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Abstract

Infectious disease modelling and forecasting has garnered broad interest throughout the COVID-19
pandemic. Accurate forecasts for the trajectory of the pandemic can be useful for informing public
policy and public health interventions. In this, forecast evaluation plays a crucial role. Forecasts are
only useful if they are accurate. Evaluating the performance of different forecasting approaches can
provide information about their trustworthiness, as well as on how to improve them. This thesis
makes contributions in two areas related to forecasting and forecast evaluation in an epidemiological
context. Firstly, it advances the tools available as well as our theoretical understanding of how
to evaluate forecasts of infectious diseases. Secondly, it investigates the relative performance and
interplay of human judgement and mathematical modelling in the context of short-term forecasts
of COVID-19.

With respect to forecast evaluation, the first contribution made by this thesis is scoringutils,
an R package that facilitates the evaluation process. The package provides a coherent framework
for forecast evaluation in R and implements a selection of scoring rules, helper functions and
visualisations. In particular, it supports evaluating forecasts in a quantile-based format that has
recently been used by several COVID-19 Forecast Hubs in the US, Europe, and Germany and Poland.
The second contribution to the field of forecast evaluation is a novel approach to evaluating forecasts
in an epidemiological context. Scores like the continuous ranked probability score (CRPS) or the
weighted interval score (WIS), which are common in epidemiology, represent a generalisation of the
absolute error to predictive distributions. However, determining predictive performance based on
the absolute distance between forecast and observation neglects the exponential nature of infectious
disease processes. Transforming forecasts and observations using the natural logarithm before
applying the CRPS or WIS may be more adequate in an epidemiological context. The resulting score
can be understood as a probabilistic version of the relative error. It measures predictive performance
in terms of the exponential growth rate and can serve as a variance-stabilising transformation
assuming that the underlying disease process has a quadratic mean-variance relationship. This thesis
motivates the idea of transforming forecasts before evaluating them and illustrates the behaviour of
these scores using data from the European COVID-19 Forecast Hub. Log-transforming forecasts
before scoring them changed the ranking between forecasters and resulted in scores that were more
evenly distributed across time and space.

With respect to the role of human judgement in infectious disease forecasting, this thesis contributes
two studies that analyse and compare the predictive performance of human judgement forecasts
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and model-based predictions. It starts from the understanding that computational modelling,
which has been the predominant way to obtain infectious disease forecasts in the past, represents a
synthesis between epidemiological and mathematical assumptions and the expertise and judgement
of the researchers fine-tuning the models. Understanding the interplay between human judgement
and mathematical modelling better, as well as trade-offs between the two, may help make future
forecasting efforts more efficient and improve predictive accuracy. This thesis uses the newly
developed forecast evaluation tools to investigate the interplay between human judgement and
mathematical modelling in the context of infectious disease forecasting, specifically of COVID-19.
In a first study, it elicited forecasts from researchers and laypersons and compared these human
judgement forecasts against predictions from a minimally-tuned mathematical model, as well as
from an ensemble of several computational models submitted to the German and Polish COVID-19
Forecast Hub. It found that human judgement forecasts generally performed on par with the
ensemble of computational models, performing slightly better when predicting cases and slightly
worse when predicting deaths. Adding more forecasts to the ensemble was generally advantageous,
even if the model to be added performed worse than the already existing ensemble. A second study
replicates the basic set-up and compared human judgement forecasts of COVID-19 in the UK,
elicited as part of a public “UK Crowd Forecasting Challenge”, against the ensemble of all forecasts
submitted to the European COVID-19 Forecast Hub. Again, forecasts performed broadly on par
with the ensemble forecasts. We did not find a strong difference between self-selected “experts”
and “non-experts” in terms of predictive performance. Results should generally be interpreted
carefully, due to small sample sizes and susceptibility to choices made in the evaluation process.
We explored a novel way to combine human judgement and mathematical modelling by asking
forecasters to predict the effective reproduction number Rt which then got mapped to case and
death numbers using an epidemiological model. Due to various limitations, the initial performance
with this new approach was worse than that of direct human forecasts. Nevertheless, approaches
that combine human judgement and mathematical modelling are promising as they could help
reduce the cognitive burden of the forecasters and increase accuracy.
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Acronyms

Abbreviation Meaning

CDC Centers for Disease Control and Prevention

CDF Cumulative density function

CFR Case fatality rate

CRPS Continuous ranked probability score

MCMC Markov chain Monte Carlo

PDF Probability density function

WIS Weighted interval score
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1 Introduction

1.1 Motivation

Much of the work presented in this PhD was motivated by issues and questions that arose
from the rapid real-time response to the COVID-19 pandemic. At the time, researchers in
the UK and all across the world strived to provide accurate and timely forecasts of relevant
COVID-19 metrics to decision makers in a setting characterised by high uncertainty. There
was uncertainty about relevant disease parameters such as the generation interval (Wallinga
and Lipsitch, 2006) or transmission routes, but also uncertainty about what kinds of models
were suitable to generate accurate forecasts, or how those forecasts should best be evaluated.
Before COVID-19, modelling and forecasting of infectious diseases has helped inform decision
making in many different settings and for various diseases such as dengue fever (Johansson
et al., 2019; Yamana et al., 2016), influenza (Biggerstaff et al., 2016; Reich et al., 2019;
McGowan et al., 2019). During the COVID-19 epidemic however, the attention given to
infectious disease modelling and forecasting by both decision makers and the general public
increased dramatically (Funk et al., 2020; Cramer et al., 2022; Bracher et al., 2021b; Sherratt
et al., 2022).

The usefulness of a model or forecast, of course, depends on how accurately it can capture
existing and future disease dynamics. Accuracy needs to be measured to be able to improve
on existing models and forecasts or to make a decision about the degree to which they should
influence decision making. When evaluating and comparing multiple models or forecasters,
we can select from a large variety of scores and metrics that assess predictive performance
by comparing forecasts against observed data. Different metrics reward or penalise certain
behaviours of forecasts differently (Gneiting and Raftery, 2007) and the choice of the metric
hence influences the result of the evaluation. It is therefore important to identify and use
metrics that capture what forecast consumers actually care about (Bracher et al., 2021a;
Bosse et al., 2023a). There exists an extensive body of literature on scoring rules and ways to
evaluate forecasts in a variety of settings. Past evaluations of epidemiological forecasts drew
from this literature, but comparatively little work went into how to score forecasts in an
epidemiological context specifically (an interesting recent example is Gerding et al. (2024)).
The desire for better evaluation tools and the open questions surrounding the evaluation of
forecasts in an epidemiological context were the motivation for a major part of this thesis.

One aspect makes interpreting model performance and decision making in the beginning of a
new disease outbreak especially challenging: data on the past accuracy of a forecaster or
model is usually sparse as there are only few data points available. It is therefore important
to establish a general understanding of the underlying characteristics of different types of
modelling and forecasting approaches that could help estimate a priori how trustworthy
different predictions may be. This might provide information on which kinds of forecasting
approaches may be useful in future infectious disease outbreaks. In the context of an early
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disease outbreak, resources need to be allocated to different types of modelling and forecasting
approaches. For example, instead of spending resources on developing mathematical models,
one could instead (or in addition) survey experts directly. Infectious disease modelling usually
requires a significant amount of resources in terms of time and effort. The resulting models
represent a mixture of mathematical model assumptions and human judgement required to
develop and tune the model. It is therefore useful to ask how well human judgement and
mathematical modelling perform in comparison and what mathematical modelling is able
to add above human judgement alone. This question inspired the second major part of the
work presented in this thesis.

1.2 Aims and objectives

This thesis aims to help improve the usefulness of infectious disease forecasting for public
health decision making in future outbreaks such as the COVID-19 pandemic by obtaining a
deeper understanding of the following.

• What is a ‘good’ forecast in an epidemiological context, and how we can evaluate the
quality of a forecast?

• How do human judgement and mathematical modelling compare in terms of predictive
performance? How do human judgment and mathematical modelling interplay and
how can they best be used and combined to obtain useful forecasts?

It strives to accomplish this by fulfilling the following objectives:

• Establish appropriate tools to evaluate predictions in R following best practices in
forecast evaluation (Paper 1, see Chapter 3).

• Develop tools to elicit human forecasts of infectious diseases, specifically COVID-19
(Paper 2, see Chapter 4)

• Analyse the role of human judgement in forecasting COVID-19 in Germany and Poland.
Compare human judgement forecasts against model-based predictions and analyse the
added benefit of human input over mathematical and statistical modelling (Paper 2,
see Chapter 4).

• Improve current evaluation methods so that they are better suited for evaluating
forecasts in an epidemiological context (Paper 3, see Chapter 5).

• Examine the potential to use public crowd forecasting tournaments to predict COVID-
19 in the UK and explore possibilities to combine human judgement and epidemiological
modelling (Paper 4, see Chapter 6).

• Examine how well results from one human judgement forecasting effort replicate in a
different setting with a different crowd of forecasters (Paper 4, see Chapter 6).

1.3 Thesis outline

Chapter 2 provides some background for the following Chapters. It defines important
terminology related to forecasting and modelling of infectious diseases used throughout this
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thesis. It reviews core concepts related to forecast evaluation and proper scoring rules and
provides an overview of past human judgement efforts in infectious disease forecasting.

Chapter 3 (Paper 1) introduces scoringutils, a software package in R that implements a
selection of proper scoring rules and other evaluation metrics and offers users a coherent
framework for forecast evaluation in R. The scoringutils package provides the basis for all
forecast evaluations conducted as part of this thesis.

Chapter 4 (Paper 2) applies the evaluation methods and tools described in Chapters 2 and 3
to investigate what human judgement can contribute to the task of forecasting COVID-19.
It presents a study conducted in Germany and Poland where human judgement forecasts
were submitted to the German and Polish COVID-19 Forecast Hub alongside mathematical
models with minimal tuning. The study was motivated both by a desire to obtain a better
understanding of how to create good forecasts of COVID-19, as well as the actual need to
produce timely and accurate forecasts for the German and Polish Forecast Hub. The study
compares human judgement forecasts elicited using a novel open source online application
against predictions from two minimally-tuned mathematical models, as well as with an
ensemble of model-based predictions.

Chapter 5 (Paper 3) investigates in greater detail how forecasts should be evaluated specifically
in an epidemiological context. The scoring methods discussed in Chapters 2 and 3 were
not explicitly developed for application in infectious disease forecasting, but rather describe
general mathematical relationships that are detached from the actual context. Evaluating the
forecasts we submitted to the German and Polish Forecast Hub, as described in Chapter 4,
surfaced issues with the way that forecasts are currently commonly evaluated in epidemiology.
Determining predictive performance based on the absolute distance between forecast and
observation, as is common practice, neglects the exponential nature of infectious disease
processes. It also leads to scores that are dominated by outlier forecasts, especially during
periods of high incidence, and makes it hard to compare forecasts across time, locations
or forecast targets. To address these issues, Chapter 5 introduces the idea of transforming
forecasts and observations before applying a score in order to obtain an evaluation that is
more adequate in an epidemiological context.

Chapter 6 (Paper 4) presents a follow-up study to the one presented in Chapter 4. It analyses
the results of a public forecasting challenge in the UK, applying insights from Chapter 5
on how to evaluate forecasts in an epidemiological context. Forecasts were submitted to
the European COVID-19 Forecast Hub and again compared to the ensemble of all forecasts
submitted to the Forecast Hub, this time also taking transformations of forecasts into account
for the evaluation. In addition, Chapter 6 explores a novel way to combine human judgement
and mathematical modelling by asking forecasters to predict the effective reproduction
number Rt which then gets mapped to cases and deaths using an epidemiological model.

Chapter 7 discusses the results and implications of the work presented in this thesis.

11



1.4 Code

The code for this thesis is publicly available on GitHub1, as is the code for the scoringutils
package and the accompanying Paper (Paper 1)2, the code for the Paper on crowd forecasts
in Germany and Poland (Paper 2)3, the code for the Paper on transforming forecasts before
scoring them (Paper 3)4, and the code for the Paper on the UK Crowd Forecasting Challenge
(Paper 4)5.

1https://github.com/nikosbosse/phd_thesis
2https://github.com/epiforecasts/scoringutils
3https://github.com/epiforecasts/covid.german.forecasts
4https://github.com/epiforecasts/transformation-forecast-evaluation
5https://github.com/epiforecasts/uk-crowd-forecasting-challenge

12

https://github.com/nikosbosse/phd_thesis
https://github.com/epiforecasts/scoringutils
https://github.com/epiforecasts/covid.german.forecasts
https://github.com/epiforecasts/transformation-forecast-evaluation
https://github.com/epiforecasts/uk-crowd-forecasting-challenge


2 Background

This chapter provides definitions for terms used throughout the thesis and reviews the aspects
of the literature on forecast evaluation and human judgement forecasting relevant to the
remainder of this thesis.

2.1 Forecasting and Modelling

A forecast, in most general terms, is a stated belief about the future (Gneiting et al., 2007)
as it will occur. Such a belief can be stated in qualitative or quantitative terms. This thesis
will almost exclusively focus on quantitative forecasts.

