 
with the remaining cases being used for validation. For models with vast 
case availability, the minimum number of cases that should be used for 
validation was met first, with the remaining cases being used for the 
DVH estimation. As evidenced-based practices evolve with time, case 
selection prioritized the most recent cases to ensure that results would 
reflect and include current clinical practices. Once the data is curated for 
each site, it is inputted to generate a tailored DVH estimation model.

Model analysis

Following model training, ModelAnalytics (MyVarian.com) was used 
for the initial analysis. Feedback was noted per structure (e.g., high
lighted a specific case’s OAR that may distort the estimated DVH, sug
gested addition of more cases to fill data gaps), and edits were made to 
the model where possible (e.g., removed the specific case’s OAR from 
model, added more cases if available). Further model analysis consisted 
of reviewing each trained structure’s DVH plot, coefficient of determi
nation (R2 value), and regression plot. DVH plots were used to identify 
errors such as incorrect prescription entries or structures that did not 
meet constraints. R2 = 0.7 was used as the targeted lower threshold for 
each structure, though in some cases this was not achievable if the OAR 
was variably distanced from the targets. To increase R2 < 0.7 values, 
regression plots with geometric and dosimetric variables were used to 
detect outliers that may need to be reviewed or removed from the model 
to achieve a better fit. This consisted of reviewing outliers to ensure 
there were no mistakes in contouring (e.g., incorrect laterality associ
ated, incorrect contours, stray pixels). If the contours appeared to be 
correct, the next step consisted of iteratively trialing removal of outliers 
and comparing R2 and regression plots for improvements. Instances of 
outlier removal that resulted in reduced R2 value or minimal increase to 
the R2 value (<0.05) were added back to preserve variety in the model. 
The optimal R2 value per structure was considered achieved when there 
were no further increases in R2 values despite changes made to the 

Table 1 
Number of Treatment Plans Used for Model Training and Validation for Each 
Treatment Site.

Treatment Site Model Set, No. Validation Set, No.

Anorectal* 28 35
Bladder 48 20
Breast/chest wall 100 93
Cervical 120 75
Esophagus 55 20
Head and neck† – 75
Liver‡ 67 20
Lung/mediastinum 78 25
Prostate 95 38
Prostate with nodes 37 20

*Anorectal model was initially generated for supine cases, with the minimum of 
20 curated cases for the model. After validation showed feasibility for the 
supine-only model on prone setups, an additional 8 prone cases were curated 
and added to the model.
†Head and neck model came with the Eclipse treatment planning system with no 
model data.
‡Liver model was downloaded from ORBIT-RT.com, then customized and 
validated.
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model.

Model validation

The model validation process had two steps. The first step was to 
validate the model with clinical data by comparing clinical dose to the 
DVH estimation bands to determine a good fit, as the Generated and Line 
model objectives are produced from the lowest values along the DVH 
estimation bands. This step was completed on at least 10 patients from 
the validation set per site to ensure a workable potential for a quality 
model before moving onto the second step of validation. The validation 
set comprised additional cases of similar quality and diversity as the 
model training set (see Table 1 for total number of validation cases per 
site). Case selection was intended to be robust, meaning that it consisted 
of variations of plans that the model would be used for. If specific 
structures were consistently a poor fit for ideal scenario cases, the 
dosimetrist would iteratively go back and forth between this first step of 
validation and the model analysis steps to achieve a good fit.

The second step of validation involved creating universal plan setup 
and planning objectives to be used in every case per model, focusing on 
Generated and Line objectives where applicable, though a combination of 
both automatically generated and manual values proved to be benefi
cial. Details can be found in the Model Setup section of each site in 
Appendix A. An iterative process was used to determine the best solution 
for each treatment site, similar to manual treatment planning. The 
dosimetrists used their clinical experience to test and introduce fields 
and planning structures (e.g., normal tissue rings, OAR avoidance 
structures) that could be automated through the Eclipse API into each 
model by using combinations of simple operations, such as Boolean, 
Crop Structure, Expansion, etc., for a potential fully automated opti
mized plan (Tables 3-4 per site in Appendix A). The final validation was 
performed methodically identically on the entire validation set of each 
model (Table 1).

