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ABSTRACT
Pharmacoepidemiological studies provide important information on the safety and effectiveness of medications, but the 
validity of study findings can be threatened by residual bias. Ideally, biases would be minimized through appropriate study 
design and statistical analysis methods. However, residual biases can remain, for example, due to unmeasured confounders, 
measurement error, or selection into the study. A group of sensitivity analysis methods, termed quantitative bias analyses, 
are available to assess, quantitatively and transparently, the robustness of study results to these residual biases. These ap-
proaches include methods to quantify how the estimated effect would be altered under specified assumptions about the 
potential bias, and methods to calculate bounds on effect estimates. This article introduces quantitative bias analyses for 
unmeasured confounding, misclassification, and selection bias, with a focus on their relevance and application to pharma-
coepidemiological studies.

1   |   Introduction

Pharmacoepidemiological studies are an important source of ev-
idence on the safety and effectiveness of medications. However, 
the validity of findings from pharmacoepidemiological studies 
can be threatened by potential sources of residual bias such as 
unmeasured confounders, measurement error, and the selection 
of study subjects [1–4].

The potential for residual bias is commonly identified qualita-
tively, as a study limitation, in the discussion section of a man-
uscript. However, the robustness of results to residual biases is 
typically not immediately clear, and a subjective assessment is 
prone to error [5]. A group of sensitivity analysis methods, termed 

quantitative bias analysis (QBA), is available for assessing the 
sensitivity of results to residual bias in a quantitative, transpar-
ent, and objective manner [6, 7]. Study investigators typically 
quantify uncertainty in results due to random error, but quantifi-
cation of uncertainty due to potential systematic error (bias) has 
been less common. There is growing recognition of the utility of 
QBA methods, and they form part of several recent guidelines on 
the design of pharmacoepidemiological studies [8, 9].

In this article, we introduce commonly applied QBA methods 
for three of the most common residual biases present in phar-
macoepidemiological studies, namely residual confounding due 
to unmeasured confounders, bias due to misclassification, and 
selection bias [10].
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2   |   Identifying Potential Residual Bias

An initial step in planning QBA is to identify potential resid-
ual biases in a planned study (Figure 1). Bias should be mini-
mized through appropriate study design and statistical analyses. 
However, often the potential for residual bias remains, due to 
unmeasured confounders, measurement error, and/or selection 
of subjects into the study [11].

2.1   |   Residual Confounding Due to Unmeasured 
Confounders

Confounding occurs in studies which aim to estimate causal ef-
fects when there are common causes of exposure and outcome 
which bias the estimated effect of exposure away from the causal 
effect [10]. Measured confounders can be accounted for by using 
study design (e.g., restriction, matching) and/or statistical anal-
ysis methods (e.g., regression adjustment, inverse probability of 
treatment weighting) [10, 12]. However, even after taking ac-
count of measured confounders, there may be unmeasured or 
mismeasured confounders, leading to residual confounding. 
As an example, in a US insurance claims database study of the 
association between use of selective serotonin reuptake inhib-
itors and hip fracture, the estimated harmful association was 
exaggerated without supplemental data collection on variables, 
such as smoking status, that are typically unmeasured or poorly 
measured in claims data [13].

2.2   |   Measurement Bias

Measurement bias (also known as information bias) can occur 
when variables included in the study (i.e., exposure, outcome, or 
covariates) are measured with error (i.e., measurement error) [3]. 
For categorical variables, such measurement error is referred as 
misclassification. Measurement error, and similarly misclassifica-
tion, can be categorized as either differential or non-differential 
[14]. Error is said to be differential when it depends on other ana-
lytical variables. For example, recollection of exposure may differ 
by outcome status in a case–control study of the association be-
tween medication use in pregnancy and congenital malformations 

with participants whose newborn child either did (case) or did not 
(control) have a congenital malformation surveyed on medication 
use in pregnancy [15]. Measurement error of multiple variables 
can be categorized as having dependent or independent errors. 
Errors are said to be dependent when measurement error for one 
variable is associated with error in another. For example, individ-
uals from a particular electronic health record (EHR) system who 
receive care outside that system are more likely to be misclassified 
on multiple variables [16]. Non-differential misclassification of a 
binary exposure or outcome typically leads to bias toward the null 
in expectation, though with several exceptions [5]. One useful ex-
ception is that risk ratio estimates are unbiased in the presence 
of non-differential outcome misclassification when specificity 
is 100%. Differential misclassification can lead to bias toward or 
away from the null dependent on the misclassification mecha-
nism. Misclassification in confounders typically leads to residual 
confounding [17].

