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Abstract: Measles and rubella micro-array patches (MR-MAPs) are a promising innovation to address
limitations of the current needle and syringe (N&S) presentation due to their single-dose presentation,
ease of use, and improved thermostability. To direct and accelerate further research and interventions,
an initial full value vaccine assessment (iFVVA) was initiated prior to MR-MAPs entering phase
I trials to quantify their value and identify key data gaps and challenges. The iFVVA utilized a
mixed-methods approach with rapid assessment of literature, stakeholder interviews and surveys,
and quantitative data analyses to (i) assess global need for improved MR vaccines and how MR-MAPs
could address MR problem statements; (ii) estimate costs and benefits of MR-MAPs; (iii) identify
the best pathway from development to delivery; and (iv) identify outstanding areas of need where
stakeholder intervention can be helpful. These analyses found that if MR-MAPs are broadly deployed,
they can potentially reach an additional 80 million children compared to the N&S presentation
between 2030–2040. MR-MAPs can avert up to 37 million measles cases, 400,000 measles deaths,
and 26 million disability-adjusted life years (DALYs). MR-MAPs with the most optimal product
characteristics of low price, controlled temperature chain (CTC) properties, and small cold chain
volumes were shown to be cost saving for routine immunization (RI) in low- and middle-income
countries (LMICs) compared to N&S. Uncertainties about price and future vaccine coverage impact
the potential cost-effectiveness of introducing MR-MAPs in LMICs, indicating that it could be cost-
effective in 16–81% of LMICs. Furthermore, this iFVVA highlighted the importance of upfront donor
investment in manufacturing set-up and clinical studies and the critical influence of an appropriate
price to ensure country and manufacturer financial sustainability. To ensure that MR-MAPs achieve
the greatest public health benefit, MAP developers, vaccine manufacturers, donors, financiers, and
policy- and decision-makers will need close collaboration and open communications.

Keywords: vaccines; demand estimation; public health impact assessment; cost-effectiveness;
discounted cash flow; costing; modeling; value proposition
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1. Introduction

Despite the availability of a highly effective vaccine and World Health Organization
(WHO) regional targets towards eliminating measles and rubella, it is estimated that
measles caused over 9 million cases and 136,000 deaths in 2022, while 100,000 infants
are born with congenital rubella syndrome each year [1,2]. Historically, low- and middle-
income countries (LMICs) have struggled to obtain and maintain high coverage, with global
vaccination coverage stagnating around 83% and 74% for measles-containing vaccine
first and second doses (MCV1, MCV2), respectively [3]. The precarious situation was
highlighted by the COVID-19 pandemic, where a drop of five percentage points in MCV1
(from 2019 to 2021) resulted in 37 large and disruptive outbreaks occurring in 2022, a 68%
increase compared to 2021 [3,4].

Public health experts have long suspected that the difficulty in achieving and sustain-
ing high coverage is in part due to the characteristics of current MR vaccines that make it
challenging to reach under- and un-vaccinated children [5–9]. The current vaccines were
introduced in the 1960s, and since then, minimal changes have occurred to their design.
The current vaccine is lyophilized and requires reconstitution to be performed by a trained
health worker; the multi-dose vial (MDV) presentation most used in LMICs has high levels
of wastage and is heat sensitive.

The use of a microarray patch (MAP) presentation, which consists of microscopic
projections that deliver a dry vaccine or drug when applied to the skin, is a potential
solution to address the limitations of the current needle and syringe (N&S) presentation.

As a single-dose, ready-to-use presentation, MR-MAPs could offer several potential
benefits, such as being easier to use, reducing administration errors, eliminating the re-
quirement of administration by health workers, reducing open vial wastage, and having
improved thermostability, which could lead to increasing vaccination reach to populations
where under- and un-immunized children reside [10–13]. All those features could revolu-
tionize how vaccines are delivered; however, the anticipated benefits are still theoretical,
owing to their early stage of development.

Additionally, there are several practical challenges related to the successful develop-
ment of the MR-MAP innovation. For instance, MR-MAPs will be complex to develop,
license, and commercialize; they will likely cost more than current MR multi-dose N&S
presentations; and before the initial Full Value of Vaccine Assessment (iFVVA), there was a
lack of any estimates of their potential health impact and cost-effectiveness [14–16].

Even though MR-MAPs only entered phase I trials in 2021 and completed phase I/II
trials in 2023, a significant amount of activities were already completed related to the
identification of the target product profile (TPP), the identification of the use cases, demand
forecasting, and the definition of the MR-MAP business case [15,17–20]. See Figure S1 for
current MR-MAP development timelines. Given the potential high public health impact
of MR-MAPs and despite the expectation that the earliest availability of MR-MAPs will
be in 2030, we began to develop an initial Full Value of Vaccine Assessment (iFVVA) to
integrate all elements in a comprehensive view. The iFVVA utilized current analyses,
data, and assumptions and added the additional analyses required to present the different
perspectives of the various stakeholders—MAP developers and vaccine manufacturers,
donors and financiers, and policy- and decision-makers at global, regional, and national
levels—with the goal of defining critical success factors, risks, bottlenecks, and the relevant
actions to address those. Figure 1 provides more details on the targeted audience.

The iFVVA also aimed to clearly identify evidence gaps while highlighting potential
areas of uncertainty that would require either updated or additional analyses. As MR-
MAPs advance in their clinical development and uncertainties begin to be addressed, the
iFVVA should be converted into an FVVA that considers the full economic benefit, public
health impact, and costs.
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2. Materials and Methods

The MR-MAP iFVVA was conducted between 2021–2022, adopting a mixed-methods
approach that included a rapid assessment of literature, stakeholder interviews and surveys,
and various quantitative analyses. An expert advisory group was convened to provide
strategic feedback and direction on the iFVVA, including its methodology, results, and key
messages (see Table S1 for expert advisory group members). Given that the FVVA method-
ology provides flexibility, the iFVVA was structured along four sections: (i) articulating
the global need for improved MR vaccines and the ability of MR-MAPs to address the MR
implementation problems; (ii) estimating the costs and benefits; (iii) describing the pathway
from development to delivery; and (iv) identifying the key stakeholders’ actions [21].

