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Abstract 
 

Confounding by indication is a key challenge for pharmacoepidemiologists. Although self-
controlled study designs address time-invariant confounding, indications sometimes vary over 
time. For example, infection might act as a time-varying confounder in a study of antibiotics and 
uveitis, because it is time-limited and a direct cause both of receiving antibiotics and uveitis. 
Methods for incorporating active comparators in self-controlled studies to address such time-
varying confounding by indication have only recently been developed. In this paper we formalize 
these methods, and provide a detailed description for how the active comparator rate ratio can 
be derived in a self-controlled case series (SCCS): either by explicitly comparing the regression 
coefficients for a drug of interest and an active comparator under certain circumstances using a 
simple ratio approach, or through the use of a nested regression model. The approaches are 
compared in two case studies, one examining the association between thiazolidinediones and 
fractures, and one examining the association between fluoroquinolones and uveitis using the UK 
Clinical Practice Research DataLink. Finally, we provide recommendations for the use of these 
methods, which we hope will support the design, execution and interpretation of SCCS using 
active comparators and thereby increase the robustness of pharmacoepidemiological studies. 
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1. Introduction  

The self-controlled case series (SCCS) is a “self-matched” study design, in which the risk of 
an outcome during exposed and unexposed time periods is compared within cases who 
experience the outcome1,2. A particular strength of the SCCS is that both measured and 
unmeasured time-invariant confounding factors are inherently controlled for through the 
design, which has benefits when studying causal questions potentially subject to 
unmeasured confounding. Although the method was developed for studying adverse events 
after vaccination1, it has also been applied to the study of other drug safety questions and 
the impact of environmental exposures on health outcomes2.  
 
The SCCS has some important limitations: it relies on a number of potentially restrictive 
assumptions3. Briefly, these state that outcomes should be independently recurrent or rare, 
that the occurrence of the event should not impact future probability of exposure, and that 
the occurrence of the event should not impact the observation time. The SCCS is also 
susceptible to time-varying confounding which can limit the validity of findings.2 While age 
and calendar time effects can be easily incorporated, accounting more generally for time-
varying confounders can be challenging as they may not be measured, or can be 
challenging to adjust for despite being measured. For example, indications for treatments 
are often unmeasured, which can cause concern around unmeasured confounding when 
these change over time. One approach to control for such time-varying confounding is the 
use of active comparators: this reduces the scope for bias due to unmeasured time-varying 
confounders since a well-chosen active comparator is expected to have a similar time-
varying pattern of confounding4. Active comparators are commonly used in cohort and case-
control studies in pharmacoepidemiology to address confounding by indication5, but are less 
frequently applied to SCCS since they are not permitted within the basic method. Methods 
for their incorporation in these settings have only recently been developed4, and there are 
few examples of their application.  

 
The aim of this paper is to describe and compare different methods for the incorporation of 
active comparators in the SCCS. We first set out the methods formally, and then evaluate 
them in two studies using data from the UK Clinical Practice Research Datalink (CPRD) 
where time-varying confounding by indication was a concern. The first study examined the 
association between thiazolidinediones and fractures6, and the second the association 
between fluoroquinolones and uveitis7. Finally, we discuss considerations for the 
incorporation of active comparators in SCCS and present a series of recommendations for 
researchers looking to use these methods.  

 

2. Methodology of the SCCS and active comparators  
 

2.1 SCCS  
The SCCS design assumes that events relating to an individual arise from a non-

homogeneous Poisson process. For each individual 𝑖, the follow-up time is split into risk and 
reference periods defined by a binary exposure, with risk periods denoted 𝑋 = 1  (e.g. 1 - 60 
days following each prescription) and reference periods denoted 𝑋 = 0 (e.g. all other time). 

The standard SCCS model of the event rate, 𝜆𝑖𝑥, for outcome 𝑌 is then:  
 

𝔼[𝑌|𝐼 = 𝑖, 𝑋 = 𝑥] =  𝜆𝑖𝑥 =  𝜙𝑖exp (𝛽𝑥)     (1) 
 

where β is the relative effect of the exposure on a logarithmic scale, and 𝜙𝑖 represents the 
effect of time-invariant individual characteristics on the event rate. During the analysis the 

likelihood is conditioned on the number of events 𝑛𝑖 occurring over the entire observation 
time in individual i, and this results in 𝜙𝑖 being eliminated from the likelihood. This explains 

why the method controls for time-invariant confounding. It is worth noting that 𝑛𝑖 does not 
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relate to a single risk period, and conditioning on it therefore does not compromise the 
comparison between different periods within the same individual. The method can easily 
incorporate multiple categorical risk periods (e.g.,  days 1-30 after first prescribing, days 31-
60 etc.) as illustrated in Figure 1 below.  
 
