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Modelling the implementation 
of narrow versus broader spectrum 
antibiotics in the empiric treatment 
of E. coli bacteraemia
Mark P. Khurana 1*, Jacob Curran‑Sebastian 1, Samir Bhatt 1,2 & Gwenan M. Knight 3

The implementation of new antimicrobial resistance stewardship programs is crucial in optimizing 
antibiotic use. However, prescription choices can be difficult during empiric therapy; clinicians must 
balance the survival benefits of broader spectrum antibiotics with associated increases in resistance. 
The aim of this study was to evaluate the overall feasibility of switching to narrow spectrum 
antibiotics during the empiric treatment of E. coli bacteraemia by quantifying changes in resistance 
rates, antibiotic usage, and mortality using a deterministic state-transition model. Three unique 
model scenarios (A, B, and C), each representing a progressively broader spectrum empiric treatment 
regimen, were used to compare outcomes at 5 years. We show that the empiric use of the narrowest 
spectrum (first-line) antibiotics can lead to reductions in resistance to second-line antibiotics and the 
use of third-line antibiotics, but they also lead to increases in resistance to first-line therapy and higher 
mortality. Crucially, we find that shortening the duration of empiric and overall treatment, as well as 
reducing the baseline mortality rate, are important for increasing the feasibility of switching to narrow 
spectrum antibiotics in the empiric treatment of E. coli bacteraemia. We provide a flexible model 
design to investigate optimal treatment approaches for other bacterial infections.

Antimicrobial resistance (AMR) is a growing health concern, with the situation exacerbated by a growing num-
ber of multi-resistant organisms and a corresponding dearth of new antibiotics1,2. New antibiotic stewardship 
approaches are therefore needed to reduce the rate of resistance3. A principal antibiotic stewardship strategy is 
more selectively choosing which antibiotics to use in practice. For example, a key tenet of the United Kingdom’s 
5-year national action plan for tackling AMR (2019–2024) is the optimization of prescribing practices4; ideally, 
antibiotics are chosen based on local epidemiological patterns and current resistance rates5. Additionally, from 
a stewardship perspective, narrow spectrum antibiotics (referred to as first-line antibiotics in this article) are 
often preferred to broader spectrum ones (second- and third-line antibiotics) because they exert more specific 
selection pressure for resistance; over time, this should reduce the number of multi-resistant organisms6.

However, the choice of which antibiotic to prescribe is not simple. Firstly, the causative organism and its resist-
ance phenotype are often unknown. This is particularly true early in the infection when treatment is given in the 
absence of complete clinical information (empiric therapy), and the choice of antibiotic is based on experience 
and/or local knowledge7. Secondly, clinicians are faced with a number of competing interests8; on the one hand, 
the clinician has a duty of care and is responsible for the survival of the patient, particularly when infections 
are severe9, and can therefore be nudged towards prescribing broader spectrum antibiotics to ensure that the 
treatment covers the causative microorganism10. Since inappropriate empiric therapy is a risk factor for mortal-
ity, many clinicians are justifiably hesitant in switching to narrow spectrum antibiotics to avoid increasing the 
patient’s likelihood of death in cases where the spectrum is not effective against the as-yet, unknown causative 
organism11,12. On the other hand, prescribing broader spectrum antibiotics could contribute to growing resist-
ance due to the wider coverage of these antibiotics—we are more concerned about resistance to these broadly 
effective drugs2,13,14.
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From a policy perspective, being able to implement policies and guidelines that minimize the future negative 
effects of AMR while guaranteeing sufficient treatment for current patients is critical. For example, the World 
Health Organization (WHO) launched the AWaRe (Access, Watch, Restrict) classification system in 2017 to help 
decide which antibiotics should be preferred based on their resistance profiles and microbiological activity15. 
Mathematical modeling can also be a useful tool in helping decide how and when certain antibiotics should be 
used. The number of AMR modeling studies has been steadily increasing, highlighting the potential of these 
studies to better inform policy16,17. In the context of empiric therapy, modeling can remove some of the burden 
placed on individual clinicians attempting to predict how their actions will influence both patient survival and 
changes in resistance, allowing us to systematically quantify which strategies are worth pursuing16,18.

