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Abstract

Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a tick-borne pathogen that causes

severe acute fever disease in humans and requires a biosafety level 4 laboratory for han-

dling. Hazara virus (HAZV), belonging to the same virus genus as CCHFV, does not exhibit

pathogenesis in humans. To investigate host RNA-binding proteins (RBPs) that regulate

CCHFV replication, we generated a series of mutant RAW264.7 cells by CRISPR/Cas9 sys-

tem and these cells were infected with HAZV. The viral titers in the supernatant of these

cells was investigated, and HuR (ELAVL1) was identified. HuR KO RAW264.7 cells reduced

HAZV replication. HuR is an RBP that enhances mRNA stability by binding to adenyl-uridine

(AU)-rich regions in their 30 non-coding region (NCR). HuR regulates innate immune

response by binding to host mRNAs of signaling molecules. The expression of cytokine

genes such as Ifnb, Il6, and Tnf was reduced in HuR KO cells after HAZV infection. Although

HuR supports the innate immune response during HAZV infection, we found that innate

immune activation by HAZV infection did not affect its replication. We then investigated

whether HuR regulates HAZV genome RNA stability. HAZV RNA genome was precipitated

with an anti-HuR antibody, and HAZV genome RNA stability was lowered in HuR KO cells.

We found that HuR associated with HAZV RNA and stabilized it to enhance HAZV replica-

tion. Furthermore, HuR-deficiency reduced CCHFV minigenome replication. CCHFV is a

negative-strand RNA virus and positive-strand RNA is produced during replication. HuR

was associated with positive-strand RNA rather than negative-strand RNA, and AU-rich

region in 3’-NCR of S segment was responsible for immunoprecipitation with anti-HuR anti-

body and minigenome replication. Additionally, HuR inhibitor treatment reduced CCHFV

minigenome replication. Our results indicate that HuR aids replication of the CCHFV minige-

nome by associating with the AU-rich region in the 30-NCR.
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Author summary

Crimean-Congo Hemorrhagic Fever virus (CCHFV) is a tick-borne pathogen that causes

severe acute fever disease in humans and requires a biosafety level 4 laboratory for han-

dling. Hazara virus (HAZV), the same genus of CCHFV, has been used as a model virus

to reveal the molecular mechanism of CCHFV infection. To investigate host factors for

CCHFV replication, we generated a series of mutant RAW264.7 cells and conducted

screening for host genes that regulate the replication of HAZV, identifying HuR

(ELAVL1). HuR is an RNA-binding protein (RBP) that enhances mRNA stability by bind-

ing to its 30 non-coding region (NCR). We found that HuR is associated with the CCHFV

RNA stability by binding to its 3’-NCR, and the minigenome assay showed that CCHFV

replication is supported by HuR. HuR inhibitor treatment also reduced CCHFV minige-

nome replication. These findings present a possible starting point for the future develop-

ment of antiviral drug targeting host RBPs. Combination treatment with RdRp and RBP

inhibitors may be a potential therapeutic strategy in the future.

Introduction

Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Orthonairovirus and

is a tri-segmented negative-sense RNA virus [1–3]. CCHFV is a tick-borne pathogen responsi-

ble for severe acute fever with a case fatality rate of 5–30%, and is distributed in Africa, Middle

East, southern Europe and Asia [4]. These areas overlap with the distribution of Hyalamma
spp., which are major tick vectors [4]. CCHFV transmission occurs through tick bites in

humans and handling of infected animal blood or tissues. Additionally, the nosocomial route

of CCHFV transmission has been reported in several countries [5,6]. Molecular pathogenesis

of CCHF remains largely unknown. Several studies have shown that patients with the severe

form of CCHF exhibit a high level of inflammatory cytokines, such as TNF, IL-6 and IFN-γ,

and the excess of these cytokines may trigger vascular dysfunction, disseminated intravascular

coagulation, organ failure and shock [7,8].

CCHFV requires a biosafety level 4 (BSL-4) laboratory for handling and has been declared

by the World Health Organization (WHO) as an R&D Blueprint priority pathogen [9]; there-

fore, research on viral-host interactions and pathogenicity of the virus has been limited.

Hazara virus (HAZV) and CCHFV belong to the same genus, and share many structural and

biological characteristics. HAZV has been used as a model virus to reveal the molecular mech-

anism of CCHFV [10–12]. Wild type (WT) mice infected with HAZV did not show pathogen-

esis, however IFN-α/βR knockout (KO) mice infected with HAZV showed mortality within

one week. Histopathological findings in HAZV infected IFN-α/βR KO mice were identified in

the liver, spleen and lymph nodes, with changes similar to a mouse model of CCHFV infection

[10]. HAZV infection in human cells caused a stronger induction of cytokine gene expression

such as IL6, IFNb and TNFa [13]. CCHFV and HAZV have three negative-strand RNA sepa-

rated into small (S), medium (M), and large (L) segments. S segment encodes nucleoprotein

(N), and M segment encodes the precursor that originates the mature glycoproteins of the

viral envelope (Gn and Gc) and some additional proteins. L segment encodes L protein con-

taining RNA-dependent RNA polymerase (RdRp). Coding regions of these proteins are

located between 50 and 30 non-coding regions (NCRs) that are essential as promoter sequences

for viral genome replication and synthesis of complementary strand [14–16].
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Patients with CCHF exhibit high levels of inflammatory cytokines [7,8] and CCHFV infec-

tion to monocyte derived dendritic cells also induces cytokine production [17]. Innate

immune responses to viral infection are initiated upon sensing of viral nucleic acids by host

pattern-recognition receptors. Negative-strand RNA viruses are sensed by the cytosolic pro-

teins, retinoic acid–inducible gene I (RIG-I) and melanoma differentiation-associated protein

5 (MDA5), which transmit the signal through the mitochondrial protein interferon (IFN)-β
promoter stimulator 1 (IPS-1) (also called MAVS), which culminates in the activation of the

transcription factors NF-κB and IRF3 [18,19]. After viral infection, IRF3 is phosphorylated by

the kinase TBK1 and/or its related kinase IKKi (also known as IKKε) and subsequently trans-

locates into the nucleus [20]. IKKα/β phosphorylate IκB proteins and triggers their degrada-

tion, allowing NF-κB to translocate to the nucleus. IRF3 and NF-κB cooperatively regulate the

expression of genes encoding pro-inflammatory cytokines and type I IFNs [21,22].