An overview of the methodology employed in the first three sections is provided below.

2.1. The Global Need for Improved MR Vaccines and Ability of MR-MAPs to Overcome the MR
Implementation Problems

This iFVVA section outlined the MR burden and key problem statements for the MR
program. While the implementation problems for the MR program are well known, this
analysis sought to quantify the level of available evidence and the magnitude of each
problem statement. For this, a rapid assessment of literature was conducted, considering
key documents from the Vaccine Innovation Prioritization Strategy (VIPS), documents
identified by VIPS partners and MR stakeholders, and those retrieved as result of a PubMed
search (Table S2 for search terms) [14,22–27].

All documents were reviewed, and the problems of programmatic relevance were
identified and translated into problem statements, which were documented and organized
by theme. We then grouped the problem statements into primary and secondary categories
and documented the number of articles citing the problem statements. Next, the product
characteristics per the MR-MAP TPP were overlaid to assess if and how MR-MAP charac-
teristics could address the problem statements [28]. Finally, the problem statements were
classified as “high/better”, “medium”, or “low/worse” considering the level of evidence
available, whether that evidence indicated the likelihood or magnitude of the problem
statement occurring.

2.2. Estimating the Costs and Benefits of MR-MAP

This section estimated a potential MR-MAP price, its commodity and delivery cost,
its public health impact, and its cost-effectiveness. Several existing analyses, such as the
MR-MAP use cases and demand forecast, contributed to these goals.
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2.2.1. MR-MAP Use Cases and Demand Forecast

The definition of the MR-MAP use cases and the demand forecast were completed
prior to the development of the iFVVA and were leveraged [17,18]. These analyses assessed
the full spectrum and potential for use of this innovative presentation and hence were
developed without any supply, financial, or programmatic constraints.

The starting point of the analysis was the MR-MAP use cases 1 to 4, as represented in
Figure 2 [17,18].
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Figure 2. MR-MAP use cases. 1 CHW: Community health worker provide health education, referral
and follow-up, case management and basic preventive health care and home visiting services to
specific communities. They provide support and assistance to individuals and families in navigating
the health and social services system. Occupations included in this category normally require formal
or informal training and supervision recognized by the health and social services authorities.

The iFVVA utilized the previously developed MR-MAP demand forecast, which
assumes that all countries will introduce and use MR-MAPs on a large scale across use
cases 1 through 4 [17]. Without changes in the demand forecast methodology, additional
scenarios were developed to better inform the MR-MAP cost and impact analyses that
considered different assumptions for MR-MAP country adoption and forecasted coverage
growth across the different use cases [17]. Table 1 provides an overview of the forecasting
scenarios utilized for the iFVVA. Scenarios 1 and 2 serve as the counterfactual if MR-MAPs
never become available.

2.2.2. Benchmarking a MR-MAP Price

To estimate the potential price of MR-MAPs, a price benchmarking approach was
used because (i) it is not constrained by confidential price information and can be publicly
communicated, and (ii) it used marketed measles and rubella vaccine price data to reflect
factors that could influence the manufacturers’ pricing strategies.

The logical cornerstone of the analysis was the assumption that the MR-MAP price
would be comparable to the price of MR in a pre-filled syringe (PFS) presentation, as both
are single dose presentations with a convenient design that can command the highest
mark-up on the cost of goods sold (COGS).

The analysis followed a three-step process: (i) identified appropriate benchmarks
where MR vaccines were commercialized in different presentations (MDV, SDV, PFS) across
the same procurement archetypes (UN procurement vs. self-procurement and income
level) and calculated the price differentials among those; (ii) calculated price ranges for MR
across the three different presentations; and (iii) calculated an estimated price range for
MR-MAPs considering the procurement archetypes. Benchmark vaccines were selected
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based on the available price point in the eJRF dataset, where prices existed for different
presentations (e.g., MDV, single-dose vial (SDV), or PFS) from the same manufacturer
across different markets (e.g., Gavi-supported countries, self-procuring LMICs, upper-
middle-income countries (UMICs), and high-income countries (HICs)) and in volumes in
excess of 10,000 doses [29–31]. See Table S3 for the formula to estimate MR PFS price in
Gavi-supported countries.

Table 1. Overview of scenarios utilized for the iFVVA.

# Name

Presentation(s)
Modeled Adoption Timing of MR-MAPs Coverage

Assumption Used

N/S MAPs No
Weighting

Countries in Greatest
Need

Introduce Earlier
High Low

1 No MR-MAPs with
coverage increases x x

2 No MR-MAPs with
stagnant coverage x x

3 MR-MAPs available with
coverage increases x x x x

4 MR-MAPs available with
stagnant coverage x x x x

5

MR-MAPs are
implemented in countries
with greatest need with

coverage increases

x x x x

6

MR-MAPs are
implemented in countries
with greatest need with

stagnant coverage

x x x x

2.2.3. Estimating the Commodity and Delivery Costs

We estimated the cost per dose administered using the Vaccine Technology Impact
Assessment (VTIA) approach, which is an Excel-based model that provides a comparative
economic cost assessment of commodity and delivery costs for a current vaccine presenta-
tion compared with an innovative presentation [32,33]. The cost assessment was conducted
from the health system perspective for a birth cohort vaccinated in 73 LMICs comparing
the current 1-, 5- or 10-dose MR N&S as in use by each country to MR-MAPs. All costs are
reported in 2021 US$ (US dollars).

Commodity costs included the costs of the (i) vaccine and (ii) immunization sup-
plies. For the vaccine cost, we incorporated the wastage-adjusted vaccine costs, assuming
wastage rates of 40% for RI and 10% for supplementary immunization activities (SIAs) [34].
Immunization supplies include auto-disabled (AD) administration syringes, reconstitution
syringes, and safety boxes. International freight costs were calculated assuming 3% of the
vaccine price.