A key infection syndrome which requires optimized empiric treatment is bacteraemia. E. coli is the most 
common cause of bacteraemia in high-income countries19, and the most common source of community-acquired 
bacteraemia20. Treating E. coli bacteraemia is a classic case study of the clinical dilemma faced by prescribing 
doctors. On the one hand, mortality rates for patients with E. coli bacteraemia are high. In one systematic review, 
the case fatality rate (CFR) was found to be 12.4% (95% CI 10.7–14.3%)19. In other studies, 7-day mortality rates 
vary between 6.7% and 8.5%21–26. As such, there is a strong incentive towards picking broader spectrum empiric 
treatment out of precaution. On the other hand, E. coli resistance rates are increasing, with multi-drug strains 
more challenging to treat and more likely to result in death25,27,28. This would incentivize using narrower spectrum 
antibiotics during empiric therapy to reduce the rate at which multi-drug resistance develops in E. coli isolates.

This study develops a new state-transition model to capture the stages in empiric therapy to explore the impact 
of different empiric treatment strategies on resistance rates, antibiotic usage, and clinical outcomes over time. 
By quantifying each of these elements, the aim is to evaluate the overall merits of switching to narrow spectrum 
antibiotics during empiric therapy, and the extent to which it is a feasible stewardship solution in the context of 
E. coli bacteraemia.

Results
For each of the three scenarios (A-C), baseline results were calculated for the main outcome measures of interest 
at five years (Table 1, Fig. 1). We consistently found that mortality was highest in Scenario A (first-line empiric 
therapy) compared to both B (second-line empiric therapy) and C (third-line empiric therapy). The CFR was 
0.69% (95%CI [0.30, 1.08]) and 0.41% (95%CI [0.20, 0.62]) higher for Scenarios A and B, respectively, com-
pared to Scenario C at five years. Across all runs, first-line resistance was 2.29% (95%CI [0.08, 4.50]) and 1.86% 
(95%CI [0.40, 3.32]) higher for Scenario A, on average, compared to C and B respectively. Second-line resistance, 
however, was consistently higher for scenarios B (0.90% [0.46, 1.34]) and C (1.32% [0.21, 2.43]) compared to 
A. Interestingly, use of third-line antibiotics was similar for Scenarios A and B, despite the increases in second-
line resistance due to use of second-line antibiotics during empiric therapy (Fig. 1G). The results therefore 
highlight that despite increases in resistance to second-line therapy and the substantial increases in the volume 
of second- and third-line treatment provided, significant mortality benefits remained when using second- and 
third-line empiric therapy. Notably, however, there was significant variation in the estimates (Fig. 1) across all 
outcome measures, highlighting both the uncertainty of parameter values and the sensitivity of the model to 
these parameters.

To explore the role of individual parameter values on the results, we conducted sensitivity analyses with a 
range of values for the variable parameters. For inappropriate empiric antibiotic therapy (IEAT), we found that 
reducing the survival proportion (ε) during inappropriate therapy resulted in a significantly higher number of 
deaths and higher CFRs for Scenario A, relatively smaller increases for Scenario B and no changes for Scenario C 
(Fig. 2A), which is expected given the broader spectrum of antibiotics in B and C. However, changes in the sur-
vival proportion (ε) resulted in negligible changes in resistance rates and the number of treatment days (Fig. 2A). 
When adjusting breakthrough resistance rates (⍺), we found that mortality marginally decreased with lower ⍺ 

Table 1.   Baseline mean scenario-specific value of outcome measures and mean outcome differences between 
corresponding (i.e., paired) runs in each scenario at 5 years across all runs (n = 1000), including standard 
deviations (given in parentheses, SD).  The baseline scenario was seven days of treatment, of which two days 
were empiric therapy. Bolded cells indicate a negative value.

Outcome measure (standard 
deviation) Scenario A Scenario B Scenario C Difference, A − B Difference, B − C Difference, A − C

Number of deaths 28.3 (6.7) 27.3 (6.4) 25.9 (6.2) 1.03 (0.36) 1.45 (0.38) 2.48 (0.73)

CFR, % 7.95 (1.87) 7.66 (1.80) 7.25 (1.73) 0.29 (0.10) 0.41 (0.11) 0.69 (0.20)

% Resistance to first-line 
therapy 7.68 (3.26) 5.82 (1.81) 5.39 (1.49) 1.86 (1.50) 0.44 (0.36) 2.29 (1.86)

% Resistance to second-line 
therapy 5.44 (4.16) 6.34 (1.13) 6.76 (1.47) −0.90 (0.73) −0.42 (0.34) −1.32 (1.07)