2.3   |   Selection Bias

Selection bias occurs when there is a systematic difference 
between estimates observed in the analytic sample and those 
that would have been obtained in the population of interest 
(i.e., the target population) [2, 18, 19]. When selection is asso-
ciated both with exposure and outcome, estimates may differ 
systematically [18, 20] even if there is no causal association 
between treatment and outcome [18, 20]. For example, in a 
test-negative study of the effectiveness of influenza vaccina-
tion, the study population is by design restricted to the tested, 
which can introduce selection bias when health-seeking be-
havior is associated with both testing and vaccination [21]. 
Selection bias commonly arises in case–control studies, due to 
inappropriate control selection, and in cohort studies, due to 
differential loss to follow-up [18].

3   |   Applying QBA Methods

Once we have identified potential residual biases, we can 
choose a QBA method to apply (see Table  1 for a summary 
of described methods). Residual bias due to confounding, 
measurement error, and selection can be seen as arising due 
to a lack of information [22]. With complete information on 
confounders, the true values for variables, and access to data 
for the entire target population, these biases could be elimi-
nated. In practice, there is often incomplete information, for 
example, due to an unmeasured confounder, and to assess the 
validity of results using incomplete information, we can make 
quantitative assumptions about the potential sources of bias 
(e.g., the prevalence of the unmeasured confounder) and use 
these quantitative assumptions, termed bias parameters, to 
quantify how the effect estimate would be expected to differ 
in the absence of this bias.

Alternatively, we can leave one or more bias parameters unspec-
ified and quantify bounds on the estimates that would occur 
if the unspecified bias parameters were at their most extreme 
[23–26]. If study conclusions are robust in relation to this worst-
case bias, this provides some reassurance with regard to the va-
lidity of study findings.

Summary

•	 The validity of findings from pharmacoepidemiologi-
cal studies can be undermined by residual biases.

•	 Common sources of residual bias in pharmacoepide-
miological studies include unmeasured confounders, 
measurement error, and selection into the study.

•	 Qualitative assessment of the potential effects of resid-
ual bias can be subjective and is prone to error.

•	 Quantitative bias analysis methods are a group of sen-
sitivity analysis methods which allow study investiga-
tors to quantify the potential effect of residual biases 
under specified assumptions.

•	 Quantitative bias analysis enables study investigators 
to assess the robustness of study results to residual bias 
in a quantitative, transparent, and rigorous manner.
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3.1   |   Specification of Bias Parameters

A key component to applying many QBA methods is the specifi-
cation of bias parameters. The appropriate specification differs 
depending on the source of bias, namely unmeasured confound-
ing, misclassification, or selection bias.

For unmeasured confounding, bias parameters include the 
strength of the association between unmeasured confounder 
and outcome, and the prevalence of the unmeasured confounder 
in the different treatment groups. Ideally, these bias parameters 

would be estimated in a subset of the study population, but when 
this is not possible, alternative sources of information include 
the literature and external data sources.

For misclassification, bias parameters include the sensitivity and 
specificity of classification, or positive and negative predictive 
values (defined in Table 2). Validation studies can be conducted 
to estimate these parameters [27]. Typically, in such studies a 
sample of individuals is identified, either from the study popula-
tion (i.e., internal validation study) or from a similar population 
(i.e., external validation study), who are categorized as having 

FIGURE 1    |    Steps involved in conducting QBA.
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(and/or not having) the event of interest (e.g., type 2 diabetes 
recorded in insurance claims data). Additional data collection 
is conducted (e.g., by surveying the individual's clinician or 
through chart review), to ascertain whether the original cate-
gorization is correct and to estimate predictive values. When 
sampling in the validation study is conducted within levels of 
the misclassified variable, sensitivity and specificity cannot be 
directly estimated, but predictive values can. However, in this 
situation, sensitivity and specificity can be indirectly estimated 
from predictive values using Bayes' theorem and the preva-
lence of the misclassified variable in the study population (see 
Appendix).