Quantitative forecasts can either be probabilistic, or they can be point forecasts. A proba-
bilistic forecast (Held et al., 2017) is a full predictive probability distribution over multiple
possible outcomes. A point forecast, on the other hand, is a single number that represents a
single outcome. A probabilistic forecast incorporates uncertainty about different outcomes
in a way that a point forecast cannot. Probabilistic forecasts are therefore arguably more
useful for decision making (Held et al., 2017; Ramos et al., 2013) and will be the focus of
this thesis. Some authors (see e.g. Farrow et al., 2017) make a distinction between ‘forecast’,
meaning a probabilistic forecast and ‘prediction’, meaning a point forecast. We will use the
two terms interchangeably.

The term ‘model’ in its broader sense generally means a simplified representation of the
world that allows someone to make statements about the future based on certain inputs. A
model can be the specific understanding of the world that a human forecaster has in her
mind to make sense of past and current events and that allows her to make forecasts about
the future. More commonly, the term model denotes a mathematical or computer model, a
set of encoded rules that describe and represent the processes that govern events in reality.
Mathematical models nowadays usually use computers to map observed inputs to a model
output. If not otherwise stated, we use the term ‘model’ to describe a mathematical model
which produces a forecast (rather than the mental representation of the world in a person’s
head). Similarly, ‘model-based’ predictions mean predictions generated by a computational
model. Furthermore, we use the term ‘modeller’ to denote a person who develops, codes, or
adapts a mathematical model.

Mathematical models (see e.g. Frauenthal, 1980; Kretzschmar and Wallinga, 2009), as
described above, are often also referred to as ‘mechanistic models’. Mechanistic models, such
as compartmental models (see e.g. Shah and Mittal, 2021) or agent-based models (see e.g.
Hunter et al., 2017) explicitly model the underlying infectious disease process, encoding
our understanding of infectious disease dynamics. There exists a second broad category
of models that are commonly used to make forecasts in epidemiology: ‘statistical models’.
Statistical models derive their predictive power from the statistical relationships between
different observable variables. They usually do not rely on an understanding of the underlying
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processes, although they often make distributional assumptions about relevant variables. For
an extensive overview of statistical time series models and their use in forecasting, see e.g. Box
and Jenkins (1970); West and Harrison (1997), and Hyndman, Rob J and Athanasopoulos,
George (2021). In practice, the distinction between mechanistic and statistical models is
not always clear-cut. Models that make use of statistical estimation while at the same time
constraining parameters based on mechanistic assumptions are common in epidemiology, and
are often referred to as ‘semi-mechanistic’ models (see e.g. Bhatt et al., 2023, for a recent
example).

We describe anyone or anything that issues a forecast as ‘a forecaster’. This can either be a
person voicing their judgement, or it can be a computer model or algorithm that issues a
forecast based on given inputs, or a combination of both. When more clarity is required, we
use the terms ‘human forecaster’ and either ‘mathematical model’ or ‘computational model’.

The output of an epidemiological model is not necessarily a forecast. It could also, for
example, be a nowcast, or a scenario or projection. A nowcast is a description of the world
as it is in the present (in the absence of definitive data). A scenario is the representation
of the future as it could look like under certain scenario assumptions, whereas a projection
describes the future as it could unfold if conditions stayed the same as they were in the past
(Funk et al., 2020). This is in contrast to a forecast which aims to predict the future as it
will occur.

Forecasts (and nowcasts) can be judged eventually by comparing them against observed data.
This is more difficult, and in many instances impossible, for scenarios or projections, as they
usually make statements about a world that was not observed. While scenarios are harder
to evaluate, they may be more useful for decision making. Scenarios are able to show what
could occur under different assumptions and different courses of action and can therefore
help inform what actions should be taken. With forecasts, it is less clear how results would
change under a possible course of action. By definition, a forecast has to estimate and already
incorporate possible courses of action in order to make an accurate statement about the
future as it will occur.

One possibility to increase the predictive accuracy of forecasts is to combine individual
forecasts into an ensemble, which usually performs better than any individual forecaster
(Gneiting and Raftery, 2005; Yamana et al., 2016). To denote an ensemble of forecasts made
by a group of human forecasters we will sometimes use the term ‘crowd ensemble’ or ‘crowd
forecast’. Ensembles can be either equally weighted or trained, by assigning ensemble weights
based on past performance of a forecaster. Past research suggests that it is very difficult to
form ensembles which outperform an equally weighted ensemble (Claeskens et al., 2016), but
not impossible (Brooks et al., 2018). During the COVID-19 pandemic, forecasts for different
targets have been systematically collected, aggregated and evaluated by three COVID-19
Forecast Hubs in the US (Cramer et al., 2022), Germany and Poland (Bracher et al., 2021b)
and Europe (Sherratt et al., 2022).
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2.2 Forecast evaluation

Forecast evaluation in a narrow sense is the process of assessing how well a forecaster’s
predictions align with the actual observations. In a broader sense of the term, forecast
evaluation would also include elements such as an assessment of the usefulness of the
forecasts to the forecast consumer, or analyses that would help understand the underlying
characteristics of the model or forecaster better. Forecast evaluation helps modellers and
forecasters to improve future predictions, and helps decision makers decide which forecasts
to take into account when making decisions.

Conceptualy, we can think of forecasting as a game between the forecaster and nature
(Gneiting et al., 2007). Nature issues a probability distribution, G, the data-generating
distribution. Observed values y are drawn from this data-generating distribution G. The
forecaster issues a predictive distribution, F .

For any given forecasting task, the primary aim of any forecaster should be to issue a
predictive distribution F that equals the (usually unknown) true data-generating distribution
G (Gneiting et al., 2007). We call a forecast F an ideal forecast if it is equal to the
data-generating distribution G. For an ideal forecast, we therefore have

F = G,

where F and G are cumulative distribution functions.

2.2.1 The forecasting paradigm

Since the data-generating distribution G is usually unknown, forecasts have to be evaluated
based on the predictive distribution F and the observations y alone. Gneiting et al. (2007)
proposed a framework for forecast evaluation that is centred around the notion that a
forecaster should aim to “maximise the sharpness of the predictive distributions subject to
calibration”. Calibration hereby means that the forecasts are consistent with the observations
and that there are no systematic deviations between the two. In their work, Gneiting et al.
(2007) distinguish several different forms of calibration (specifically: probabilistic calibration,
marginal calibration and exceedance calibration). Sharpness is a property that pertains
solely to the forecast and is independent of the observations. It describes how informative
the predictive distribution is, i.e. how concentrated the probability mass is around any
potential outcome. The opposite of sharpness is dispersion, i.e. how spread out the predictive
distribution is. Sharpness and calibration are illustrated in Figure 2.1.

2.2.2 Proper scoring rules

Often, the quality of a forecast is summarised into a single number using so-called proper
scoring rules (Brier, 1950; Good, 1952; Gneiting and Raftery, 2007). A scoring rule S(F, y)
is a function of the forecast F and the observation y that returns a single numeric value.
A scoring rule is said to be proper, if under G and for an ideal forecast F = G, there is
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Figure 2.1: Illustration of calibration and sharpness. The probability density function of the
predictive distributions is indicated by a black line, observations (draws from the unknown
data-generating distribution) are represented by the grey histograms.

no forecast F ′ ̸= F that in expectation receives a better score than F . A scoring rule is
considered strictly proper if, under G, no other forecast F ′ in expectation receives a score
that is better than or the same as that of F . By convention, proper scoring rules are usually
negatively oriented, meaning that smaller values are better and the best possible score is
usually zero. In that sense, the score can be understood as a penalty. Among the strictly
proper scoring rules most commonly used are the logarithmic scoring rule (Good, 1952) and
the continuous ranked probability score (CRPS) (Epstein, 1969; Murphy, 1971; Matheson
and Winkler, 1976; Gneiting and Raftery, 2007).

2.2.2.1 The logarithmic scoring rule

The logarithmic scoring rule is simply the negative logarithm of the density of the predictive
distribution evaluated at the observed value

log score = − log f(y),

where f is the predictive probability density function (PDF) and y is the observed value.
For discrete forecasts, the log score can be computed as

log score = − log py,

where py is the probability assigned to the observed outcome y by the forecast F . The
logarithmic scoring rule can produce large penalties when the observed value takes on values
for which f(y) (or py) is close to zero. It is therefore considered to be sensitive to outlier
forecasts. This may be desirable in some applications, but it also means that scores can
easily be dominated by a few extreme values. The logarithmic scoring rule is a local scoring
rule, meaning that the score only depends on the probability that was assigned to the actual
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outcome (see Figure 2.2). This is often regarded as a desirable property for example in the
context of Bayesian inference (Winkler et al., 1996). It implies for example, that the ranking
between forecasters would be invariant under monotone transformations of the predictive
distribution and the target.

2.2.2.2 The continuous ranked probability score

The continuous ranked probability score (CRPS) is popular in fields such as meteorology
and epidemiology. The CRPS is defined as

CRPS(F, y) =
∫ ∞

−∞
(F (x) − 1(x ≥ y))2

dx,

where y is the observed value and F the CDF of predictive distribution. For discrete forecasts,
the ranked probability score (RPS) can be used instead:

RPS(F, y) =
∞∑

x=0
(F (x) − 1(x ≥ y))2.

The CRPS can be understood as a generalisation of the absolute error to predictive distribu-
tions (Gneiting and Raftery, 2007). It can also be understood as the integral over the Brier
score (Brier, 1950) for the binary probability forecasts implied by the CDF for all possible
observed values. The CRPS is also related to the Cramér-distance between two distributions
and equals the special case where one of the distributions is concentrated in a single point
(see e.g. Ziel (2021)). The CRPS is a global scoring rule, meaning that the entire predictive
distribution is taken into account when determining the quality of the forecast (see Figure
2.2).

CRPS:  0.23
Log score:  1.05

CRPS:  1.53
Log score:  1.05
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Figure 2.2: Forecasts from two forecasters, A and B, for the number of points scored by
a team in a sports match (adapted from Bosse et al., 2022b). Grey bars represent the
probability assigned to each outcome. The outcome later observed, 2, is marked with a
black dashed line. The probability assigned to the observed outcome is the same for both
forecasters. However, Forecaster A’s prediction centers closely around the observed value,
whereas Forecaster B allocates substantial probabilities to outcomes distant from the observed
value. A local scoring rule like the logarithmic scoring rule assigns both forecasters the same
score. A global scoring rule like the CRPS, which takes the full distribution into account,
assigns a better score to Forecaster A.
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Compared to the logarithmic scoring rule, the CRPS is also relatively more lenient when
it comes to penalising poor forecasts. In particular, the logarithmic scoring rule penalises
overconfidence more severely than the CRPS (see Figure 2.3A, as well as Machete, 2012).
The CRPS, as a generalisation of the absolute error, grows linearly with the distance of the
predictive distribution from the observed value. This is not true for the log score, which can
grow quickly if the density or probability assigned to the observed outcome is small (see
Figure 2.3B).
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Figure 2.3: Effect of deviations from the data-generating distribution on the log score and the
CRPS (adapted from Bosse et al., 2022b)). A: Effect of varying the standard deviation, while
keeping the mean constant. The data-generating distribution is N (0, 5) (true sd is marked by
the dashed black line). The standard deviation of the forecast distribution is varied along the
x-axis. Coloured lines therefore represent expected scores for a data-generating distribution
of N (0, 5) and a predictive distribution N (0, x). The log score penalises overconfidence
(i.e. predictive distributions to the left of the dashed line, which are too sharp / underdispersed)
more severely than the CRPS. B: Effect of keeping the predictive distribution constant,
while varying the observed value. The predictive distribution (illustrated in grey) is N (0, 1).
Coloured lines show the scores obtained for a standard normal forecast distribution and
different observed values. The CRPS grows linearly with the observed value, while the
logarithmic scoring rule produces increasingly larger penalties than the CRPS for observed
values that were deemed unlikely by the predictive distribution.

Both log scores and CRPS values scale with the standard deviation of the target data-
generating distribution, as forecasting an uncertain target is inherently more difficult. If the
predictive distribution can be well approximated by a normal distribution, CRPS values of
an ideal forecaster (for which the forecast F equals the data-generating distribution G) scale
linearly with the standard distribution (Bosse et al., 2023a). This can make it difficult to
compare CRPS values across forecasts for targets with differing orders of magnitudes, as will
be discussed in more detail in Chapter 5. The log score mostly scales sub-linearly with the
standard deviation of the data-generating distribution. This is illustrated in Figure 2.4B.