RNA-binding proteins (RBPs) play a crucial role in the post-transcriptional regulation of

immune response, cancer, development and other biological events [23,24]. A major strategy

for RBPs is the regulation of mRNA stability. Human antigen R (HuR), also known as

ELAVL1, is an RBP that increases the stability of host target mRNAs by binding adenyl-uri-

dine (AU)-rich regions in their 3’-NCR [21,25,26]. HuR has three RNA-recognition motifs,

and belongs to the Hu protein family, which is composed of HuR, HuB, HuC, and HuD. HuR

is ubiquitously expressed, whereas HuB, HuC, and HuD are specifically expressed in the neu-

ronal tissues [27]. Previous reports have shown that HuR maintains the mRNA of various tar-

get genes, including IFNB1, COX2, IL8, and TGFB1, which contain the AU-rich and U-rich

element in 3’- NCR [28–30]. We have also reported that Plk2 and Atp6v0d2 are HuR-target

mRNAs that regulate antiviral and inflammatory response [31,32]. HuR-crosslinking and

immunoprecipitation with RNA sequences revealed ~26,000 HuR-binding sites [33] and

~3,000 target mRNAs stability [34].

Mouse models of CCHFV infection have provided evidence that hepatocytes and endothe-

lial cells are targets of CCHFV infection, which causes liver damage and vascular dysfunction

[3]. Monocytes and macrophages are also infected by CCHFV, which may contribute to dis-

ease progression and excessive inflammatory response [35]. In this study, we generated a series

of mutant RAW264.7 cells, a macrophage-like cell line used for the immune response [31,32],

and conducted screening for host genes that regulate the replication of HAZV, identifying

HuR. HuR regulated HAZV replication by association with its RNA genome. Furthermore,

the minigenome assay for CCHFV supported that HuR regulates the replication of CCHFV. It

is widely accepted that HuR binds to the AU-rich region in the 30-NCR of host mRNA. Our

results indicated that HuR helps the replication of CCHFV minigenome by association with

AU-rich region in the 30-NCR of RNA.

Materials and methods

Ethics statement

The experiments were approved by Nagasaki University Recombinant DNA Experiment

Safety Committee (approval number 2303291851–5).

Cells and reagents

HEK293 cells, RAW264.7 cells and MEFs were cultured in DMEM (Nacalai Tesque) supple-

mented with 10% heat-inactivated FBS in a 5% CO2 incubator. High molecular weight

(HMW) polyinosinic-polycytidylic acid [poly(I:C)] was purchased from InvivoGen. Poly(I:C)

was mixed with Lipofectamine 2000 (Life Technologies) at a ratio of 1:1 (μg/μL) in Opti-MEM

(Life Technologies) and cells were stimulated with 2 μg/mL poly(I:C) for intracellular
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stimulation. The transcriptional inhibitor actinomycin D was purchased from Sigma-Aldrich.

Rig-I/Mda5 KO MEFs [18], IPS1 KO MEFs [19] and Tbk1/Ikk-i KO MEFs [20] were generated

from each KO mice and were kindly provided by Dr Shizuo Akira (Osaka Univ.). LDH in the

culture supernatant was measured using LDH assay kit (nacalai tesque) according to the man-

ufacturer’s instructions.

Generation of mutant cell line

CRISPR-associated protein 9 (Cas9) were cloned into the retroviral expression plasmid

LZRS-IresGFP (#21961, Addgene, Waltham, MA, USA) digested with EcoRI and BamHI. The

recombinant retroviruses were packaged in Platinum E cells, and used to infect and select

RAW264.7 cells. Stable Cas9-expressing RAW264.7 cells were selected by flow cytometry

using FACSAria Fusion (BD Bioscience). Guide RNAs (gRNAs) were selected using CRISPR-

direct (https://crispr.dbcls.jp/), which were cloned into the lentiviral gRNA expression plas-

mids pKLV-U6gRNA (BbsI)-PGKpuro2ABFP (#50946, Addgene) digested with BbsI or

pgRNA-humanized (#44248, Addgene) digested with BglII. The gRNA-containing lentiviruses

were packaged in HEK293T cells and used to infect and select RAW264.7 cells. Stable gRNA-

expressing RAW264.7 cells were selected using 4 μg/mL puromycin for 3 days, and then used

for the experiment. Generated cloned cells and gene names were listed in S1 Table.

Virus and viral titration

The HAZV JC280 strain is described in a previous paper [36]. Working stocks of the virus

were prepared using SW-13 cells. For titration of HAZV, serial dilutions of the virus were

mounted on monolayer SW-13 cells in 24-well plate for 1 h, and SW-13 cells were overlaid

with MEM containing 2% (v/v) FBS and 0.7% (w/v) UltraPure Agarose (Thermo Fisher Scien-

tific). After incubation for 3 days, the cells were fixed with ethanol containing 16% (v/v) acetic

acid and stained with 1% (w/v) amido black in phosphate–buffered saline (PBS) after removal

of overlaid agarose. Tick-borne encephalitis virus (TBEV) strain Oshima 5–10 [37] and Japa-

nese encephalitis virus (JEV) strain JaOArS982 [38] are described in previous papers. Serial

dilution of TBEV and JEV was added on the monolayer BHK cells in 24-well plate for 1 hour

and cells were overlaid with MEM containing 2% (v/v) FBS and 1.5% (w/v) Carboxymethyl

Cellulose (CMC) (Wako). CMC contained medium was removed after incubation for 3 days,

and the cells were fixed and stained with 10% formalin with 0.25% crystal violet. HAZV was

exposed 30 W UV light (CRF/UV-30A) for 30 minutes (min) for inactivation.