In this manuscript we focus on using sensitivity and specificity, 
because positive and negative predictive values can vary strongly 
depending on the underlying prevalence of the true variable, and 
therefore may vary more between populations [27]. Furthermore, 
even if misclassification were non-differential, if exposure and 
outcome are associated, we would need to stratify the predictive 
values for outcome misclassification by exposure, and similarly 
the values for exposure misclassification by outcome [6].

For selection bias, bias parameters include the probabilities of 
selection into the study sample, stratified by exposure group and 
outcome status. Choice of values for these bias parameters may 
be informed by data from the target population, if available, or 
from literature estimates and external data sources [28].

3.2   |   QBA Methods for Unmeasured Confounding

3.2.1   |   Bias Formulas

There are several approaches that can be taken for QBA for an 
unmeasured confounder. One simple approach to calculate bias-
adjusted estimates is to apply algebraic formulas, termed bias 
formulas [7, 29]. As an example, consider a bias formula for the 
risk ratio between a binary treatment X (e.g., prescription of a 
retinoid during the first trimester of pregnancy) and a binary 
outcome Y (e.g., diagnosis of a congenital malformation in the 
infant) [30]. Using the bias parameters of the prevalence of the 
unmeasured confounder in the treated and comparator groups, 
and the risk ratio between unmeasured confounder U and 

TABLE 1    |    Summary of described methods.

QBA method Biases addressed by method Advantages Disadvantages

Formulas Uncontrolled confounding, 
misclassification, selection bias

Simplicity of application Challenging to incorporate 
measured covariates

Probabilistic bias 
analysis

Uncontrolled confounding, 
misclassification, selection bias

Incorporation of uncertainty 
in bias parameters

Can be challenging to specify 
bias parameter distributions

Regression 
likelihood-based

Uncontrolled confounding, 
misclassification

Ease of incorporation of 
measured covariates

Statistical and computational 
complexity; limited to regression 

analyses; requirement 
of record-level data

Bounding methods Uncontrolled confounding, 
misclassification, selection bias

Requires specification of 
fewer bias parameters; ease 
of application to covariate-

adjusted associations

Less informative than 
methods that estimate a 

bias-corrected effect; can 
be difficult to interpret

Matrix methods Misclassification Ability to include misclassified 
variables with > 2 categories 
and with dependent errors

Complexity of specification

Multiple imputation 
for measurement 
error

Measurement bias Ease of incorporation of 
measured covariates and 

multiple mismeasured 
variables; applicability with 

continuous covariates

Statistical and computational 
complexity; requirement 

of record-level data

Inverse probability 
of selection weights

Selection bias Ease of incorporation into 
standard analyses

Requirement of record-level data

TABLE 2    |    Definition of misclassification terms.

Term Description

Sensitivity Probability categorized as having the event (e.g., outcome, exposure) given truly have the event

Specificity Probability categorized as not having the event given truly do not have the event

Positive predictive value Probability truly have the event given categorized as having the event

Negative predictive value Probability don't have the event given categorized as not having the event
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outcome Y (adjusted for treatment X), we can calculate a bias-
adjusted effect estimate (see Table 3 for definitions of formula 
terms and Figure 2 for an example application) [7].

We can apply the same formula to an odds ratio when the out-
come is rare, and hence the odds ratio approximates the risk 
ratio, and to the hazard ratio when hazards are proportional and 
the outcome is rare, and hence the hazard ratio approximates 
the risk ratio [12, 31]. While this formula assumes no interaction 
between treatment and unmeasured confounder, alternative 
formulas are available that do not make this assumption  [29]. 
This formula can be applied to the point estimate and to the lim-
its of the confidence interval.

This formula applies to the crude risk ratio. Bias formulas that 
incorporate measured covariates are available, though specifica-
tion becomes more challenging, and generally requires the spec-
ification of bias parameters within strata of measured covariates 
[29]. Similarly, bias formulas are available for categorical un-
measured confounders with > 2 categories, propensity-score 

weighted estimates, and for the risk difference [32]. When there 
are data on the unmeasured confounder for a subset of partic-
ipants, an alternative approach to correct propensity score ad-
justed estimates is to use propensity score calibration [32–35].