# Days with first-line treat-
ment 2178.8 (143.4) 1475.3 (156.1) 1475.6 (156.1) 703.5 (83.9) −0.14 (0.13) 703.3 (83.9)

# Days with second-line 
treatment 132.8 (37.8) 797.3 (80.3) 86.5 (18.7) −664.5 (82.5) 710.8 (83.8) 46.3 (23.5)

# Days with third-line treat-
ment 108.5 (10.6) 121.3 (15.8) 805.5 (81.9) −12.8 (7.5) −684.2 (80.5) −696.9 (81.9)
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values, although relative differences remained similar between scenarios A-C (Fig. 2B). Higher breakthrough 
resistance rates values resulted in negligible changes in population-level resistance to first- and second-line 
therapy but resulted in fewer days with first-line treatment and marginal increases in the number of days with 
second- and third-line therapy, although the magnitude of this effect was small (Fig. 2B).

While the model suggests that mortality increases with increasing treatment duration (Fig. 2C), this is 
expected given the structure of the model (since the mortality parameter is given per day, extending the num-
ber of days in which patients can experience death). The increases in mortality therefore reflect the combined 
contribution of the model structure and increases in resistance rates due to prolonged therapy. We also found 
that mortality increases as the duration of empiric therapy increases (Fig. 2C), a finding consistent across all 
three scenarios. Resistance to first- and second-line therapy, as well as the number of days of treatment, fol-
lowed similar trends. Predictably, the CFR increased as the baseline death rate and mortality differences between 
infections with pan-susceptible, first-line and second-line resistant organisms increased (Fig. 2D). Resistance to 
first- and second-line therapy increased with lower mortality rates and with more marginal mortality differences 
between resistance phenotypes, with a similar trend emerging for the number of days with first- and second-line 
antibiotics (Fig. 2D).

Multivariate sensitivity analysis revealed that for second-line resistance, there was strong evidence that 
resistance transmission (γ), treatment duration (T) and empiric therapy duration (1/δ) were correlated with 
second-line resistance (Figs. 3A and 5D). Additionally, increases in baseline mortality rates (D) were correlated 
with second-line resistance, while higher breakthrough resistance rates (⍺) were also strongly correlated with 
second-line resistance. Interestingly, only inappropriate empiric therapy (ε) was not correlated with mortality 
(Figs. 3B and 5E), suggesting that other factors are driving the associated increases in mortality seen in the earlier 
sensitivity analyses. Lastly, for third-line antibiotic use, we found that treatment duration and empiric therapy 
duration (1/δ) were most strongly correlated with third-line antibiotic use (Figs. 3C and 5F). Baseline mortality 
rates (D and D3) and resistance transmission (γ) were also correlated with third-line antibiotic use, although 
CIs were wider and the correlations weaker. Overall, a broad range of output values was evident, highlighting 
the uncertainty inherent in outcome measures and the extensive potential impacts stemming from diverse 
parameter values (Fig. 3D–F).

Discussion
A significant clinical dilemma facing clinicians is whether to empirically prescribe narrow- or broad-spectrum 
antibiotics, balancing clinical success with reductions in the use of broad-spectrum antibiotics8–10. In this study, 
we find that empiric prescribing with narrower spectrum antibiotics (scenarios A and to a lesser extent B) can 
lead to reductions in resistance over 5 years to second-line broader treatment, as well as large reductions in 
the use of third-line broad spectrum antibiotics in the context of E. coli bacteremia. However, use of narrower 
spectrum antibiotics as first-line empiric therapy also led to increases in resistance to first-line therapy as well as 
increases in mortality. Despite the reduction in resistance to second-line therapy and broad-spectrum antibiotic 
use, the significant relative reductions in mortality justify why many clinicians choose to prescribe broader spec-
trum antibiotics. Given the conservative mortality and inappropriate therapy parameter estimates used, the true 
mortality differences between scenarios are likely to be greater than in the baseline scenario, particularly in set-
tings with fewer healthcare resources. As such, the results mirror the uncertainty encountered in clinical settings 
when determining the appropriate antibiotics for empiric therapy, especially in the context of E. coli bacteremia, 
where no regimen stands out as comparatively superior in terms of both clinical success and long-term resistance.