For both the CRPS and log score, a sample-based representation is available. This means
that score can be estimated even in cases where the forecast is not available as a closed-form
distribution, but rather is represented as a set of samples from the predictive distribution. In
such cases, the CRPS has an advantage over the log score in terms of estimation. Computing
the log score for continuous forecasts requires estimating a predictive density from the
samples. For that reason, estimating the log score from predictive samples can often be noisy

18



0.4

0.5

0.6

0.7

Mean score Sd score

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

0.75

1.00

1.25

Mean of F and G (sd constant)

S
co

re

A

1

2

3

4
Mean score Sd score

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0

1
2
3
4
5

Sd of F and G (mean constant)

S
co

re

B

Scoring rule CRPS Log score

Figure 2.4: Dependency of scores on the variability of the data-generating distribution.
Consider data generated from different normal distributions with differing means and stan-
dard deviations. Predictive distributions are assumed to be equal to the data-generating
distribution. For every combination of mean and standard deviation, we drew 10k samples
from the data-generating distribution, evaluated them, and calculated the mean and the
standard deviation of the scores. A: Constant standard deviation σ = 1 of the data-generating
and predictive distribution, varying mean. B: Constant mean (µ = 1) of the data-generating
and predictive distribution, varying standard deviation.
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and require a large number of samples to work well. This is illustrated in Figure 2.5 (adapted
from Jordan et al., 2019)).
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Figure 2.5: Estimates of the log score and CRPS derived from predictive samples, as adapted
from Jordan et al. (2019) (see also Bosse et al. (2022b)). The observed value was assumed to
be 0, the predictive distribution was N (0, 3). Scores were computed using samples of varying
sizes from the N (2, 3) predictive distribution. Sample sizes ranged from 10 to 100,000. For
each sample size, the process was repeated 500 times. The black line represents the mean
score across these 500 repetitions, while the shaded areas indicate 50% and 90% confidence
intervals. Additionally, the dashed line corresponds to the true score, calculated based on
the closed-form distribution.

2.2.2.3 The weighted interval score

Recent forecasting efforts such as the COVID-19 Forecast Hubs in the US (Cramer et al.,
2022), Europe (Sherratt et al., 2022), and Germany and Poland (Bracher et al., 2021b,
2022) have used a quantile format, with predictive distributions represented by a set of
predictive quantiles. While predictive samples can offer richer information (for example,
traces of Markov Chain Monte Carlo (MCMC) simulations can be stored that include
information about spatial or temporal correlations), they are expensive in terms of storage
space. Accurately representing the predictive distribution, especially in its tails, may require
a large number of predictive samples. Predictive quantiles, on the other hand, require much
less storage space to represent the distribution accurately (while losing information about
the correlation structure between different targets).

A proper scoring rule that is well suited to evaluate forecasts in such a quantile format is
the weighted interval score (WIS, see e.g. Bracher et al., 2021a; Gneiting and Raftery, 2007;
Winkler, 1972, and references therein). The WIS can be understood as an approximation
of the CRPS for forecasts in a quantile format. Quantiles are assumed to be the lower and
upper bounds of prediction intervals symmetric around the median. The interval score for a
single interval is

ISα(F, y) = (u − l)︸ ︷︷ ︸
dispersion

+ 2
α

· (l − y) · 1(y ≤ l)
︸ ︷︷ ︸

overprediction

+ 2
α

· (y − u) · 1(y ≥ u)
︸ ︷︷ ︸

underprediction

,

where 1() is the indicator function, y is the observation, and l and u are the α
2 and 1 − α

2
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quantiles of the predictive distribution F . l and u together form the prediction interval. The
interval score can be understood as the sum of three components: dispersion, overprediction
and underprediction. For a set of K prediction intervals and the median m, the score is
given as a weighted sum of individual interval scores, i.e.

WIS = 1
K + 0.5 ·

(
w0 · |y − m| +

K∑

k=1
wk · ISα(F, y)

)
,

where wk is a weight assigned to every interval. When the weights are set to wk = αk

2 and
w0 = 0.5, then the WIS converges to the CRPS for an increasing number of equally spaced
quantiles (for a proof see e.g. Bracher et al., 2021a).

Scoring rules and evaluation metrics describe a mathematical relationship between forecasts
and observations and capture different aspects of how a forecast deviates from observed
values. This makes them objective and comparable. However, scoring rules and evaluation
measures usually do not directly measure the usefulness of forecasts to forecast consumers.
For example, underprediction of a target like hospitalisations could lead to more severe
consequences than overprediction for a decision maker relying on a forecast in a way that’s
not necessarily captured by a given scoring rule. The selection of an appropriate metric
therefore should ideally reflect the qualities a forecast consumer values in a forecast.

2.3 Human Judgement forecasting

Human judgement forecasting has a long history and efforts have been made in very different
contexts and fields, both inside and outside of academia. Human judgement elicitation
processes also differ greatly in their methodology and selection of forecasters. Efforts in the
past range from surveys of experts or laypeople to structured discussions between experts
aimed to produce a consensus forecast to large crowd forecasting efforts with thousands of
forecasters predicting on a given question. One of the first structured methods proposed to
support decision making through forecasting is the Delphi method developed by the RAND
Corporation in the 1950s in the context of the Cold War (Dalkey and Helmer, 1963; Bernice
Brown, 1968; Page et al., 2015). Forecasts were elicited in a structured process where experts
would provide a first estimate, then discuss their estimates and potential disagreements, and
then provide a final round of estimates.

Outside of academia, human predictions and estimates are routinely used to help decision
making in private companies, think tanks and governments. In addition, public predictions
on various topics of interest have been collected on several online prediction markets or
prediction platforms. Prediction markets such as PredictIt 1, Manifold2, Polymarket3 and
traditional betting platforms such as betfair4 allow users to place bets on an outcome by
spending either real money or token money to buy “yes” or “no”-shares in the binary outcome
of a given market. Prediction platforms such as Metaculus5, INFER6 or Good Judgement

1https://www.predictit.org/
2https://manifold.markets/
3https://polymarket.com
4https://betfair.com
5https://metaculus.com
6https://infer-pub.com
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Open7 elicit direct forecasts from users and offer either points or sometimes monetary rewards
for the most accurate users. These markets and platforms have been used in predicting a
broad spectrum of events such as elections, wars, or the spread of infectious diseases.

Academic authors working on human judgement forecasting have in the past made use
of such prediction platforms (McAndrew et al., 2022b,c; Tetlock et al., 2014), used more
traditional means of eliciting predictions such as surveys (Recchia et al., 2021) or the Delphi
method (Dalkey and Helmer, 1963; Bernice Brown, 1968; Page et al., 2015), or developed
their own methods (Farrow et al., 2017). While human judgement forecasting has seen
many applications in academic fields such as such as geopolitics (Atanasov et al., 2016;
Tetlock et al., 2014), product forecasting (Arvan et al., 2019), or meta-science (Dreber et al.,
2015; Gordon et al., 2020), its application to infectious diseases has only recently attracted
more widespread attention. Notable examples of human judgement forecasting of infectious
diseases include Farrow et al. (2017); Recchia et al. (2021); McAndrew and Reich (2022);
McAndrew et al. (2022a,b,c); Davies and Ferris (2022).

Human judgement forecasting is not always feasible, especially at scale, due to the time
and effort required of human forecasters. However, Human judgement forecasting has
various attractive qualities compared to mathematical models. In particular, in the early
stages of an outbreak, humans may be able to provide rapid forecasts based on very sparse
observational data and can make use of contextual information that is difficult to incorporate
into mathematical modelling. They may also help provide guidance on questions that
computational models cannot answer, such as whether a state or an organisation like the
World Health Organisation will provide assistance to help with an outbreak.

Before the beginning of this PhD only one paper, namely Farrow et al. (2017) for influenza
and chikungunya, had directly compared the performance of human judgement forecasts
of infectious diseases against predictions made by computational models. Since then, three
more papers have examined the performance of human judgement forecasts of COVID-19
in direct comparison to computational models, two of them form part of this PhD (Bosse
et al., 2022a; McAndrew et al., 2022b; Bosse et al., 2023b). Results overall suggest that a
crowd of human forecasters can achieve performance comparable to that of an ensemble of
computational models.

7https://gjopen.com
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3 Evaluating forecasts using scoringutils in R

The following Chapter presents scoringutils, an R package for evaluating forecasts. It
explains the package functionality in detail and gives an overview of how practitioners can
use it to evaluate and compare the performance of their forecasts. The package forms the
basis for all forecast evaluations conducted in this thesis. scoringutils was developed to
help address an acute need to understand the quality of the forecasts that were produced to
inform the COVID response of public health institutions in the UK and abroad in 2020. It
was continuously developed and refined to provide the tools needed to evaluate forecasts in an
epidemiological context. In addition to the work presented in this PhD thesis, scoringutils
also supports and facilitates the evaluations conducted by the US and European Forecast
Hubs (Cramer et al., 2022; Sherratt et al., 2022), both of which make use of the package.

The scoring rules implemented in scoringutils are mostly not specific for forecasts of
infectious diseases. Later, Chapter 5 will go into more detail about how forecasts can be
scored in a way that takes the particular characteristics of infectious disease forecasts better
into account.
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Abstract

Evaluating forecasts is essential to understand and improve forecasting and make fore-
casts useful to decision makers. A variety of R packages provide a broad variety of scoring
rules, visualisations and diagnostic tools. One particular challenge, which scoringutils
aims to address, is handling the complexity of evaluating and comparing forecasts from
several forecasters across multiple dimensions such as time, space, and different types of
targets. scoringutils extends the existing landscape by offering a convenient and flexible
data.table-based framework for evaluating and comparing probabilistic forecasts (forecasts
represented by a full predictive distribution). Notably, scoringutils is the first package
to offer extensive support for probabilistic forecasts in the form of predictive quantiles, a
format that is currently used by several infectious disease Forecast Hubs. The package is
easily extendable, meaning that users can supply their own scoring rules or extend exist-
ing classes to handle new types of forecasts. scoringutils provides broad functionality to
check the data and diagnose issues, to visualise forecasts and missing data, to transform
data before scoring, to handle missing forecasts, to aggregate scores, and to visualise the
results of the evaluation. The paper presents the package and its core functionality and
illustrates common workflows using example data of forecasts for COVID-19 cases and
deaths submitted to the European COVID-19 Forecast Hub.

Keywords: forecasting, forecast evaluation, proper scoring rules, scoring, R.

1. Introduction
Good forecasts are of great interest to decision makers in various fields like finance (Tim-
mermann 2018; Elliott and Timmermann 2016), weather predictions (Gneiting and Raftery
2005; Kukkonen et al. 2012) or infectious disease modeling (Reich et al. 2019; Funk et al.
2020; Cramer et al. 2021; Bracher et al. 2022; Sherratt et al. 2022). For decades, researchers,
especially in the field of weather forecasting, have therefore developed and refined an arsenal
of techniques to evaluate predictions (see for example Good (1952), Epstein (1969); Murphy
(1971); Matheson and Winkler (1976), Gneiting, Balabdaoui, and Raftery (2007), Funk, Ca-
macho, Kucharski, Lowe, Eggo, and Edmunds (2019), Gneiting and Raftery (2007), Bracher,



2 Evaluating Forecasts with scoringutils in R

Ray, Gneiting, and Reich (2021)).
Various R (R Core Team 2021) packages cover a wide variety of scoring rules, plots and metrics
that are useful in assessing the quality of a forecast. Existing packages offer functionality
that is well suited to evaluate a variety of predictive tasks, but also come with important
limitations.
Some packages such as tscount (Liboschik, Fokianos, and Fried 2017), topmodels (Zeileis
and Lang 2022), GLMMadaptive (Rizopoulos 2023), cvGEE (Rizopoulos 2019) or fabletools
(O’Hara-Wild, Hyndman, and Wang 2023) expect that forecasts were generated in a certain
way and require users to supply an object of a specific class to compute scores. These packages
provide excellent tools for users operating within the specific package framework but are by
their nature not generally applicable to many use cases practitioners might encounter.
Packages such as scoringRules (Jordan, Krüger, and Lerch 2019), Metrics (Hamner and Frasco
2018), MLmetrics (Yan 2016), verification (Laboratory 2015), SpecsVerification (Siegert
2020), surveillance (Meyer, Held, and Höhle 2017), predtools (Sadatsafavi, Safari, and Lee
2023), or probably (Kuhn, Vaughan, and Ruiz 2023b) provide an extensive collection of tools,
scoring rules and visualisations for various use cases. However, most scoring functions operate
on vectors and matrices. This is desirable in many applications but can make it difficult to
simultaneously evaluate multiple forecasts across several dimensions, such as time, space, and
different types of targets.
scoring (Merkle and Steyvers 2013) operates on a data.frame and uses a formula interface,
making this task easier. However, scoring only exports a few scoring rules and does not allow
users to supply their own. yardstick (Kuhn, Vaughan, and Hvitfeldt 2023a), which builds on
the tidymodels (Kuhn and Wickham 2020) framework, is the most general and flexible other
forecast evaluation package. It allows users to apply arbitrary scoring rules to a data.frame
of forecasts, independently of how they were created. However, yardstick is primarily focused
on point forecasts and classification tasks. It currently lacks general support for probabilistic
forecasts (forecasts in the form of a full predictive distribution, represented e.g. by a set of
quantiles or samples from the forecast distribution). Probabilistic forecasts are desirable, as
they allow decision makers to take into account the uncertainty of a forecast (Gneiting et al.
2007), and are widely used, e.g. in Meteorology or Epidemiology.
scoringutils aims to fill the existing gap in the ecosystem by providing a flexible general-
purpose tool for the evaluation of probabilistic forecasts. It offers a coherent data.table-
based framework and workflow that allows users to evaluate and compare forecasts across
multiple dimensions using a wide variety of default and user-provided scoring rules. Notably,
scoringutils is the first package to offer extensive support for probabilistic forecasts in the
form of predictive quantiles, a format that is currently used by several infectious disease
Forecast Hubs (Reich et al. 2019; Cramer et al. 2020; Sherratt et al. 2022; Bracher et al.
2022). The package provides broad functionality to check the data and diagnose issues, to
visualise forecasts and missing data, to transform data before scoring (see Bosse, Abbott,
Cori, van Leeuwen, Bracher, and Funk 2023), to apply various metrics and scoring rules
to data, to handle missing forecasts, to aggregate scores and to visualise the results of the
evaluation. scoringutils makes extensive use of data.table (Dowle and Srinivasan 2023) to
ensure fast and memory-efficient computations. The core functionality is designed around S3
classes, allowing users to expand on the generics and methods implemented in the package.
scoringutils provides extensive documentation and case studies, as well as sensible defaults
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for scoring forecasts.