Delivery costs included (i) vaccine storage or cold chain cost, (ii) transport costs,
(iii) human resource (HR) costs of logistics personnel, health workers/vaccinators, and
(iv) outreach costs related to additional travel time, transport costs, and per diems to
locations outside of the health facility. For SIAs, we included SIA operational costs, assumed
to be $1 per dose [35].

To explore the uncertainties in the MR-MAP product attributes, MR-MAP profiles
were developed considering variations in estimated price per dose, cold chain volume,
and HR time for administration, resulting in four different profiles. We estimated the
commodity and delivery costs separately for each MR-MAP profile considering potential
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use in a controlled temperature chain (CTC) (ability to tolerate ambient temperatures of
+40 ◦C for a minimum of 3 days) [36]. See Table 2 for key assumptions and Table S4 for the
additional assumptions used to estimate commodity and delivery costs.

Table 2. Key assumptions for estimating commodity and delivery costs 1.

MR Vaccine
N&S MAP

1-Dose 5-Dose 10-Dose Profile 1 Profile 2 Profile 3 Profile 4

Estimated price per dose 2 $2.48 $0.90 $0.72 $1.29 $1.29 $2.11 $2.92

Doses per vial 1 5 10 1 1 1 1

Volume of the vaccine per dose (cm3),
primary and secondary packaging

21.09 4.218 2.109 3 20 8 3

Human resource time use (in
seconds) for vaccine administration 48 35 21 20 200 120 20

RI vaccine wastage rate 5% 15% 40% 1% 1% 1% 1%

SIA vaccine wastage rate 1% 10% 10% 1% 1% 1% 1%

Volume of diluent per dose (cm3) 12.53 5.48 3.14 0 0 0 0
1 Each MAP profile was modeled separately with and without CTC use, where without CTC use assumes that
MAP is in the cold chain for the entire supply chain until vaccine administration. In the commodity and delivery
costs results, the average of the 5- and 10-dose vial presentations are presented together as the comparator
presentation. 2 Prices per dose for N&S presentation were derived from the price benchmarking analysis.

2.2.4. Estimating the Potential Health Impact and Cost Effectiveness

Using the use cases and the demand forecasting scenarios, we estimated the potential
public health impact and cost effectiveness of MR-MAPs. The detailed methodology and
findings were published [37]. In brief, for public health impact, we used an age-structured
dynamic model of measles transmission and vaccination to project measles cases, deaths,
and disability-adjusted life years during 2030–2040 [37]. For cost effectiveness, the costs
were calculated based on the ingredients approach, including direct costs of measles
treatment, vaccine procurement, and vaccine delivery [37]. The results combined with
procurement costs (estimated MR-MAP price multiplied by total MR-MAP doses for
LIC and LMICs) are presented in terms of cost per measles disability-adjusted life year
(DALY) averted for LMICs and compared to a cost-effectiveness threshold based on health
opportunity costs. We explored two coverage scenarios: one in which routine coverage
stagnates at 2019 levels and another in which it gradually increases to 95% two-dose
coverage to meet global coverage targets.

2.3. Describing the Pathway from Development to Delivery

This section evaluated the potential challenges related to MR-MAP development
and delivery. The iFVVA did not conduct any additional analyses related to MR-MAP
characteristics, clinical development, or the required investment for development, as this is
already being analyzed and actively monitored by the VIPS partnership [14,23].

2.3.1. Identifying Key Product Characteristics for Decision-Makers

We interviewed regional immunization technical advisory group (RITAG) and national
immunization technical advisory group (NITAG) chairs and members to better understand
which product attributes would impact whether they would recommend the uptake of
MR-MAPs. The interviews were structured around the TPP, and the respondents were
asked to identify the five most important characteristics where evidence was required to
determine if the MAP could be included in national immunization programs. The interview
questions can be found in Table S5.
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2.3.2. Assessing the Technical Challenges to MAP Development

We conducted a rapid assessment of literature to collate data and lessons learned about
the technical feasibility and potential challenges of developing microarray patches for the
delivery of pharmaceutical drug treatments; see Table S2 for PubMed search. The results of
the rapid assessment of literature were supplemented by interviews with MAP developers,
vaccine manufacturers, and regulatory experts. Table S6 contains the interview questions.

2.3.3. Conducting a Discounted Cash Flow Analysis

We conducted a discounted cash flow (DCF) analysis to calculate the indicative net
present value (NPV) (a financial metric used to evaluate the profitability of an investment
by calculating the present value of all future cash flows associated with that investment,
both inflows and outflows, discounted back to the present using a specified rate) for a
company investing in the development and manufacturing of MR-MAPs [38]. To calculate
the NPV of the development project, key cash inflows and outflows were estimated,
including revenues (calculated as demand multiplied by price), COGS, costs of clinical
development, investment in a new manufacturing facility and its depreciation, sales,
general, and administrative expenses, corporate taxes, and hurdle rate (the lowest rate
of return a project or investment must achieve before a manager or investor deems it
acceptable). The NPV is calculated per the following formula:

St=0
n Net Cash Flowt/(1 + Hurdle Rate)t

where t = number of time periods (in this model, years).
We estimated the NPV from 2022–2040 assuming that the initial investments in clinical

development and manufacturing scale-up would take place during 2022–2029. We assumed
product launch in 2030, estimated revenue generation between 2030–2040, and assumed
no foreign exchange fluctuations or inflation during the 11-year analytic period. To assess
the robustness of our analysis and to account for the uncertainty in our model inputs,
we conducted a univariate sensitivity. Table 3 provides an overview of the assumptions
applied for the base scenario.

Table 3. Overview of DCF scenarios.

Variable Base Case Scenarios Modelled

Vaccine demand [17]

• MR-MAPs are adopted beginning in 2030
with the high coverage assumption

• No HIC demand is included
• Assumes significant uptake of MR-MAPs

to 100 million doses

1. HIC demand is included
2. Assumes lower uptake of MR-MAPs to

50 million doses

Market prices for MR-MAPs

• Gavi: $1.29
• Self-procuring LMIC: $1.48
• UMIC: $2.63
• HIC: $9.11

Higher estimated MR-MAP prices were used:
Gavi: $2.92
Self-procuring LMIC: $3.36
UMIC: $5.20
HIC: $20.64

COGS • 30% mark-up on the Gavi price or $0.90 $0.90 and declines to $0.70 starting in Year 6
Upper bound of $1.40

Clinical development cost

• Phase I: Fully financed by the donor
• Phase II: $24 million and financed

by a donor
• Phase III: $18 million from 2025–2027

Phase I: Fully financed by the donor
Phase II: $16.8 million
Phase III: $45.5 million
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Table 3. Cont.