RNA isolation

Total RNA was extracted with TRI Reagent (Molecular Research Center, Inc.), according to

the manufacturer’s protocol.

Real-time PCR assay

Total RNA was reverse transcribed to cDNA using random primers with ReverTra Ace

(Toyobo), according to the manufacturer’s protocol. KAPA SYBR Green PCR Master Mix

(Kapa Biosystems) was used for real-time PCR and the measurements were performed using

QuantStudio 3 (Applied Biosystems). The PCR conditions were as follows: 95˚C for 3 min; 40

cycles of 95˚C for 5 seconds (s), 60˚C for 30 s; and melt curve stage. Amplified products were

detected at 60˚C. HAZV S (354–697 bp), M (740–1012 bp), and L (4940–5330 bp) were ampli-

fied and subcloned as standard DNA. Copy numbers of S, M, and L segments were calculated

using a standard curve from the titration of standard DNA. Copy number of CCHFV reporter
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RNA was calculated using a standard curve from the reverse transcription of titrated CCHFV

reporter RNA. The primer sequences were listed in S2 Table.

ELISA

RAW264.7 cells were seeded in 96-well plates and infected with 1 MOI HAZV for the indi-

cated time period. The cytokine level of IL-6 in the culture supernatant was measured using

Mouse IL6DuoSet ELISA (R&D Systems) according to the manufacturer’s instructions.

Western blotting

Whole-cell lysates were prepared by lysing the cells in 50 mM Tris-HCl (pH 8), 150 mM NaCl,

10 mM EDTA, 2 mM EGTA, 0.25% triton X-100. After sonication and centrifugation at

12,000 × g for 10 min at 4˚C, supernatants were collected and used as whole-cell lysates.

Whole-cell lysates were subjected to SDS-PAGE and transferred to a polyvinylidene fluoride

(PVDF) Immobilon Transfer Membrane (Millipore). The membranes were immunoblotted

with the indicated antibodies. Bound antibodies were visualized with horseradish peroxidase

(HRP)-conjugated antibodies against mouse or rabbit IgG (Sigma-Aldrich) using Immobilon

Forte (Millipore). HRP activity was detected using a LAS 3000 system (Fuji-film). The follow-

ing primary antibodies were used for western blotting. Rabbit anti-pIRF3 (4947S, Cell Signal-

ing Technology), rabbit anti-pp65 (3033S, Cell Signaling Technology), mouse anti-IRF3 (sc-

33641, Santa Cruz Biotechnology), mouse anti-NF-kB p65 (sc-8008, Santa Cruz Biotechnol-

ogy), mouse anti-HuR (sc-5261, Santa Cruz Biotechnology), and mouse anti-Actinβ (sc-47778,

Santa Cruz Biotechnology) antibodies were used. Anti-HAZV N antibody was prepared by

immunizing BALB/c mice with recombinant HAZV N protein expressed in E. coli. Rabbit

anti-pIRF3, rabbit anti-pp65 and mouse anti-HAZV N were diluted 1:1000, and other antibod-

ies were diluted 1:100. Anti-rabbit IgG (A0545-1ML, Sigma-Aldrich) and anti-mouse IgG

(A4416-1ML, Sigma-Aldrich) peroxidase antibodies were used at 1:10000 dilution.

Promoter reporter assay

HEK293 cells were plated in 24-well plates and transiently transfected with 50 ng of IFN-β
reporter plasmid or ISRE reporter plasmid and pRL-SV40 (Promega) as an internal control.

After 24 h of transfection, cells were stimulated with 1 MOI HAZV or poly(I:C), and luciferase

activities were measured after 24 h stimulation with SpectraMaxiD5 (Molecular Devices) using

the Dual-Glo Luciferase Assay System (Promega), according to the manufacturer’s

instructions.

Minigenome assay

Plasmid construction for the minigenome assay was performed as previously described [15].

Briefly, reporter RNA were synthesized from pUC-GW-Amp-secNluc-CCHFV Lseg or

pUC-GW-Amp-secNluc-HAZV Sseg under the T7 promoter in vitro (Takara ITVpro mRNA

Synthesis Kit). HEK293 cells in 24-well plate were transfected with pCAG-Hyg-CCHFV L,

pCAG-Hyg-CCHFV N, and the CCHFV reporter RNA for the CCHFV minigenome assay,

using Lipofectamine 2000. Minigenome assay of HAZV was conducted in the same manner.

The luciferase activity of secNluc in the supernatant was measured with SpectraMaxiD5

(Molecular Devices) using the Nano-Glo Luciferase Assay System (Promega), according to the

manufacturer’s instructions.
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RNA stability assay

WT and HuR KO RAW264.7 cells at 48 h post-infection with HAZV were treated with 2.5 μg/

mL actinomycin D and incubation was stopped by adding TRI Reagent.

RNA immunoprecipitation

RAW264.7 cells infected with 0.1 MOI HAZV for 2 days or HEK293 cells transfected with pos-

itive-strand or negative-strand CCHFV reporter RNA for 3 h were lysed by pumping using a

27 G syringe needle (Terumo) in polysome lysis buffer (100 mM KCl, 5 mM MgCl2, 10 mM

HEPES [pH7], 0.5% Nonident P-40, 1mM DTT). After centrifugation at 12,000 × g for 15 min

at 4˚C, the supernatants were incubated in the presence of 2 μg anti-HuR antibody (Santa

Cruz Biotechnology) or control IgG (Bio X cells) with Protein-G Sepharose beads (Sigma-

Aldrich) for 3 h at room temperature. Beads were washed three times with polysome lysis

buffer and TRI Reagent (Molecular Research Center, Inc.) was added for RNA isolation.

Statistical analysis

Data are expressed as the mean standard deviation (SD). Statistical analyses were performed

with R (4.0.3).

