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A B S T R A C T

Antibiotic use (ABU) in animals is postulated to be a major contributor to selection of antibiotic resistance (ABR)
which subsequently causes infections in human populations. However, there are few quantifications of the size of
this association. Denmark, as a country with high levels of pig production and strong ABR surveillance data, is an
ideal case study for exploring this association.

This study compiles a dataset on ABU across several animal species and antibiotic classes, and data on the rate
of antibiotic resistance (ABR) in humans across key pathogens, in Denmark over time (2010− 2020). Panel data
regressions (fixed effects, random effects, first difference and pooled ordinary least squares) were used to test the
association between the level of ABR in human isolates and the level of ABU in animals.

A positive relationship was identified between ABR in humans and ABU in cattle, with some evidence of a
positive relationship for poultry and companion animals, and a negative relationship for fish, although the latter
is likely driven by confounding factors. When lagging ABU by one year, the effect of ABU in cattle and companion
animals remained similar, the effect of ABU in poultry fell in size, and ABU in fish was no longer significant,
perhaps due to differences in life cycle length among animal species. Additional covariates were explored,
including pet populations, agricultural production and GDP per capita (at purchasing power parity), but these
results were limited by the statistical power of the dataset. Under all models, animal ABU determined only a
minority of the change in human ABR levels in this context with adjusted R2 ranging from 0.19 to 0.44.

This paper supports the role of animal ABU in determining human ABR levels but suggests that, despite
comprising a large portion of systemwide ABU, it only explains a minority of the variation. This is likely driven in
part by data limitations, and could also be due to a persistence of ABR once resistance has emerged, suggesting a
significant role for socioeconomic and transmission factors in bringing ABR down to desirable levels.

1. Introduction

Antibiotic resistance (ABR), the capacity of bacterial pathogens to
survive in the presence of antibiotics, is considered a major and growing
threat to human health worldwide (1,2). Antibiotic use (ABU) in animals
is the largest form of AMU globally (3), and as such there has been in-
ternational policy focus on reducing and modulating this ABU in order to
lower the rate of ABR in human infections and safeguard human and
animal health.

Food animals represent the largest destination of global ABU (3), and
significant transmission of resistomes between humans and companion
animals have made animal ABU in general an important target for in-
terventions, although the latter is less often studied (4). Numerous
microbiological and genomic studies (5–7) support the existence of a
link between animal ABU and human ABR, and there is a very strong
theoretical basis for expecting ABU in animals to generate ABR in
humans (8). Despite this, knowledge of the shape and size of this rela-
tionship remains limited (8,9), and some microbiological and genomic
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studies fail to find consistent evidence of it (4,8,10–12). This has
complicated implications for AMR policy decision-making in the One
Health space, where policymakers need to know the likely effect of AMS
interventions on the number of resistant infections in humans and ani-
mals in order to estimate the intervention benefit. Panel regression can
give specific quantitative insight into this outcome, and can feed more
directly into intervention design and prioritisation at the population
level.

This study uses panel data regression (13), which the authors identify
as a powerful tool for investigating the relationship between ABU and
ABR at the ecological level, and which has not yet been applied to
Denmark specifically (9). Using these methods, Rahman and Hollis (14)
found that, across a panel of European countries, ABU in food animals
and in humans were independently and causally related to the rate of
ABR in both humans and animals. Adda (15) found that, in the United
States, ABU in humans and animals both contributed to the rate of ABR
in human infections, with human ABU being a greater contributor and
with more recently-introduced antibiotics having a greater effect. More
recently, Allel et al. (16) found that, across a range of countries, ABU in
animals and humans contributed to the rate of ABR in infections by
critical priority pathogens in humans. Zhang et al. (17) found a positive
relationship between human ABU and the rate of fluoroquinolone
resistance in E. coli and P. aeruginosa in Europe, and a negative rela-
tionship between animal ABU and fluoroquinolone resistance in
P. aeruginosa.

Studies have also used panel regression methods to investigate the
role of non-ABU factors, including socioeconomic variables and medical
staffing, in determining ABR rates in humans. Collignon et al. (18) found
that, across a range of countries and for a set of key drug-pathogen
combinations, indices of infrastructure and governance were inversely
related to the rate of ABR in human infections, even when human ABU
was not. Zhang et al. (17) found that medical and veterinary staffing
numbers were negatively related to the rate of fluoroquinolone resis-
tance in E. coli and P. aeruginosa across European countries. Allel et al.
(16) also found links between socioeconomic, demographic, political
and environmental factors and human ABR across a range of countries.
ABR can therefore be seen not as a purely biological problem but as a
public health phenomenon which is jointly determined by biological and
socioeconomic factors.

This study considers phenotypic resistance (the susceptibility of
bacterial assays to antibiotics), rather than genotypic resistance (the
presence of genes conferring resistance), as this is how resistance is
recorded in the datasets used.

Denmark is a strong case study to investigate the relationship be-
tween animal ABU and human ABR due to the comprehensiveness of its
ABR surveillance infrastructure across the One Health space, with the
Danish Integrated Antimicrobial Resistance Monitoring and Research
Programme (DANMAP) (19) and VetStat (20,21) tracking ABU and ABR
in humans and animals. The human ABR data available through Dan-
Map also focuses on Campylobacter and Salmonella species, which are
key foodborne pathogens of relevance to human health (22). Because
these pathogens are often transferred from food animals (19,23,24),
they are also more likely candidates to give insight into the relationship
between animal ABU and human ABR.

Denmark is considered a world leader in preventing and managing
ABR from a One Health perspective: use of antibiotics in animal health
has been low and consistent since 2000, and agricultural growth pro-
moters have been phased out since then (25,26).

Denmark is also considered a world leader in agricultural AMS (27):
since 1995, a series of policies has been implemented aiming to regulate
and limit the use of antibiotics in animals, including bans on agricultural
growth promoters from 1998 (28). Animal antibiotics are sold on a
prescription basis and veterinarians may not profit from their sale (27).
The 2010 Yellow Card Initiative (29) places quantitative restrictions on
use of antibiotics in food animal production, and has been adjusted since
then to place different weights on various antibiotics depending on AMS

priorities. Finally, as a country with a large amount of food animal
production, particularly of pork (30), Denmark represents a strong case
study for investigating the relationship between ABU in animals and the
rate of ABR in human infections.

ABU may also have a delayed effect on the rate of ABR (14), espe-
cially in food animal production, where antibiotics used at the beginning
of production cycles may take time to pass into the human population.
Understanding the role of lagged ABU can help to understand these
transmission mechanisms.

Based on these considerations, this paper aims to investigate if ABR
in human isolates in Denmark is linked to the quantity of antibiotics used
in animals, and to quantify that link. And, if a relationship is observed, to
determine whether or not it varies among animal species. After
addressing these questions, the study will explore the shape and
nonlinearity of that relationship. Finally, it will investigate whether
antibiotic use in previous periods is linked to the rate of ABR, and how
strong this link is compared with that of same-period ABR, as well as
exploring the role of other covariates including GDP per capita and
animal populations. These covariates will help to account for changing
socioeconomic conditions which could influence the relationship be-
tween ABU and ABR, as well as potential relationships between pop-
ulations of, and therefore use of antibiotics in, different animal types.