Variable Base Case Scenarios Modelled

Manufacturing facility
investment

• A required investment of $60 million for
the MAPs filling line setup: $30 million
small-scale plant and $30 million for scale
up to 100 million dose capacity (fill and
finish only)

A required investment of $30 million for scale
up to 100 million dose capacity (fill and
finish only)
A required investment of $37.5 million for a
small-scale plant and $173 million for
expansion to 100 million dose capacity
(including drug substance)

Hurdle rate (Ibid) • 10.5% 18%

3. Results
3.1. The Global Need for Improved MR Vaccines and Ability of MR-MAPs to Overcome MR
Problem Statements

Based on the rapid assessment of literature, 597 published articles and documents were
identified, and of those, 125 were reviewed, resulting in the identification of 15 problem
statements faced by immunization programs in delivering MR, which may impact the
ability to effectively administer the lyophilized vaccine using an N&S (Figure 3). These
programmatic problem statements were grouped into four categories: (i) high human
resource requirements, (ii) ineffective administration procedures, (iii) poor total system
performance and negative impacts on the environment, and (4) an increase in vaccine
hesitancy. The problem statements with the greatest impact on immunization programs
with the most evidence were related to high labor costs and challenges associated with
equitably delivering N&S vaccines. See Table S7 for a summary of the evidence collated
through the literature review on MR problem statements.
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Figure 3. Summary of MR programmatic problem statements by level of evidence, likelihood of
problem occurring, and magnitude of the problem statement.
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3.2. Estimating the Costs and Benefits of MR-MAP
3.2.1. MR-MAP Use Cases and Demand Forecast

The prior work to develop the MR-MAP use cases identified six use cases that were
utilized for the iFVVA [18].

Scenarios 3–6 explored potential MR-MAP demand considering variations on future
coverage estimates and country introductions of MR-MAPs (scenarios 1 and 2 estimated
potential demand if MR-MAPs were not made available and serve as the counterfactual).
The MR-MAP demand forecast does not consider any supply, financial, or programmatic
constraints and estimates the programmatic dose requirements (the average estimated
number of doses a country would need to procure to meet its immunization program needs,
whether these are routine or campaign; the requirement includes wastage, depending on
the presentation, and buffer) (PDR) for the two scenarios of MR-MAPs, with the relative and
stagnant coverage increase to be ~30 million doses increasing to ~230 million doses by 2040.

In comparison, scenarios 5 and 6 begin at a higher level of PDR in 2030 with
~140 and ~115 million doses, respectively. Scenarios 5 and 6 prioritize the earlier use of
MR-MAPs in countries with the greatest public health need; it is unknown if these scenar-
ios would materialize given the uncertainties in potential financial support and country
introduction timing. The increase in PDR is driven by the earlier adoption of countries with
the greatest burden and need. These countries are generally populous, and this ultimately
increases MR-MAP PDR earlier in the forecasting period. Scenario 6 converges to a similar
level of demand at ~230 million doses as scenarios 3 and 4 by 2040, driven by the lower
coverage assumptions. However, scenario 5 remains higher at 280 million doses in 2040,
due to the high coverage assumptions. Figure 4 provides a comparison of the demand from
scenarios 3 to 6.
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3.2.2. Benchmarking an MR-MAP Price

Based on our review of the data sources, monovalent pediatric hepatitis B vaccine and
pediatric pneumococcal conjugate vaccine (PCV) were selected as the most appropriate
currently available benchmarks of price differential between MDV and SDV and SDV and
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PFS, respectively. The average price differential between MDV and SDV prices was 122%,
and between SDV and PFS, it was 110%.

Using the 2021 MR MDV price procured by UNICEF for use in Gavi-supported
countries ($0.58–$0.72 per dose), the average 2021 hepatitis B price differential of 122%
was applied to obtain an estimated MR SDV price of $1.29–$1.60 per dose. To estimate a
MR PFS price, the average 2021 PCV price differential of 110% was then applied to obtain
an estimated price of MR PFS of $2.70–$3.36 per dose [30]. The average price differential
between self-procuring LMICs and Gavi-supported countries of 15% was subsequently
applied to obtain an MR PFS price of $2.35–$2.92 per dose for Gavi-supported countries.
See Table 4 for an overview of the MR-MAP price benchmarks.

Table 4. MR-MAP price benchmarks for Gavi-supported countries.

MR MDV (A) Hep B Price
Differential (B)

MR SDV
C = A + (A × B)

PCV Price
Differential D

MR PFS
E = C + (C × D)

Lower bound $0.58
122%

$1.29
110%

$2.70
Upper bound $0.72 $1.60 $3.36

3.2.3. Estimating the Commodity and Delivery Costs

The results of the commodity and delivery cost analysis indicate that MR-MAPs can
be a cost-saving option for routine immunization (RI) if the optimal product characteristics
(or MR-MAP Profile 1 in Table 2) are available. However, if this optimal MAP profile is
not achieved, for the other profiles evaluated, MAPs could have higher commodity and
delivery costs than the MAP N&S.

Figure 5a shows that MAP profile 1 could have a lower weighted average cost per
dose administered than the current MR N&S ($1.59–$1.65 compared to $1.87) for routine
immunization. While the vaccine price in MAP profile 1 is slightly more expensive than
that of the N&S presentation, the reduction in vaccine wastage with the single-dose MAP
presentation and the elimination of the syringes result in a lower commodity cost for MAPs.
Commodity costs were the largest share of the total estimated cost per dose administered,
accounting for 52% to 92% for the MAP compared to 67% for the N&S. In scenarios where
the MR-MAP has higher vaccine prices, any delivery cost savings related to the smaller
packaged volume or faster administration time were outweighed by the increase in the
vaccine price.