3.2.2   |   Likelihood-Based Approaches

Regression analyses, such as logistic regression, are typically 
conducted using maximum likelihood estimation. In this ap-
proach, the estimated values of parameters (e.g., log odds ratios 
between treatment and outcomes) are the values that maximize 
the likelihood of the observed data for a given statistical model 
(e.g., a logistic model) [36]. An alternative to bias formulas for 
estimating a bias-adjusted association, applicable when patient 
record-level data are available and a regression model for the 
outcome is fitted (e.g., logistic regression adjusting for measured 
covariates), is to modify this likelihood in order to obtain a bias-
adjusted effect estimate (e.g., a bias-adjusted odds ratio) [37, 38]. 
An advantage of this approach is ease of incorporation of mea-
sured covariates. However, this approach is more complicated 
computationally and statistically because it involves model spec-
ification and numerical likelihood maximization.

When data relating to the confounder are available for a subset 
of study participants, then, under certain assumptions, multiple 
imputation can be used [39]. Though the focus of this article is 
on binary and time-to-event outcomes, which are common in 
pharmacoepidemiological studies, QBA methods are also avail-
able for linear regression with a continuous outcome [40].

3.3   |   QBA Methods for Misclassification

3.3.1   |   Algebraic Formulas

A simple approach to QBA for exposure or outcome misclassi-
fication when both these variables are binary is to apply alge-
braic formulas to calculate a bias-adjusted 2 × 2 table [6]. These 

RR
BiasAdj
XY

= RRObsXY ∕
Pr(U = 1|X = 1)

(
RRUY|X − 1

)
+ 1

Pr(U = 1|X = 0)
(
RRUY|X − 1

)
+ 1

TABLE 3    |    Notation used in formulas.

Term Description

RR
BiasAdj
XY

Risk ratio between treatment 
and outcome adjusted for 
unmeasured confounder

RRObsXY
Observed risk ratio between 

treatment and outcome

RRUY∣X Risk ratio between unmeasured 
confounder and outcome 

adjusted for treatment

Pr(U = 1|X = 1) Prevalence of the unmeasured 
confounder among the treatment group

Pr(U = 1|X = 0) Prevalence of the unmeasured 
confounder among the 

comparator group

OR
BiasAdj
XY

Odds ratio between treatment and 
outcome corrected for selection bias

ORObsXY
Observed odds ratio between 

treatment and outcome

Sxy Probability of selection for an individual 
with exposure x and outcome y

SeX1 Sensitivity of outcome classification 
in treatment group

SeX0 Sensitivity of outcome classification 
in comparator group

SpX1 Specificity of outcome classification 
in treatment group

SpX0 Specificity of outcome classification 
in comparator group

FIGURE 2    |    Bias-adjusted risk ratio for an observed risk ratio of 
1.57 when varying the risk ratio between unmeasured confounder and 
outcome conditional on exposure (RRUY|X) and the risk ratio between 
exposure and unmeasured confounder (RRXU). Prevalence of the binary 
unmeasured confounder among the comparator group is assumed to be 
10% in this figure.
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formulas require specification of the bias parameters of sensi-
tivity and specificity or positive and negative predictive values 
[6]. For example, consider a scenario in which there is outcome 
misclassification, and we specify values for the bias param-
eters of sensitivity and specificity. We have the observed 2 × 2 
table (Table 4), and from this we generate a corrected 2 × 2 table 
(Table 5) under assumed values for bias parameters. If we as-
sume misclassification is non-differential, then sensitivity and 
specificity will not vary depending on exposure status, and we 
can use a single value for each of these bias parameters.

To incorporate measured covariates, for example as part of adjust-
ment for measured confounders, we can stratify the 2 × 2 tables by 
these covariates and perform a stratified bias analysis (e.g., esti-
mating a Mantel–Haenszel odds ratio). However, limiting analyses 
to 2 × 2 tables is restrictive, and a more flexible approach, termed 
record-level correction, is to use these corrected 2 × 2 tables to im-
pute a corrected value of the relevant variable in each data record, 
and analyze the data as planned with this imputed variable [41, 42].