Figure 1.   Box plots with the distribution of baseline outcome measures at five years across all runs (n = 1000), 
stratified by scenario. The baseline scenario was seven days of treatment, of which two days were empiric 
therapy. CFR time-updated case fatality rate.
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A key finding is the effect of empiric therapy duration; we found that shorter empiric treatment durations 
resulted in large decreases in mortality for scenario A, while those for B and C were less impacted. The main 
explanation for this effect is that patients experience less treatment time with inappropriate antibiotic therapy, 
thus improving their chances of survival. Additionally, the number of treatment days (for first-, second-, and 
third-line therapy) and resistance rates (to first- and second-line therapy) was marginally reduced with shorter 
empiric durations. From a policy perspective, shortening empiric therapy durations is a key intervention in 
increasing the feasibility of switching to narrow spectrum antibiotics, particularly in places with high baseline 
mortality rates. Crucially, this is also achievable in high-resource settings. New diagnostic methods and point-
of-care testing can improve the speed in which organisms are identified and antimicrobial susceptibility testing 
can be completed29–31. From a logistics perspective, shorter turnaround times from sample-taking to results, 
achieved through novel diagnostic methods, overnight testing, automation, and process improvements have 
been demonstrated to be effective32–35. We also note that the implementation of narrow spectrum antibiotics 
as empiric therapy is much more feasible in high-resource settings due to baseline mortality rates being lower. 
To aid the adoption of narrower-spectrum antibiotics as first-line therapy, another solution is to risk-stratify. 
Since certain demographics are known to have higher baseline mortality rates36, stratifying them into low- and 
high-risk patients could result in a split strategy whereby some patients receive first-line therapy while those at 
higher risk receive second- or third-line treatment, a scenario we did not explore here.

Direct comparison with the extant modeling literature is challenging because few articles have addressed 
optimal empiric therapy from the perspective of narrow versus broad spectrum antibiotics, despite this being a 
key AMR policy question. In fact, it constitutes a central facet of the WHO’s AWaRe (Access, Watch, Restrict) 
initiative. As part of the WHO’s 13th General Programme of Work 2019–2023, the WHO has set a country-level 

Figure 2.   Graphs with outcome measure results at five years for different combinations of parameter values: 
(A) inappropriate empiric antibiotic therapy (IEAT), ε, (B) resistance transmission rate, ⍺, (C) treatment and 
empiric duration, T and 1/δ. Treatment durations (T) were split into 5 (L), 7 (M), and 14 (H) days of treatment. 
For empiric therapy (δ), values were 4 (H), 2 (M), and 1 (L) day of empiric treatment. (D) Baseline mortality 
rate, D; Differences in mortality between those infected with pan-susceptible, 1st and second-line resistant 
microorganisms were split into marginal (M) (D2 = 1.5*D, D3 = 2*D) and wide (W) (D2 = 2*D, D3 = 4*D). Results 
are further stratified by Scenario A–C, denoted by shape and color for clarity. All other parameters kept at 
baseline values as in Table 3. L.AB. line antibiotic.
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objective of achieving a minimum of 60% of total antibiotic consumption being from Access group antibiotics, 
which are mostly narrow-spectrum, thus shifting antibiotic use from broad- to narrow-spectrum37,38. Thus far, 
mathematical modeling of empiric therapy has mostly been concerned with general principles, such as whether 
monotherapy, combination therapy, mixing (i.e., randomly assigning patients to different antibiotics), or cycling 
(i.e., scheduled changes in first-line antibiotics) results in the most optimal resistance outcomes39–42. Given the 
lack of empirical data to help guide model calibration, it is not surprising that previous research has focused 
on general principles rather than focusing on specific clinical situations17. For example, Gjini et al. found that if 
treatment is initiated sufficiently early, then short and strong (i.e., high dosage) treatments are beneficial, whereas 
mild and long regimens are preferable if treatment starts late43. In Brazil, a study based on local susceptibility 
patterns suggested that a combination of at least three antibiotics was necessary to achieve adequate empirical 
therapy coverage, as monotherapy and even dual therapy options were found to be insufficient, particularly in 
intensive care units and wards44. Another modeling study, using an individual-based model of hospital outbreaks, 
found that shorter treatment durations were associated with fewer antibiotic resistance epidemics in hospitals45. 
These findings correspond to those in this study, where treatment duration was found to be an important driver 
of resistance to both first- and second-line therapy.