2. Materials and methods

2.1. Data

Data on the rate of ABR in humans was sourced from DanMap (19),
the Danish Integrated Antimicrobial Resistance Monitoring and
Research Programme. DanMap makes publicly available a repository of
data on ABR indicators and zoonotic bacteria in humans, livestock and
companion animals in Denmark, drawing on routine surveillance across
primary and secondary healthcare, veterinary surveillance and preva-
lence surveys from livestock animals. In humans, data coverage is high -
representing a near complete proportion of all microbiological analyses.
The source of the bacterial sample depends on the pathogen species,
ranging from bloodstream infections to colonisation samples. This study
uses the term “human ABR” to mean the proportion of isolates for a
certain bacterial species collected by DANMAP in routine surveillance
(often only the first isolate from a patient per year) that were tested and
found to be resistant to the antibiotic being considered (19).

Data on the use of antibiotics in food and companion animals was
sourced from VETSTAT (20), a database which records all prescription
drugs sold for animal use in Denmark. In this dataset, ABU refers to the
total amount of each antibiotic prescribed for use in each animal type,
by kg of active compound, each year.

2.2. Variables

Data were cleaned and compiled into a panel at the {year, drug-
pathogen} level. Drug-pathogen refers to the observed rate of resistance
of isolates of a particular bacteria species (pathogen) to a specific class of
antibiotic (drug). For example, the rate of resistance of Salmonella
typhimurium to tetracyclines represents one drug-pathogen pair.

For each year, and each drug-pathogen pair, the dataset therefore
covers:

- The portion of human bacterial isolates which were resistant to
various antibiotics, from routine healthcare surveillance, from 2010
to 2021.

- The total use of antibiotics in kg in several livestock animal types,
and for companion animals, from 2010 to 2020

Antibiotics here were sorted at the class level. While the use of an-
tibiotics was recorded by antibiotic class, the resistance dataset recorded
resistance against individual drugs. For this reason, drugs were grouped
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into classes (31), and the ABR variable refers to the average rate of
resistance against all drugs from each antibiotic class. For more detail on
the classification of antibiotics in this study, see Appendix 1. The
pathogens covered by the dataset include Campylobacter coli, Campylo-
bacter jejuni, Escherichia coli, Salmonella derby, Salmonella enteritidis,
Salmonella infantis and Salmonella typhimurium. The classes of antibiotic
included in the dataset were: aminoglycosides, amphenicols, carbape-
nems, cephalosporins, fluoroquinolones, macrolides, penicillins, poly-
myxins, quinolones, sulfonamides, and tetracyclines.

The animal types included in the study were: cattle, sheep and goats,
pigs, poultry, fish, and companion animals.

2.3. Statistical methods

The raw datasets were cleaned by extracting relevant data, stand-
ardising the classification of antibiotics across the two datasets, aggre-
gating data into a {year, drug-pathogen} panel, and merging the two
datasets. Data coverage and completeness was then explored across
humans and animals and across the different years and drug-pathogen
pairs covered.

Summary statistics were generated on the use of antibiotics by ani-
mal species and class over time, as well as on the rate of resistance in
human isolates over time (by drug-pathogen combination).

The regression analysis used fixed effects, random effects, first dif-
ference, and pooled ordinary least squares (POLS) regressions. A Durbin-
Wu-Hausman test (32) was used to determine whether or not random
effects models should be included.

First, multivariate regression analysis was performed, regressing
human ABR against ABU in each animal species together. This gives the
main regression models (below).

Fixed effects

resistancea,b,t = β0 + β1*use.cattleb,t + β2*use.sheep.goatsb,t + β3*use.pigsb,t

Random effects and POLS

resistancea,b,t = β0 + β1*use.cattleb,t + β2*use.sheep.goatsb,t + β3*use.pigsb,t

+ β4*use.poultryb,t + β5*use.fishb,t + β6*use.companion.animalsb,t + εa,b,t

First difference

Where:

- β0 is the intercept and β1− 6 are the regression coefficients,
- Δ refers to the change in a variable between year t − 1 and year t,
- resistancea,b,t is the portion of tested human isolates from pathogen a

which were resistant to antibiotic b in year t,

- use.animalb,t is the quantity of antibiotic b used in each given animal
type in year t

- μ and ν are the year and drug-pathogen fixed effects (fixed effects
model only), and

- εa,b,t is the error term

That is, use of antibiotic b in each animal type in year t may affect the
rate of resistance of tested human isolates of pathogen a to antibiotic b in
year t. Random effects, fixed effects and first difference models allow
this relationship to vary among drug-pathogen pairs. A β coefficient of 1
means that an increase in ABU in a given animal type of 1 kg per year is
associated with a 1 % point increase in the portion of tested human
isolates which were resistant to that antibiotic class.

After this, univariate analyses were performed, regressing human
ABR against ABU in each livestock species individually.

Following this, the multivariate specifications were run against ABU
lagged by one year. Then, the univariate specifications were run while
including a quadratic term, to explore nonlinearities.

Finally, the main univariate and multivariate specifications were run
with the addition of key covariates. Namely: GDP per capita (at pur-
chasing power parity), the population of each livestock species, and pet
ownership, over time. GDP per capita was included due to the potential
role of socioeconomic covariates discussed earlier (16–18). Animal
populations were included because populations of each animal may also
be related to each other. For example, if cow and sheep meat have a
negative cross-elasticity of demand, then an increase in cow production
(and therefore an increase in ABU in cows) may engender a fall in the
population of (and therefore ABU in) sheep, while simultaneously
resulting in an increase in human ABR. This could create the erroneous
impression that the fall in ABU in sheep caused a rise in human ABR,
creating the appearance of a negative relationship between sheep ABU
and human ABR.

Data on GDP per capita (PPP) was sourced from World Bank Open
Data (33), and data on animal populations came from Statistics Denmark

(34).

3. Results

3.1. Summary statistics

The (combined DanMap - VetStat) dataset had 62 different drug-
pathogen combinations across 7 bacterial species and 11 antibiotic

classes. Data on ABR covered 2010–2021 and data on ABU covered
2010–2020 (11 years). Seven ABU and ABR variables were used in this
investigation (ABR in humans, and ABU in 6 different animal types).
Across 7 variables, 7 pathogen types, 11 antibiotic classes, and 11 years,
a complete dataset would have 5929 observations across 847 year-drug-
pathogen combinations.

The dataset contained:

+ β4*use.poultryb,t + β5*use.fishb,t + β6*use.companion.animalsb,t + μ+ ν+ εa,b,t

Δresistancea,b,t = β0 + β1*Δuse.cattleb,t + β2*Δuse.sheep.goatsb,t + β3*Δuse.pigsb,t

+ β4*Δuse.poultryb,t + β5*Δuse.fishb,t + β6*Δuse.companion.animalsb,t +Δεa,b,t
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- 893 non-NA observations (15.1% completeness)
- 149 year-drug-pathogen combinations with data on human ABR

(17.6% completeness)
- 124 year-drug-pathogen with data on animal ABU (14.6%

completeness)

- 48 year-drug-pathogens with data on both human ABR and animal
ABU (5.7% completeness)

Thus, while a complete dataset would have had a very large number
of datapoints, missingness greatly reduced this study’s statistical power.
Further, the very low overlap between year-drug-pathogen

Fig. 1. - Antibiotic use (kg per year) in all animal types over time, by antibiotic class.