In a simple scenario where the risk period has just one level, the quantity of interest in an 
SCCS is the rate ratio: 

𝜙𝑖exp (𝛽) 

𝜙𝑖exp (0) 
=  exp (𝛽)     (2) 

 
The rate ratio contrasts the within-individual frequency of an event occurring during a risk 
period to the frequency of it occurring during unexposed reference time (typically, all time 
less the risk period) among those who experience the event. Each case may experience 
multiple risk periods, and each risk period can be further classified into multiple levels 
representing different hypothetical levels of risk8 (Figure 1).  
 
Figure 1. Illustration of a standard SCCS 

[FIGURE 1 HERE]  

 

2.2 Active Comparators  
The purpose of incorporating an active comparator in an SCCS is to compare the rate for the 
treatment of interest with the rate for the comparator treatment. Two potential reasons for 
this are 1) to assess and account for the effect of time-varying confounding by indication and 
2) to compare the causal effect of two different treatments. In some circumstances, 
especially for adverse events, we may assume the active comparator has no causal effect 
on the outcome, but by including it we may be able to reduce time-varying confounding by 
indication.9  
 
We can derive the active comparator rate ratio in a SCCS in several different ways. Firstly, 
we can calculate a ratio of rate ratios by estimating the effect of each drug on the outcome, 
dividing the estimated ratios, and then calculating a confidence interval (the simple ratio 
approach)4. As discussed further in the next section, under certain assumptions this ratio of 
ratios is equivalent to the active comparator rate ratio. Alternatively, the equivalent quantity 
can be derived in a single step using a regression model that can be specified in a variety of 
ways (the “nested model” approach).  

 

2.3 The Simple Ratio Approach 
One approach to estimate the active comparator rate ratio is to calculate a ratio of ratios. Let 
𝛽1 represent the parameter (log rate ratio) for the effect of a risk period caused by exposure 

to the drug of interest, and 𝛽2 the corresponding parameter for the comparator drug. The 
estimator is then given by:   
 

                                            
exp (𝛽1) 

exp (𝛽2) 
= exp (𝛽

1
−  𝛽

2
)                       (3) 

 
While this is a simple approach, it is not immediately clear what the underlying estimand is, 
and whether this matches up with the desired estimand (i.e., the active comparator rate 
ratio). When the two comparator treatments (X and Z) are mutually exclusive, or nearly 
mutually exclusive, and the baseline reference time is unexposed to either treatment then 
the ratio of ratios does simplify to an active comparator rate ratio: 
 

𝐸[𝑌|𝐼=𝑖,𝑋=1,𝑍=0]

𝐸[𝑌|𝐼=𝑖,𝑋=0,𝑍=0]

𝐸[𝑌|𝐼=𝑖,𝑋=0,𝑍=1]

𝐸[𝑌|𝐼=𝑖,𝑋=0,𝑍=0]
 = ⁄

𝐸[𝑌|𝐼=𝑖,𝑋=1,𝑍=0]

𝐸[𝑌|𝐼=𝑖,𝑋=0,𝑍=1]
                                                 (4) 
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where X is a binary variable representing a risk period caused by exposure to the drug of 
interest (unexposed: X = 0; exposed: X = 1), and Z a binary variable representing a risk 
period caused by exposure to the comparator. Alternatively, when there is substantial 
overlap in treatments periods, if there is either no interaction between treatments or we 

include an interaction term 𝛽3 in the model, then the ratio of ratios (3) simplifies to the active 
comparator rate ratio (4).  
 