3.3.2   |   Likelihood-Based Approaches

Similar to QBA for unmeasured confounding, another approach 
to QBA for misclassification is to modify the regression likeli-
hood [6, 43, 44]. This approach has the advantage that it can 
incorporate measured covariates, but it is more statistically and 
computationally involved.

3.3.3   |   Other Methods

Matrix methods are available when there is simultaneous mis-
classification of exposure and outcome, including situations 
with dependent errors (i.e., when the misclassification in ex-
posure and outcome are not independent), or when categor-
ical variables (with > 2 categories) are misclassified [6, 45]. In 
pharmacoepidemiological studies with active comparators, the 
occurrence of non-adherence can make exposure classification 
categorical (e.g., exposed to treatment of interest, exposed to 
comparator, not exposed to either treatment) rather than binary. 
Ross et al. outline bias formulas in an active comparator study 

for non-differential misclassification, while matrix methods 
may be used if misclassification is differential [46].

Further alternative methods are available, including predic-
tive value weighting and reparametrized imputation for mea-
surement error (RIME) [6, 43, 45–47]. While we focus in this 
article on misclassification, methods for measurement error 
correction for continuous variables are also available, in-
cluding regression calibration and simulation-extrapolation 
(SIMEX) [3, 48, 49].

3.3.4   |   Multiple Imputation for Measurement Error

When internal validation data are available (i.e., data on a ran-
dom or stratified random subset of participants) then misclassi-
fication can be treated as a missing data problem, with the true 
variable considered as a variable with missing values, and mul-
tiple imputation for measurement error applied [3, 39, 50, 51].

4   |   QBA Methods for Selection Bias

4.1   |   Bias Formulas

A simple formula to take account of selection bias applies to the 
odds ratio [52]. To apply this formula, we must specify the bias 
parameters of probabilities of selection into the study for different 
categories of participant, namely participants in treatment group 
with outcome (S11), treatment group without outcome (S10), com-
parator group with outcome (S01), and comparator group without 
outcome (S00). The bias-adjustment formula is then:

If selection is independent of covariates given exposure and out-
come, the formula can be applied to the covariate-adjusted odds 
ratio. Assuming the outcome is rare, it can also be applied as an 
approximation to a risk ratio or a hazard ratio [31]. To incorpo-
rate random error, this formula can be applied to both the point 
estimate and the limits of the confidence interval.

4.2   |   Inverse Probability of Selection Weights

With record-level data, an alternative and more flexible ap-
proach is to use inverse probability of selection weights. Each 
record can be weighted by the inverse probability of selection, 
and weighted analyses conducted. If selection depends on co-
variates, these covariates can be incorporated by specifying 
different selection probabilities for each combination of covari-
ates, exposure, and outcome, though accurate estimates of these 
stratified probabilities are often less readily available.

5   |   Incorporating Uncertainty in Bias Parameters

There will typically be uncertainty in bias parameter values, and 
several approaches are available to account for that uncertainty. 
Rather than specify a single value for each bias parameter, a 

OR
BiasAdj
XY

= ORObsXY ∕
S11S00
S10S01

TABLE 4    |    Observed 2 × 2 table of the treatment-outcome 
association.

Y = 1 Y = 0

X = 1 a b

X = 0 c D

Note: Treatment is denoted X, outcome as Y.

TABLE 5    |    Corrected 2 × 2 table of treatment-outcome association.

Y = 1 Y = 0

X = 1 A =
a− (a+ b)(1−SpX1)
SeX1 +SpX1 − 1

B = a + b − A

X = 0 C =
c− (c+d)(1−SpX0)
SeX0 +SpX0 − 1

D = c + d − C
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range of plausible values can be specified. Alternatively, a prob-
ability distribution can be specified for each bias parameter, bias 
parameters can be drawn repeatedly from these distributions 
(e.g., 10 000 times), and the previously described bias analyses 
conducted repeatedly with these different values of the bias pa-
rameters. This approach is termed probabilistic bias analysis or 
Monte Carlo sensitivity analysis. Common choices for distribu-
tions, chosen to reflect investigator uncertainty in bias parame-
ters, include trapezoidal, log-normal, and beta distributions (see 
Figure  3 for an illustrative distribution). Correlation between 
bias parameters can be specified as part of the distribution speci-
fication [6]. Probabilistic bias analysis generates a distribution of 
bias-adjusted estimates, which can be summarized by reporting 
the median and 95% simulation interval (see Boxes 1 and 2). If 
a fully Bayesian approach is desired, methods are available that 
can incorporate uncertainty in bias parameters through proba-
bility distributions as part of a Bayesian analysis [6, 53–56].