Fig. 2. - Antibiotic use (kg per year) over time in each livestock species, by antibiotic class.
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combinations with data on human ABR and animal ABU meant that the
dataset effectively had only 48 observations, creating statistical power
issues especially when (year and drug-pathogen) fixed effects or cova-
riates are introduced. Significant results were nevertheless obtained in
certain specifications, and the inclusion of different models (fixed ef-
fects, random effects, first difference, and POLS) helped to discern
relationships.

As can be seen from the summary statistics (Fig. 1), total use of
sulfonamides in animals has fallen slowly and consistently over the
study period, and use of tetracyclines has fallen considerably. The latter
is largely driven by use in pigs (which comprises the bulk of tetracycline
use), in which there was a sharp decline from 2015 to 2018, although
declines also occurred in poultry and sheep and goats during that time
(Fig. 2). There have also been noticeable falls in the use of sulfonamides
in fish from 2013 to 2017, and in the use of tetracyclines in sheep and
goats from 2010 to 2012 (Fig. 2). By contrast, use of tetracyclines in
poultry rose from 2012 to 2015, and use of sulfonamides in poultry
spiked in 2015 (Fig. 2). Note that the total quantity of antibiotics used
varied considerably by animal type. Pigs accounted for the most by far
(78% of all use recorded in the dataset), followed by cattle (7.3%), then
poultry (1.4%), then companion animals (0.60%) and fish (0.49%), with
sheep and goats (0.022%) accounting for the least total ABU.

The rate of ABR in humans has remained relatively consistent during
the study period (Fig. 3), and has risen for some of the drug-pathogen
pairs with the highest observed rate of resistance, with resistance of
C. jejuni and S. typhimurium to certain key antibiotics being considerably
higher than resistance in other drug-pathogen combinations. In partic-
ular, resistance to tetracyclines nearly doubled in these pathogens from
2010 to 2018.

3.2. Multivariate specifications

A Durbin-Wu-Hausman test (32) was run to determine whether
random effects should be used. It failed to reject the null hypothesis,
indicating that the random effects model was more efficient and no less
consistent than fixed effects, and so both fixed and random effects

models were included.
After running the multivariate specifications (Table 1), ABU in cattle

was positively associated with ABR in humans in the random effects and
first difference specifications. ABU in poultry was positively associated
with human ABR in the POLS regression. ABU in fish was negatively
associated with human ABR in the random effects and first difference
specifications, and ABU in companion animals was strongly positively
associated with human ABR in the POLS specification only. All of the
specifications were jointly significant, except for the fixed effects
regression (as measured by the F-statistic). Of the three significant
specifications, the adjusted R2 ranged between 0.188 and 0.443. ABU in
pigs was not associated with ABR in humans in any model.

3.3. Univariate specifications

After running the univariate specifications (Table 2), ABU in cattle
was positively associated with human ABR in the random effects, first
difference, and POLS regressions (Table 2.1). ABU in sheep and goats
was negatively associated with human ABR in the fixed effects, random
effects and first difference specifications (Table 2.2). ABU in pigs was
negatively associated with human ABR in the random effects and first
difference specifications (Table 2.3). ABU in poultry was positively
associated with human ABR in the random effects and POLS specifica-
tions (Table 2.4). ABU in fish was negatively associated with human ABR
in the random effects specification, but positively associated with
human ABR in the POLS specification (Table 2.5). Finally, ABU in
companion animals was positively associated with human ABR in the
random effects and POLS specifications.

3.4. Lagged independent variable

When lagging animal ABU by one year (Table 3), ABU in cattle
remained positively associated with ABR in humans in the random ef-
fects and first difference specifications, with the effect size remaining
similar to the same-period model. ABU in poultry remained positively
associated with human ABR in the POLS regression, with the effect size

Fig. 3. - Rate of ABR in humans over time in Denmark, by drug-pathogen combination.
(a version of the figure with the full legend is available in Appendix 4)
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falling. ABU in fish was no longer associated with human ABR; and ABU
in companion animals remained positively associated with human ABR
in the POLS specification, with the effect size remaining similar. ABU in
pigs remained without an association.

3.5. Additional specifications

After this, the univariate specifications were rerun with the addition
of a quadratic term. However, no consistent trends were identified
(Appendix 2).

Finally, the main univariate and multivariate specifications were
rerun with the addition of key covariates (GDP per capita at purchasing
power parity and animal populations). For the multivariate specifica-
tion, populations of all animal types were included, while for the uni-
variate specifications only the population of only one animal type at a
time was included. With the addition of these covariates, the multivar-
iate models could not be estimated due to a lack of data.

For the univariate models, covariates had to be excluded in some
cases due to multicollinearity or a lack of data (especially for fish, where
data on fisheries production was only available since 2017) (Appendix
3). Animal populations were never significantly related to human ABR.
GDP per capita (PPP) was positively related to human ABR in some
specifications, although this may simply be due to the fact that Den-
mark’s per-person income has consistently increased during the study
period, with human ABR rising somewhat as well.

Controlling for animal population and GDP per capita (PPP), ABU in
companion animals remained positively related to human ABR in the
random effects and POLS models, and ABU in cattle was positively

related to human ABR in the POLS model (Appendix 3).

4. Discussion

4.1. Findings and interpretation

Across the univariate and multivariate specifications, there was ev-
idence that ABU in cattle, poultry and companion animals was positively
associated with human ABR. The evidence for cattle was the most
consistent, and the effect size was greatest for companion animals. The
effect size varied greatly between animal types, although this may be
simply due to great differences in the volume of antibiotics used in each
animal type.

ABU in sheep and goats, as well as in pigs, was negatively associated
with human ABR in some univariate specifications but not in the
multivariate specifications. ABU in fish was negatively associated with
human ABR in some multivariate specifications, and had an indeter-
minate relationship to human ABR in the univariate specifications.
However, ABU in fish comprised such a small component of total ABU
that this result cannot be used to infer causality. This may instead be due
to a fall in the use of sulfonamides in fish during the study period con-
current with stable or increasing overall levels of ABR in humans driven
by other factors.

When lagging antibiotic use by one year, the effects identified in the
same-period models remained similar for animals with longer life-cycles
(companion animals and cattle). For animals with shorter life cycles the
effect either fell in size (poultry) or was no longer significant (fish). No
consistent trends were identified when rerunning the univariate speci-
fications with the addition of a quadratic term.

While the multivariate models could not be run with the inclusion of
additional covariates, running the univariate models while controlling
for animal populations and GDP per capita (PPP) revealed a positive
relationship between human ABR and ABU in companion animals and,
to a lesser extent, in cattle.

In the multivariate specifications which were jointly significant, the
adjusted R2 ranged between 0.188 and 0.443. This suggests that ABU in
animal health does explain a significant portion of variation in human
ABR but, despite accounting for a large proportion of systemwide ABU
(and two thirds of all ABU globally (36)), is not responsible for the
majority of this variation. The effect size observed varied considerably
between different animal species, though this may partially reflect large
differences in total production and total ABU across different animal
types.

It is counterintuitive that negative relationships were observed be-
tween human ABR and ABU in some animal species. In the case of pigs,
sheep and goats, this may be due to a negative cross-elasticity of demand
between consumption of cattle and consumption of pork, lamb and
mutton. That is to say, if production of (and therefore use of antibiotics
in) pigs, sheep and goats is negatively related to production of (and
therefore use of antibiotics in) cattle, then the positive relationship be-
tween ABU in cattle and human ABR may create the impression of a
negative relationship between ABU in pigs, sheep and goats and ABR in
humans in the univariate specifications. This would also explain why
those negative relationships were not observed in the multivariate
specifications.