The simple ratio method, as originally described by Hallas and colleagues,4 is based on 
estimating the effect for each drug in two separate case series. Alternatively, estimates for 
the effect of the drug of interest and comparator on the outcome can also be derived by 
fitting a single regression model and including both exposures:  
 

𝔼[𝑌|𝐼 = 𝑖, 𝑋 = 𝑥, 𝑍 = 𝑧] = 𝜙𝑖exp (𝛽1𝑥 + 𝛽2𝑧)   (5)  
 

One benefit of deriving the estimates for exp (𝛽1̂) exp (𝛽2̂) from a single model is that we can 
easily obtain the covariance between these estimates from the fitted model, which then 
contributes to the calculation of the confidence interval for the active comparator rate ratio.  
Formulas for these calculations are provided in appendix S1. A further benefit of including 
more cases in one model is increased precision when adjusting for calendar time or age 
effects assuming common age/calendar time temporal effects10. 
 
Multiple levels of risk are easily accommodated in the simple ratio method, by splitting the 
risk period caused by exposure to each drug into different periods based on potentially 
different levels of risk, represented by categorical variables. For example, a pre-exposure 
period and two post-exposure risk periods might result in a categorical exposure variable 
with the following levels: 0 (reference time), 1 (pre-exposure), 2 (day 0-30), 3 (day 30+). 
These can be included as a series of dummy variables for each risk level, here designated 
using subscripts:    
 

𝔼[𝑌|𝐼 = 𝑖, 𝑋1 = 𝑥1,  𝑋2 = 𝑥2, 𝑋3 = 𝑥3, 𝑍1 = 𝑧1, 𝑍2 = 𝑧2, 𝑍3 = 𝑧3] = 𝜙𝑖exp (𝛽1𝑥1 + 𝛽2𝑥2  +
 𝛽3𝑥3 +  𝛽4𝑧1 + 𝛽5𝑧2  + 𝛽6𝑧3)   (6)  

 
We can then apply the above principles to each risk level to derive the active comparator 
incidence ratio for that level. For example, the active comparator rate ratio for the pre-
exposure period becomes:  
 

exp (𝛽1) 

exp (𝛽4) 
= exp (𝛽

1
−  𝛽

4
)                   (7) 

 
 

2.4 Nested Model  
An alternative derivation of the active comparator incidence ratio involves fitting a regression 
model with nested exposure variables. For this purpose we define a new variable, E, 
representing a risk period caused by exposure to either the drug of interest or the 
comparator (X = 1 or Z = 1). As before, X represents a risk period caused by exposure to the 
drug of interest. The active comparator rate ratio can then be derived by fitting the following 
model:  
 

𝔼[𝑌|𝐼 = 𝑖, 𝑋 = 𝑥, 𝐸 = 𝑒] = 𝜙𝑖exp (𝛽1𝑒 + 𝛽2𝑥𝑒)    (8)  
 

If the two treatments are mutually exclusive then 𝛽2 in this model represents the active 

comparator rate ratio, whereas 𝛽1 represents the incidence ratio for the comparator of 
interest compared to no exposure, among those not exposed to the drug of interest. 
Although this parameterization has been referred to as an interaction approach4, expressing 
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the model in the standard statistical-model notation of Wilkinson and Rogers11 makes it clear 
that this model represents a special case where X is nested in E (appendix S2). We have 
therefore chosen to refer to this as the “nested model” approach. When the risk period is 
represented by a binary variable, it can be shown that the nested model can be further 
simplified:  
 

𝔼[𝑌|𝐼 = 𝑖, 𝑋 = 𝑥, 𝐸 = 𝑒] = 𝜙𝑖exp (𝛽1𝑒 + 𝛽2𝑥)    (9)  
 

This is because X is equivalent to X * E when X takes only the values 1 and 0. As these 
models are equivalent, which one is fitted is a matter of user preference.  One challenge with 
the nested model approach, which is not shared by the simple ratio approach, is that if the 

risk periods associated with each drug are not mutually exclusive then 𝛽3 will not estimate 
the ratio of the rate with drug of interest alone to comparator alone, but rather the ratio of the 
rate with drug of interest with or without comparator relative to comparator drug alone.  
 
The nested model approach can also be extended to incorporate multiple risk levels. This 
can be done by extending E to a categorical variable. Using the same risk levels as above, 
this variable would then take on the following values: 0 (reference time), 1 (pre-exposure 
period for X or Z), 2 (day 1-20 for X or Z), 3 (day 30+ for X or Z). X would still take on the 
value 1 when E represented a risk period caused by exposure to the drug of interest, and 0 
otherwise. Equivalently, dummy variables for each risk level can be created manually, and 
the set-up in (7) replicated for each level.  
 