When comparing the potential cost savings of CTC properties, our analysis indicates
that CTC use could reduce the cost per dose administered by $0.06 (for MAP profiles
1 and 4) to $0.38 (for MAP profile 2), showing that the cost savings with CTC are greater
when MAPs have a large packaged volume, as with MAP profile 2. Cost savings come
from reduced cold chain costs when the CTC approach is utilized.

For SIAs, across all MAP profiles, MAPs are estimated to have a higher cost per dose
administered than the N&S presentation (Figure 5b). Similar to routine immunization, the
commodity costs accounted for the largest portion of the cost per dose administered in
SIAs, ranging from 52–72% compared to 40% for the N&S presentation. Given the assumed
lower wastage rate for the N&S in SIAs, the higher MAP price outweighed any potential
savings from wastage reduction associated with the MAP’s single-dose presentation.

The next largest cost category was the operational cost related to implementing SIAs,
which accounted for ~24–40% of the weighted average cost per dose administered for the
MR-MAP product profiles compared to 43% for the N&S presentation. The costs for cold
chain, transport, outreach, and HR accounted for ~5–26% of the total costs compared to
14% for the N&S presentation.
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SIA. For both RI (a) and SIA (b), the commodity costs accounted for the largest portion of the cost per
dose administered. For RI settings, the next largest cost categories were cold chain costs and human
resource time. For SIA settings, the next largest cost categories were the operational cost related to
implementing SIAs and cold chain costs.

3.2.4. Estimating the Potential Health Impact and Cost Effectiveness

With broad use for routine immunization and SIAs in LMICs, MR-MAPs were esti-
mated to avert between ~6.9 and 7.5 million measles cases, 52,300 to 57,600 deaths, and
3.4 to 3.7 million DALYs over 2030–2040 under the scenario with estimated coverage in-
creases. MR-MAPs are estimated to avert between 31.3 and 38.6 million cases, 390,000 to
402,000 deaths, and 25 to 26.3 million DALYs under the scenario with stagnant coverage
growth in the future [37]. The stagnant coverage scenario assumes that 95% two-dose
coverage cannot be attained using N&S presentations alone, and hence MAPs can have
greater impact.
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From a cost-effectiveness perspective, the cost per DALY averted for the low MR-MAP
price estimate is between –$134 (cost saving) and $626 depending on country income
status, while for the high MR-MAP price estimate, it is between $10.6 and $1846 [37].
The main cost driver was costs associated with measles treatment, which, if MR-MAPs
were introduced in relatively higher income countries, would lead to cost savings given
the reduced cost of treatment and potentially be cost-effective in 16–81% of LMICs [37].
The future performance of measles immunization programs and MAP procurement price
played a key role in determining the cost-effectiveness, while the country introduction order
and the discounting method had a limited effect [37]. Although cost-effectiveness will be
context specific and depend on the final MR-MAP product attributes, our analysis indicated
that MR-MAPs have the potential to be cost-effective across a diverse range of countries.

Lastly, the estimated cost per DALY averted is $85–$2310, which is comparable to the
cost-effectiveness of vaccines in Gavi’s current portfolio, such as human papillomavirus
(HPV) ($91–$928), rotavirus ($202–$428), and respiratory syncytial virus infection (RSV)
maternal vaccines ($70–$270) [39–41].

More detailed results of the health impact modeling and cost effectiveness can be
found in the published article [37].

3.3. Describing the Pathway from Development to Delivery
3.3.1. Key Product Characteristics for Decision-Makers

11 RITAG and NITAG chairs or members were interviewed to identify the main
evidence needs for decision-making. The key evidence needs identified included cost per
immunized child (n = 11), safety (n = 9), efficacy (n = 7), Strategic Advisory Group of Experts
on Immunization (SAGE) or other NITAG recommendations (n = 6), immunogenicity
(n = 5), and human factors (n = 4) as the main evidence needs for their decision-making.
Figure 6 provides an analysis of the frequency with which specific evidence needs were
stated by the interviewees.

Vaccines 2024, 12, x FOR PEER REVIEW 13 of 24 

immunogenicity (n = 5), and human factors (n = 4) as the main evidence needs for their 
decision-making. Figure 6 provides an analysis of the frequency with which specific evi-
dence needs were stated by the interviewees. 

Figure 6. Overview of key product characteristics identified by decision-makers. 

3.3.2. Technical Challenges to the Development MAPs 
The search resulted in 35 published articles focused on the development of MAPs to 

administer pharmaceutical drugs for treatment of disease. Of the 35, 20 articles were re-
viewed in full, highlighting the outstanding questions that need to be addressed to enable 
the successful development and regulatory reviews of MR-MAP. These results were also 
validated in discussions with 26 individuals who were MAP developers, vaccine manu-
facturers, or experts in clinical development. The following challenges were identified: 
• Generating immunogenicity data that shows non-inferiority and safety and reac-

togenicity data that shows comparable or reduced number of adverse events to the
current N&S vaccine.

• Determining the correct M and R antigen dosage and developing analytical ap-
proaches to verify that an adequate quantity of antigen has been delivered to the pa-
tient.

• Improving the understanding of the optimization of bulk MR vaccine production.
• Determining the requirements for an aseptic (aseptic manufacturing is the process in

which vaccine drug product and container are produced and combined in a com-
pletely sterile, self-contained environment) environment and/or process for manu-
facturing.

• Designing manufacturing processes using reproduceable methods that adhere to
good manufacturing practices (GMP) to produce late-stage MR-MAP clinical trial
materials and batch releases.

• Determining whether MR-MAP production will require a semi- or fully automated
manufacturing line.

Figure 6. Overview of key product characteristics identified by decision-makers.