While ABU in pigs accounted for the considerable majority of animal
ABU during the study period, it was not associated with human ABR in
any of the multivariate specifications. This runs counter to the hypoth-
esis that total volume of animal ABU correlates to the rate of human
ABR.

ABU in fish was negatively associated with human ABR even in the
multivariate specifications. However, this may be due to the significant
reduction in the use of sulfonamides in fish production during the study
period (Fig. 2) concurrent with a generally stable or slightly increasing
rate of human ABR (Fig. 3). ABU in fish accounted for such a small
portion of total ABU that concurrent trends such as this may drive

Table 1
- Multivariate specifications.

Rate of resistance in human infections

panel OLS

linear

Fixed
effects

Random
effects

First
difference

Pooled OLS

(1) (2) (3) (4)

Antibiotic use in
cattle

0.014 0.009** 0.036* 0.0001

(0.019) (0.004) (0.020) (0.003)
Antibiotic use in

sheep and goats − 0.528 − 0.381 − 0.160 − 0.711

(0.505) (0.311) (0.441) (0.776)
Antibiotic use in

pigs
− 0.0003 − 0.001 − 0.001 0.0003

(0.001) (0.0003) (0.001) (0.001)
Antibiotic use in

poultry
− 0.004 0.002 − 0.010 0.039**

(0.023) (0.008) (0.018) (0.017)
Antibiotic use in

fish − 0.016 − 0.027** − 0.055* − 0.047

(0.017) (0.013) (0.028) (0.034)
Antibiotic use in

companion
animals

− 0.013 0.067 − 0.118 0.205***

(0.137) (0.056) (0.138) (0.052)
Constant 15.753** − 0.562 9.769*

(7.259) (2.237) (5.543)
N 48 48 35 48
R2 0.267 0.377 0.332 0.514
Adjusted R2 − 0.640 0.286 0.188 0.443

Residual Std. Error 19.863 (df =
41)

F Statistic
1.275 (df
= 6; 21) 29.574***

2.316* (df
= 6; 28)

7.220*** (df
= 6; 41)

Notes:
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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Table 2
Univariate specifications for each animal type.

2.1. Univariate regressions (cattle)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in cattle 0.017 0.012*** 0.029** 0.007***
(0.011) (0.004) (0.013) (0.003)

Constant 8.105 0.505 24.022***
(8.150) (2.005) (4.520)

N 48 48 35 48
R2 0.085 0.114 0.134 0.153
Adjusted R2 − 0.655 0.095 0.108 0.135
Residual Std. Error 24.747 (df = 46)
F Statistic 2.407 (df = 1; 26) 8.973*** 5.120** (df = 1; 33) 8.323*** (df = 1; 46)

2.2. Univariate regressions (sheep and goats)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in sheep and goats − 0.776** − 0.851*** − 0.706* − 0.500
(0.285) (0.236) (0.358) (0.600)

Constant 23.276*** 0.831 34.167***
(7.745) (2.015) (4.641)

N 48 48 35 48
R2 0.222 0.188 0.105 0.015
Adjusted R2 − 0.407 0.170 0.078 − 0.007
Residual Std. Error 26.692 (df = 46)
F Statistic 7.401** (df = 1; 26) 13.028*** 3.883* (df = 1; 33) 0.693 (df = 1; 46)

2.3. Univariate regressions (pigs)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in pigs − 0.001 − 0.001*** − 0.001** 0.0004
(0.0004) (0.0003) (0.001) (0.0004)

Constant 31.196*** 0.185 26.382***
(8.501) (2.089) (6.240)

N 48 48 35 48
R2 0.075 0.174 0.125 0.028
Adjusted R2 − 0.673 0.156 0.099 0.006
Residual Std. Error 26.519 (df = 46)
F Statistic 2.095 (df = 1; 26) 11.793*** 4.730** (df = 1; 33) 1.306 (df = 1; 46)

2.4. Univariate regressions (poultry)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in poultry 0.012 0.015* − 0.003 0.036**
(0.015) (0.009) (0.013) (0.016)

Constant 18.133** 2.342 24.714***
(7.405) (2.027) (4.896)

(continued on next page)
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statistical associations more than any underlying causality.

4.2. Limitations

A major limitation of this analysis was the suitability of publicly
available open-access data. While considerable data on ABU and ABR
were available, the overlap of years and antibiotic classes covered by the
ABU and ABR datasets was limited, meaning that statistical power was
similarly limited. This prevented more detailed investigations into the
shape of the ABU-ABR relationship, into the role of other covariates, or
on what relationships could be observed for specific antibiotic classes

and specific bacterial pathogens.
The data available to the authors also did not permit human ABU to

be included in the regression models. This represents an important
missing variable, and could also introduce bias if there are interactions
between human and animal ABU. For example, if human and animal
ABR are positively associated, then any effect observed here may be
partially caused by changes in human ABU.

DanMap draws from routine surveillance data across primary and
secondary care, with very high coverage. However, data on human ABR
focuses on key foodborne pathogens (Campylobacter and Salmonella
species, and E. coli), and samples are drawn from a range of sources

Table 2 (continued )

2.4. Univariate regressions (poultry)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

N 48 48 35 48
R2 0.025 0.015 0.001 0.100
Adjusted R2 − 0.762 − 0.006 − 0.029 0.081
Residual Std. Error 25.511 (df = 46)
F Statistic 0.677 (df = 1; 26) 2.917* 0.042 (df = 1; 33) 5.118** (df = 1; 46)

2.5. Univariate regressions (fish)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in fish − 0.004 − 0.026* − 0.045 0.050*
(0.015) (0.015) (0.029) (0.025)

Constant 21.645*** 2.072 28.493***
(7.405) (1.922) (4.128)

N 48 48 35 48
R2 0.003 0.020 0.068 0.079
Adjusted R2 − 0.802 − 0.001 0.040 0.059
Residual Std. Error 25.814 (df = 46)
F Statistic 0.081 (df = 1; 26) 2.962* 2.424 (df = 1; 33) 3.922* (df = 1; 46)

2.6. Univariate regressions (companion animals)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in companion animals − 0.086 0.105* − 0.006 0.143***
(0.104) (0.061) (0.112) (0.032)

Constant 14.360* 2.283 20.920***
(7.446) (2.032) (4.085)

N 48 48 35 48
R2 0.026 0.007 0.0001 0.302
Adjusted R2 − 0.761 − 0.015 − 0.030 0.287
Residual Std. Error 22.463 (df = 46)
F Statistic 0.689 (df = 1; 26) 2.974* 0.003 (df = 1; 33) 19.931*** (df = 1; 46)

Notes:
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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including colonisation and different types of infection. The rate of
resistance may therefore not be representative of the resistance rate in
any given infection type, or the rate of resistance across all pathogens.
While these are key zoonotic pathogens, they may also not be reflective
of the total human burden of ABR, and links between animal ABU and
human ABR may have been observable for other pathogens had data on
those pathogens been available.