In addition to the new models described above, various additional 
external models sourced from Eclipse (Varian Medical Systems) and 
ORBIT-RT (orbit-rt.com) databases were also validated using the model 
validation methods detailed above.

Physician review

All cases in the validation set were fully anonymized and reviewed 
for clinical acceptability by radiation oncologists sub-specialized in the 
respective treatment site (see Table 4 for number of reviewing physi
cians per site). The physicians were made aware that all cases were KBP 
generated and were provided with a 5-point rubric (Table 2) for their 
ratings. Any feedback was noted. If feedback could be addressed through 

automatable means (i.e. feedback that could only be ameliorated using 
human discernment was not addressed), the process was restarted to 
mitigate their concerns with the model.

Results

Using R2 to assess model quality, overall, 77 % of trained Model 
Structures had good fit (R2 ≥ 0.7) or modest fit (0.7 > R2 ≥ 0.5). Prostate 
(43 %) and rectum (50 %) had the lowest percentage of good or modest 
fit Model Structures, while the liver, lung/mediastinum, and bladder 
models had the highest with 100 %. More details are found in Table 1 of 
each model section in Appendix A. Through qualitative analysis in step 
one of validation, DVH estimation bands showed overall reasonable 
estimation band widths and similar line estimations comparable to their 
respective clinical doses, often despite poor fit (R2 < 5, Fig. 1). Poor fits 
were primarily due to structures being variably distanced from targets. 
For example, the esophagus model included an array of tumors with 
varying distances from the heart (R2 = 0.38). All seven cases that did not 
meet constraints for the heart (Appendix A, page 12, Table E2) were 
inside threshold values for the model, however only two clinical plans 
were able to meet constraints when the KBP plans were not (specifically, 
heart mean < 20 Gy). Of those two, only one showed that the DVH 
estimation itself was insufficient to meet the clinically achieved doses 
(actual KBP heart mean achieved = 21.6 Gy, clinical heart mean =
19.62 Gy; Fig. 1B).

The head and neck model from Washington University (included in 
Eclipse, Varian Medical Systems) and the liver SBRT model from ORBIT- 
RT DVH estimates were comparable to clinical doses in the first step of 
validation, and the models were successfully configured to meet local 
clinical standards through the methods of the second step of validation 
(Appendix A, pages 15–21). Review of the DVH estimation bands for the 
anorectal, esophagus, and lung/mediastinum models from ORBT-RT did 
not overall produce line estimates compatible with local clinical doses in 
the first step of validation. As a result, new models for these sites were 
developed with local clinical data.

All models were successfully designed to work with the Eclipse API to 
complete a fully optimized plan without any manual intervention or 
need for human discernment. All except for the bladder model required 
planning structures that were created solely using simple functions that 
can be automated through the programming interface (see Table 4 per 
model site in Appendix A for details). The esophagus and lung/medi
astinum models required adding and training planning Model Structures 
from the most optimal cases in the model, such as normal tissue or 
avoidance structures (e.g., contralateral lung minus the planning target 
volume with margin). For example, the lung/mediastinum model 
consistently did not meet V5 and V10 (i.e., the percentage of the 
structure’s normal tissue receiving ≥ 5 Gy or ≥ 10 Gy, respectively) 
constraints; however, after contouring a lung avoidance in 30 cases that 
most optimally met V5 and V10 and training it in the model, the plans 
were able to meet these constraints without compromising coverage 
(Fig. 2).

For models that did not routinely produce acceptable plan quality 
after the first KBP-based optimization, an approach was developed to 
add additional structures. These structures were then used for a second 
optimization, which was scored for acceptability. The new structures 
were specifically designed so that their generation could be automated 
using the Eclipse API, generally based on isodoses of the first optimi
zation, so that the second optimization can be run without the need for 
user editing/intervention. Optimization objectives, including additional 
structures for subsequent optimizations, can be found in Table 5 per 
model in Appendix A.