There is another way of deriving the active comparator rate ratio that can be used when an 
individual can only be exposed to either the drug of interest or the comparator, but not both, 
as might be the case for some vaccines. In this situation, we can create a case series with a 
variable denoting exposure to either the comparator or drug of interest ever during a 
persons’ observation time. The value of this variable is constant for each person, which 
allows the active comparator incidence ratio to be derived through an interaction term 
(appendix S2). Although relatively simple to conceptualise, this method is likely to have 
relatively limited applicability as it requires that patients only have a single type of exposure 
throughout the observation period, and will therefore not be considered further. 
 

2.5 Notes on Implementation  
Researchers implementing the method should carefully consider how they will handle 
potentially overlapping risk periods between the drug of interest and the comparator. If risk 
periods are not mutually exclusive but are nevertheless counted as contributing only towards 

the risk period for the drug of interest, then 𝛽2 will represent the active comparator rate ratio 
only if it is assumed that there is no direct effect of the comparator drug on the outcome 
(conditional on being exposed to the drug of interest). To avoid making this assumption with 
the nested model approach, overlapping time periods can be treated as a separate level in a 
multi-level categorical exposure variable. This will fit a model equivalent to including an 
interaction term between risk periods caused by exposure to each drug in the single 
regression model simple ratio approach. Whether this is worthwhile will depend on the extent 
of overlap between risk periods. When there are a several risk levels (e.g. days 0-30, days 
30+), including an interaction term between treatments in the simple ratio approach, or 
adding separate levels for joint treatment in the nested model, can lead to sparse strata and 
issues in model convergence. Generic Stata code for implementing both the simple ratio and 
nested approaches is available on Github. 
 

3. Case Studies   
To evaluate the methodology, we applied and compared the simple ratio and nested model 
approaches in two studies using data from the Clinical Practice Research DataLink (CPRD) 
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GOLD and Aurum, two databases of anonymised primary care records from the United 
Kingdom (UK).  

 

3.1 Thiazolidinediones and Fractures  
Thiazolidinediones are antidiabetic agents used to treat type 2 diabetes. There has been 
historical concern that their use may increase the risk of fractures. Using a self-controlled 
case series design, Douglas et al (2009)6 investigated this question in CPRD GOLD, and 
found that thiazolidinediones use was associated with an increased risk of experiencing 
fractures after adjustment for age (RR = 1.43, 95% CI = 1.25, 1.62). To investigate whether 
residual time-varying confounding by progression of diabetes could potentially explain the 
observed association, the study was repeated among patients prescribed another 
antidiabetic class: sulphonylureas. Prescribing of these drugs was not associated with an 
increased fracture risk (RR = 0.84, 95% CI = 0.66, 1.08).  
 
We repeated the analyses by Douglas et al. to incorporate sulphonylureas formally as an 
active comparator. Analyses were based on two already-created case series in which all 
required variables were present, and the simple ratio method was therefore implemented 
using two separate case series. To allow us to evaluate the nested models, we applied an 
additional censoring requirement, in which we censored individuals at treatment 
discontinuation. This allowed us to stack the datasets into a single dataset with consistent 
specifications. The study had only a single risk level, so all exposure variables were binary.  
 
We included 1089 individuals, 885 exposed to thiazolidinediones and 213 exposed to 
sulphonylureas. Results from the separate case series are presented in Table 1. Use of 
thiazolidinediones was associated with an increased risk of fracture, with the association 
attenuated but still significant upon adjustment for age in 1-year age bands. Sulphonylurea 
use was not associated with an increased risk of fractures.  
 
Table 1. Association between Thiazolidinediones, sulphonylureas and fracture risk  

 
 Thiazolidinediones  Sulphonylureas  

 RR (95%CI) RR (95%CI) 

Unadjusted 2.23 (1.93, 2.58) 1.08 (0.74, 1.58) 

Adjusted for age  1.50 (1.25, 1.80) 0.70 (0.47, 1.05) 

 
 
Results from formally incorporating the active comparator, before and after adjustment, are 
presented in Table 2. All analyses found an increased risk of fractures, and agreement 
between the simple ratio and nested model approach was good in unadjusted analyses. 
After age adjustment, the nested model approach resulted in a somewhat lower estimate 
than the simple ratio approach.  
 