There was also relatively little change in the use of certain antibiotics
in certain animals during the study period, and even where large relative
changes were observed, the starting level of ABU is low compared with
other country contexts. Both animal ABU and human ABR in Denmark
have been closely managed since some years before this dataset begins
(25,26), meaning that these changes may not greatly influence human
ABR.

An important limitation with this type of investigation is the notion
that, while the use of antibiotics by humans (in both humans and ani-
mals) is generally agreed to have created the ongoing ABR pandemic (8),
this does not necessarily mean that reductions in ABU will result in
contemporaneous reductions in ABR. Allel et al. (16) also emphasise that
ABU reduction alone is unlikely to bring down the rate of ABR in human
infections significantly. This ‘stickiness’ of ABR, especially in a context
such as Denmark where rates of resistance are already relatively low and
stable, means that associations between ABU and ABR may not be sta-
tistically significant, or may be obscured by factors such as negative
cross-elasticity of demand among meat types. Similarly, in cases such as
the use of sulfonamides in fish, large reductions in certain types of ABU
combined with stable or increasing rates of human ABR can generate
negative statistical associations between ABU and ABR when a causal

association may not exist, particularly for animal species which account
for only a small portion of total ABU.

Further, the scope of the study was limited to phenotypic resistance
rather than genotypic resistance. That is, the results indicate the extent
to which use of an antibiotic is related to the susceptibility of bacterial
assays to antibiotics, but do not indicate how ABU is related to the
presence of genes conferring resistance. This was done because the
datasets used recorded phenotypic resistance, and this approach is
generally taken by ecological regression studies of the determinants of
ABR (14–18) (22).

Finally, while the Durbin-Wu-Hausman test suggested that random
effects models were consistent, the test may have failed to reject the null
hypothesis in part due to limited statistical power. If the covariates
(animal ABU) were indeed determined in large part by time-invariant
unobservables, then the results of the random effects models would
become inconsistent.

4.3. Implications for research, policy, and practice

This study identified some evidence of animal ABU contributing to
human ABR in Denmark, consistent with other ecological regression
studies. Allel et al. (16) found this to be the case across a number of
countries, for certain drug-pathogen combinations. Rahman and Hollis
(14) found more consistent evidence of this across European countries
for a range of drug-pathogen combinations.

While there was some evidence of association, animal ABU did not
explain the majority of variation in human ABR and results for some
livestock species were not consistently significant. This could suggest, as
Adda (15) found in the United States, that while animal ABU has some
influence on human ABR, and despite animal use accounting for a large
portion of total ABU, it is human ABU which is the more important
determinant by far. This could also suggest that, in contexts such as
Denmark where ABU in animals is limited to the minimum clinically
necessary amount (25,26), the link between human ABR and animal
ABU may not be pronounced. Given that resistance has plateaued or
even risen for some drug-pathogen combinations in Denmark (Fig. 3),
this could suggest that, once ABR reaches a certain level, ABU reductions
may not be sufficient to reduce ABR in the short-to-medium term. This is
consistent with some trends observed in the data used in this study, such
as resistance in humans remaining high despite considerable reductions
in ABU. Non-ABU factors, including transmission factors and socioeco-
nomic factors, may be more relatively influential, especially in low-ABU
contexts such as Denmark. This is consistent with the findings of Zhang
et al. (17) and Collignon et al. (18), who respectively identify medical
staffing and socioeconomic factors as important determinants of ABR
prevalence in human infections at the population level.

Data-sharing initiatives across the One Health space such as those
proposed by the Quadripartite (35) will be key to future work in this
area. The authors of this study were able to access nationally aggregated
longitudinal data from DanMap and VetStat from open access resources.
However, there were limitations to this data such as differences in
antibiotic class aggregation and missing timepoints that need to be
addressed for optimal analysis. Moving forward, for ecological level of
associations being hypothesised for ABR and to inform antibiotic stew-
ardship across the One Health spectrum, aggregated, non-identifiable
data is vital and could be shared from both human and animal sectors
whilst avoiding any confidentiality issues.

Future studies should repeat these models with more comprehensive
data, when available. Given the suggestion of this study, as well as of
other regression studies, that ABU reductions alone may be insufficient
to bring down human ABR in the short term, future studies should
investigate non-ABU covariates (socioeconomic and transmission fac-
tors) which may influence human ABR and may modulate the effect of
ABU on ABR, as well as looking at longer timeframes as more data
become available.

Table 3
- Multivariate specifications (independent variables lagged by one year).

Rate of resistance in human infections

panel OLS

linear

Fixed
effects

Random
effects

First
difference

Pooled OLS

(1) (2) (3) (4)

Lagged antibiotic use
in cattle

0.008 0.009** 0.030** 0.0001

(0.013) (0.004) (0.013) (0.003)
Lagged antibiotic use

in sheep and goats 0.635 0.382 0.687 − 0.278

(0.451) (0.367) (0.435) (0.737)
Lagged antibiotic use

in pigs
− 0.001 − 0.0004 − 0.0004 0.001

(0.001) (0.0004) (0.001) (0.001)
Lagged antibiotic use

in poultry
0.009 0.003 − 0.006 0.019**

(0.008) (0.006) (0.006) (0.009)
Lagged antibiotic use

in fish − 0.006 0.007 0.018 − 0.002

(0.017) (0.014) (0.028) (0.033)
Lagged antibiotic use

in companion
animals

0.017 0.081 0.076 0.163***

(0.126) (0.063) (0.125) (0.051)
Constant 10.012 0.684 8.974

(7.944) (2.144) (5.573)
N 45 45 32 45
R2 0.253 0.148 0.291 0.508
Adjusted R2 − 0.826 0.014 0.121 0.431

Residual Std. Error 19.217 (df =
38)

F Statistic
1.017 (df
= 6; 18) 11.799*

1.714 (df =
6; 25)

6.550*** (df
= 6; 38)

Notes:
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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5. Conclusions

This study used ecological regression to investigate the relationship
between animal ABU and human ABR in Denmark. There was evidence
of a positive relationship between ABU in cattle, poultry and companion
animals and ABR in humans. A negative relationship between ABU in
pigs, sheep and goats and ABR in humans was identified in the univar-
iate specifications, but was not present in the multivariate specifications
and may have been due to confounding factors. For animals with longer
life cycles, lagged ABU remained related to human ABR. These findings
support the idea that animal ABU influences human ABR, but do not
indicate that it is the main determinant of human ABR in Denmark.
Especially in contexts such as Denmark with extensive antibiotic stew-
ardship and antibiotic use controls, this suggests that ABU reduction
alone may not be sufficient to bring down ABR rates, and that
transmission-related and socioeconomic factors may play an important
role in future research and policy on One Health ABR.
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Appendix A. Appendix

Appendix 1
- classification of antibiotics in this study.