Results

Monocytes and macrophages infected with CCHFV may contribute to disease progression

and excessive inflammatory response. To investigate CCHFV replication in macrophages,

RAW264.7 cells, a macrophage-like cell line were infected with 0.1 MOI HAZV, and the virus

titers in the supernatant were measured by the plaque assay. Mouse embryonic fibroblasts

(MEFs) were also infected with HAZV to compare macrophages with non-immune cells. The

virus titers of RAW264.7 cells peaked at 24–48 h and sustained to 72 h (Fig 1A). The virus

titers of MEFs peaked at 48 h and decreased at 72 h (Fig 1A). To identify host cell factors

responsible for CCHFV replication, we generated RAW264.7 cells with a frame-shifted muta-

tion in the exon of genes encoding RBPs. We generated 66 cell lines targeting 35 genes, and for

most of the target genes, we generated two mutant cell lines per gene (S1 Table), and virus

titers of these cells at 48 h after 0.1 MOI HAZV infection were measured by the plaque assay.

The virus titers of these cells were plotted, and the cell lines that showed higher or lower titer

than the WT RAW264.7 cells were highlighted (Fig 1B). The virus titers of mutant cells for

Zfp36l1, Parp12, and Unk were increased whereas those of mutant cells for Trm1 and HuR

were reduced. HuR increases the stability of host target mRNAs by binding to AU-rich regions

in their 3’-NCRs [21,25,26] and we have found that HuR-target host mRNAs to regulate innate

immune response [31,32]. We selected HuR to investigate whether it also regulates the stability

of exogenous RNA during viral replication. HuR deficiency in these mutant cells was con-

firmed by western blotting with anti-HuR antibody (Fig 1C). WT and HuR KO cells were

plated and the number of these cells was counted (S1 Fig). The proliferation of WT and HuR

KO cells was not significantly altered. To investigate whether lowering the virus titer in HuR

KO cells is specific to HAZV infection, HAZV, TBEV and JEV infected WT RAW264.7 cells

and HuR KO cells, and the virus titers were measured at the different time points (Fig 1D).

HuR-deficiency lowered the HAZV titers from 48 to 120 h after infection. The TBEV titer in

WT and HuR KO cells was not significantly altered, except at 72 h post infection. JEV titer in

HuR KO cells was higher than those in WT cells at 48 and 72 h post infection. It is unclear why

TBEV titer at 72 h and JEV virus titer at 48 and 72 h increased in HuR KO cells; however, HuR

deficiency differentially affected viral replication. To investigate copy number of HAZV inside
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cells, RNA was isolated from WT, KO1 and KO2 cells at 48 h after infection with 0.1 MOI

HAZV, and the copy number of S segment (N) RNA in HuR KO cells was lower than that in

WT cells (Fig 1E).

HuR regulates innate immune response via RIG-I/MDA5-dependent and nucleic acids-

sensing endosomal Toll-like receptors-dependent pathways [31,32]. CCHFV and HAZV infec-

tion caused activation innate immune response to induce expression of cytokine genes

[7,8,17]. We investigated innate immune regulation by HuR during HAZV and JEV infection.

WT and HuR KO RAW264.7 cells were infected with 1 MOI HAZV and at 9 h post infection,

the expression of Il6, Ifnb, Tnf, Cxcl10, Il10, Il12p40, Ccl2 and Tgfb relative to non-infected

control cells and the copy number of S segment inside cells were measured (Fig 2A and 2B).

HAZV was exposed to UV for inactivation, and WT and HuR KO RAW264.7 cells were also

stimulated with UV-treated HAZV. The expression of Il6, Ifnb, Tnf, and Cxcl10 after HAZV

infection was significantly increased in WT cells, and was not altered by UV-treated HAZV

(Fig 2A). Ifnb, Il6, Tnf and Cxcl10 expression was reduced in HuR KO cells compared to WT

cells. The copy number of S segment inside cells increased after 1 MOI HAZV infection, but

not after UV-treated HAZV treatment (Fig 2B). To compare cytokine expression with JEV

infection, WT and HuR KO RAW264.7 cells were infected with 10 MOI JEV and the expres-

sion of these cytokine genes was measured (S2 Fig). Tnf and Ccl2 expression was only slightly

increased in WT cells after JEV infection, suggesting that viral proteins in JEV reduced innate

immune response. IL-6 production in the supernatant did not increase at 9 h post infection,

whereas it increased at 24 h post infection and was lower in HuR KO cells than in WT cells

(Fig 2C). Then, the phosphorylation of transcription factors IRF3 and p65 (RelA), a major

component of NF-κB, was measured after the infection. Phosphorylation of IRF3 level was

Fig 1. Identification of HuR as a regulator for HAZV replication in RAW264.7 cells. A, RAW264.7 cells and MEFs were infected with 0.1 MOI HAZV and virus

titers in the supernatant were measured. B, WT and mutant RAW264.7 cells were infected with 0.1 MOI HAZV and the virus titers in the supernatants were measured

at 48 h post-infection. Virus titers of the mutant cells were plotted, and cell lines that showed higher or lower titers than WT were highlighted. C, Cell lysates were

extracted and immunoblotted using anti-HuR and anti-Actinβ antibodies. D, WT and HuR KO RAW264.7 cells were infected with 0.1 MOI of HAZV, TBEV or JEV,

and the time courses of virus titer in the supernatants were measured at the indicated time points. E, The copy number of HAZV S segment inside cells was measured

by real-time PCR at 48 h after 0.1 MOI HAZV infection. One-way ANOVA with Tukey’s multiple comparison test (C,D); *p< 0.05.

https://doi.org/10.1371/journal.pntd.0012553.g001
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increased from 9 h after infection and was lowered in HuR KO cells, whereas phosphorylation

of p65 was slightly increased in both WT and HuR KO cells (Fig 2D). To perform luciferase

promoter assay, we generated HuR-deficient HEK293 cells, and the deficiency was confirmed

by western blot analysis using an anti-HuR antibody (Fig 2E). The IFN-β promoter and ISRE

promoter activity at 24 h after 1 MOI HAZV infection or poly(I:C) stimulation were reduced

in HuR KO cells (Fig 2F and 2G). These results indicated that the innate immune response to

HAZV infection was reduced by HuR-deficiency.