Throughout the validation process, a wide variety of cases were 
validated with the model to assess which scenarios could work with each 
model. This created exclusions and inclusions per model (specifics can 
be found in the Overview section of each model in Appendix A). For an 
example of found exclusions: the lung/mediastinum model was created 

Table 2 
Rubric Provided to Radiation Oncologists During Review to Rate Validation 
Plans.

Rating Likert Scale Description

5 Strongly agree Use-as-is (i.e., clinically acceptable, and could be 
used for treatment without change).

4 Agree Minor edits that are not necessary. Stylistic 
differences, but not clinically important. The current 
contours/plan are acceptable.

3 Neither agree or 
disagree

Minor edits that are necessary. Minor edits are those 
that can be made in less time than starting from 
scratch or are expected to have minimal effect on 
treatment outcome (e.g., beam weighting 
adjustment).

2 Disagree Major edits. This category indicates that the 
necessary edits are required to ensure appropriate 
treatment and sufficiently significant that the user 
would prefer to start from scratch.

1 Strongly disagree Unusable. This category indicates that the quality of 
the automatically generated contours or plan are so 
bad that they are unusable.
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for multiple prescriptions, however, it was found during validation that 
the model would have to be more specific, and hypofractionated cases 
were excluded. For an example of found inclusions: the anorectal model 
was initially designed for supine setups, but upon further validation, it 
was proven to work for prone setups as well.

Dosimetric analysis showed that on average across all models, 86 % 
of KBP-generated plans met 90 % of OAR constraints (Table 3). Physi
cian review evidenced that most often that cases did not meet OAR 
constraints were due to overlap or proximity of contours with targets 
and were still deemed clinically acceptable with this in mind. For 
example, only 38 % of anorectal cases passed bladder constraints, but 
94 % of cases were deemed clinically acceptable as is (Table 3), with 
physician feedback noting the overlap. In addition, on average, 87 % ±
17 % of cases met all target objectives and constraints, and the volume of 
the prescription dose or all planning target volumes (PTVs) per model 
were met at 98 % ± 1 % (Table 3). This high average suggests that cases 
that did not meet their PTV objectives were likely borderline (six 
treatment sites had V100% > 95 % as their PTV objective). For example, 
the anorectal short course model had 71 % of cases meet the V100% >
95 % PTV objective; however, the average dose was 96 % ± 1 % 
(Table 3). Further details on planning objectives and validation results 
are found in Table 2 of each model section in Appendix A.

A model was determined to be robust if it had at least 90 % 
“acceptable as is” ratings by physicians, which were considered a score 4 
or 5 on the Likert scale. The anorectal, bladder, cervical, lung/ 

Fig. 1. A. A knowledge-based planning (KBP)-generated dose-volume histogram (DVH) estimation of heart band width (shaded area) and line estimation (dashed 
line) with reasonable comparison to the dose achieved in the clinic (solid line) despite a poor fit of R2 = 0.38. B. A case in which the DVH estimation (dashed line and 
shaded area) would be insufficient in generating objectives to meet clinically achieved heart sparing between V15Gy and V35Gy.

Fig. 2. Dose-volume histogram comparison of a knowledge-based planning 
(KBP) plan before and after using trained planning structures in the model. 
Target coverage is similar between the initial and final plans, but the dose to the 
lungs better meets V5 < 65 % (dotted green line) and V10 < 45 % constraints 
(dotted magenta line) in the final model. CTV, clinical target volume; GTV, 
gross tumor volume; PTV, planning target volume. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Table 3 
Dose-Volume Histogram Evaluation of the Knowledge-Based Planning–Generated Plans.