Listed in human resistance dataset Unified class Listed in animal use dataset Unified class

Amikacin Aminoglycosides Aminoglycosides Aminoglycosides
Amoxicillin/Clavulanic acid Penicillins Amphenicols Other
Ampicillin Penicillins Cephalosporins Cephalosporins
Apramycin Aminoglycosides Fluoroquinolones Fluoroquinolones
Azithromycin Macrolides Lincosamides Lincosamides
Cefotaxime Cephalosporins Macrolides Macrolides
Ceftazidime Cephalosporins Other Other
Ceftiofur Cephalosporins Penicillins (ext.) Penicillins
Chloramphenicol Other Penicillins (sim.) Penicillins
Ciprofloxacin Fluoroquinolones Quinolones Quinolones
Colistin Polymyxins Sulfonamides/Trimethoprim Sulfonamides
Ertapenem Carbapenems Tetracyclines Tetracyclines
Erythromycin Macrolides Tiamulines Other
Florfenicol Amphenicols
Gentamicin Aminoglycosides
Meropenem Carbapenems
Nalidixic acid Quinolones
Neomycin Aminoglycosides
Spectinomycin Aminoglycosides
Streptomycin Aminoglycosides
Sulfonamide Sulfonamide
Tetracycline Tetracycline
Tigecycline Others
Trimethoprim Others
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Appendix 2
- Quadratic specifications.

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in cattle 0.027 0.020* 0.020 0.026**
(0.021) (0.011) (0.022) (0.010)

I(abu_cattle2) − 0.00000 − 0.00000 0.00000 − 0.00000*
(0.00000) (0.00000) (0.00000) (0.00000)

Constant 4.715 0.639 13.108*
(9.616) (2.046) (7.146)

N 48 48 35 48
R2 0.098 0.121 0.141 0.218
Adjusted R2 − 0.695 0.082 0.087 0.184
Residual Std. Error 24.039 (df = 45)
F Statistic 1.362 (df = 2; 25) 9.292*** 2.629* (df = 2; 32) 6.284*** (df = 2; 45)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in sheep and goats − 0.692 − 2.341* − 0.415 1.646
(1.877) (1.339) (2.105) (2.040)

I(abu_sheep_and_goats2) − 0.002 0.047 − 0.008 − 0.082
(0.055) (0.042) (0.060) (0.075)

Constant 26.182*** 0.910 29.843***
(8.294) (2.122) (6.073)

N 48 48 35 48
R2 0.222 0.215 0.106 0.041
Adjusted R2 − 0.463 0.181 0.050 − 0.002
Residual Std. Error 26.631 (df = 45)
F Statistic 3.559** (df = 2; 25) 14.552*** 1.894 (df = 2; 32) 0.954 (df = 2; 45)

Rate of resistance in human infections

panel OLS

linear

Fixed effects First difference Pooled OLS

(1) (2) (3)

Antibiotic use in pigs 0.002 0.001 0.004***
(0.002) (0.003) (0.001)

I(abu_pigs2) − 0.00000 − 0.00000 − 0.00000***
(0.00000) (0.00000) (0.00000)

Constant 0.625 9.970
(2.142) (8.344)

N 48 35 48
R2 0.115 0.149 0.168
Adjusted R2 − 0.664 0.096 0.131
Residual Std. Error 24.805 (df = 45)
F Statistic 1.621 (df = 2; 25) 2.811* (df = 2; 32) 4.533** (df = 2; 45)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in poultry 0.016 0.025 − 0.053 0.091
(0.035) (0.034) (0.036) (0.056)

I(abu_poultry2) − 0.00000 − 0.00001 0.0001 − 0.0001
(0.00004) (0.00004) (0.00004) (0.0001)

(continued on next page)
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Appendix 2 (continued )

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Constant 17.391** 2.479 21.539***
(7.982) (1.992) (5.760)

N 48 48 35 48
R2 0.026 0.017 0.067 0.121
Adjusted R2 − 0.831 − 0.026 0.008 0.082
Residual Std. Error 25.486 (df = 45)
F Statistic 0.331 (df = 2; 25) 2.936 1.143 (df = 2; 32) 3.108* (df = 2; 45)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in fish 0.071 0.035 0.068 0.128
(0.048) (0.048) (0.069) (0.106)

I(abu_fish2) − 0.0001 − 0.0001 − 0.0002* − 0.0002
(0.0001) (0.0001) (0.0001) (0.0002)

Constant 20.804*** 2.512 27.913***
(7.400) (1.875) (4.215)

N 48 48 35 48
R2 0.102 0.052 0.155 0.090
Adjusted R2 − 0.688 0.010 0.102 0.050
Residual Std. Error 25.931 (df = 45)
F Statistic 1.424 (df = 2; 25) 4.804* 2.934* (df = 2; 32) 2.238 (df = 2; 45)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in companion animals 0.263 0.276 0.746 0.476**
(0.911) (0.178) (1.029) (0.184)

I(abu_companion_animals2) − 0.001 − 0.001 − 0.002 − 0.001*
(0.002) (0.001) (0.002) (0.001)

Constant 10.697 2.127 15.763***
(8.255) (2.058) (4.877)

N 48 48 35 48
R2 0.032 0.019 0.017 0.351
Adjusted R2 − 0.821 − 0.024 − 0.045 0.322
Residual Std. Error 21.908 (df = 45)
F Statistic 0.408 (df = 2; 25) 4.025 0.272 (df = 2; 32) 12.156*** (df = 2; 45)

Notes: .
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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Appendix 3
- Specifications with additional covariates.

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in cattle − 0.001 0.007*** 0.002 0.007**
(0.029) (0.002) (0.002) (0.002)

Cattle population 0.00002
(0.0002)

GDP per capita, PPP 0.002*** 0.002**
(0.001) (0.001)

Constant − 67.061** 3.577 − 106.690
(34.165) (5.595) (296.557)

N 48 48 39 48
R2 0.00005 0.270 0.022 0.271
Adjusted R2 − 0.424 0.238 − 0.005 0.221
Residual Std. Error 23.484 (df = 44)
F Statistic 0.001 (df = 1; 33) 16.667*** 0.814 (df = 1; 37) 5.441*** (df = 3; 44)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in sheep and goats − 0.382 − 0.026 − 0.856 − 0.026
(0.828) (0.611) (1.254) (0.611)

Sheep population − 0.00005 − 0.00005
(0.001) (0.001)

GDP per capita, PPP 0.002** 0.002**
(0.001) (0.001)

Constant − 62.394 5.319 − 62.394
(122.152) (5.943) (122.152)

N 48 48 39 48
R2 0.006 0.149 0.012 0.149
Adjusted R2 − 0.415 0.091 − 0.014 0.091
Residual Std. Error 25.368 (df = 44)
F Statistic 0.212 (df = 1; 33) 7.693* 0.465 (df = 1; 37) 2.564* (df = 3; 44)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in pigs − 0.0001 0.001 − 0.0001 0.001
(0.001) (0.0003) (0.001) (0.0003)

Pig population − 0.00001
(0.00001)

GDP per capita, PPP 0.002*** 0.002**
(0.001) (0.001)

Constant − 84.444** 4.447 66.663
(36.916) (6.009) (157.153)

N 48 48 39 48
R2 0.0003 0.193 0.001 0.211
Adjusted R2 − 0.424 0.157 − 0.026 0.157
Residual Std. Error 24.428 (df = 44)
F Statistic 0.009 (df = 1; 33) 10.776*** 0.052 (df = 1; 37) 3.916** (df = 3; 44)

Rate of resistance in human infections

panel OLS

linear

(continued on next page)
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Appendix 3 (continued )

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in poultry − 0.016 0.034** − 0.019 0.017
(0.039) (0.016) (0.026) (0.017)

Chicken population − 0.00000 − 0.00000
(0.00000) (0.00000)

GDP per capita, PPP 0.002**
(0.001)