HAZV infection triggers activation of innate immune response in mouse macrophages (Fig

2) and genomic RNA in negative-stranded RNA viruses has been reported to be recognized by

RIG-I/MDA5 [18,19]. HuR regulates RIG-I/MDA5-dependent innate immune response [31].

Innate immune suppression by HuR deficiency expects the increase of viral replication (Fig 2),

however the HAZV titer was lowered in HuR KO cells (Fig 1). To further investigate the role

of innate immune activation by HAZV infection in viral replication, we tested whether innate

immunity was activated by HAZV through the RIG-I/MDA5 signaling pathway. WT, Rig-I/
Mda5 KO, IPS1 KO, and Tbk1/Ikk-i KO MEFs were infected with 1 MOI HAZV, and Ifnb, Il6
and Tnf expression was measured at 24 h after infection (Fig 3A). Expression of these genes

Fig 2. Innate immune response after HAZV infection in HuR KO cells. A,B, WT and HuR KO RAW264.7 cells were infected with 1 MOI HAZV or UV-

treated HAZV, and cytokine gene expression was measured at 9 h after infection by real-time PCR (A). Gene expression was calculated by fold increase

compared to non-infected control WT cells. Copy number of S segment inside cells was calculated by real-time PCR (B). C, IL-6 production in the supernatant

was measured by ELISA after 1 MOI HAZV infection. D, WT and HuR KO RAW264.7 cells were infected with 1 MOI HAZV. Cell lysates were extracted and

immunoblotted with the indicated antibodies. E, HuR KO HEK293 cells were generated by genome editing and the deficiency was confirmed by western

blotting. F,G, WT and HuR KO HEK293 cells were transfected with a reporter plasmid driven by IFN-β promoter (F) or ISRE promoter (G) with internal

control promoter plasmid, and these cells were stimulated with 1 MOI HAZV or poly(I:C). Luciferase activity was measured 24 h after stimulation. The ratio of

intensity of firefly luciferase (IFN-β/ISRE promoter) to intensity of renilla luciferase (internal control promoter) was plotted. One-way ANOVA with Tukey’s

multiple comparison test (A,C,F,G).

https://doi.org/10.1371/journal.pntd.0012553.g002
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was significantly increased in WT infected cells contrary to KO cells, indicating that HAZV

triggers innate immune response in RIG-I/MDA5-dependent manner. Poly(I:C) transfection

robustly activates RIG-I/MDA5-dependent signaling. To further investigate the role of the

innate immune response in viral production, WT and those KO MEFs were infected with 0.1

MOI HAZV with or without poly(I:C) pre-stimulation for 6 h (pre-poly(I:C)). The virus titers

of HAZV in the supernatant of WT increased to around 1 × 106 PFU/mL at 48 h post infection

and were comparable among those KO MEFs (Fig 3B), indicating the innate immune response

induced by HAZV doesn’t affect virus replication. In contrast, the virus titer in WT MEFs was

lowered by pre-poly(I:C) treatment, and the virus titer of those KO MEFs was not altered by

pre-poly(I:C) treatment. The copy number of HAZV inside cells also supported these results

(Fig 3C). To further investigate the role of the innate immune response in RAW264.7 cells,

RAW264.7 WT and HuR KO cells were pre-stimulated with poly(I:C) for 6 h [31] and infected

with HAZV (Fig 3D and 3E). Pre-poly(I:C) treatment in both WT and HuR KO cells reduced

the virus titer (Fig 3D) and the copy number of viral RNA inside cells (Fig 3E) compared to

the control. These findings indicated that activation of innate immunity by poly(I:C) lowered

HAZV replication, however innate immune activation by HAZV infection doesn’t affect its

replication.

HuR is known as an RBP that stabilizes the target mRNAs, and we hypothesized that HuR

is involved in the stabilization of HAZV RNA. To test whether HAZV genome replication is

diminished by HuR-deficiency, the copy number of HAZV RNA for the S, M and L segments

inside of WT and HuR KO cells was measured by real-time PCR (Fig 4A). The copy number

of all three segments at 24 h post infection was reduced in HuR KO cells and the copy number

Fig 3. Innate immune activation by HAZV infection is not involved in its replication. A, WT, Rig-I/Mda5 KO, IPS1 KO and Tbk1/Ikk-i KO MEFs

were infected with 1 MOI HAZV and the expression of cytokine genes was measured by real-time PCR at 24 h post infection. B,C, WT and KO MEFs

with or without pre-poly(I:C) for 6 h were infected with 0.1 MOI HAZV, and virus titers in the supernatant (B) or copy number of S segment inside cells

(C) were measured at 48 h post-infection. D,E, WT and HuR KO RAW264.7 cells with or without pre-poly(I:C) for 6 h were infected with 0.1 MOI

HAZV, and virus titers in the supernatant (D) or copy number of S segment inside cells (E) were measured at 48 h post-infection. Ono-way ANOVA

with Tukey’s multiple comparison test (A, C).

https://doi.org/10.1371/journal.pntd.0012553.g003
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of S and L segments at 48 h post infection in HuR KO cell was lowered than that in WT cells.