Vaccines 2024, 12, 1075 13 of 24

3.3.2. Technical Challenges to the Development MAPs

The search resulted in 35 published articles focused on the development of MAPs to ad-
minister pharmaceutical drugs for treatment of disease. Of the 35, 20 articles were reviewed
in full, highlighting the outstanding questions that need to be addressed to enable the suc-
cessful development and regulatory reviews of MR-MAP. These results were also validated
in discussions with 26 individuals who were MAP developers, vaccine manufacturers, or
experts in clinical development. The following challenges were identified:

• Generating immunogenicity data that shows non-inferiority and safety and reacto-
genicity data that shows comparable or reduced number of adverse events to the
current N&S vaccine.

• Determining the correct M and R antigen dosage and developing analytical approaches
to verify that an adequate quantity of antigen has been delivered to the patient.

• Improving the understanding of the optimization of bulk MR vaccine production.
• Determining the requirements for an aseptic (aseptic manufacturing is the process in

which vaccine drug product and container are produced and combined in a completely
sterile, self-contained environment) environment and/or process for manufacturing.

• Designing manufacturing processes using reproduceable methods that adhere to good
manufacturing practices (GMP) to produce late-stage MR-MAP clinical trial materials
and batch releases.

• Determining whether MR-MAP production will require a semi- or fully automated
manufacturing line.

• Determining the thermostability and photostability of the MR vaccine in the MAP
and appropriately reflecting it in the dossier, leaflet, etc. Note that the leaflet can also
contain information regarding product ingredients.

• Developing regulatory guidance related to the design of MR-MAP clinical trials
and at-scale manufacturing processes, including new quality assurance or quality
control approaches.

• Conducting post-licensure evaluations (i.e., phase 4 studies) in different settings with
variable temperature and humidity to further evaluate MR-MAP effectiveness and
consistency.

3.3.3. Conducting a Discounted Cashflow Analysis

The estimated NPV for the different scenarios is shown in Figure 7 for two differ-
ent hurdle rates. In the base case scenario, we estimated an NPV of −$3.4 million and
−$16.0 million, assuming a hurdle rate of 10.5% or 18%, respectively.

For the 10.5% hurdle rate, which reflects a higher risk tolerance, a positive NPV was
achieved with higher MR-MAP price (+$209.8 million), lower COGS (+$25.7 million),
lower investments in the manufacturing facility (+$17.6 million), and higher vaccine de-
mand (+$14.2 million). A higher cost of phase II (−$18.7 million) and III (−$22.0 million),
higher investments in manufacturing facility (−$65.3 million), lower vaccine demand
(−$5.9 million), and higher COGS (−$65.3 million) resulted in negative NPVs.

For the 18% hurdle rate, which reflects a lower risk tolerance, a positive NPV was
achieved with the higher MR-MAP price (+$69.6 million) and lower investments in the man-
ufacturing facility (+$2.1 million). A higher cost of phase II (−$30.3 million) and phase III
(−$30.4 million), higher investments in manufacturing facility (−$52.7 million), and higher
COGS (−$40.8 million) resulted in negative NPVs. The vaccine demand scenarios did not
result in a positive NPV (−$17.1 to −$8.4 million).
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4. Discussion
4.1. The Global Need for Improved MR Vaccines and the Ability of MR-MAPs to Address the MR
Problem Statements

The iFVVA highlighted that the problem statements with the highest likelihood of
occurrence and the greatest impact on MR immunization programs are related to high
labor costs, challenges associated with equitably delivering N&S vaccines, and challenges
with cold chain requirements during outreach activities. For these problem statements, it
is anticipated that MR-MAPs’ single-dose presentation and ease of preparation and ad-
ministration could expand the vaccinator workforce to community-trained health workers
or volunteers, ultimately reducing labor costs and providing opportunities to vaccinate
previously unreached children. Further MR-MAPs are anticipated to have more ther-
mostable characteristics compared to the current N&S vaccine (e.g., vaccine vial monitor
of 30 days and CTC properties), which can be made to address the cold chain challenges
during outreach activities, which may also positively contribute to more equitable MR
vaccination coverage.

As it is anticipated that MAPs can address some of the problem statements, it would
be important that evidence relating to how MR-MAPs can impact these problem statements
is generated and translatable to different countries and contexts.

Recent phase I and I/II studies found that MR-MAPs were safe and well-tolerated
with promising immunogenicity results, and the most common side effects with MAPs
are local reactogenicity at the application site [42–44]. Although MR-MAPs could of-
fer several potential benefits, their successful implementation will require appropriate
training, development of implementation strategies, and adequate infrastructure adapta-
tion; as well as community sensitization to educate the community about MAPs and to
promote acceptability.
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Thus, MR-MAPs will likely require implementation research studies as well as large-
scale use to better understand the potential programmatic impact of a MAP presentation.
Global partners under leadership of WHO and a technical advisory group are addressing
this by defining an implementation research agenda, so that such data become available
with minimal delays [45].

4.2. Estimating the Costs and Benefits of MR-MAPs

While the price benchmarking analysis estimates the Gavi-supported price in the range
of $1.29–2.92, the actual price will depend on MR-MAP COGS, the scale of manufacturing,
the options for a multi-purpose facility, and individual country use and the balance of
supply and demand. Moreover, it is unlikely that the MAP price will be lower than the
theoretical costs of the MR SDV presentation ($1.29 in Gavi-supported countries) given the
need for developers to recover upfront costs for clinical development and manufacturing
scale-up. Finally, due to the low cost of existing MR N&S presentations, potential buyers of
MR-MAPs may be highly sensitive to any increases in price. Since the development of this
iFVVA, an initial estimate of targeted MR-MAP demand has been developed to take into
account how MR-MAPs could be deployed to limit the financial burden linked to the initial
expected price premium associated with MR-MAPs compared to the MR MDV presentation;
however, it is essential that this is further explored to consider country perspectives.

Unsurprisingly, for the commodity and delivery costs analysis, the MR-MAP price
was the largest driver, and so potential variations in the cold chain volume, HR time to
administer the MR-MAP, and CTC qualification had a smaller impact on the cost estimates.
As MR-MAP development advances towards market availability, balancing the appropriate
price will ensure country and manufacturer sustainability. Furthermore, optimizing the
key product characteristics of smaller cold chain volume and CTC will have an impact on
delivery costs and ultimately the value proposition. The analysis also found that given
the high wastage rate for multidose MR N&S, the single dose presentation of MR-MAPs
reduces wastage, and the cost savings are greater for RI than SIAs, where wastage rates
with the current multi-dose vial presentations are higher. Finally, the analysis showed
marginal cost savings due to shifting the vaccinator workforce to HCWs, given relatively
low costs of labor in LMICs.