Constant 29.105*** 5.398 − 62.130
(10.290) (5.925) (38.891)

N 48 48 39 48
R2 0.005 0.117 0.014 0.210
Adjusted R2 − 0.417 0.078 − 0.012 0.156
Residual Std. Error 24.439 (df = 44)
F Statistic 0.161 (df = 1; 33) 4.553 0.543 (df = 1; 37) 3.900** (df = 3; 44)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in fish − 187.655 0.064*** 0.624 1.104
(597.449) (0.023) (0.942) (0.963)

Fisheries production 0.003
(0.004)

GDP per capita, PPP 0.003***
(0.001)

Constant − 92.557*** 9.924 − 64.850
(34.911) (15.235) (138.440)

N 9 48 7 9
R2 0.032 0.275 0.081 0.214
Adjusted R2 − 1.582 0.242 − 0.103 − 0.049
Residual Std. Error 26.789 (df = 6)
F Statistic 0.099 (df = 1; 3) 17.033*** 0.438 (df = 1; 5) 0.814 (df = 2; 6)

Rate of resistance in human infections

panel OLS

linear

Fixed effects Random effects First difference Pooled OLS

(1) (2) (3) (4)

Antibiotic use in companion animals 0.225 0.156*** 0.165*** 0.156***
(0.304) (0.039) (0.042) (0.039)

Pet ownership − 214.733 − 214.733
(257.027) (257.027)

GDP per capita, PPP 0.004 0.004
(0.003) (0.003)

Constant − 72.676* 7.437 − 72.676*
(38.268) (5.690) (38.268)

N 31 31 25 31
R2 0.028 0.497 0.403 0.497
Adjusted R2 − 0.535 0.441 0.377 0.441
Residual Std. Error 21.447 (df = 27)
F Statistic 0.545 (df = 1; 19) 26.662*** 15.513*** (df = 1; 23) 8.887*** (df = 3; 27)

Notes
***Significant at the 1% level.
**Significant at the 5% level.
*Significant at the 10% level.
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Appendix 4. - Fig. 3 with full legend.

References

[1] OECD, Stemming the superbug tide: just a few dollars more [internet], OECD, 2018
[cited 2022 Mar 9]. (OECD Health Policy Studies). Available from: https://www.
oecd-ilibrary.org/social-issues-migration-health/stemming-the-superbug-ti
de_9789264307599-en.

[2] World Bank Group, Pulling Together to Beat Superbugs, International Bank for
Reconstruction and Development / World Bank, 2019.

[3] T.P. Van Boeckel, E.E. Glennon, D. Chen, M. Gilbert, T.P. Robinson, B.T. Grenfell,
et al., Reducing antimicrobial use in food animals, Science 357 (6358) (2017)
1350–1352. Sep 29.

[4] H.A. Thorpe, R. Booton, T. Kallonen, M.J. Gibbon, N. Couto, V. Passet, et al.,
A large-scale genomic snapshot of Klebsiella spp. isolates in northern Italy reveals
limited transmission between clinical and non-clinical settings, Nat. Microbiol. 7
(12) (2022) 2054–2067. Dec.

[5] C.M. Liu, M. Aziz, D.E. Park, Z. Wu, M. Stegger, M. Li, et al., Using source-
associated mobile genetic elements to identify zoonotic extraintestinal E. Coli
infections, One Health. 16 (2023) 100518. Jun.

[6] L. Roer, S. Overballe-Petersen, F. Hansen, T.B. Johannesen, M. Stegger,
V. Bortolaia, et al., ST131 fimH22 Escherichia coli isolate with a blaCMY-2/IncI1/
ST12 plasmid obtained from a patient with bloodstream infection: highly similar to
E. Coli isolates of broiler origin, J. Antimicrob. Chemother. 74 (3) (2019) 557–560.
Mar 1.

[7] A. Valcek, L. Roer, S. Overballe-Petersen, F. Hansen, V. Bortolaia,
P. Leekitcharoenphon, et al., IncI1 ST3 and IncI1 ST7 plasmids from CTX-M-1-
producing Escherichia coli obtained from patients with bloodstream infections are
closely related to plasmids from E. Coli of animal origin, J. Antimicrob. Chemother.
74 (8) (2019) 2171–2175. Aug 1.

[8] J. Parkhill, Antimicrobial resistance exchange between humans and animals: why
we need to know more, Engineering 1 (15) (2022) 11–12. Aug.

[9] E. Emes, N. Naylor, J. Waage, G. Knight, Quantifying the relationship between
antibiotic use in food-producing animals and antibiotic resistance in humans,
Antibiotics 11 (1) (2022) 66. Jan.

[10] L. Mughini-Gras, A. Dorado-García, E. van Duijkeren, G. van den Bunt, C.
M. Dierikx, M.J.M. Bonten, et al., Attributable sources of community-acquired
carriage of Escherichia coli containing β-lactam antibiotic resistance genes: a
population-based modelling study, Lancet Planet Health. 3 (8) (2019) e357–e369.
Aug.

[11] E. Feil, The Conversation, Cited 2023 Nov 13]. Superbugs in the Environment
Rarely Transfer to Humans – New Study. Available from, http://theconversation.
com/superbugs-in-the-environment-rarely-transfer-to-humans-new-study-195075,
2022.

[12] H. Bennani, A. Mateus, N. Mays, E. Eastmure, K.D.C. Stärk, B. Häsler, Overview of
evidence of antimicrobial use and antimicrobial resistance in the food chain,
Antibiotics (Basel). 9 (2) (2020) 49. Jan 28.

[13] J.M. Wooldridge, Introductory Econometrics, Cengage Learning, 2014, p. 603.
[14] S. Rahman, A. Hollis, The effect of antibiotic usage on resistance in humans and

food-producing animals: a longitudinal, One Health analysis using European data,
Frontiers in Public Health [Internet] 11 (2023) [cited 2023 Jun 30]. Available
from: https://www.frontiersin.org/articles/10.3389/fpubh.2023.1170426.

[15] J. Adda, Preventing the spread of antibiotic resistance, AEA Papers and
Proceedings. 110 (2020) 255–259. May.

[16] K. Allel, L. Day, A. Hamilton, L. Lin, L. Furuya-Kanamori, C.E. Moore, et al., Global
antimicrobial-resistance drivers: an ecological country-level study at the human-
animal interface, Lancet Planet Health. 7 (4) (2023) e291–e303. Apr.

[17] D. Zhang, Y. Cui, X. Zhang, Estimating factors related to fluoroquinolone resistance
based on one health perspective: static and dynamic panel data analyses from
Europe, Front. Pharmacol. 3 (10) (2019).

[18] P. Collignon, J. Beggs, T. Walsh, S. Gandra, R. Laxminarayan, Anthropological and
socioeconomic factors contributing to global antimicrobial resistance: a univariate
and multivariable analysis, The Lancet Planetary Health 2 (9) (2018).

[19] Danish Integrated Antimicrobial Resistance Monitoring and Research Programme.
[cited 2023 Oct 27], DANMAP, 2023. Available from, https://www.danmap.org/.

[20] VetStat. [cited 2023 Dec 4], The Danish System for Surveillance of the Veterinary
Use of Drugs for Production Animals, Available from: https://vetstat.fvst.dk/vetst
at/, 2023.