The approach in this study has several limitations. Firstly, the model is deterministic and does not capture 
the full random variation of biological processes, including the stochasticity of organisms developing resistance. 
We also assume that E. coli is the causative organism of the bacteraemia; in reality, E. coli competes with many 
other microorganisms that could also cause the infection. Additionally, the model assumes that patients receive 
treatment for fixed durations and then either die or recover, as well as assuming that patient characteristics are 
homogenous. Previous studies have also demonstrated that there are mortality differences by age and sex with 
regards to E. coli bacteraemia24,26,46,47, and that the distribution of resistance differs by age and sex, with a higher 
percentage of resistance (to ciprofloxacin in this case) among men and among those aged 15- to 44-years old48.

Well-defined parameter values are also scarce. Data regarding the rate at which patients develop resistance 
during treatment is lacking, specifically regarding resistance rates for specific combinations of antibiotics, such 
as how frequently a patient with ESBL-producing E. coli bacteria develops resistance when treated with merope-
nem compared with cephalosporins. This scarcity becomes even more pronounced when looking for rates when 
being treated with combination therapy. Our γ parameter, denoting the increase in population-level resistance 
per day of treatment, is also prone to uncertainty49. Firstly, it encompasses a wide range of phenomena: con-
tinued colonization of patients, transfer of mobile genetic elements (MGE), and other indirect AMR transmis-
sion mechanisms50,51. Inevitably, this composite parameter is likely to be uncertain, since interactions between 

Figure 3.   Top row: partial rank correlation (PRC) coefficients (with 95% CIs) for second-line resistance (A), 
number of deaths (B), and third-line antibiotic (C) use at 5 years, using scenario A as a baseline. Bottom row: 
violin plots with density distributions for corresponding Latin hypercube sampling (LHS) output values (D–F). 
Note that empiric therapy duration (in days) is 1/δ.
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patients, environmental factors, and the stochastic nature of mutations all interact51,52. Additionally, the degree 
to which the use of specific antibiotic combinations leads to increases in resistance in the population (i.e., how 
specific antibiotics mediate γ) was based on correlation data, which is likely to be context-specific53,54. Overall, 
many parameter values were uncertain or lacking in the literature, which has been noted previously by others17. 
Collecting data to update these values would not only improve the accuracy of the model used in this study but 
would also be a boon for future AMR modeling work.

Conclusion
Our results suggest that the use of narrow spectrum antibiotics can be a viable empiric treatment option for E. 
coli bacteraemia, although other modifiable factors related to treatment (e.g., shortening the duration of empiric 
therapy and reducing baseline mortality rates) are crucial in improving the feasibility of this switch. Additionally, 
shortening treatment durations can have significant positive effects on reducing increases in resistance to both 
first- and second-line therapies. However, in settings with higher mortality rates and where empiric therapy 
is prolonged, switching to narrow spectrum antibiotics results in mortality increases that render the strategy 
unfeasible, despite reductions in second-line resistance and third-line antibiotic use. The flexible model design 
used in this study is also well-placed to explore whether these treatment dynamics persist for other bacterial 
infections and strains.

Methods
Model design
We use a deterministic state-transition model to fit a variety of patient pathways for E. coli bacteraemia (model 
structure shown in Fig. 4). Movement between compartments was modeled using ordinary differential equa-
tions (ODEs) and was coded in the statistical software R (version 4.2.2), including the packages Tidyverse and 
deSolve55–57. R code in Supplementary S1 and Zenodo: https://​doi.​org/​10.​5281/​zenodo.​10354​268. The susceptible 
population (Ns ∈ Z

+) is a theoretical population cohort, with E. coli bacteraemia hospitalization rates (h ∈ R
+

, λ ∈ R
+ ) and resistance phenotype distributions (⍵ ∈ [0,1] ) based on values from the United Kingdom as a 

baseline case study. The time horizon was five years. Each day, a proportion of the susceptible cohort (100,000 
Ns) are assumed to be hospitalized with bacteraemia (h(t)), with the proportion with resistance varying over 
time—mediated by the gamma (γ) rate—and then started on empiric treatment (either Scenario A, B, or C).