Uncertainty in the bias-adjusted estimates arises not only due to 
the uncertainty in bias parameter values, but also due to random 
error affecting the observed data. It is important to incorporate this 
uncertainty, for example, by bootstrapping the bias analysis [57].

6   |   Bounding Methods

One approach to QBA that can circumvent the need to specify 
one or more bias parameter values is to use bounding methods 
[26, 58]. These methods can be used to quantify bounds on es-
timates and to ascertain values of one or more bias parameters 
that would be necessary to reduce observed estimates to the null 
(or another specified value) if unspecified bias parameters were 
at their most extreme.

For unmeasured confounding, two popular bounds are E-values 
and Cornfield conditions [26]. These methods specify the min-
imum strength of association with an unmeasured confounder 
that is necessary, if other bias parameters are at their worst pos-
sible values, to potentially reduce an observed association to the 
null or to some other specified value. These formulas can be ap-
plied to the point estimate for the risk ratio, and to its confidence 
interval limits, to account for random error (see Figure 4 for an 
example application). As with the bias formulas for unmeasured 
confounding, these formulas can also be applied to the odds 
ratio and hazard ratio when the outcome is rare. The formulas 
for applying these boundary methods are as follows:

Cornfield conditions:

E-value formula:
Note: These associations are adjusted for one or more measured 
covariates C.

The Cornfield condition is a lower threshold, which both the 
treatment-unmeasured confounder risk ratio, and the unmea-
sured confounder-outcome risk ratio, must exceed, in order to 
potentially explain the observed result; whereas the E-value is 

RRUY∣X ,C ≥ RRObsXY∣C

RRXU∣C ≥ RRObsXY∣C

max

⎛
⎜
⎜
⎜
⎜
⎜
⎝

RRUY�X ,C ,RRXU�C

⎞
⎟
⎟
⎟
⎟
⎟
⎠

≥ RRObsXY∣C +

�

RRObs
XY∣C

�

RRObs
XY�C

− 1
�

FIGURE 3    |    Trapezoidal distribution for a bias parameter of 
sensitivity of classification with an upper bound of 95%, a lower bound 
of 75%, and most likely values between 80% and 85%.

BOX 1    |    Example application of probabilistic bias analysis.

Suarez et al. applied probabilistic bias analysis to examine 
the robustness of the association between buprenorphine vs. 
methadone use in pregnancy and pregnancy outcomes [72]. 
Non-differential outcome misclassification was assumed, 
and sensitivity and specificity values were drawn repeatedly 
from triangular probability distributions. The crude risk 
ratio for preterm birth with buprenorphine was 0.58 (95% CI 
0.54–0.62), which in this study was close to the adjusted risk 
ratio (0.58, 95% CI 0.53–0.62). The median estimate from 
probabilistic bias analysis applied to the crude risk ratio was 
0.47 (95% simulation interval 0.37–0.55), providing support 
for the robustness to outcome misclassification of the find-
ing of reduced risk with buprenorphine.

BOX 2    |    Example application of bounding methods.

Zhang et al. examined the potential impact of unmeasured 
confounding by smoking on the association between fluoro-
quinolone use and risk of aortic aneurysm, using E-values 
[73]. For a covariate-adjusted risk ratio of two between fluo-
roquinolone use and aortic aneurysm, the estimated E-value 
was 3.41, indicating that in order to potentially explain the 
observed association, either smoking must be associated 
with aortic aneurysm, or fluoroquinolone use must be as-
sociated with smoking, with a risk ratio greater than 3.41. 
While risk ratios of this size were considered unlikely by the 
study investigators based on the literature, additional un-
measured confounders, such as severity of infection, could 
contribute to the observed association [74].
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a higher threshold which only one of these two risk ratios must 
exceed. While E-values are a popular method, there has been 
criticism of their application in the literature, given common 
misinterpretation and use without careful consideration of spe-
cific unmeasured confounders [59–61].