Figure 1: Illustration of the suggested workflow for evaluating forecasts with scoringutils. A:
Workflow for working with forecasts in a data.table-based format. The left side shows the
core workflow of the package: 1) validating and processing inputs, 2) scoring forecasts and
3) summarising scores. The right side shows additional functionality that is available at the
different stages of the evaluation process. The part in blue is covered by Section 2 and in-
cludes all functions related to processing and validating inputs as well as obtaining additional
information about the forecasts. The part in green is covered by Section 3 and includes all
functions related to scoring forecasts and obtaining additional information about the scores.
The part in red is covered by Section 4 and includes all functions related to summarising
scores and additional visualisations based on summarised scores. B: An alternative workflow,
allowing users to call scoring rules directly with vectors/matrices as inputs.

Paper outline and package workflow
The structure of this paper follows the suggested package workflow which consists of 1) vali-
dating and processing inputs, 2) scoring forecasts and 3) summarising scores. This workflow
is illustrated in Figure 1, which displays the core workflow (left side) as well as additional
functionality that is available at different stages of the evaluation process (right side).
Section 2 is centred around validating inputs, forecast objects, and the associated function-
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ality. It explains the expected input formats and how to validate inputs and diagnose issues.
It provides an overview of the types of forecasts supported by scoringutils and the different
S3 classes used to represent these forecast types. It also provides information on a variety
of functions that can be used to visualise forecasts, transform inputs or obtain additional
information and visualisations.
Section 3 is centred around scoring forecasts and the additional functionality that is available
to manipulate and analyse scores further. It explains how to score forecasts, either in a
data.table-format or in a format based on matrices and vectors. It also provides information
on additional information that can be computed from scores, such as correlations between
scores or relative skill scores based on pairwise comparisons. These can be useful to mitigate
the effects of missing forecasts.
Section 4 is centred around summarised scores. It explains how to summarise scores and gives
information on additional visualisations that can be created based on summarised scores.
Section 5 discusses the merits and limitations of the package in its current version as explores
avenues for future work.
All functionality will be illustrated using the example data shipped with the package, which
is based on a subset of case and death forecasts submitted every week between May and
September 2021 to the European COVID-19 Forecast Hub (Sherratt et al. 2022). Following
the convention of the different COVID-19 Forecast Hubs, we will restrict examples to two-
week-ahead forecasts.
The code for this package and paper can be found on https:github.com/epiforecasts/
scoringutils. The full package documentation as well as an overview of all existing functions
can also be seen on https://epiforecasts.io/scoringutils.

2. Inputs, forecast types and input validation

2.1. Input formats and types of forecasts
Forecasts differ in the exact prediction task and in how the forecaster chooses to represent
their prediction. To distinguish different kinds of forecasts, we use the term “forecast type”
(which is more a convenient classification than a formal definition). Currently, scoringutils
distinguishes four different forecast types: “binary”, “point”, “quantile” and “sample” fore-
casts.

• “Binary” denotes a probability forecast for a binary (yes/no) outcome variable. This is
sometimes also called “soft binary classification”.

• “Point” denotes a forecast for a continuous or discrete outcome variable that is repre-
sented by a single number.

• “Quantile” or “quantile-based” is used to denote a probabilistic forecast for a continuous
or discrete outcome variable, with the forecast distribution represented by a set of
predictive quantiles. While a single quantile would already satisfy the requirements
for a quantile-based forecast, most scoring rules expect a set of quantiles which are
symmetric around the median (thus forming the lower and upper bounds of central
“prediction intervals”) and will return NA if this is not the case.
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• “Sample” or “sample-based” is used to denote a probabilistic forecast for a continuous
or discrete outcome variable, with the forecast represented by a finite set of samples
drawn from the predictive distribution. A single sample technically suffices, but would
lead to very imprecise results.

Forecast type column type

All forecast
types

observed
predicted
model

Classification Binary Soft classification observed factor with 2 levels
(prediction is probability) predicted numeric [0,1]

Point forecast observed numeric
predicted numeric

Probabilistic
forecast

Sample format
observed numeric
predicted numeric
sample_id numeric

Quantile format
observed numeric
predicted numeric
quantile_level numeric [0,1]

Table 1: Formatting requirements for data inputs. Regardless of the forecast type, the
data.frame (or similar) must have columns called observed, predicted, and model. For
binary forecasts, the column observed must be of type factor with two levels and the column
predicted must be a numeric between 0 and 1. For all other forecast types, both observed
and predicted must be of type numeric. Forecasts in a sample-based format require an
additional numeric column sample_id and forecasts in a quantile-based format require an
additional numeric column quantile_level with values between 0 and 1.

The starting point for working with scoringutils is usually a data.frame (or similar) contain-
ing both the predictions and the observed values. In a next step (see Section 2.2) this data
will be validated and transformed into a “forecast object”. The input data needs to have a
column observed for the observed values, a column predicted for the predicted values, and
a column model denoting the name of the model/forecaster that generated the forecast. Ad-
ditional requirements depend on the forecast type. Table 1 shows the expected input format
for each forecast type.
The package contains example data for each forecast type, which can serve as an orienta-
tion for the correct formats. The example data sets are exported as example_quantile,
example_continuous, example_integer, example_point and example_binary. For illus-
trative purposes, the example data also contains some rows with only observations and no
corresponding predictions. Input formats for the scoring rules that can be called directly
follow the same convention, with inputs expected to be vectors or matrices.

The unit of a single forecast
Apart from the columns observed, predicted, model, and the extra columns required for
each forecast type, it is usually necessary that the input data contains additional columns.
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This is because a single probabilistic forecast (apart from binary predictions) is composed
of multiple values. A quantile-based forecast, for example, is composed of several quantiles,
and a sample-based forecast of multiple samples. However, every row only holds a single
sample/quantile. Several rows in the input data therefore jointly form a single forecast.
Additional columns in the input provide the information necessary to group rows that belong
to the same forecast. The combination of values in those columns forms the unit of a single
forecast (or “forecast unit”) and should uniquely identify a single forecast. For example,
consider forecasts made by different models in various locations at different time points and
for different targets. A single forecast could then be uniquely described by the values in the
columns model, location, date, and target, and the forecast unit would be forecast_unit
= c("model", "location", "date", "target").
Rows are automatically grouped based on the values in all other columns present in the data
(excluding required columns like sample_id or quantile_level and values computed by
scoringutils). As the forecast unit is determined based on all existing columns, no column
must be present that is unrelated to the forecast unit. As a very simplistic example, consider
an additional row, "even", that is one if the row number is even and zero otherwise. The
existence of this column would change results, as scoringutils assumes it was relevant to
grouping the forecasts.

2.2. Forecast objects and input validation
The raw input data needs to be processed and validated using the function as_forecast():

R> library(scoringutils)
R> forecast_quantile <- example_quantile[horizon == 2] |>
+ as_forecast()

The function as_forecast() recognises the type of the forecast based on the available
columns, transforms the input into a “forecast” object and validates it (see Figure A.11 for
details). A forecast object is a data.table that has passed some input validations. It behaves
like a data.table, but has dedicated methods e.g. for input validation, scoring and print-
ing. The classes corresponding to the forecast types are forecast_point, forecast_binary,
forecast_quantile and forecast_sample.
as_forecast() can automatically determine the forecast type and forecast unit based on the
input data. However, it can also take additional arguments that help facilitate the process of
creating a forecast object:

R> forecast_quantile <- example_quantile[horizon == 2] |>
+ as_forecast(
+ forecast_unit = c(
+ "model", "location", "target_end_date",
+ "forecast_date", "horizon", "location"
+ ),
+ forecast_type = "quantile",
+ observed = "observed",
+ predicted = "predicted",
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+ model = "model",
+ quantile_level = "quantile_level",
+ )

The argument forecast_unit allows the user to manually set the unit of a single forecast.
This is done by dropping all columns that are not either specified in the forecast_unit or are
“protected” columns (such as observed, predicted, model, quantile_level, or sample_id).
The argument forecast_type allows users to manually specify the forecast type they expect.
If the forecast type inferred from the input does not match the specified forecast type, an error
is thrown. The other arguments can be used to specify the column names of the input data
that correspond to the required columns. as_forecast() will rename the specified columns
to the corresponding required columns.

2.3. Diagnostic helper functions
Various helper functions are available to diagnose and fix issues with the input data. The most
important one is print(). Once a forecast object has successfully been created, diagnostic
information will automatically be added to the output when printing a forecast object. This
information includes the forecast type, the forecast unit, and additional information in case
the object fails validations.

R> print(forecast_quantile, 2)

Forecast type:
[1] "quantile"

Forecast unit:
[1] "location" "target_end_date" "target_type"
[4] "location_name" "forecast_date" "model"
[7] "horizon"

Key: <location, target_end_date, target_type>
location target_end_date target_type observed location_name

<char> <Date> <char> <num> <char>
1: DE 2021-01-02 Cases 127300 Germany
2: DE 2021-01-02 Deaths 4534 Germany

---
20544: IT 2021-07-24 Deaths 78 Italy
20545: IT 2021-07-24 Deaths 78 Italy

forecast_date quantile_level predicted model
<Date> <num> <int> <char>

1: <NA> NA NA <NA>
2: <NA> NA NA <NA>

---
20544: 2021-07-12 0.975 611 epiforecasts-EpiNow2
20545: 2021-07-12 0.990 719 epiforecasts-EpiNow2

horizon
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<num>
1: NA
2: NA

---
20544: 2
20545: 2

Internally, the print method calls the functions get_forecast_type(), get_forecast_unit()
and validate_forecast(). get_forecast_type() and get_forecast_unit() work on ei-
ther an unvalidated data.frame (or similar) or on an already validated forecast object. They
return the forecast type and the forecast unit, respectively, as inferred from the input data.
validate_forecast() re-validates an existing forecast object an can be used programmati-
cally without printing an object (users could in principle also call as_forecast() again).
One common issue that causes as_forecast() to fail are “duplicates” in the data. scoringutils
strictly requires that there be only one forecast per forecast unit and only one predicted value
per quantile level or sample id within a single forecast. Duplicates usually occur if the forecast
unit is misspecified. For example, if we removed the column target_type from the example
data, we would now have two forecasts (one for cases and one for deaths of COVID-19) that
appear to have the same forecast unit (since the information that distinguished between case
and death forecasts is no longer there). The function get_duplicate_forecasts() returns
duplicate rows for the user to inspect. To remedy the issue, the user needs to add additional
columns that uniquely identify a single forecast.

R> rbind(example_quantile, example_quantile[1001:1002]) |>
+ get_duplicate_forecasts()

location target_end_date target_type observed location_name
<char> <Date> <char> <num> <char>

1: DE 2021-05-22 Deaths 1285 Germany
2: DE 2021-05-22 Deaths 1285 Germany
3: DE 2021-05-22 Deaths 1285 Germany
4: DE 2021-05-22 Deaths 1285 Germany

forecast_date quantile_level predicted model
<Date> <num> <int> <char>

1: 2021-05-17 0.975 1642 epiforecasts-EpiNow2
2: 2021-05-17 0.990 1951 epiforecasts-EpiNow2
3: 2021-05-17 0.975 1642 epiforecasts-EpiNow2
4: 2021-05-17 0.990 1951 epiforecasts-EpiNow2

horizon
<num>

1: 1
2: 1
3: 1
4: 1

2.4. Transforming forecasts



Nikos I. Bosse, Hugo Gruson, Anne Cori, Edwin van Leeuwen, Sebastian Funk, Sam Abbott9

As suggested in Bosse et al. (2023), users may want to transform forecasts before scoring them.
Two commonly used scoring rules are the continuous ranked probability score (CRPS) and
the weighted interval score (WIS). Both measure the absolute distance between the forecast
and the observation. This may not be desirable, for example in the context of epidemiological
forecasts, where infectious disease processes are usually modelled to occur on a multiplicative
scale. Taking the logarithm of the forecasts and observations before scoring them makes it
possible to evaluate forecasters based on how well they predicted the exponential growth rate.
The function transform_forecasts() takes a validated forecast object as input and allows
users to apply arbitrary transformations to forecasts and observations. Users can specify
a function via the argument fun (as well as supply additional function parameters). The
default function is log_shift(), which is simply a wrapper around log() with an additional
argument that allows adding an offset (i.e. log(x + offset)) to deal with zeroes in the data.
Users can specify to either append the transformed forecasts to the existing data by setting
append = TRUE (the default behaviour, resulting in an additional column scale) or to replace
the existing forecasts in place.
The example data contains negative values which need to be handled before applying the
logarithm. Presumably, negative values for count data should be dropped altogether, but for
illustrative purposes, we will call transform_forecasts() twice to replace them with zeroes
first before appending transformed counts.