Model Site No. of 
Cases

Cases that Met 90 % of OAR 
Constraints, %

Average Target Objective Pass 
Rate, %

Average Dose for 
PTVs, %

Average Dose for Plan 
Dmax, %

Anorectal 34 94 87 95.5 ± 1.1 107.1 ± 0.5
Bladder 20 95 100 99.2 ± 0.4 105.7 ± 1
Lt/Rt breast and Rt chest 

wall
68 76 87 99.1 ± 0.9 111.2 ± 2

Lt chest wall* 25 44 94 98.8 ± 0.9 113.6 ± 2.7
Cervical† 40 85 59 99.9 ± 0.3 112.4 ± 4.5
Esophagus 20 90 100 97.5 ± 1.2 108.7 ± 1.3
Head and neck† 57 75 99 92.9 ± 3.7 107.3 ± 1.1
Liver SBRT 20 100 95 97.8 ± 1.7 −

Lung/mediastinum 25 92 97 97.7 ± 2.3 106.9 ± 1.2
Prostate 20 95 46 96.9 ± 0.6 105.7 ± 0.4
Prostate with nodes 20 95 94 98.6 ± 0.8 106.8 ± 1.4

*Separated left chest wall data from left and right breast and right chest wall cases due to significant difference in results.
†Data from international multi-institutional study [3,12].
Dmax, maximal dose; Lt, left; OAR, organs at risk; PTV, planning target volume; Rt, right.
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mediastinum, and prostate with nodes models were able to achieve this 
goal (Table 4). Left/right breast and right chest wall cases validated with 
the breast/chest wall model were able to achieve the goal of 95 % 
“acceptable after minor edits” or better ratings (3, 4, or 5 on the Likert 
scale). Several left chest wall cases validated with the breast/chest wall 
model faced a significant challenge in meeting the left ventricle V5 dose 
constraint, which led to low scores. This was likely due to the proximity 
of the chest wall to the left ventricle and lower volume of tissue 
compared to the left breast. The liver SBRT model validated several 
plans with significant chest wall involvement that scored below 4 due to 
proximity or overlap of chest wall structures; the model heavily priori
tizes target coverage, which weighted the model from achieving the 
chest wall goals. Despite this, 100 % of the cases validated with the SBRT 
model were rated at least a 3 (acceptable after minor edits), with 
physician feedback requesting chest wall dose to be lowered if possible 
(Table 4). Multiple plans received varying feedback from reviewing 
physicians on whether they would accept a plan that went over con
straints as tradeoff between target coverage and OAR sparing; these 
were determined to require physician discernment on a case-by-case 
basis.

Discussion

This study showed that it is possible to generate fully automatable 
plans that are efficient, consistent, high-quality, and clinically accept
able using Knowledge Based Planning (KBP) models for multiple treat
ment sites (Fig. 3). These plans do not require adjustment by the 
treatment planner and are thus well suited for inclusion in a fully 
automated treatment planning process. Plan review by a physician is 
still necessary, both due to medicolegal and ethical obligations as well as 
the fact that even the best models did not produce clinically acceptable 
plans for all patients. Importantly, there were instances of cases that did 
not meet OAR constraints but were still deemed clinically acceptable by 
physicians due to patient anatomy; conversely, there were cases that met 
constraints but were rated unacceptable or edits required due to 
physician preference of dose distribution. Valuable work on risk in 
automated radiotherapy has also highlighted the importance of human 
review of the output of automated processes in radiotherapy [12].

As KBP relies on geometry, this study demonstrated that a set of 
patient data in one setup can be used in multiple setups of similar 

geometric layout. For example, the supine anorectal model generated 
equal quality plans and clinical acceptability scores for prone setup 
patients, and similarly, the left breast model for right breast cases. There 
was no direct correlation of the number of patient cases in each model 
with plan quality or clinical acceptability, so it is possible to generate a 
quality model with a limited patient pool if the plans are of consistent 
quality and planning structures are used.