To separate the positive and negative strands of three segments, RNA isolated at 48 h post

infection was transcribed using specific primers for the positive and negative strands of S, M,

and L segments, and the copy number of each segment was calculated (Fig 4B). The copy num-

bers of the positive and negative strands of HAZV RNA in HuR KO cells, except for the posi-

tive strand of M segment, was lower than those in WT cells. We next performed a

minigenome assay to confirm viral replication. The reporter RNA consisting of the luciferase

flanked by the NCR of the S segment of the HAZV JC280 strain was transfected with an

Fig 4. HuR stabilizes HAZV RNA. A, WT and HuR KO RAW264.7 cells were infected with 0.1 MOI HAZV, and RNA inside cells was isolated. RNA was

transcribed using random primers, and the copy number of RNA inside cells was measured by real-time PCR. B, WT and HuR KO RAW264.7 cells were infected

with 0.1 MOI HAZV, and RNA inside cells was isolated at 48 h post infection. RNA was transcribed using specific primers for positive or negative strands of the

S, M, and L segments, and the copy number of RNA inside cells was measured by real-time PCR. C, WT and HuR KO HEK293 cells were transfected with HAZV

L and N protein expression plasmids and reporter RNA, and the luciferase activity of secNluc in the supernatant was measured. D, HAZV minigenome

replication in HEK293 cells was measured in the presence of control or FLAG-HuR expression vectors. FLAG-HuR expression was confirmed by western blotting

with anti-FLAG antibody (left) and the luciferase activity of secNluc in the supernatant was measured (right). E, WT and HuR KO RAW264.7 cells were infected

with 0.1 MOI HAZV, and cell lysates at 48 h post-infection were blotted with the indicated antibodies. F, HAZV RNA in the cell lysates of WT and HuR KO

RAW264.7 cells at 48 h post infection with HAZV was precipitated with anti-HuR or control IgG antibody. RNA was transcribed using random primers and copy

numbers in the precipitants were measured by real-time PCR. G, WT and HuR KO RAW264.7 cells were infected with 0.1 MOI HAZV and cells at 48 h post

infection were treated with actinomycin D for the indicated time. Cell lysates were blotted with the indicated antibodies. H, RAW264.7 cells at 48 h post-infection

with HAZV were treated with or without actinomycin D, and the S segment of RNA inside cells at the indicated time points was measured by real-time PCR. I,

WT and HuR KO RAW264.7 cells at 48 h post-infection were treated with actinomycin D, and S, M, and L segments of RNA inside cells at the indicated time

points were measured by real-time PCR. Unpaired two-tailed t-test (A,B,D); n.s., not significant. Ono-way ANOVA with Tukey’s multiple comparison test (C, F).

https://doi.org/10.1371/journal.pntd.0012553.g004
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expression plasmid for HAZV L and N proteins in HEK293 cells [15]. The luciferase activity in

HuR KO cells was significantly lowered than that in WT cells (Fig 4C). We tested the overex-

pression of HuR in a minigenome assay and found that HuR expression increased the lucifer-

ase activity (Fig 4D). HuR binds to the target host mRNA of AU-rich sequences, and increases

mRNA stability. We investigated whether HuR binds to the HAZV RNA. WT and HuR KO

HEK293 cells infected with HAZV for 48 h were lysed, and N protein expression was con-

firmed with western blotting against anti-N antibody (Fig 4E). Then, RNA in the cell lysate

was precipitated with anti-HuR or control IgG antibody and the copy number of each segment

in the precipitants was calculated. The RNA was precipitated by anti-HuR antibody in WT

cells but not in HuR KO cells. The RNA was slightly precipitated by the control IgG antibody

in both WT and HuR KO cells (Fig 4F). To investigate the RNA stability in WT and HuR KO

cells, we tested the effect of actinomycin D, an inhibitor for mRNA transcription. RAW264.7

cells at 48 h post-infection with HAZV were treated with actinomycin D for the indicated

time, and N protein expression in WT and HuR KO cells was constant during the treatment

(Fig 4G). Actinomycin D is an anticancer drug, and cell viability was tested by the LDH release

assay (S3A Fig). The LDH concentration did not increase significantly during treatment with

2.5 μg/mL actinomycin D for 8 h. Then, time-dependent changes of S segment RNA inside

cells were measured by real-time PCR (Fig 4H). Untreated control cells showed an increase in

viral RNA, whereas 2.5 μg/mL actinomycin D-treated cells showed a gradual decrease in viral

RNA, indicating that RNA replication was restricted by actinomycin D treatment (Fig 4H).

Next, we tested whether HAZV replication was inhibited by actinomycin D. RAW264.7 cells

were treated with the indicated concentration of actinomycin D for 48 h, and the release of

LDH was measured (S3B Fig). Treatment with 200 ng/mL actinomycin D induced LDH

release, whereas treatment with< 20 ng/mL actinomycin D did not induce LDH release.

RAW264.7 cells infected with HAZV were treated with the indicated concentrations of actino-

mycin D, and the virus titer was measured 48 h after infection (S3C Fig). HAZV titer was low-

ered by actinomycin D treatment. Then, WT and HuR KO RAW264.7 cells infected with

HAZV at 48 h were treated with 2.5 μg/mL actinomycin D, and the t1/2 of S, M, and L segments

of viral RNA was calculated. RNA of all three segments was destabilized in HuR KO cells, com-

pared to that in WT cells (Fig 4I).

Our findings suggest that HuR interacts with HAZV RNAs to stabilize them, and supports

the replication of HAZV. We then tested whether HuR suppresses CCHFV replication. The

reporter RNA consisting of luciferase flanked by the NCR of L segment CCHFV Kosova Hoti

strain was transfected with an expression plasmid for CCHFV L and N proteins to WT and

HuR KO HEK293 cells. The luciferase activity in HuR KO cells was significantly lower than that

in WT cells (Fig 5A). The luciferase activity was increased in HuR expressing HEK293 cells (Fig

5B). HAZV and CCHFV are negative-stranded RNA viruses; therefore, positive-strand RNA is

synthesized during viral replication. To clarify whether HuR binds to which strand of vRNA in

the cells, HEK293 cells were transfected with in vitro synthesized positive- or negative-strand

reporter RNA of CCHFV, and RNA in cell lysates was precipitated with anti-HuR or control