R> forecast_quantile |>
+ transform_forecasts(fun = \(x) {pmax(x, 0)}, append = FALSE) |>
+ transform_forecasts(fun = log_shift, offset = 1) |>
+ print(2)

location target_end_date target_type observed
<char> <Date> <char> <num>

1: DE 2021-01-02 Cases 1.273000e+05
2: DE 2021-01-02 Deaths 4.534000e+03

---
41089: IT 2021-07-24 Deaths 4.369448e+00
41090: IT 2021-07-24 Deaths 4.369448e+00

location_name forecast_date quantile_level predicted
<char> <Date> <num> <num>

1: Germany <NA> NA NA
2: Germany <NA> NA NA

---
41089: Italy 2021-07-12 0.975 6.416732
41090: Italy 2021-07-12 0.990 6.579251

model horizon scale
<char> <num> <char>

1: <NA> NA natural
2: <NA> NA natural

---
41089: epiforecasts-EpiNow2 2 log
41090: epiforecasts-EpiNow2 2 log
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2.5. Additional functionality related to forecast objects
scoringutils offers a variety of different functions that allow users to obtain and visualise
additional information about their forecast. The package also has an extensive Vignette with
examples for further visualisations that are not implemented as functions.

Displaying the number of forecasts available
Users can get an overview of how many forecasts there are using get_forecast_counts().
The function takes a validated forecast object as input and returns a data.table of forecast
counts, which helps obtain an overview of missing forecasts. This can impact the evaluation,
if missingness correlates with performance. Users can specify the level of summary through
the by argument. For example, to see how many forecasts there are per model, target_type
and forecast_date, we can run

R> forecast_counts <- forecast_quantile |>
+ get_forecast_counts(
+ by = c("model", "target_type", "forecast_date")
+ )

We can visualise the results by calling plot_forecast_counts() on the output (Figure 2).

R> library(ggplot2)
R> forecast_counts |>
+ plot_forecast_counts(x = "forecast_date") +
+ facet_wrap(~ target_type) +
+ labs(y = "Model", x = "Forecast date")

12 12 12 12 12 12 12 12 12 12 8

12 12 12 12 12 12 12 12 12 12 8

0 0 0 0 0 0 0 0 0 0 0

12 12 12 12 12 12 12 12 12 12 8

12 12 12 12 12 12 12 12 12 12 8

12 12 12 12 12 12 12 12 12 12 8

12 12 12 12 12 12 12 12 12 12 8

12 12 12 12 9 9 9 12 12 12 8

Cases Deaths

20
21

−
05

−
03

20
21

−
05

−
10

20
21

−
05

−
17

20
21

−
05

−
24

20
21

−
05

−
31

20
21

−
06

−
07

20
21

−
06

−
14

20
21

−
06

−
21

20
21

−
06

−
28

20
21

−
07

−
05

20
21

−
07

−
12

20
21

−
05

−
03

20
21

−
05

−
10

20
21

−
05

−
17

20
21

−
05

−
24

20
21

−
05

−
31

20
21

−
06

−
07

20
21

−
06

−
14

20
21

−
06

−
21

20
21

−
06

−
28

20
21

−
07

−
05

20
21

−
07

−
12

epiforecasts−EpiNow2

EuroCOVIDhub−baseline

EuroCOVIDhub−ensemble

UMass−MechBayes

Forecast date

M
od

el

Count
0 3 6 9 12

Figure 2: Visualistion of forecast counts for the example data. Numbers (and colour shade)
indicate the number of forecasts available for a given model, target type and forecast date.

Probabilistic calibration and PIT histograms
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One important quality of good forecasts is calibration. The term describes a statistical con-
sistency between the forecasts and the observations, i.e. an absence of systematic deviations
between the two. It is possible to distinguish several forms of calibration which are discussed
in detail by Gneiting et al. (2007). The form of calibration most commonly focused on is called
probabilistic calibration. Probabilistic calibration means that the forecast distributions are
consistent with the true data-generating distributions in the sense that on average, τ% of
true observations will be below the corresponding τ -%-quantiles of the cumulative forecast
distributions.
A common way to visualise probabilistic calibration is the probability integral transform
(PIT) histogram (Dawid 1984). Observed values, y, are transformed using the CDF of the
predictive distribution, F , to create a new variable u with u = F (y). u is therefore simply
the CDF of the predictive distribution evaluated at the observed value. If forecasts are
probabilistically calibrated, then the transformed values will be uniformly distributed (for a
proof see for example Angus (1994)). When plotting a histogram of PIT values (see Figure
3), a systematic bias usually leads to a triangular shape, a U-shaped histogram corresponds
to forecasts that are underdispersed (too sharp) and a hump shape appears when forecasts
are overdispersed (too wide). There exist different variations of the PIT to deal with discrete
instead of continuous data (see e.g. Czado, Gneiting, and Held (2009) and Funk et al. (2019)).
The PIT version implemented in scoringutils for discrete variables follows Funk et al.
(2019).
Users can obtain PIT histograms based on validated forecast objects using the function
get_pit() and can visualise results using plot_pit(). Once again, the argument by controls
the summary level. The output of the following is shown in Figure 3:

R> example_continuous |>
+ get_pit(by = c("model", "target_type")) |>
+ plot_pit() +
+ facet_grid(target_type ~ model)

It is, in theory, possible to conduct a formal test for probabilistic calibration, for example by
employing an Anderson-Darling test on the uniformity of PIT values. In practice, this can be
difficult as forecasts, and therefore PIT values as well, are often correlated. Personal experi-
ence suggests that the Anderson-Darling test is often too quick to reject the null hypothesis
of uniformity. It is also important to note that uniformity of the PIT histogram does not
guarantee that forecasts are indeed calibrated. Gneiting et al. (2007); Hamill (2001) provide
examples with different forecasters who are mis-calibrated, but have uniform PIT histograms.

Probabilistic calibration and coverage plots
For forecasts in a quantile-based format, there exists a second way to assess probabilistic
calibration: we can easily compare the proportion of observations that fall below the τ -
quantiles of all forecasts (“empirical quantile coverage”) to the nominal quantile coverage τ .
Similarly, we can compare the empirical coverage of the central prediction intervals formed
by the predictive quantiles to the nominal interval coverage. For example, the central 50%
prediction intervals of all forecasts should contain around 50% of the observed values, the
90% central intervals should contain around 90% of observations etc. In addition, we can
define coverage deviation as the difference between nominal and empirical coverage.
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epiforecasts−EpiNow2 EuroCOVIDhub−baseline EuroCOVIDhub−ensemble UMass−MechBayes

C
ases

D
eaths

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

PIT

F
re

qu
en

cy

Figure 3: PIT histograms of all models stratified by forecast target. Histograms should ideally
be uniform. A u-shape usually indicates overconfidence (forecasts are too narrow), a hump-
shaped form indicates underconfidence (forecasts are too uncertain) and a triangle-shape
indicates bias.

Interval and quantile coverage can easily be computed by calling get_coverage() on a vali-
dated forecast object (in a quantile-based format). The function computes interval coverage,
quantile coverage, interval coverage deviation and quantile coverage deviation and returns
a data.table with corresponding columns. Coverage values will be summarised according
to the level specified in the by argument and one value per quantile level/interval range is
returned.

R> forecast_quantile |>
+ get_coverage(by = "model") |>
+ print(2)

Results can then be visualised using the functions plot_interval_coverage() (see Fig-
ure 4A) and plot_quantile_coverage() (see 4B). Both show nominal against empirical
coverage. Ideally, forecasters should lie on the diagonal line. If the line moves into the
green-shaded area, the forecaster is too conservative, i.e. the predictive distributions are too
wide/overdispersed on average. The white area implies overconfidence/predictive distribu-
tions that are too narrow on average (see Figure B.12) for more details).

R> coverage <- get_coverage(forecast_quantile, by = c("model", "target_type"))
R>
R> plot_interval_coverage(coverage) +
+ facet_wrap(~ target_type)
R>
R> plot_quantile_coverage(coverage) +
+ facet_wrap(~ target_type)
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Note that users can also compute individual coverage values as scores using score(). This
represents a separate workflow that allows users to obtain coverage values as a summary
measure to be computed alongside other scores, rather than providing a way to visually
assess calibration.

Cases Deaths

0 25 50 75 100 0 25 50 75 100
0

25

50

75

100

Nominal interval coverage

%
 O

bs
 in

si
de

 in
te

rv
al

A

Cases Deaths

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

25

50

75

100

Quantile level

%
 O

bs
 b

el
ow

 q
ua

nt
ile

 le
ve

l

B

model epiforecasts−EpiNow2 EuroCOVIDhub−baseline EuroCOVIDhub−ensemble UMass−MechBayes

Figure 4: Interval coverage (A) and quantile coverage (B) plots. Areas shaded in green
indicate that the forecasts are too wide (i.e., underconfident), while areas in white indicate
that the model is overconfident and generates too narrow prediction intervals.

3. Scoring forecasts
Metrics and scoring rules can be applied to data in two different ways: They can be con-
veniently applied to a data set of observed and predicted values using score(), or they be
called directly on a set of vectors and matrices. This section will mostly focus on score().

3.1. score() and working with scoring rules
The function score() is the workhorse of the package and applies a set of metrics and scoring
rules to predicted and observed values. It is a generic function that dispatches to different
methods depending on the class of the input. The input of score() is a validated forecast
object and its output is an object of class scores, which is a essentially data.table with an
additional attribute metrics (containing the names of the metrics used for scoring).

R> example_point[horizon == 2] |>
+ as_forecast() |>
+ score() |>
+ print(2)
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Key: <location, target_end_date, target_type>
location target_end_date target_type observed location_name

<char> <Date> <char> <num> <char>
1: DE 2021-05-15 Cases 64985 Germany
2: DE 2021-05-15 Cases 64985 Germany

---
304: IT 2021-07-24 Deaths 78 Italy
305: IT 2021-07-24 Deaths 78 Italy

forecast_date predicted model horizon ae_point
<Date> <int> <char> <num> <num>

1: 2021-05-03 110716 EuroCOVIDhub-ensemble 2 45731
2: 2021-05-03 132607 EuroCOVIDhub-baseline 2 67622

---
304: 2021-07-12 124 UMass-MechBayes 2 46
305: 2021-07-12 186 epiforecasts-EpiNow2 2 108

se_point ape
<num> <num>

1: 2091324361 0.7037162
2: 4572734884 1.0405786

---
304: 2116 0.5897436
305: 11664 1.3846154

All score() methods take an argument metrics with a named list of functions to apply to
the data. These can be metrics exported by scoringutils or any other custom scoring function.
All metrics scoring rules passed to score() need to adhere to the same input format (see
Figure 5), corresponding to the type of forecast to be scored. Scoring functions must accept
a vector of observed values as their first argument, a matrix/vector of predicted values as
their second argument and, for quantile-based forecasts, a vector of quantile levels as their
third argument). However, functions may have arbitrary argument names. Within score(),
inputs like the observed and predicted values, quantile levels etc. are passed to the individual
scoring rules by position, rather than by name. The default scoring rules for point forecasts,
for example, comprise functions from the Metrics package, which use the names actual and
predicted for their arguments instead of observed and predicted. Additional arguments
can be passed down to the scoring functions via the ... arguments in score().

Composing a custom list of metrics and scoring rules
For every forecast type, there exists a default list of scoring rules that are applied to the
data when calling score(). The default lists can be accessed by calling the functions
metrics_point(), metrics_binary(), metrics_sample() and metrics_quantile(). These
functions take additional arguments exclude and select which can be used to customise
which scoring rules are included. Alternatively, users can call the function select_metrics()
on a list of scoring rules, which achieves the same purposes and allows users to compose custom
lists of metrics and scoring rules.

R> custom_metrics <- metrics_quantile() |>
+ select_metrics(select = c("wis", "overprediction"))
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Figure 5: Overview of the inputs and outputs of the metrics and scoring rules exported by
scoringutils. Dots indicate scalar values, while bars indicate vectors (comprised of values that
belong together). Several bars (vectors) can be grouped into a matrix with rows representing
the individual forecasts. All scoring functions used within score() must accept the same in-
put formats as the functions here. However, functions used within score() do not necessarily
have to have the same argument names (see Section 3). Input formats directly correspond to
the required columns for the different forecast types (see Table 1). The only exception is the
forecast type ’sample’: Inputs require a column sample_id in score(), but no corresponding
argument is necessary when calling scoring rules directly on vectors or matrices.