Table 2. Active comparator analysis for the association between thiazolidinediones and 
fracture risk   

 
 Simple Ratio Nested Model 

 ACRR (95%CI) ACRR (95%CI) 

Unadjusted 2.06 (1.37, 3.11) 2.06 (1.37, 3.11) 

Adjusted for age 2.14 (1.37, 3.33) 1.88 (1.23, 2.87) 
ACRR = Active comparator rate ratio  

 
In this study, formally incorporating sulphonylureas as an active comparator slightly 
increased the strength of the association observed between thiazolidinedione use and 
fracture risk, although confidence intervals remained wide. This highlights the value in 
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presenting the results from individual case series when incorporating an active comparator, 
as any apparent harm observed for the drug of interest may be driven by a protective effect 
of the comparator. The point estimates from the simple-ratio and the nested model, though 
identical in unadjusted models, differed slightly upon adjustment for age. This slight 
difference was because two separate case series were used in the simple ratio approach, 
but only a single one, including patients exposed to both drugs, for the nested model 
approach. This meant that adjustment for age in the nested model approach was based on a 
common estimate of the appropriate coefficient in a broader population pool, whereas 
adjustment in the simple-ratio approach was based on separate estimates in the two case 
series.  

 

3.2 Fluoroquinolones and Uveitis  
Fluoroquinolones have been associated with potential safety concerns, including uveitis and 
collagen-associated events such as tendon rupture12. It is not clear to what extent the 
associations reported between fluoroquinolones and uveitis are causal, as the infection 
which led to treatment with these antibiotics may also increase the risk of uveitis. Brown et 
al13  conducted a cohort study and a self-controlled case series, using both CPRD GOLD 
and Aurum, to investigate the association between fluoroquinolones and acute uveitis. As 
there was concern around time-varying confounding by indication, cephalosporins, a group 
of antibiotics used for similar indications, was added as an active comparator.  
 
As an addition to the original analyses, we extended the analyses by applying the nested 
approach to incorporating active comparators, and compared this to the simple ratio 
approach. The study used three different risk levels (days 1-29 from initial exposure, days 
30-59 and days 60+), incorporated using a series of dummy variables ( binary indicator 
variables, taking the value 1 for persontime in the relevant risk period and 0 otherwise) A 30 
day pre-exposure period was added to account for potential violations of one of the core 
underlying assumptions of the SCCS, namely that the occurrence of the outcome does not 
impact the probability of exposure. A pre-exposure period can mitigate some violations of 
this assumptions, when the effect of the outcome on exposure probability is short-lived. We 
anticipated this to be the case here, as uveitis may decrease primary care prescribing in the 
short-term (due to hospitalisation).  
The day of prescribing (day 0) were categorised as separate levels. We did not consider 
repeat occurrences of uveitis, that is, only the first occurrence of uveitis within the study 
period was considered an outcome event. However, given that uveitis is rare event this was 
anticipated to introduce minimal bias14. A single Poisson model was fitted without interaction 
terms between exposures, separately in GOLD and Aurum, in both the simple and nested 
approaches. 
 
We included 72,251 incident cases of acute uveitis identified in Aurum, of whom 12,947 
were exposed to fluoroquinolones and 18,111 exposed to cephalosporins. From GOLD we 
included 8,301 incident acute uveitis cases, of whom 1,436 were exposed to 
fluoroquinolones and 1,909 to cephalosporins. Results from separate analysis for each drug, 
adjusted for age and calendar time, are presented in Table 3. Briefly, there was weak 
evidence of an association between fluoroquinolone use and uveitis at days 1-29 and 30-59. 
The RR were closer to 1 at days 60+, although confidence intervals were wide in that latter 
time-period. There was also weak evidence of an association between cephalosporin, the 
control antibiotic, and uveitis at days 1-29, although the estimates of association moved 
towards null in later time periods. 
 
Table 3. Association between fluoroquinolones, Cephalosporin and uveitis 

 
  Fluoroquinolones Cephalosporin 

  RR (95%CI) RR (95%CI) 
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Adjusted for age and calendar time 1-29  1.13 (0.97, 1.31) 1.16 (1.04, 1.30) 

 30 - 59  1.16 (1.00, 1.34) 1.03 (0.92, 1.16) 

 60 - end 0.98 (0.74, 1.31) 0.87 (0.70, 1.09) 

 
 
Results from formally incorporating cephalosporin as a comparator are presented in Table 4. 
Using the simple ratio method resulted in null results for days 1-29 and weak to no evidence 
of an association in later time periods. The simple ratio and nested models gave very similar 
results.  