IgG antibody. The reporter RNAs in the precipitants were quantified by real-time PCR. Both

positive- and negative-strands bound to HuR; however, the positive-strand reporter RNA was

more strongly associated with HuR than the negative-strand reporter RNA (Fig 5C). Then, posi-

tive-strand reporter RNA was transfected into WT and HuR KO HEK293 cells, and RNA in cell

lysate was precipitated with anti-HuR or control IgG antibody. Positive-strand reporter RNA in

WT cells was enriched in the precipitant using the anti-HuR antibody (Fig 5D). NCR in L, S,

and M segments contains U-rich consecutive sequences (S4 Fig). We focused on two U-rich

sequences in L segment and generated a series of deletion mutant reporter RNA lacking the 30-

NCR sequences 12029–12032 (Δregion1) and 12088–12090 (Δregion2) (Fig 5E). To clarify the
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involvement of these sequences in HuR binding, control or mutant positive-strand reporter

RNA was transfected into HEK293 cells and RNA in cell lysis was precipitated with anti-HuR

or control IgG antibody. The control reporter RNA bound to HuR; however, both deletion

reporter RNA lowered the affinity to HuR (Fig 5F). Negative-strand RNA of control and dele-

tion mutants with L and N proteins were transfected into HEK293 cells, and the luciferase

intensities were measured, and Δregion1 was significantly reduced the luciferase activity (Fig

5G). To test the inhibitory effect of HuR on CCHFV and HAZV mini-replicon replication,

Fig 5. HuR associates with L segment of CCHFV RNA to support minigenome replication. A, WT and HuR KO HEK293 cells

were transfected with CCHFV L and N protein expression plasmids and reporter RNA, and the luciferase activity of secNluc in the

supernatant was measured. B, CCHFV minigenome replication in HEK293 cells was measured in the presence of control or

FLAG-HuR expression vectors. FLAG-HuR expression was confirmed by western blotting with anti-FLAG antibody (upper panel)

and the luciferase activity of secNluc in the supernatant was measured (lower panel). C, Positive and negative strands of the CCHFV

reporter RNA were synthesized and transfected into HEK293 cells for 3 h. RNA in the cell lysate was precipitated using anti-HuR or

control IgG antibody. The reporter RNA in the precipitants was transcribed using random primers and the copy number of reporter

RNA was measured by real-time PCR. D, RNA in the cell lysate from WT and HuR KO HEK293 cells at 3 h post-transfection with

the positive strand of the CCHFV reporter RNA was precipitated with anti-HuR or control IgG antibody. The reporter RNA in the

precipitants was transcribed using random primers and the copy number of reporter RNA was measured by real-time PCR. E,

Schematic diagram of positive-strand reporter RNA. AU-rich regions [12029–12032 (region1) and 12088–12090 (region2)] were

highlighted in the 30-NCR sequence. F, Positive strand of control, 12029–12032 (Δregion1) and 12088–12090 (Δregion2) reporter

RNA were transfected into HEK293 cells, and RNA in the cell lysate was precipitated with anti-HuR or control IgG antibody. G,

HEK293 cells were transfected with CCHFV L and N protein expression plasmids with reporter RNA for control, Δregion1 and

Δregion2, and the luciferase activity of secNluc in the supernatant was measured. H, I, Minigenome replication of CCHFV (H) and

HAZV (I) in HEK293 cells was measured after treatment with CLMD-2. J, Minigenome replication of control, Δregion1 and

Δregion2 was measured after treatment with CLMD-2. Ono-way ANOVA with Tukey’s multiple comparison test (A,B, C, D, F, G,H,

I). Unpaired two-tailed t-test (B,J).

https://doi.org/10.1371/journal.pntd.0012553.g005
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HEK293 cells were treated with CLMD-2, a HuR inhibitor, after transfection and the luciferase

intensities were measured. CLMD-2 treatment suppressed the CCHFV and HAZV mini-repli-

con replication and the HAZV titer (Figs 5H,5I,5J and S5).

Discussion

Here, we found that HuR binds to the AU-rich region of the 3’-NCR of the L segment of

CCHFV in a mini-replicon system. Previous reports have shown that HuR positively or nega-

tively regulates viral RNA replication. HuR exhibits an antiviral effect against Zika virus [39]

and assists in the assembly of the replication complex on the Hepatitis C viral- 3’UTR, and its

depletion hampers viral replication [40,41]. JEV and TBEV are flavivirus, which are the same

genus with Zika virus. As HuR showed an antiviral effect against Zika virus, cells were infected

with JEV and TBEV compared to HAZV replication. Our results showed that HAZV replica-

tion was lowered by HuR deficiency, whereas JEV replication was increased in HuR KO cells

and TBEV replication was reduced only at 72 h (Fig 1D). These results suggested that HuR

tends to exhibit antiviral effects against flaviviruses. We investigated the innate immune

response after viral infection, and found that Ifnb and Il6 expression was increased by HAZV

infection (Fig 2A), but did not increase after JEV infection (S2 Fig). As cytokine production

was not robustly increased by JEV infection, innate immune activation by JEV infection is

unlikely to be linked to its replication. Stress granule formation suppresses viral replication

and HuR is a complex-forming protein. The antiviral effect of HuR against Zika virus was sug-

gested to involve the formation of stress granules [39]. The antiviral effects against JEV and

TBEV may also be related to HuR-mediated stress granule formation, and RNA stability by

HuR does not seem to be related to viral replication.