R>
R> score(metrics = custom_metrics)

Details on metrics exported by scoringutils

All metrics are named according to the following schema: {metric name}_{forecast type}.
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If only a single forecast type is possible, then _{forecast type} is omitted. The return value
is a vector with scores (only in the case of wis(), which is composed of three components (see
C), is there an optional argument that causes the function to return a list of vectors for the
individual WIS components). The first argument of all metrics exported by scoringutils is
always observed, and the second one is predicted. Scoring rules for quantile-based forecasts
have an additional argument, quantile_level, to denote the quantile levels of the predictive
quantiles.
Metrics exported by scoringutils differ in the relationship between input and output. Some
scoring rules have a one-to-one relationship between predicted values and scores, returning one
value per value in predicted. This is the case for all metrics for binary and point forecasts.
Other scoring rules have a many-to-one relationship, returning one value per multiple values
in predicted. This is the case for all scoring rules for sample- and quantile-based forecasts.
For sample- and quantile-based forecasts, predicted is therefore a matrix, with values in
each row jointly forming a single forecast.
Input formats and return values are shown in more detail in Figure 5. The package vignettes
provide extensive documentation for the metrics exported by scoringutils and offer guidance
on which scoring rule to use and how to interpret the scores.

3.2. Adding relative skill scores based on pairwise comparisons
Raw scores for different forecasting models are usually not directly comparable when there
are missing forecasts in the data set, as missingness is often correlated with predictive per-
formance. One way to mitigate this are relative skill scores based on pairwise comparisons
(Cramer et al. 2021).
Models enter a ‘pairwise tournament’, where all possible pairs of models are compared based
on the overlapping set of available forecasts common to both models (omitting comparisons
where there is no overlapping set of forecasts). For every pair, the ratio of the mean scores
of both models is computed. The relative skill score of a model is then the geometric mean
of all mean score ratios which involve that model (see Figure 6. This gives us an indicator of
performance relative to all other models, with the orientation depending on the score used:
if lower values are better for a particular scoring rule, then the same is true for the relative
skill score computed based on that score.
Two models can of course only be fairly compared if they have overlapping forecasts. Further-
more, pairwise comparisons between models for a given score are only possible if all values
have the same sign, i.e. all score values need to be either positive or negative.
To compute relative skill scores, users can call add_pairwise_comparison() on the output of
score(). This function computes relative skill values with respect to a score specified in the
argument metric and adds them as an additional column to the input data. Optionally, users
can specify a baseline model to also compute relative skill scores scaled with respect to that
baseline. Scaled relative skill scores are obtained by simply dividing the relative skill score
for every individual model (computed excluding the baseline) by the relative skill score of the
baseline model. Pairwise comparisons are computed according to the grouping specified in the
argument by: internally, the data.table with all scores gets split into different data.tables
according to the values specified in by (excluding the column ‘model’). Relative scores are
then computed for every individual group separately. In the example below we specify by =
c("model", "target_type"), which means that there is one relative skill score per model,
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Figure 6: Illustration of the computation of relative skill scores through pairwise comparisons
of three different forecast models, M1-M3. Score ratios are computed based on the overlapping
set of forecasts common to all pairs of two models. The relative skill score of a model is then
the geometric mean of all mean score ratios which involve that model. The orientation of
the relative skill score depends on the score used: if lower values are better for a particular
scoring rule, then the same is true for the relative skill score computed based on that score.

calculated completely separately for the different forecasting targets.

R> forecast_quantile |>
+ score() |>
+ add_relative_skill(by = c("model", "target_type"),
+ baseline = "EuroCOVIDhub-baseline")

Pairwise comparisons should usually be made based on raw, unsummarised scores (meaning
that add_relative_skill() should be called before summarise_scores() (see Section 4)).
Summarising scores, for example by computing an average across several dimensions, can
change the set of overlapping forecasts between two models and distort relative skill scores.

3.3. Additional functionality related to scores objects

Displaying mean score ratios from pairwise comparisons
scoringutils offers a second alternative workflow to conduct pairwise comparisons between
models through the function get_pairwise_comparisons(). The purpose of this workflow
is to obtain and visualise information on the direct comparisons between every possible pair
of models, rather than just computing relative skill scores for every model. The function
get_pairwise_comparisons() accepts the same inputs as add_relative_skill(), and re-
turns a data.table with the results of the pairwise tournament. These include the mean
score ratios for every pair of models, a p-value for whether scores for one model are signifi-
cantly different from scores for another model, and the relative and scaled relative skill score
for every model (depending on whether a baseline was provided or not).
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get_pairwise_comparisons() computes p-values using either the Wilcoxon rank sum test
(the default, the test is also known as Mann-Whitney-U test) (Mann and Whitney 1947) or a
permutation test. P-values are then adjusted using p.adjust. In practice, the computation
of p-values is complicated by the fact that both tests assume independent observations. In
reality, however, forecasts by a model may be correlated across time or space (e.g., if a fore-
caster has a bad day, they might perform badly across different targets for a given forecast
date). P-values may therefore be too liberal in suggesting significant differences where there
aren’t any. We previously suggested computing relative skill scores based on pairwise compar-
isons before summarising scores. One exception is the case where one is interested in p-values
specifically: One possible way to mitigate issues from correlated forecasts, is to aggregate
observations over a category where one suspects correlation (provided there are no missing
values within the categories summarised over) to reduce correlation before making pairwise
comparisons. A test that is performed on aggregate scores will likely be more conservative.
The mean score ratios resulting from pairwise_comparison() can then be visualised using
the function plot_pairwise_comparison(). An example is shown in Figure 7.

R> forecast_quantile |>
+ score() |>
+ get_pairwise_comparisons(by = c("model", "target_type")) |>
+ plot_pairwise_comparisons() +
+ facet_wrap(~ target_type)

Correlations between scores
Users can examine correlations between scores using the function correlations() and plot
the result using plot_correlations(). The plot resulting from the following code is shown
in Figure 8.

R> correlations <- forecast_quantile |>
+ score() |>
+ summarise_scores() |>
+ get_correlations(digits = 2)
R>
R> correlations |>
+ plot_correlations()

4. Summarising results

4.1. Summarising scores
Usually, one will not be interested in scores for each individual forecast, but rather in sum-
marised scores. This can be achieved using the function summarise_scores(). The function
takes a scores object (a data.table with an additional attribute metrics) as input and
applies a summary function to it (by default the mean), returning a data.table with sum-
marised scores. Users can set the summary level using the argument by and will obtain
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Figure 7: Ratios of mean weighted interval scores based on overlapping forecast sets. When
interpreting the plot one should look at the model on the y-axis, and the model on the x-axis
is the one it is compared against. If a tile is blue, then the model on the y-axis performed
better (assuming that scores are negatively oriented, i.e. that lower scores are better). If it
is red, the model on the x-axis performed better in direct comparison. In the example above,
the EuroCOVIDhub-ensemble performs best (it only has values smaller than one), while the
EuroCOVIDhub-baseline performs worst (and only has values larger than one). For cases, the
UMass-MechBayes model is excluded as there are no case forecasts available and therefore
the set of overlapping forecasts is empty.
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Figure 8: Plot of correlations between different scores. Numbers, as well as the shade of the
cells, indicate the correlation between two scores.

a summarised score for each combination of the value in the specified columns (e.g. by =
c("model", "target_type") will return one summarised score per model and target type).
Equivalently, users can specify the columns that should be aggregated over (using the argu-
ment across). To display scores it is often useful to round the output, for example to two
significant digits, which can be achieved with another call to summarise_scores().

R> forecast_quantile |>
+ score(metrics = list("wis" = wis)) |>
+ summarise_scores(by = c("model", "target_type")) |>
+ summarise_scores(fun = signif, digits = 2)

model wis
<char> <num>

1: EuroCOVIDhub-ensemble 17000
2: EuroCOVIDhub-ensemble 41
3: EuroCOVIDhub-baseline 29000
4: EuroCOVIDhub-baseline 160
5: epiforecasts-EpiNow2 21000
6: epiforecasts-EpiNow2 69
7: UMass-MechBayes 52

While summarise_scores() accepts arbitrary summary functions, care has to be taken when
using something else than mean(), as this may create an incentive for dishonest reporting.
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Many scoring rules for probabilistic forecasts are ‘strictly proper scoring rules’ (Gneiting and
Raftery 2007), meaning that they are constructed such that they cannot be cheated and
always incentivise the forecaster to report her honest belief about the future. Let’s assume
that a forecaster’s true belief about the future corresponds to a predictive distribution F .
Then, if F was the true data-generating process, a scoring rule would be proper if it ensures
that no other forecast distribution G would yield a better expected score. If the scoring rule
ensures that under F no other possible predictive distribution can achieve the same expected
score as F , then it is called strictly proper. From the forecaster’s perspective, any deviation
from her true belief F leads to a worsening of expected scores. When using summary functions
other than the mean, however, scores may lose their propriety (the property of incentivising
honest reporting) and become cheatable. For example, the median of several individual scores
(individually based on a strictly proper scoring rule) is usually not proper. A forecaster judged
by the median of several scores may be incentivised to misrepresent their true belief in a way
that is not true for the mean score.
The user must exercise additional caution and should usually avoid aggregating scores across
categories which differ much in the magnitude of the quantity to forecast, as (depending on
the scoring rule used) forecast errors usually increase with the order of magnitude of the
forecast target. In the given example, looking at one score per model (i.e., specifying by =
c("model")) is problematic, as overall aggregate scores would be dominated by case forecasts,
while performance on deaths would have little influence. Similarly, aggregating over different
forecast horizons is often ill-advised as the mean will be dominated by further ahead forecast
horizons. In the previous function calls, we therefore decided to only analyse forecasts with
a forecast horizon of two weeks.

4.2. Additional functionality for summarised scores

Heatmaps
To detect systematic patterns it may be useful to visualise a single score across several di-
mensions. The function plot_heatmap() can be used to create a heatmap that achieves this.
The following produces a heatmap of bias values across different locations and forecast targets
(output shown in Figure 9).

R> example_continuous[horizon == 2] |>
+ as_forecast() |>
+ score() |>
+ summarise_scores(by = c("model", "location", "target_type")) |>
+ plot_heatmap(x = "location", metric = "bias") +
+ facet_wrap(~ target_type)

Weighted interval score decomposition
For quantile-based forecasts, the weighted interval score (WIS, Bracher et al. 2021, see Section
C in the Appendix) is a commonly used strictly proper scoring rule for forecasts in a quantile-
based format. The score is the sum of three components: overprediction, underprediction and
dispersion (width of the forecast). These can be visualised using the function plot_wis(),
as shown in Figure 10.
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Figure 9: Heatmap of bias values for different models across different locations and forecast
targets. Bias values are bound between -1 (underprediction) and 1 (overprediction) and should
be 0 ideally. Red tiles indicate an upwards bias (overprediction), while blue tiles indicate a
downwards bias (underprediction)

R> forecast_quantile |>
+ score() |>
+ summarise_scores(by = c("model", "target_type")) |>
+ plot_wis(relative_contributions = FALSE) +
+ facet_wrap(~ target_type,
+ scales = "free_x")
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Figure 10: Decomposition of the weighted interval score (WIS) into dispersion, overprediction
and underprediction. A: absolute contributions, B: contributions normalised to 1.