 
Table 4. Active comparator analysis for the association between fluoroquinolones and 
uveitis   

 
  Simple Ratio Nested Model 

  ACRR (95%CI) ACRR (95%CI) 

Adjusted for age and calendar time 1-29  0.97 (0.81, 1.17)  0.97 (0.81, 1.17)  

 30 - 59  1.13 (0.94, 1.36) 1.14 (0.94, 1.37)  

 60 - end 1.13 (0.79, 1.63) 1.14 (0.79, 1.63)  
ACRR = Active comparator rate ratio  

 
In this second case study, incorporating cephalosporin as an active comparator resulted in 
estimated incidence ratios for the association between fluoroquinolones and uveitis that 
were closer to the null for days 1-59 than those from the analyses without the comparator. 
The weak association observed between cephalosporin use and uveitis was unexpected, 
and has not been widely reported in the literature. Such an association could be explained 
by confounding by indication, as infection is a risk factor for uveitis and thereby can act as a 
time-varying confounder. Thus incorporating the comparator formally in this instance looks to 
have removed a small potential increase in the rate ratio driven by time-varying confounding 
by indication.  
 

4. Considerations and Recommendations  
The simple ratio and nested regression model methods will give similar results in most 
circumstances, but there may be specific scenarios where a particular method is preferable. 
The simple ratio method is somewhat more flexible than the nested model approach, as 
fitting two separate case series in principle allows for different sets of adjustment variables 
for the drug of interest and the comparator4. However, it is difficult to conceive of a situation 
where a time-varying confounder would be important to adjust for one of the drugs but not 
the other, as the comparator drug is likely to be chosen specifically because it shares a 
similar confounding structure to the drug of interest. The simple ratio method also allows for 
the incorporation of overlapping risk periods between the two drugs in quite a straightforward 
manner. However, if the simple ratio approach is implemented using two separate case 
series, the method assumes that there is zero covariance between the two drugs for the 
purposes of constructing confidence intervals. This may not be reasonable in all 
circumstances, and could lead to differences in the coverage if the covariance is large. As 
we have demonstrated, fitting a single regression model including effects of both the drug of 
interest and the comparator can overcome these problems. Differences may also be 
introduced between the simple ratio and nested model methods if the simple ratio estimates 
are derived from two separate case series, as the study populations contributing to covariate 
adjustments would then differ. This could also be mitigated by fitting both the simple ratio 
and nested model in one combined series, which would also offer the additional advantage 
of allowing potentially better control of any age or time-related confounding through more 
precise estimates of such effects (provided that the magnitude of the effects does not differ 
strongly between the two case series). The inclusion of unexposed cases to allow for better 
control of age or time-related confounding in self-controlled case series has been previously 
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suggested10, and the differences between the simple ratio and nested model found here also 
illustrate the value of this approach when such confounding is strong.  
 
It has been recommended to implement more than one method and compare the results4: 
however, it may be preferable to choose one method as a primary analysis strategy based 
on the specific requirements of a certain question, and implement the others as sensitivity 
analyses given their theoretical equivalence. Whichever method is chosen, we recommend 
that the rate ratio for the association between both drugs and the outcome should be 
presented to allow the researchers to assess whether their assumptions concerning the 
direction of bias due to unmeasured time-varying confounding were accurate.  

 

5. Final Remarks 
The active comparator methodology was introduced for several different self-controlled study 
designs in a 2021 paper by Hallas and colleagues4. This covered not only the self-controlled 
case series, but also the case-crossover design, case-time-control studies and sequency 
symmetry analyses. In this paper we have focused on the self-controlled case series, to 
enable an in-depth exploration of the methods associated with this design, but many of the 
considerations we raise here will apply when active comparators are incorporated in other 
self-controlled study designs as well. It is worth noting that our first case study found no 
strong evidence of association between the comparator drug and the outcome: and the 
difference between the standard and active-comparator rate ratios is therefore relatively 
small. However, applying an active comparator was still valuable in this scenario, as it 
provides reassurance that the association between thiazolidinediones and fractures was 
unlikely to be due to confounding by indication. The proposed methods are relatively new, 
and have still not been that widely applied. Chui and colleagues applied an active 
comparator in a self-controlled case series looking at the association between proton pump 
inhibitors (PPI) and myocardial infarction, using H2 receptor antagonists as active 
comparators. They used the simple ratio method, and were able to estimate an active 
comparator ratio for PPIs corrected for substantial time-varying confounding by indication.   
Taking this correction into account, they recovered a null effect between PPIs and MI15.   
 