Cases that were rated not clinically acceptable often received such 
rating due to not meeting standard OAR constraints and differences in 
the reviewing physician’s goals, where the reviewing physician would 
prefer a tradeoff of target coverage (highly prioritized in the model) to 
meet an OAR constraint. Consistent with findings from other studies 
[6,13], there was notable inter-physician variability in ratings. Inter- 
user variability in clinical acceptability [6] mean that different users 
may have different opinions about the same plan. Our 5-point scale at
tempts to include this, with a score of 5 meaning acceptable, and 4 
meaning that it is acceptable, but some refinement might be helpful if 
time or resources allow. In general, a 4 or 5 denote an acceptable plan. 
This will be further clarified in future prospective use of these tools. 
Whether a planner will/should further adjust the plan is a complicated 
question that is affected by institutional planning practice as well as the 
time and effort needed to make any changes. For a few examples 
experienced in this study, the prostate model was reviewed by three 
physicians, and while there were some variability in ratings between all 
three physicians for each case, the largest difference came from one 
physician who rated six plans as “acceptable with minor edits” that the 
others rated “acceptable as is.” Feedback noted that clinical preference 
differed, as for one, the prescription isodose line is preferred to be within 
the target boundaries and they requested that the plans be normalized to 
reflect this, and for the others, clinical preference is for the target to be 
covered by the prescription isodose line with margin. For the anorectal 
model, one physician rated 100 % of cases as “acceptable as is,” and the 
other rated 9 % as needing minor edits due to differences in preference 
for dose distribution and target dose conformality.

There were also instances of cases that failed due to unclear reasons, 
such as one lung/mediastinum case rated unacceptable (2) that did not 
meet half the planning objectives despite having similar aspects of other 
plans that performed well; additions to the model of cases with com
parable characteristics did not increase the model’s performance for that 
plan. With these exceptions in mind, on average, 88 % of all model cases 
were rated “acceptable as is” and 98 % “acceptable after minor edits.” 
The remaining percentage of cases will likely require manual planning, 
which is consistent with previous studies’ findings [3]. This provides a 
potential to significantly reduce treatment planning workload by off
loading more straightforward cases, allowing for more time and efforts 
to focus on the difficult cases.

McIntosh et al. [9] and Olanrewaju et al. [3] showed comparable or 
higher acceptability ratings during blind physician review between 
clinical and auto-planned cases in concept. However, McIntosh et al. 
went on to show that, while clinical acceptability ratings remained 
similar following actual deployment, the number of auto-planned cases 
actually accepted for treatment was significantly lower. This finding 
shows that these acceptance ratings may not be fully reflective of actual 
plan acceptability when used for clinical treatment of patients.

The head and neck and cervical models are currently integrated into 
the Radiation Planning Assistant (RPA.MDAnderson.org), a fully auto
mated contouring and planning system that is FDA 510(k) approved, not 
marketed in the USA, but is clinically deployed in cancer centers in 
South Africa. The remaining models are currently being integrated into 
the next version of the system, and are part of an ARCHERY protocol to 
evaluate AI-based contouring and planning [14].

Our study had a few limitations to note. With the exception of the 
head and neck, cervical, and prostate models, all reviews were from a 
single institution—and often from a single physician—and therefore do 
not reflect the breadth and diversity of clinical practices. In addition, 
except for the head and neck and cervical models, all model and 

Table 4 
Clinical Acceptability of Knowledge-Based Planning–Generated Plans Based on 
Physician Review.

Model Site Number 
of Cases

Number of 
Physicians

Acceptable 
as is (4–5)*, 
%

Acceptable 
after Minor 
Edits (3 þ )*

Anorectal 35 2 96 100
Bladder 20 2 100 100
Lt/Rt breast 

and Rt chest 
wall

68 1 88 97

Lt chest wall† 25 1 68 88
Cervical‡ 75 3 99 100
Esophagus 20 1 75 100
Head and 

neck‡
75 3 87 96

Liver SBRT 20 1 80 100
Lung/ 

mediastinum
25 1 96 96

Prostate 38 3 83 100
Prostate with 

nodes
20 2 98 100

*Likert scale.
†Separated left chest wall data from left and right breast and right chest wall 
cases due to significant difference in results.
‡Data from international multi-institutional study [3,12].
Lt, left; Rt, right.
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validation set cases were collected from a single institution, and results 
may not be consistent for other populations and clinics.

Conclusion

This study showed that it is possible to generate fully automatable 
plans using Knowledge Based Planning models as the basis for multiple 
treatment sites, with 88 % of all model-generated cases being rated as 
“acceptable as is” on physician review. As these plans do not require 

human intervention, this work has the potential to significantly impact 
treatment planning workflows.
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