5. Discussion
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Summary

This paper presented scoringutils an R package for forecast evaluation. It explained the
core workflow, consisting of 1) validating and processing inputs, 2) scoring forecasts and 3)
summarising scores, as well as additional functionality such as visualisation and diagnostic
tools.
The package specialises in the evaluation of probabilistic forecasts (the forecast is a full
predictive distribution). It provides a comprehensive framework based on data.table and
allows users to validate, diagnose, visualise, transform and score forecasts using a wide range
of default and custom scoring rules. The package is designed to be flexible and extensible, and
to make it easy to use functionality from different packages in a single workflow. scoringutils
addresses a gap in the existing ecosystem of forecast evaluation by creating a data.table-
based forecast evaluation framework for probabilistic forecasts (similarly to what yardstick
provides for point forecasts and classification tasks). Notably, scoringutils is the first package
to provide extensive support for forecasts in a quantile-based forecasts, which is commonly
used for example in Epidemiology. In addition to providing a coherent forecast evaluation
workflow it offers a wide range of additional functions that practitioners may find useful when
assessing or comparing the quality of their forecasts.
One important limitation of the package is that it currently does not support statistical test-
ing of forecast performance as part of its core workflow. Determining whether a forecaster is
significantly better than another is an important aspect of forecast evaluation that is currently
mostly missing from the package. Another limitation is the fact that the package currently
only supports a small set of possible types of forecasts. For example, forecasts in a bin-format
or forecasts represented in a closed-form distribution (as can be scored for example using scor-
ingRules are not supported. While it is in principle possible to extend the current classes and
generic functions, this may not be very feasible in practice for most users. Some functionality
in scoringutils is necessarily redundant with other packages that provide functionality to aid
with the evaluation of forecasts. The overall idea of providing a data.frame-based evaluation
framework, for example, is similar to what yardstick offers (albeit with a focus on point fore-
casts and classification tasks, rather than probabilistic forecasts). Having a single package
that encompasses all possible use cases might be preferable. At the moment, scoringutils falls
somewhat short of its aspiration to become a bridge between different packages in the forecast
evaluation ecosystem. It does not yet offer a wide range of helper functions that allow users
to easily convert between different formats and use functionality from other packages and
many visualisations that are available in other packages, particularly with respect to model
calibration, are missing.
A variety of extensions are planned for scoringutils. The first is the expansion of the forecast
types that are supported. We plan to add support for evaluating categorical forecasts, as
well as multivariate forecasts that specify a joint distribution across targets. Adding the
possibility to score closed-form distributions might be another useful extension. A second area
of expansion is the integration with other forecast evaluation and modelling packages. We aim
to provide a variety of helper functions to convert to and from different formats, such as the
one used by yardstick or formats used by modelling packages such as odin. These functions
would make it easy to integrate scoringutils into existing workflows or use functionality from
other packages that is not available in scoringutils. A third area of improvement is the
addition of case studies and vignettes that make working with and extending functionality
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from the package easier.
scoringutils is already used by a variety of public health institutions such as the US Centers for
Disease Control, the European Centre for Disease Prevention and Control, as well as various
academic institutions. The package is actively maintained and developed and we hope it
will continue to be a valuable resource for researchers and practitioners working on forecast
evaluation.
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A. Constructing and validating forecast objects
The following section gives an overview of how scoringutils constructs forecast objects. The
forecast class comes with a constructor, new_forecast(), a generic validation function,
validate_forecast(), and a convenient wrapper function as_forecast().
new_forecast() constructs a forecast object based on a data.frame or similar. It makes a
deep copy of the inptut and converts it into a data.table, adds a model column with value
“Unspecified model” if there isn’t one and adds a class forecast_*, where * depends on the
forecast type to the object.
validate_forecast() is a generic which dispatches to a specialised validator method de-
pending on the class of the input. It validates the input and returns it if it is valid. If the
input is not valid, it throws an error with a message that explains what went wrong.
as_forecast() (optionally) renames existing columns to conform with the requirements for
forecast objects, (optionally) sets the forecast unit, determines the forecast type of the input
(and optionally checks for consistency with what the user expects), constructs the class and
validates the input. The process is illustrated in Figure A.11.

Figure A.11: Illustration of the process of creating a ‘forecast‘ object.
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B. Comparing different calibration plots
The following Figure gives a more detailed overview of how to interpret different calibra-
tion plots (showing the actual forecasts and observations that produced the corresponding
visualisations).
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Figure B.12: A: Different forecasting distributions (black) against observations sampled from
a standard normal distribution (grey histograms). B: PIT histograms based on the predictive
distributions and the sampled observations shown in A. C: Empirical vs. nominal coverage of
the central prediction intervals for simulated observations and predictions. Areas shaded in
green indicate that the forecasts are too wide (i.e., underconfident), covering more true values
than they actually should, while areas in white indicate that the model generates too narrow
predictions and fails to cover the desired proportion of true values with its prediction intervals.
D: Quantile coverage values, with green areas indicating too wide (i.e., conservative) forecasts.
E: Scores for the standard normal predictive distribution and the observations drawn from
different data-generating distributions.
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C. Details on the weighted interval score (WIS)
The WIS treats the predictive quantiles as a set of symmetric prediction intervals and mea-
sures the distance between the observation and the forecast interval. It can be decomposed
into a dispersion (uncertainty) component and penalties for over- and underprediction. For
a single interval, the interval score is computed as

ISα(F, y) = (u − l)︸ ︷︷ ︸
dispersion

+ 2
α

· (l − y) · 1(y ≤ l)
︸ ︷︷ ︸

overprediction

+ 2
α

· (y − u) · 1(y ≥ u)
︸ ︷︷ ︸

underprediction

,

where 1() is the indicator function, y is the observed value, and l and u are the α
2 and 1 − α

2
quantiles of the predictive distribution F , i.e. the lower and upper bound of a single prediction
interval. For a set of K prediction intervals and the median m, the score is computed as a
weighted sum,

WIS = 1
K + 0.5 ·

(
w0 · |y − m| +

K∑

k=1
wk · ISα(F, y)

)
,

where wk is a weight for every interval. Usually, wk = αk
2 and w0 = 0.5.
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4 Comparing human and model-based fore-
casts of COVID-19 in Germany and Poland

This chapter investigates what human judgement can contribute to infectious disease fore-
casting, applying the tools and concepts covered in Chapters 2 and 3. The work in this
chapter was motivated by the need to produce timely and useful forecasts of COVID-19.
In October 2020 the German and Polish COVID0-19 Forecast Hub (Bracher et al., 2021b)
launched, eliciting forecasts to help inform public health decision making in Germany and
Poland. Previous submissions from our working group to the US COVID-19 Forecast Hub
(Cramer et al., 2022) had proved cumbersome and it was not clear what the added benefit
of mathematical modelling over human judgement alone was. We therefore developed an
open source application, crowdforecastr (Bosse et al., 2020), which would allow humans to
submit direct forecasts of cases and deaths in Germany and Poland. These forecasts were
collected every week, aggregated and submitted to the German and Polish Forecast Hub. In
order to obtain a better understanding of what mathematical modelling may add to human
judgement alone, we submitted these forecasts alongside two mathematical models with
minimal tuning. In an additional analysis, we further explore how adding different forecasts
affects the quality of an ensemble of forecasts. This analysis was motivated by the desire to
better understand what kinds of forecasts may contribute to public health decision making,
and whether even imperfect forecast models can contribute usefully.

The study was limited both by resource constraints as well as the time that was available to
develop the crowdforecastr platform, obtain ethics approval, conduct outreach, and the
need to submit the first forecasts within 6 weeks of starting this PhD. The study should
therefore better be understood as a case study that explores a variety of questions related
to the interplay of human judgement and mathematical modelling, rather than providing
definitive conclusions.

58



RESEARCH ARTICLE

Comparing human and model-based

forecasts of COVID-19 in Germany and Poland

Nikos I. BosseID
1,2*, Sam Abbott1,2, Johannes BracherID

3, Habakuk Hain4, Billy

J. QuiltyID
1,2, Mark JitID

1,2, Centre for the Mathematical Modelling of Infectious Diseases

COVID-19 Working Group1,2, Edwin van LeeuwenID
1,5, Anne CoriID

6, Sebastian FunkID
1,2

1 Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London,

United Kingdom, 2 Centre for the Mathematical Modelling of Infectious Diseases (members of the CMMID

COVID-19 working group are listed in S1 Acknowledgements), London, United Kingdom, 3 Institute of

Economic Theory and Statistics, Karlsruhe Institute of Technology, Karlsruhe, Germany, 4 Max Planck

Institute for Multidisciplinary Sciences, Göttingen, Germany, 5 UK Health Security Agency, London, United

Kingdom, 6 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease

Epidemiology, School of Public Health, Imperial College London, London, United Kingdom

* nikos.bosse@lshtm.ac.uk

Abstract

Forecasts based on epidemiological modelling have played an important role in shaping

public policy throughout the COVID-19 pandemic. This modelling combines knowledge

about infectious disease dynamics with the subjective opinion of the researcher who devel-

ops and refines the model and often also adjusts model outputs. Developing a forecast

model is difficult, resource- and time-consuming. It is therefore worth asking what modelling

is able to add beyond the subjective opinion of the researcher alone. To investigate this, we

analysed different real-time forecasts of cases of and deaths from COVID-19 in Germany

and Poland over a 1-4 week horizon submitted to the German and Polish Forecast Hub. We

compared crowd forecasts elicited from researchers and volunteers, against a) forecasts

from two semi-mechanistic models based on common epidemiological assumptions and b)

the ensemble of all other models submitted to the Forecast Hub. We found crowd forecasts,

despite being overconfident, to outperform all other methods across all forecast horizons

when forecasting cases (weighted interval score relative to the Hub ensemble 2 weeks

ahead: 0.89). Forecasts based on computational models performed comparably better

when predicting deaths (rel. WIS 1.26), suggesting that epidemiological modelling and

human judgement can complement each other in important ways.

Author Summary

Mathematical models of COVID-19 have played a key role in informing governments

across the world. While mathematical models are informed by our knowledge of infec-

tious disease dynamics, they are ultimately developed and iteratively adjusted by the

researchers and shaped by their subjective opinions. To investigate what modelling is able

to add beyond the subjective opinion of the researcher alone, we compared human fore-

casts with model-based predictions of COVID-19 cases and deaths submitted to the so-
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called German/Polish Forecast Hub (which collates a variety of models from a range of

teams). We found that our human forecasts consistently outperformed an aggregate of all

available model-based forecasts when predicting cases, but not when predicting deaths.

Our findings suggest that human insight may be most valuable when forecasting highly

uncertain quantities, which depend on many factors that are hard to model using equa-

tions, while mathematical models may be most useful in settings like predicting deaths,

where leading indicators with a clear connection to the target variable are available. This

potentially has very relevant policy implications, as agencies informing policy-makers

could benefit from routinely eliciting human forecasts in addition to model-based predic-

tions to inform policies.

Introduction

Infectious disease modelling has a long tradition and has helped inform public health decisions

both through scenario modelling, as well as actual forecasts of (among others) influenza [e.g.

1,2–4], dengue fever [e.g. 5,6,7], ebola [e.g. 8,9], chikungunya [e.g. 10,11] and now COVID-19

[e.g. 12,13–17]. Applications of epidemiological models differ in the way they make statements

about the future. Forecasts aim to predict the future as it will occur, while scenario modelling

and projections aim to represent what the future could look like under certain scenario

assumptions or if conditions stayed the same as they were in the past. Forecasts can be judged

by comparing them against observed data. Since it is much harder to fairly assess the accuracy

and usefulness of projections and scenario modelling in the same way, this work focuses on

forecasts, which represent only a subset of all epidemiological modelling.

Since March 2020, forecasts of COVID-19 from multiple teams have been collected, aggre-

gated and compared by Forecast Hubs such as the US Forecast Hub [13, 14], the German and

Polish Forecast Hub [15, 16] and the European Forecast Hub [17]. Often, different individual

forecasts are combined into a single forecast, e.g. by taking the mean or median of all forecasts.

These ensemble forecasts usually tend to perform better and more consistently than individual

forecasts (see e.g. [6]; [18]).

Individual computational models usually rely to varying degrees on mechanistic assump-

tions about infectious disease dynamics (such as SIR-type compartmental models that aim to

represent how individuals move from being susceptible to infected and then recovered or

dead). Some are more statistical in nature (such as time series models that detect statistical pat-

terns without explicitly modelling disease dynamics). How exactly such a mathematical or

computational model is constructed and which assumptions are made depends on subjective

opinion and judgement of the researcher who develops and refines the model. Models are

commonly adjusted and improved based on whether the model output looks plausible to the

researchers involved.

The process of model construction and refinement is laborious and time-consuming, and it

is therefore worth asking what modelling can add beyond the subjective judgment of the

researcher alone. In this work, we ask this question specifically in the context of predictive per-

formance, and set aside other advantages of epidemiological modelling (such as reproducibil-

ity or the ability to obtain a deeper fundamental understanding of how diseases spread). One

natural way to do this is to compare the predictive performance of forecasts based on compu-

tational models (“model-based forecasts”) against forecasts made by individual humans with-

out explicit use of a computer model (“direct human forecasts”) or a combination of multiple

such forecasts (“crowd forecasts”).
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Previous work has examined such direct human forecasts in various contexts, such as geo-

politics [19, 20], meta-science [21, 22], sports [23] and epidemiology [11, 24, 25]. Several pre-

diction platforms [26–28] and prediction markets [29] have been created to collate expert and

non-expert predictions. However, with the notable exception of [11], these forecasts were not

designed to be evaluated alongside model-based forecasts and usually follow their own (often

binary) prediction formats. Direct human forecasts may be able to take into account insights

and relationships between variables which are hard to specify using epidemiological models.

However, it is not entirely clear in which situations human forecasts perform well or badly.

For example, [11] found that humans could outperform computer models at predicting the

2014/15 and 2015/16 flu season in the US, a setting where the disease was well known and

information about previous seasons was available. However, humans tended to do slightly

worse at predicting the 2014/15 outbreak of chikungunya in the Americas, a disease previously

largely unobserved and unknown in these regions at the time.

In this study, we analyse the performance of direct human forecasts relative to model-based

forecasts and discuss the added benefit of epidemiological modelling over human judgement

alone. As a case study, we use different forecasts, involving varying degrees of human interven-

tion, which we submitted in real time to the German and Polish Forecast Hub. In contrast to

[11] we elicited not only point predictions, but full predictive distributions (“probabilistic fore-

casts”, see e.g. [30]) from participants. This allows us to compare not only predictive accuracy,

but also how well human forecasters and model-based forecasts were able to quantify forecast

uncertainty.

Methods

Ethics statement

This study has been approved by the London School of Hygiene & Tropical Medicine Research

Ethics Committee (reference number 22290). Consent from participants was obtained in writ-

ten form.