We hope that our detailed exploration of these methodologies will be a guide for other 
researchers interested in applying active comparators in their own studies, and thereby 
increase the uptake of these methods.  
 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ae216/7716740 by guest on 06 Septem

ber 2024



 12 

References 
 
1. Farrington, C. P. Relative Incidence Estimation from Case Series for Vaccine Safety 

Evaluation. Biometrics 51, 228–235 (1995). 

2. Petersen, I., Douglas, I. & Whitaker, H. Self controlled case series methods: an 

alternative to standard epidemiological study designs. BMJ 354, i4515 (2016). 

3. Whitaker, H. J., Ghebremichael-Weldeselassie, Y., Douglas, I. J., Smeeth, L. & 

Farrington, C. P. Investigating the assumptions of the self-controlled case series 

method: Investigating the assumptions of the self-controlled case series method. Stat. 

Med. 37, 643–658 (2018). 

4. Hallas, J. et al. The Use of active Comparators in self-controlled Designs. Am. J. 

Epidemiol. (2021) doi:10.1093/aje/kwab110. 

5. Lund, J. L., Richardson, D. B. & Stürmer, T. The Active Comparator, New User Study 

Design in Pharmacoepidemiology: Historical Foundations and Contemporary 

Application. Curr. Epidemiol. Rep. 2, 221–228 (2015). 

6. Douglas, I. J., Evans, S. J., Pocock, S. & Smeeth, L. The risk of fractures associated 

with thiazolidinediones: a self-controlled case-series study. PLoS Med. 6, e1000154 

(2009). 

7. Brown, J. P. et al. Systemic Fluoroquinolone Use and Risk of Uveitis or Retinal 

Detachment. JAMA Ophthalmol. e241712 (2024) 

doi:10.1001/jamaophthalmol.2024.1712. 

8. Farrington, Whitaker & Ghebremichael Weldeselassie. Self-Controlled Case Series 

Studies: A Modelling Guide with R - 1st Ed. (Chapman and Hall/CRC, 2018). 

9. Huitfeldt, A., Hernan, M. A., Kalager, M. & Robins, J. M. Comparative Effectiveness 

Research Using Observational Data: Active Comparators to Emulate Target Trials with 

Inactive Comparators. eGEMs 4, (2016). 

10. Whitaker, H. J., Farrington, C. P., Spiessens, B. & Musonda, P. Tutorial in biostatistics: 

the self-controlled case series method. Stat. Med. 25, 1768–1797 (2006). 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ae216/7716740 by guest on 06 Septem

ber 2024



 13 

11. Wilkinson, G. N. & Rogers, C. E. Symbolic Description of Factorial Models for Analysis of 

Variance. J. R. Stat. Soc. Ser. C Appl. Stat. 22, 392–399 (1973). 

12. Research, C. for D. E. and. FDA Drug Safety Podcast: FDA updates warnings for oral 

and injectable fluoroquinolone antibiotics due to disabling side effects. FDA (2022). 

13. Brown, J. et al. Associations between systemic fluoroquinolone use and risk of uveitis 

and retinal detachmen. Submitted (2023). 

14. Whitaker, H. J., Steer, C. D. & Farrington, C. P. Self-controlled case series studies: Just 

how rare does a rare non-recurrent outcome need to be? Biom. J. Biom. Z. 60, 1110–

1120 (2018). 

15. Chui, C. S. et al. Proton pump inhibitors and myocardial infarction: an application of 

active comparators in a self-controlled case series. Int. J. Epidemiol. dyac196 (2022). 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T D

ow
nloaded from

 https://academ
ic.oup.com

/aje/advance-article/doi/10.1093/aje/kw
ae216/7716740 by guest on 06 Septem

ber 2024



 14 

Figure 1. Illustration of a standard SCCS 
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