To explain the structure of the model, a subset of Fig. 4 can be seen in Fig. 5. The potential pathways for 
patients with pan-susceptible (i.e., susceptible to first-, second- and third-line antibiotics), first-line resistant 
(i.e., susceptible to second- and third-line antibiotics) or second-line resistant (i.e., susceptible to third-line 
antibiotics) E. coli after starting each scenario (A, B, and C) is the same (Fig. 5). Patients move from the suscep-
tible population to a hospitalized empiric treatment group; in Fig. 5, the rate for this transition is h(t)⍵b(t). Note 
that parameter subscripts are numbered to denote the specific conditions governing the transition between two 
compartments, which are formally described in Table 3. During this empiric treatment stage (of length [1/δ]), the 
causative organism and resistance phenotype is unknown. The treatment the patient receives in the model is thus 
dependent on the scenario being modeled (A, B, and C, described later). Inappropriate treatment is accounted for 
by the parameter ε, which leads to an increased mortality rate that depends on the treatment given. Acquisition 
of resistance is governed by the parameter ⍺. During the empiric treatment phase, patients can die (rate: ε6D2), 
develop resistance to the next line therapy (rate: ⍺3) or move to the optimal treatment compartment (rate: δ). 
The rate at which optimal treatment is initiated, δ, is dependent on the organism and phenotype being identified, 
as well as appropriate treatment being initiated.

During the optimal treatment period for first-line resistant E. coli, the patient can recover (rate: R5), die (rate: 
ε6D2), or develop resistance to second-line treatment (rate: ⍺7). The rate of recovery is dependent on whether the 
empiric therapy given covered the microorganism and its resistance phenotype. For example, if the microorgan-
ism is susceptible to the empiric therapy, the duration of optimal treatment is equal to the fixed total treatment 
duration (T) minus the already experienced empiric treatment duration. However, if the microorganism is not 
susceptible to the empiric treatment therapy, the optimal treatment period is equal to the fixed total treatment 
duration, T. If the causative microorganism develops resistance during treatment, either during the empiric 
treatment phase or optimal treatment phase, then a new empiric treatment phase starts since the resistance 
phenotype being responded to is outdated. This captures the clinical realities of treating infections with outdated 
information, requiring new samples to be taken before optimal treatment is restored.

Outcome measures
The main outcome measures fall within three broad categories: mortality metrics, resistance levels and antibiotic 
usage. For both baseline and sensitivity analyses, outcomes are measured at 5 years. The main outcome meas-
ures are: (1) total number of deaths; (2) time-updated CFR (%) [number of deaths/(number of deaths + number 
recovered)]; (3) percent (%) resistance to first-line therapy; (4) percent (%) resistance to second-line therapy; 
(5) cumulative number of days of first-, second-, and third-line treatment.

Model scenarios, parameterization, and assumptions
Three distinct model scenarios (A, B, and C) were compared, each representing a different initial empiric therapy 
choice (Table 2). Antibiotic guidance for bacteraemia and sepsis from NICE in the UK is not standardized, 
with clinicians deferring to local antimicrobial guidance58. While the WHO provides guidance on the empiric 
treatment of sepsis through the WHO AWaRe (Access, Watch, Reserve) antibiotic book, guidance is not specific 
to isolated cases of bacteraemia59. Initial empiric therapy is also often dependent on patient risk factors, includ-
ing previous antimicrobial treatment, severity of illness, and the presumed source of the infection20,60,61. To 

https://doi.org/10.5281/zenodo.10354268
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standardize treatment regimens for E. coli bacteraemia, the regimens in this study are based on a combination 
of NICE guidelines, guidance from the Infectious Disease Society of America and expert opinion from the UK 
used in a previous study58,60,62. Broadly speaking, first-line therapy is a beta-lactam antibiotic combined with an 
aminoglycoside (Table 2)63. Second-line therapy is often a second- or third-generation cephalosporin with an 
aminoglycoside, and third-line therapy is commonly a carbapenem63. These treatment regimens will also reflect 
the different empiric therapy scenarios tested in the study, outlined in more detail in the next section. The sce-
narios represent the empiric therapy choice at the start of the infection (blue compartments in Fig. 4) allowing 
a comparison of how narrow versus broader spectrum empiric antibiotic treatment influences resistance rates, 
antibiotic usage, and clinical outcomes.