We found that innate immune response was increased by HAZV infection and lowered by

HuR deficiency (Fig 2). As innate immune activation increases antiviral effects, innate

immune inhibition due to HuR deficiency is expected to enhance HAZV replication, however,

the HAZV titer in HuR KO cells was lower than that in WT cells. We investigated the role of

innate immune activation by HAZV infection during its replication. Innate immune response

in WT MEFs after HAZV infection was increased, but not in Rig-I/Mda5, IPS1 and Tbk1/Ikk-i
KO MEFs (Fig 3A), and HAZV replication in WT MEFs was similar to that in these KO

MEFs, indicating that innate immune activation by HAZV infection did not alter viral replica-

tion (Fig 3B and 3C). In contrast, pre-poly(I:C) stimulation lowered viral replication in WT

MEFs, but not in those KO MEFs (Fig 3B and 3C). It is reported that ovarian tumor (OTU)

domains of CCHFV and HAZV interfere with host innate immune system via the ubiquitin

protease activity [42,43] and HAZV N protein interferes with the binding of TRIM25 to RIG-I

and subsequent activation of RIG-I [44]. Innate immune activation by HAZV is lowered by

these viral proteins. These results suggest that robust innate immune activation by pre-poly(I:

C) stimulation lowers HAZV replication; however, weak innate immune activation by HAZV

infection does not affect its replication.

We hypothesized that HuR associates with the HAZV genome and supports viral replica-

tion. In support of this hypothesis, HAZV genomic RNA and minigenome replication were

reduced in HuR KO cells (Fig 4A and 4C), and three segments of RNA were associated with

HuR (Fig 4F). The amount of cellular mRNA or viral RNA is balanced between its synthesis

and degradation. The stability of host mRNA was tested after blocking transcription with a

high concentration of actinomycin D (~2.5 μg/mL) [31]. The treatment of HAZV infected

cells with actinomycin D also suppressed viral RNA replication in the cells (Fig 4H). HAZV

replication is suppressed by the RdRp inhibitor favipiravir or ribavirin [15,45]; however, these

drugs do not show acute suppression of viral RNA replication. These drugs are prodrugs that
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need to be metabolized and converted into pharmacologically active drugs and take several

hours to effectively suppress replication. Therefore, we compared vRNA stabilization after

actinomycin D treatment and found that all three segments were destabilized in the HuR KO

cells (Fig 4I). These results indicate that HuR associated with the HAZV genome to stabilize it,

which aids viral replication.

Consistent with the HAZV results, the minigenome of CCHFV also showed reduced repli-

cation in HuR KO cells (Fig 5A), suggesting that HuR binds to CCHFV RNA for stabilization,

which supports its replication. Further analysis demonstrated that HuR associated with the 30-

NCR of CCHFV positive-strand RNA rather than negative-strand RNA (Fig 5C and 5D).

Bunyaviridae genomic RNA, including HAZV and CCHFV RNA, is partially complementary

nucleotide sequences (~10 bp; the viral specific promoter element 1[PE1]) at the 50- and 30-

NCR termini that form a double stranded RNA, panhandle structure [14,46]. The panhandle

structure is critical for the circulation of viral RNA and the binding sites for N and L proteins

[47]. In addition to PE1, HAZV RNA has a second complementary sequence (~20 bp; PE2)

next to PE1, and CCHFV RNA also contains the PE2 sequence [14]. 30-NCRs in S, L, and M

segments of HAZV and CCHFV contain AU-rich sequences, and the AU-rich sequences of

region1 and region2 in L segment of CCHFV are located at a distant location from PE1 and

PE2 sites (Fig 5E). Both the positive-strand of Δregion1 and Δregion2 reporter RNAs lowered

the association with HuR (Fig 5F). Minigenome replication by Δregion1 and Δregion2 reporter

RNAs tended to decrease; however, only Δregion1 was significantly reduced (Fig 5G). Our

results indicated that region1 in 30-NCR contributed to HuR-mediated CCHFV replication,

however AU-rich sequences may interfere with formation of the panhandle structure and asso-

ciation with the L protein to panhandle structure. AU-rich regions are observed in S and M

segments of CCHFV 50-NCR (S4 Fig); however, 50-NCR and the coding region in the CCHFV

genome may contribute to CCHFV replication by supporting viral RNA stabilization through

HuR association. We have shown by IP experiments using cell lysates that other proteins may

be involved in RNA-HuR complex formation. HuR expression was increased by the stimula-

tion with poly(I:C) [28] and HuR expression was also increased by HAZV infection which

may support HAZV replication by forming RNA-HuR complex (Fig 2D). HuR targets many

host mRNAs, and HuR deficiency induces broad downregulation of cellular pathways that

may affect HAZV and CCHFV minigenome replication.

In this study, we found that HuR regulates HAZV replication by the association with its

RNA genome. Furthermore, the minigenome assay for CCHFV supported the hypothesis that

HuR participates the replication of CCHFV. Our results suggest that HuR helps the replication

of CCHFV by associating with the AU-rich region in the 30-NCR of its genomic RNA. Treat-

ment with the HuR inhibitor CLMD-2 reduced CCHFV minigenome replication (Fig 5H,5I

and 5J). Our results suggest that RBPs are new therapeutic targets for CCHFV restriction, and

the combination of RdRp and RBP inhibitors could be a new therapeutic target. However,

HuR and CCHFV genome interactions were tested in the L segment of 30-NCR RNA, and the

contributions of S and M should be tested in the future. Furthermore, the role of HuR in

CCHFV replication was only tested using HAZV infection and CCHFV minigenome assays;

therefore, these findings need to be confirmed with CCHFV infection.
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cells. WT and HuR KO RAW264.7 cells were infected with 10 MOI JEV, and cytokine gene
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S3 Fig. The virus titer after HAZV infection during actinomycin D treatment. A, WT and

HuR KO RAW264.7 cells were treated with 2.5 μg/mL of actinomycin D and LDH release at

the indicated time points was measured. B, RAW264.7 cells were treated with the indicated

concentration of actinomycin D for 48 h and LDH release in the supernatant was measured.

C, RAW264.7 cells were infected with 0.1 MOI HAZV in the presence of the indicated concen-

tration of actinomycin D. The virus titer was measured at 48 h post infection.
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S4 Fig. The sequence of 3’-NCR in the S and M segments of CCHFV Kosova Hoti. The AU-

rich sequences that are not located in the panhandle structures were highlighted in S and M

segments of 3’-NCR.
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was measured by the plaque assay.
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