Bounding methods for unmeasured confounding are available for 
the risk difference, and also methods that bound the p-value [58]. 
Bounding methods are also available for measurement error and 
selection bias [24, 62]. While bounding methods can be useful 
and are simple to implement, they do not provide an estimate of 
a bias-corrected association. Instead, a bound on the maximum 
bias possible under given assumptions can rule out a particular 
bias as an explanation of findings, but does not provide evidence, 
if bias cannot be ruled out, that the bias would necessarily explain 
the observed findings. Because of these limitations, bounding 
methods provide less information than other QBA methods.

6.1   |   Multiple Bias Analysis

To conduct QBA for multiple biases we can apply sequentially 
the bias correction methods introduced earlier. Typically, we 
should apply these methods in the reverse order to that in which 
the biases arose [6]. For example, if we have a study in which 
we selected a sample, then interviewed participants, we can 
consider biases to have arisen in the order: confounding (before 

the study commenced), selection (during the specification of the 
sample) then misclassification (when the interview results were 
recorded). Bounding methods are also available for multiple bi-
ases [63].

6.2   |   Application of QBA Using Statistical Software

QBA can be implemented manually or through user-written 
code, but there are also a number of software packages available 
that can make implementation of QBA easier [64–68]. Statistical 
software for QBA includes R, Stata, and SAS code for algebraic 
and probabilistic bias analysis [65, 66, 69]. An R package and SAS 
macro are available to implement E-values, with the R “EValue” 
package also implementing bounds for selection bias, misclas-
sification, and multiple biases [67, 68]. Spreadsheets to imple-
ment QBA are available that accompany the book “Applying 
Quantitative Bias Analysis to Epidemiologic Data” [6].

6.3   |   Interpretation and Reporting of QBA

The validity of QBA depends inherently on accurate specifi-
cation of bias parameters and on the assumptions made in the 
conduct of the bias analysis (e.g., that misclassification is non-
differential) [70]. It is important that these assumptions are made 
explicit when reporting, and that clear justification is given for 

FIGURE 4    |    E-value plot for an observed risk ratio of 2. An unmeasured confounder with strength of association with both exposure and outcome 
below the E-value curve could not fully explain the observed association (i.e., reduce it to a null risk ratio of 1).

E−value: (3.41,3.41)

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Risk ratio for exposure−confounder association

R
is

k 
ra

tio
 fo

r c
on

fo
un

de
r−

ou
tc

om
e 

as
so

ci
at

io
n

Cornfield conditions E−value curve

 10991557, 2024, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pds.70026 by T

est, W
iley O

nline L
ibrary on [22/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://onlinelibrary.wiley.com/action/rightsLink?doi=10.1002%2Fpds.70026&mode=


9 of 11

choices of bias parameters. Furthermore, caution is warranted 
that QBA results are not overinterpreted, given the possibility of 
additional residual biases that have not been accounted for, and 
given the reliance of the methods on assumptions made, such as 
assumed bias parameter values [71].

7   |   Conclusions

Residual bias is a common concern in pharmacoepidemiological 
studies and can threaten the validity of study findings. Using 
QBA, the sensitivity of study results to potential residual biases 
can be quantified, enabling a transparent assessment of the ro-
bustness of study findings. When QBA is not applied, interpre-
tation of estimates as causal makes the assumption of absence of 
unmeasured confounding, measurement bias, or selection bias, 
which is difficult to justify in practice.
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Appendix A

A.1   |   Formulas

Formulas to calculate sensitivity and specificity from predictive values and misclassified (i.e., observed) prevalence of variable:

Note these formulas assume sensitivity, specificity, predictive values, and prevalence are specified as proportions between zero and one (e.g., prev-
alence of 0.70).

Sensitivity =
PPV ×misclassified prevalence

(PPV ×misclassified prevalence) + ((1 − NPV) × (1 −misclassified prevalence))

Specificity =
NPV × (1 −misclassified prevalence)

(
NPV × (1 −misclassified prevalence

)
) + ((1 − PPV) ×misclassified prevalence)
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