The iFVVA was the first analysis to estimate the public health impact of MR-MAPs on
measles disease burden well as its cost effectiveness, highlighting up to a 35% reduction
in measles cases, deaths, and DALYs while showing MR-MAPs to be a cost-effective
intervention across most of the LMICs under stagnant coverage [37]. On the other hand,
in countries with a higher income, introducing MR-MAPs had the largest cost savings
due to prevention of measles treatment costs. These results indicate that MR-MAPs could
have broader impact and cost effectiveness beyond the low-income countries, highlighting
the potential for a dual market. The cost-effectiveness of MR-MAPs is expected to further
increase if more targeted use of MR-MAPs is implemented and/or increased equity in
coverage is valued higher and/or if there is earlier elimination of the measles disease and
the related economic burden. It is anticipated that this will further increase the value for
money of MR-MAPs, making it one of the most cost-effective vaccine interventions.

Furthermore, the iFVVA demonstrated that MR-MAP cost per DALY saved for LMICs
($85–$2310) is comparable to the HPV, rotavirus, and RSV maternal vaccines, indicating that
MR-MAPs could have good value for money and are comparable to historical donor-led
investments in vaccines [39–41].

While the results of these analyses are promising and highlight the potential benefits
of implementing MR-MAPs, the demand forecast for MR-MAPs serves as a key input that
assumes broad uptake of MR-MAPs and the ability to reach un- and under-vaccinated
children. On top of developing more targeted use scenarios, assumptions on uptake
by countries and ability to reach un- and under-vaccinated children need to be further
developed and validated. Furthermore, as MR-MAPs advance into late-stage clinical devel-
opment, it would be important to refine these analyses with more accurate price estimates.
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The analyses did not consider the potential impact of coexisting interventions apart
from vaccination as well as whether the increase in coverage could achieve MR elimination
faster and result in changes in vaccination strategies, such as fewer SIAs or fewer outbreak
responses. Linked to this, it would also be important to capture any potential cost savings
related to these potential changes in vaccination strategies. These limitations of the public
health impact and cost-effectiveness analysis may result in an under-estimate of the impact
of MR-MAPs and should be explored as part of future investment cases.

The analysis did not include the environmental impact of MAPs, and this should
be an additional focus for future analysis. The environmental impact of manufacturing
MAPs will depend on factors such as cold chain volume, weight, and material selection.
MAPs will have a significant impact on reducing open-vial wastage as well as reducing
waste at the end of product life (e.g., no glass vials, needles, or syringes) and reducing
CO2 emissions.

4.3. Describing the Pathway from Development to Delivery

The iFVVA captured feedback from RITAG and NITAG members, highlighting the
need to not only understand key product characteristics such as safety, efficacy, and im-
munogenicity but to also have evidence on cost per immunized child and recommendations
from SAGE or RITAG. However, this analysis only consulted 11 individuals, and it would
be important to continue these conversations with decision-makers as MR-MAPs advance
in their development. The rapid assessment of literature provided information on the
potential challenges to successfully developing and manufacturing MR-MAPs. These de-
velopment challenges are being actively monitored by the VIPS partners and will require
coordination between MR-MAP developers and regulators to support timely marketing
authorization and implementation in LMICs.

Despite the high public health potential of MR-MAPs, our analysis indicates that
the investment required to develop them will not be attractive unless concerted actions
are taken by global health stakeholders. The factors that have the highest impact on the
financial sustainability are the differential between price and COGS, the manufacturing set-
up, and the financing of late-stage clinical development. These data are critical to quantify
the financial gap that must be covered to allow for the development and production of
MR-MAPs. It is likely that this un-recouped investment will have to be covered by third
parties via different instruments impacting the most relevant variables, such as a top-up on
price, demand guarantees, and/or an upfront contribution to the clinical development and
manufacturing investments.

4.4. Benefits of the iFVVA

The FVVA methodology provided flexible guidance on the key analyses and areas
that are required to better understand the full value of MR-MAPs [21]. The iFVVA aims
to take an early and holistic approach to understanding the value of MR-MAPs through
conducting analyses important to the public health stakeholders, decision- and policy-
makers, and MAP developer/vaccine manufacturer perspectives. Thus, the iFVVA served
as an excellent tool to align stakeholders on key assumptions and explore the areas of
uncertainty using scenarios and sensitivity analyses. The iFVVA also opened discussions
to others interested in MR-MAPs who may not typically be consulted at this stage, such as
vaccine manufacturers, MAP developers, donors/funders, regulatory experts, procurement
agencies, and regional and national level decision-makers.

MR-MAPs were not yet in Phase I trials when the iFVVA development began, and
thus this assessment aimed to identify the outstanding questions considering the public
health and commercial perspectives. Furthermore, while the iFVVA provided additional
analyses to support the MR-MAP development discussions, it was completed early in
the development of MR-MAPs, with some assumptions being driven by expert opinion.
The analyses presented in the iFVVA will need to be updated as new data on country
use, demand, price, and product characteristics become more concrete. Such analyses
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may include more targeted approaches on use cases to identify the highest added value
of MR-MAPs and thus the best return on investment in the MR-MAPs, considering the
potential price, the public health return, and countries’ and donors’ willingness to pay.

Although there is significant hope around MR-MAPs, their implementation and
delivery will depend heavily on generating additional evidence and research on their
benefits, as well as if there are innovative strategies in which MR-MAPs could be used to
obtain high public health impact. Implementation research and potential pilots/studies
will need to be conducted to generate sufficient evidence to assist in the global, regional,
and national decision-making processes.