Figure 4.   E. coli bacteraemia state-transition model. Black denotes the susceptible cohort; blue denotes which 
compartments are directly affected by scenarios A–C; green boxes are consistent across models (expanded in 
Fig. 5). Parameter notation is as in Table 3.
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Parameters were sourced where possible from the literature (Table 3). The initial prevalence of resistance to 
each therapy (⍵) and several of the patient pathway values (h, λ) were based on data from the UK64. The model 
assumes that clinicians act homogeneously with regards to their clinical practice, such that other treatment 
aspects (e.g., oxygen, intravenous fluids, etc.) are consistent. Additionally, we assume that blood samples for 
bacterial culture are taken immediately, that blood cultures have 100% sensitivity and specificity, and that patient 
characteristics are uniform (e.g., homogenous age, comorbidities, and sex). It is also assumed that patients are 
correctly diagnosed as having bacteraemia, that the infection is not influenced by other secondary diagnoses (i.e., 
no interaction between diagnoses), and that patients either fully recover or die after their treatment is complete. 
As such, refractory infections (e.g., treatment failure or prolonged infections) are not accounted for. It is also 
assumed that the background population (i.e., those who are not yet hospitalized) is closed, where births and 
deaths among are omitted, such that the population size (Ns) is kept constant (i.e., the population is replenished 
at the same rate that people are hospitalized).

Baseline and sensitivity analyses
For the baseline analysis, to explore uncertainty, a normal distribution was fit to several highly uncertain or 
setting-dependent parameters (i.e., treatment duration [T], empiric therapy duration [1/δ], breakthrough resist-
ance rates [⍺], the effect of inappropriate therapy [ε], population-level effects of antibiotic use on resistance levels 
[γ], and baseline mortality rates [D]), which we denote variable parameters. The mean for each variable parameter 
was set to the sourced baseline parameter value (Table 3), with standard deviations (SD) set such that the 95% CI 
of the distribution was within the ranges used for the sensitivity analyses, described later (Supplementary S1). We 
ran 1000 iterations of the model for each scenario, sampling independently from the distributions of the variable 
parameters for each run while keeping non-variable parameters constant. To make results comparable between 
scenarios, the same set of parameter values was used for scenarios A-C in each corresponding run. Mean and 
SD values for scenario-specific values of outcome measures and outcome differences between corresponding 

Figure 5.   Partial component of Fig. 4 for illustrative purposes. Black denotes the susceptible population; blue 
denotes the compartment directly affected by scenarios A–C; green boxes are consistent across scenarios A–C. 
Parameter notation is as in Fig. 4.

Table 2.   E. coli bacteraemia treatment regimens and model scenarios.

Empiric therapy Antibiotic 1 Antibiotic 2 Spectrum

First-line (scenario A) Co-amoxiclav (beta-lactam and beta-lactamase inhibitor) Gentamicin (aminoglycoside) Narrow

Second-line (scenario B) Cefuroxime (second-generation cephalosporin) Gentamicin (aminoglycoside) Broader

Third-line (scenario C) Meropenem (carbapenem) Broad
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Symbol Parameter Baseline value Range for sensitivity analyses Notes and references

Common parameter values for all scenarios (A–C)

 Ns Susceptible population 100,000
Fixed, theoretical cohort. Replenished at 
the rate of h(t) (i.e., rate of hospitaliza-
tion), such that it is kept constant

 δ Rate (per day) of switch to optimal 
treatment

0.5 per day (i.e., mean 2 days empiric 
therapy duration)

0.25–1 i.e., one to four days of empiric 
treatment

65, explored during sensitivity analysis 
(low, medium, and high δ values)

 ⍵(t) Percent of E. coli bacteria with resistance 
phenotype a, b, and c

⍵a = 0.914
⍵b = 0.036
⍵c = 0.050

66, explored during sensitivity analysis. 
Updates over time based on γ. Pheno-
types a-c correspond to pan-susceptible, 
first-and second-line resistant respec-
tively

 γ
Increase in population-level resistance 
per day of treatment with a given antibi-
otic; denoted resistance transmission rate

1.8 × 10–5 1 × 10–6 and 1 × 10–4
67, explored during sensitivity analysis. 
Alters the value of ⍵ over time

 h(t) Population rate (per day) of E. coli bacte-
remia hospitalization 1.88 × 10–6

Most recent estimate from the UK; 68.5 
per 100,000 per year64

On each day, h*Ns*(1 + λ) individuals are 
hospitalized. h(t) is therefore mediated 
by λ

 λ Daily rate of increase in E. coli bactere-
mia hospitalizations 4.66 × 10–5 (1.7% per year/365 days)

UK estimates for increase in incidence 
between 2021 and 202364; follows a lin-
ear trend (Supplementary S3); converted 
to daily rate