E. Emes et al.

https://www.oecd-ilibrary.org/social-issues-migration-health/stemming-the-superbug-tide_9789264307599-en
https://www.oecd-ilibrary.org/social-issues-migration-health/stemming-the-superbug-tide_9789264307599-en
https://www.oecd-ilibrary.org/social-issues-migration-health/stemming-the-superbug-tide_9789264307599-en
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0015
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0015
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0020
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0020
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0020
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0025
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0025
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0025
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0025
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0030
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0030
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0030
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0035
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0035
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0035
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0035
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0035
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0040
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0040
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0040
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0040
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0040
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0045
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0045
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0050
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0050
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0050
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0055
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0055
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0055
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0055
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0055
http://theconversation.com/superbugs-in-the-environment-rarely-transfer-to-humans-new-study-195075
http://theconversation.com/superbugs-in-the-environment-rarely-transfer-to-humans-new-study-195075
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0065
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0065
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0065
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0070
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1170426
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0080
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0080
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0085
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0085
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0085
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0090
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0090
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0090
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0095
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0095
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0095
https://www.danmap.org/
https://vetstat.fvst.dk/vetstat/
https://vetstat.fvst.dk/vetstat/


One Health 19 (2024) 100856

16

[21] H. Stege, F. Bager, E. Jacobsen, A. Thougaard, VETSTAT-the Danish system for
surveillance of the veterinary use of drugs for production animals, Prev. Vet. Med.
57 (3) (2003) 105–115. Mar 20.

[22] Danish Integrated Antimicrobial Resistance Monitoring and Research Programme
[Internet]. [cited 2023 Nov 23], DanMap Report, 2022, p. 2022. Available from:
https://www.danmap.org/reports/2022.

[23] European Centre for Disease Prevention and Control. [cited 2022 Aug 11],
Campylobacteriosis, Available from, https://www.ecdc.europa.eu/en/campyloba
cteriosis, 2022.

[24] European Centre for Disease Prevention and Control. [cited 2023 Dec 5],
Salmonellosis, Available from, https://www.ecdc.europa.eu/en/salmonellosis,
2023.

[25] Ministry of Food and Environment Denmark, Ministry of Health Denmark, One
Health Strategy against Antibiotic Resistance [cited 2023 Oct 30]. Available from,
https://sum.dk/Media/0/D/One%20health%20strategy%20mod%20antibiotikare
sistens%20engelsk.pdf, 2017.

[26] K. Lundsby, U.W. Soenksen, Working with One Health AMR in Denmark. Ministry
of Food, Agriculture and Fisheries of Denmark; [cited 2023 Oct 30], Available
from: https://health.ec.europa.eu/system/files/2022-06/amr_20220531_co03_en.
pdf, 2023.

[27] D. Belay, J. Jensen, Quantitative input restriction and farmers’ economic
performance: evidence from Denmark’s yellow card initiative on antibiotics,
J. Agric. Econ. 17 (2021) 73. May.

[28] H.H. Jensen, D.J. Hayes, Impact of Denmark’s ban on antimicrobials for growth
promotion, Curr. Opin. Microbiol. 19 (2014) 30–36. Jun.

[29] The Danish Food Agency, The Yellow Card Initiative on Antibiotics; 2022 [Cited
2022 Jun 14], Available from: https://www.foedevarestyrelsen.dk:443/english
/Animal/AnimalHealth/Pages/The-Yellow-Card-Initiative-on-Antibiotics.aspx.

[30] United Nations food and agriculture organisation (FAO), FAOSTAT [cited 2021 Dec
7]. Available from, https://www.fao.org/faostat/en/#data/PP, 2021.

[31] MSD Manual Consumer Version. [cited 2023 Nov 17], Overview of Antibiotics -
Infections, Available from: https://www.msdmanuals.com/en-gb/home/infections
/antibiotics/overview-of-antibiotics, 2023.

[32] R.H. Patrick, Durbin-Wu-Hausman specification tests, in: Handbook of Financial
Econometrics, Mathematics, Statistics, and Machine Learning, WORLD
SCIENTIFIC, 2019, pp. 1075–1108 [cited 2022 Jul 13]. Available from: https://
www.worldscientific.com/doi/abs/10.1142/9789811202391_0028.

[33] World Bank Group [cited 2023 Nov 20], World Bank Open Data, Available from:
https://data.worldbank.org/, 2021.

[34] Statistics Denmark. [cited 2023 Nov 27], StatBank, Available from: https://www.
dst.dk/en, 2023.

[35] World Health Organisation. [cited 2023 Dec 6], Quadripartite call to action for One
Health for a safer world, Available from: https://www.who.int/news/item/27-03-
2023-quadripartite-call-to-action-for-one-health-for-a-safer-world, 2022.

[36] LSHTM. [cited 2023 Mar 3], SEFASI, Available from, https://www.lshtm.ac.uk/res
earch/centres-projects-groups/sefasi, 2024.

E. Emes et al.

http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0110
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0110
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0110
https://www.danmap.org/reports/2022
https://www.ecdc.europa.eu/en/campylobacteriosis
https://www.ecdc.europa.eu/en/campylobacteriosis
https://www.ecdc.europa.eu/en/salmonellosis
https://sum.dk/Media/0/D/One%20health%20strategy%20mod%20antibiotikaresistens%20engelsk.pdf
https://sum.dk/Media/0/D/One%20health%20strategy%20mod%20antibiotikaresistens%20engelsk.pdf
https://health.ec.europa.eu/system/files/2022-06/amr_20220531_co03_en.pdf
https://health.ec.europa.eu/system/files/2022-06/amr_20220531_co03_en.pdf
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0140
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0140
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0140
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0145
http://refhub.elsevier.com/S2352-7714(24)00182-4/rf0145
https://www.foedevarestyrelsen.dk:443/english/Animal/AnimalHealth/Pages/The-Yellow-Card-Initiative-on-Antibiotics.aspx
https://www.foedevarestyrelsen.dk:443/english/Animal/AnimalHealth/Pages/The-Yellow-Card-Initiative-on-Antibiotics.aspx
https://www.fao.org/faostat/en/#data/PP
https://www.msdmanuals.com/en-gb/home/infections/antibiotics/overview-of-antibiotics
https://www.msdmanuals.com/en-gb/home/infections/antibiotics/overview-of-antibiotics
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0028
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0028
https://data.worldbank.org/
https://www.dst.dk/en
https://www.dst.dk/en
https://www.who.int/news/item/27-03-2023-quadripartite-call-to-action-for-one-health-for-a-safer-world
https://www.who.int/news/item/27-03-2023-quadripartite-call-to-action-for-one-health-for-a-safer-world
https://www.lshtm.ac.uk/research/centres-projects-groups/sefasi
https://www.lshtm.ac.uk/research/centres-projects-groups/sefasi

	The contribution of animal antibiotic use to antibiotic resistance in human infections: Panel evidence from Denmark
	1 Introduction
	2 Materials and methods
	2.1 Data
	2.2 Variables
	2.3 Statistical methods

	3 Results
	3.1 Summary statistics
	3.2 Multivariate specifications
	3.3 Univariate specifications
	3.4 Lagged independent variable
	3.5 Additional specifications

	4 Discussion
	4.1 Findings and interpretation
	4.2 Limitations
	4.3 Implications for research, policy, and practice

	5 Conclusions
	Funding
	Institutional review board statement
	Informed consent statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Appendix
	References