The iFVVA generated novel analyses; however since its development, two MR-MAP
products have completed Phase I/II and Phase I studies, indicating the need to regularly
update analyses as more data become available. Furthermore, additional analyses not
explored in the iFVVA may also prove important in analyzing its full value. These analyses
include the potential public health impact on the rubella disease burden and the potential
changes in vaccination strategy if MR-MAPs help in achieving and sustaining 95% coverage
goals (e.g., fewer SIAs, less outbreak response, and less measles and rubella burden).
Moreover, while the epidemiological and economic modeling provides estimates of the
health impact and cost-effectiveness of MR-MAPs across large income groups, detailed
country-specific modeling is needed to inform country-specific strategies for MR-MAP
introduction. Finally, the environmental impact of MAPs should be an additional focus for
future analysis.

5. Conclusions

The iFVVA shows the high potential public health impact and the cost effectiveness
of MR-MAPs, particularly related to increasing equitable vaccine coverage among un-
and under-immunized populations as well as contributing to achieving and sustaining
measles elimination goals. The public health impact will be larger the earlier MR-MAPs are
introduced and used. Regardless of its high public health potential, MR-MAPs have not
yet completed critical clinical, regulatory, and manufacturing milestones and require more
evidence generation on outstanding implementation questions. All these factors could
contribute to the delay of MR-MAP use in LMICs. Due to the variety of factors impacting
the potential timelines of MR-MAPs, a coordinated effort across a range of stakeholders
including MAP developers, vaccine manufacturers, donors, and financiers, as well as
policy- and decision-makers at the global, regional, and national levels, will be needed to
ensure timely development and use in LMICs. The iFVVA provided an initial opportunity
to bring together key stakeholders and discuss the areas of uncertainty and identified
potential actions that could drive the acceleration of MR development and implementation.
The iFVVA identified the following key actions that will require coordinated efforts from
all but should be led by the following key stakeholders (note that there is ongoing work for
the actions marked with l i):

5.1. MAP Developers and Vaccine Manufacturers

• Accelerate partnering and collaboration of the development of MR-MAPs, as well as
other vaccine-MAPs.

• Build in key programmatic needs in the MAPs development programs, such as min-
imized COGs, minimized cold chain volume, increased thermostability (CTC and
VVM30), and minimized wear time.

• Factor in sustainability directions, including minimizing COGs and exploring the
potential for multiple MAP manufacturing facilities/production lines, local manufac-
turing, and dual market (LMIC, UMIC, and HIC) opportunities.

5.2. Donors and Financiers

• Advance the technical maturity of the MAPs platforms, including the optimizing MAP
designs/characteristics and the availability of manufacturing facilities.
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• Prove the technical feasibility of MAPs as a vaccine delivery platform to increase
commercial sustainability.

• Share upfront cost of MAP developers and vaccine manufacturers, especially develop-
ment costs, manufacturing investments, and late-stage clinical trials.

• Wxplore cost sharing of MR-MAP development with more commercially attractive
vaccine-MAP products (e.g., seasonal influenza, measles-mumps-rubella, measles-
mumps-rubella-varicella).

• Continue to refine, qualify, and quantify the commercial value of MR- and other
vaccine-MAPs.

5.3. Policy- and Decision-Makers at Global, Regional, and National Levels

• Develop and contribute to WHO Evidence Considerations for Vaccine Policy (ECVP)
in identifying additional data requirements for SAGE review and implementation of
research questions.l

• Identify and prioritize implementation research questions, which will further enrich
the existing knowledge and prepare for programmatic introduction. l

• Collaborate with countries, including Gavi-supported and self-procuring countries,
to design and conduct post-licensure implementation studies, including those to
evaluate MR-MAP’s ability to reach un- and under-vaccinated children, as well as
better quantifying potential demand.

• Drive development of global, regional, and national guidance and policies to include
MR-MAP into immunization programs and explore potential administration by lesser
trained health workers or self-administration, including for HICs to explore the use of
MR-MAPs in sustaining MR elimination.

• Support the development of financing policies to support MR-MAP implementation,
including Gavi eligibility/co-financing.

• Define use and training needs for MR-MAPs that are potentially used co-currently
with MR N&S.

• Refine iFVVA analyses to inform future investment decisions as MR-MAPs continue
advancing in their development, including the following:

(a) The use cases to consider programmatic “fit-for-purpose” to inform future
vaccination strategies at the subnational level;

(b) The demand estimates, including estimating targeted introduction (e.g., use
in a subset of countries/regions and/or use cases or delivery strategies) of
MR-MAPs l;

(c) The public health impact and cost effectiveness, for both measles estimates and
rubella estimates, informed by implementation research l;

(d) The economic analyses expanding the beyond health opportunity costs to
include the value of economic value of productivity gains, socioeconomic equity
around improved coverage, environmental sustainability (e.g., CO2 footprint,
waste), the impacts of earlier measles and rubella elimination (e.g., the reduced
number of measles outbreaks and health system disruptions, reduced need for
follow-up campaigns);

(e) The DCF analysis to revise the commercial viability and identify potential
market-shaping interventions.

• Design a risk-sharing mechanism for MAP development, scale-up, and implementa-
tion in LMICs to balance the financial pressure on developers and manufacturers, such
as demand guarantees or a price top-up.

• Support potential partnerships between MAP developers and vaccine manufacturers.

Actions have been discussed in the External Advisory Group of the iFVVA, and,
consequently, the represented stakeholders are undertaking the italicized activities. This
includes coordination via VIPS and the Technical Advisory Group for MR-MAPs. While
we have identified several key actions that need to be led by various stakeholders, the main
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underpinning of the successful development and implementation of MR-MAPs relies on
continuous and open discussions amongst all key stakeholders.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/vaccines12091075/s1: Figure S1: Current MR-MAP development
timeline; Table S1: Expert Advisory Group members; Table S2: PubMed search terms; Table S3:
Formula to estimate MR PFS price in Gavi-supported countries; title; Table S4: Additional assump-
tions to estimate the commodity and delivery costs; Table S5: Interview questions for policy- and
decision-makers; Table S6: Interview questions for MAP developers and vaccine manufacturers;
Table S7: Summary of evidence on each measles and rubella problem statement evaluated in problem
statements assessment [7,10,46–101].
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