 D Rate of death per day during treatment

D = 0.01
(baseline)
D1 = D
D2 = D*1.5
D3 = D*2

D = 0.005 to 0.02
D2 and D3 between 1.5 and 4 × higher 
than D

21,22,24,26,68,69, explored during sensitivity 
analysis
D = 0.01 (baseline)
D1 = D (infection with pan-susceptible 
organism)
D2 = D*1.5 (infection with first-line 
resistant organism)
D3 = D*2 (infection with second-line 
resistant organism)

 R Rate of recovery
R1 = 1/(T-(1/δ))

Dependent on total treatment duration
R2 = 1/T

 ⍺ Rate of (breakthrough) resistance during 
therapy

Baseline ⍺ = 0.001, or 0.1% per day
⍺4 = ⍺
⍺5 = ⍺/5
⍺6 = ⍺
⍺7 = ⍺*1.5

⍺: 0.0005–0.01

See Supplementary S4 and S5 for 
derivation
⍺4 = rate of resistance during optimal 
therapy from a pan-susceptible to first-
line resistant strain
⍺5 = rate of resistance during optimal 
therapy from a pan-susceptible to 
second-line resistant strain
⍺6 = rate of resistance during empiric 
therapy from a first-line resistant to 
second-line resistant strain
⍺7 = rate of resistance during optimal 
therapy from a first-line resistant to 
second-line resistant strain
⍺1–3 appear in subsequent rows

 T Total treatment duration 7 days 5, 7, 14 days Fixed in baseline, explored during 
sensitivity analysis 70,71

Parameters for scenario A (co-amoxiclav/gentamicin)

 ε
Reduced survival due to inappropriate 
empiric antibiotic therapy (IEAT) (i.e., 
increase in mortality associated with 
each day of IEAT)

ε = 1.3(1/δ)/2 (baseline)

1.1(1/δ)/2 to 5(1/δ)/2 11,72, explored during sensitivity analyses

ε1,2 = εo (appropriate therapy)

ε4,6,8 = ε (one inappropriate therapy 
period)

ε3,5,7 = ε2 (two inappropriate therapy 
periods)

 R Rate of Recovery (per day) R3-6 = 1/T

 ⍺ Rate of (breakthrough) resistance during 
therapy (per day)

⍺1 = ⍺
⍺2 = ⍺/5
⍺3 = ⍺

See Supplementary S5 for derivation

Parameters for scenario B (cefuroxime/gentamicin)

 ε Reduced survival due to inappropriate 
empiric therapy (IEAT)

ε = 1.3(1/δ)/2 (baseline)

1.3(1/δ)/2 to 5(1/δ)/2 11,72, explored during sensitivity analysesε1,2,4,6 = εo (appropriate therapy)

ε3,5,7,8 = ε (one inappropriate therapy 
period)

 R Rate of recovery
R3 = 1/(T − (1/δ))
R4 = 1/T
R5 = 1/(T − (1/δ))
R6 = 1/T

 ⍺ Rate of (breakthrough) resistance during 
therapy

⍺1 = ⍺*1.375
⍺2 = ⍺*1.125
⍺3 = ⍺*1.5

See Supplementary S5 for derivation

Continued
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(i.e., paired) runs in each scenario at five years were calculated. SDs for the differences between scenarios were 
calculated based on the distribution of paired differences between corresponding runs.

For sensitivity analyses, we split variable parameter values into low, medium, and high values (Table 3). Treat-
ment durations (T) were split into 5 (low), 7 (medium), and 14 (high) days of treatment. For the empiric therapy 
duration (1/δ), high, medium, and low values were 4, 2, and 1 day of empiric treatment. Baseline breakthrough 
resistance rates (⍺) were split into 0.0005, 0.001, and 0.01 (i.e., 0.05%, 0.1% and 1% per day). Baseline inappropri-
ate empiric antibiotic therapy (ε) values were split into 1.3, 2, and 5 respectively. Mortality rates (D) were stratified 
into high (0.02), medium (0.01), and low (0.005) values (i.e., 0.5%, 1% and 2% mortality per day). Differences 
in mortality between those infected with pan-susceptible, first- and second-line resistant microorganisms were 
also split into marginal (D2 = 1.5*D, D3 = 2*D) and wide (D2 = 2*D, D3 = 4*D). Multivariate sensitivity analyses 
were conducted using Latin Hypercube Sampling (1000 samples). Partial rank correlation coefficients with 95% 
CIs were calculated for each parameter.

Data availability
The datasets generated and/or analysed during the current study are available on Zenodo at https://​doi.​org/​10.​
5281/​zenodo.​10354​268.
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