Overview

We created and submitted the following forecasts to the German and Polish Forecast Hub: 1) a

direct human forecast (henceforth called “crowd forecast”), elicited from participants through

a web application [31] and 2) two semi-mechanistic model-based forecasts (“renewal model”

and “convolution model”) informed by basic assumptions about COVID-19 epidemiology.

While the two semi-mechanistic forecasts were necessarily shaped by our implicit assumptions

and decisions, they were designed such as to minimise the amount of human intervention

involved. For example, we refrained from adjusting model outputs or refining the models

based on past performance. Forecasts were created in real time over a period of 21 weeks from

October 12th 2020 until March 1st 2021 and submitted to the German and Polish Forecast

hub [15, 16]. All code and tools necessary to generate the forecasts and make a forecast submis-

sion are available in the covid.german.forecasts R package [32]. This repository also

contains a record of all forecasts submitted to the German and Polish Forecast Hub. Forecasts

were evaluated using a variety of scoring metrics and compared among each other and against

an ensemble of all other models submitted to the German and Polish Forecast Hub.

Forecast targets and interaction with the German and Polish Forecast Hub

The German and Polish Forecast Hub (now mostly merged into the European Forecast Hub

[17]) elicits predictions for various COVID-19 related forecast targets from different research
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groups every week. Forecasts had to be made every Monday (with submissions allowed until

Tuesday 3pm) and were permitted to use any data that was available by Monday 11.59pm. We

submitted forecasts for incident and cumulative weekly reported numbers of cases of and

deaths from COVID-19 on a national level in Germany and Poland over a one to four week

forecast horizon. Forecasts were submitted on Mondays, but weeks were defined as ending on

a Saturday (and starting on Sunday), meaning that forecast horizons were in fact 5, 12, 19 and

26 days. Submissions were required in a quantile-based format with 23 quantiles of each out-

put measure at levels 0.01, 0.025, 0.05, 0.10, 0.15,. . ., 0.95, 0.975, 0.99. Forecasts submitted to

the Forecast Hub were combined into different ensembles every week, with the median ensem-

ble (i.e., the α-quantile of the ensemble is given by the median of all submitted α-quantiles)

being the default ensemble shown on all official Forecast hub visualisations (https://

kitmetricslab.github.io/forecasthub/forecast).

Data on daily reported test positive cases and deaths linked to COVID-19 were provided by

the organisers of the German and Polish Forecast hub. Until December 14th, 2020, these data

were sourced from the European Centre for Disease Control [33]. After ECDC stopped pub-

lishing daily data, observations were sourced from the Robert Koch Institute (RKI) and the

Polish Ministry of Health for the remainder of the submission period [34]. These data are sub-

ject to reporting artefacts, (such as for example delayed case reporting in Poland on the 24th

November, [35]), changes in reporting over time, and variation in testing regimes (for example

in Germany from the 11th of November on, [36]). The ECDC data as well as the data pub-

lished by the Polish Ministry of Health were also subject to data revisions, although most of

them (with a notable exception of a data update for October 12 2020 in Germany) only affected

daily, not weekly data (see S7 and S8 Figs).

Crowd forecasts

Our crowd forecasts were created as an ensemble of forecasts made by individual participants

every week through a web application (https://cmmid-lshtm.shinyapps.io/crowd-forecast/).

Weekly forecasts had to be submitted before Tuesday 12pm every week, but participants were

asked to only use any information or data that was already available by Monday night. The

application was built using the shiny and golem R packages [37, 38] and is available in the

crowdforecastr R package [31]. To make a forecast in the application participants could

select a predictive distribution (with the default being log-normal) to represent the probability

that the forecasted quantity took certain values. Median and width of the uncertainty could be

adjusted by either interacting with a figure showing their forecast or providing numerical val-

ues (see screenshot in S1 Fig). The default shown was a repetition of the last known observa-

tion with constant uncertainty around it computed as the standard deviation of the last four

changes in weekly log observed forecasts (i.e. as σ(log(value4) − log(value3), log(value3) − log
(value2), . . .)). A comparison of the crowd forecasts against the default baseline shown in the

application is displayed in S25 Fig. Our interface also allowed participants to view past obser-

vations based on the hub data, as well as their forecasts, on a logarithmic scale and presented

additional contextual COVID-19 data sourced from [39]. These data included, for example,

notifications of both test positive COVID-19 cases and COVID-19 linked deaths and the num-

ber of COVID-19 tests conducted over time. From November 26 2020 on we displayed weekly

small reports with a visualisation of past forecasts and scores on our website, epiforecasts.io.

Forecasts were stored in a Google Sheet and downloaded, cleaned and processed every

week for submission to the Forecast Hub. If a forecaster had submitted multiple predictions

for a single target, only the latest submission was kept. Information on the chosen distribution

as well as the parameters for median and width were used to obtain the required set of 23
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quantiles from that distribution. Forecasts from all forecasters were then aggregated using an

unweighted quantile-wise mean (i.e., the α-quantile of the ensemble is given by the mean of all

submitted α-quantiles). To avoid issues with users trying out the app and submitting a random

forecast, we required that a forecaster needed to make a forecast for at least two targets for a

given forecast in order to be included in the crowd forecast ensemble. On a few occasions we

deleted forecasts that were clearly the result of a user or software error (such as for example

forecasts that were zero everywhere).

Participants were recruited mostly within the Centre of Mathematical Modeling of Infec-

tious Diseases at the London School of Hygiene & Tropical Medicine, but participants were

also invited personally or via social media to submit predictions. Depending on whether they

had a background in either statistics, forecasting or epidemiology, participants were asked to

self-identify as ‘experts’ or ‘non-experts’.

Model-based forecasts

We used two Bayesian semi-mechanistic models from the EpiNow2 R package (version 1.3.3)

as our model-based forecasts [40]. The first of these models, here called “renewal model”, used

the renewal equation [41] to predict reported cases and deaths (see details in S1 Text). It esti-

mated the effective reproduction number Rt (the average number of people each person

infected at time t is expected to infect in turn) and modelled future infections as a weighted

sum of past infection multiplied by Rt. Rt was assumed to stay constant beyond the forecast

date, roughly corresponding to continuing the latest exponential trend in infections. On the

9th of November we altered the date when Rt was assumed to be constant from two weeks

prior to the date of the forecast to the forecast date, which we found to yield a more stable Rt

estimate. Reported case and death notifications were obtained by convolving predicted infec-

tions over data-based delay distributions [40, 42–44] to model the time between infection and

report date. The renewal model was used to predict cases as well as deaths with forecasts being

generated for each target separately. Death forecasts from the renewal model were therefore

not informed by past cases. One submission of the renewal model on December 28th 2020 was

delayed and therefore not included in the official Forecast hub ensemble.

The second model (“convolution model”, see details in S1 Text). was only used to forecast

deaths and was added later, starting December 7th 2020 (with the first forecast from December

7th suffering from a software bug and therefore disregarded in all further analyses). The con-

volution model was submitted, but never included in the official Forecast hub ensemble due to

concerns that it could be too similar to the renewal model. The convolution model predicted

deaths as a fraction of infected people who would die with some delay, by using a convolution

of reported cases with a distribution that described the delay from case report to death and a

scaling factor (the case-fatality ratio). Both the renewal and the convolution model used daily

observations and assumed a negative binomial observation model with a multiplicative day-of-

the-week effect [40].

Line list data used to inform the prior for the delay from symptom onset to test positive

case report or death in the model-based forecasts was sourced from [45] with data available up

to the 1st of August. All model fitting was done using Markov-chain Monte Carlo (MCMC) in

stan [46] with each location and forecast target being fitted separately.

Analysis

For the main analysis we focused mostly on two week ahead forecasts, as COVID-19 forecasts,

especially for cases, were in the past found to have poor predictive performance beyond this

horizon [15]. Forecasts for cases were scored using the full period from October 2020 until
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March 2021. To ensure comparability between models, all death forecasts were scored using

only the period from December 14th on, where all models including the convolution model

were available. To ensure robustness of our results we conducted a sensitivity analysis where

all forecasts (including cases) were scored only over the later period for which all forecasts

were available (see S22 Fig and S8 and S9 Tables). Results remained broadly unchanged.

Forecasts were analysed using the following scoring metrics: The weighted interval score

(WIS) [47], the absolute error, relative bias, and empirical coverage of the 50% and 90% pre-

diction intervals. The WIS is a proper scoring rule [48], meaning that in expectation the score

is optimised by reporting a predictive distribution that is identical to the true data-generating

distribution. Forecasters are therefore incentivised to report their true belief about the future.

The WIS can be understood as a generalisation of the absolute error to quantile-based forecasts

(also meaning that smaller values are better) and can be decomposed into three separate penal-

ties: forecast spread (i.e. uncertainty of forecasts), over-prediction and under-prediction.

While the over- and under-prediction components of the WIS capture the amount of over-

prediction and under-prediction in absolute terms, we also look at a relative tendency to make

biased forecasts. The bias metric [9] we use captures how much probability mass of the forecast

was above or below the true value (mapped to values between -1 and 1) and therefore repre-

sents a general tendency to over- or under-predict in relative terms. A value of -1 implies that

all quantiles of the predictive distribution are below the observed value and a value of 1 that all

quantiles are above the observed value. Empirical coverage is the percentage of observed values

that fall inside a given prediction interval (e.g. how many observed values fall inside all 50%

prediction intervals). Scoring metrics are explained in more detail in S1 Table. All scores were

calculated using the scoringutils R package [49].

At all stages of the evaluation our forecasts were compared to the median ensemble of all

other models submitted to the German and Polish Forecast Hub (“Hub ensemble”). This “Hub

ensemble” was retrospectively computed and excludes all our models, leaving on average five

ensemble member models (see S10 Table and S24 Fig). What we call “Hub ensemble” in this

article therefore differs from the “official Hub ensemble” (here called “hub-ensemble-real-

ised”) which included crowd forecasts as well as renewal model forecasts. To enhance

interpretability of scores we mainly report WIS relative to the Hub ensemble in the main text,

i.e. we divided the average scores for a given model by the average score achieved by the Hub

ensemble on the same set of forecasts (with values>1 implying worse and values <1 implying

better performance than the Hub ensemble). In addition to comparing our forecasts against

the hub ensemble excluding our models, we also assessed the impact of our forecasts on the

performance of the forecasting hub by recalculating separate versions of the Hub ensemble

with only some (or all) of our forecasts included. Versions that included either all of our mod-

els (“hub-ensemble-with-all”) or only one of them (“hub-ensemble-with-X”) were computed

retrospectively.

Results

Crowd forecast participation

A total number of 32 participants submitted forecasts, 17 of those self-identified as ‘expert’ in

either forecasting or epidemiology. The median number of forecasters for any given forecast

target was 6, the minimum 2 and the maximum 10. The mean number of submissions from an

individual forecaster was 4.7 but the median number was only one—most participants

dropped out after their first submission. Only two participants submitted a forecast every sin-

gle week, both of whom are authors on this study.
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Case forecasts

For cases, crowd forecasts had a lower mean weighted interval score (WIS, lower values indi-

cate better performance) than both the renewal model and the Hub ensemble across all fore-

cast horizons (Fig 1A) and locations (S5(A) Fig). For two week ahead forecasts, mean WIS

relative to the Hub ensemble (= 1) was 0.89 for crowd forecasts and 1.40 for the renewal model

(S2 Table). Across all forecasting approaches, locations and forecast horizons, the distribution

of WIS values was very right-skewed, and average performance was heavily influenced by out-

liers (see Fig 2). Overall, low variance in forecast performance was closely linked with good

Fig 1. Visualisation of aggregate performance metrics for forecasts one to four weeks into the future. A, B: mean weighted interval score (WIS,

lower indicates better performance) across horizons. WIS is decomposed into its components dispersion, over-prediction and under-prediction. C:

Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion (same

as in panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative) tendency to

over- or underpredict. Values are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the

median forecast (lower is better). H. Standard deviation of all WIS values for different horizons.

https://doi.org/10.1371/journal.pcbi.1010405.g001
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mean performance (Fig 1H and 1A), suggesting that the ability to avoid large errors was an

important factor in determining overall performance. The impact of outlier values was espe-

cially pronounced for the renewal model, which had more outliers, as well as the highest stan-

dard deviation of WIS values (standard deviation of the WIS relative to the WIS sd of the Hub

ensemble was 1.54 at the two weeks ahead horizon), while the ensemble of crowd forecasts

(rel. WIS sd 0.76) and the Hub ensemble (= 1) showed more stable performance.

To varying degrees, all forecasts exhibited trend-following behaviour and were rarely able

to predict a change in trend before it had happened. For example, all forecasts failed to predict

the change in trend from increase to decrease that happened in November in Germany and

severely overshot reported cases (Fig 3A). This was most striking for the renewal model, which

extrapolated unconstrained exponential growth based on the recent past of observations. The

Hub ensemble and the crowd forecast, which had both been under-predicting throughout

October, also failed to predict the change in trend after cases peaked, but less severely so.

Human forecasters, possibly aware of the semi-lockdown announced on November 2nd 2020

[50] and the change in the testing regime (with stricter test criteria) on November 11th 2020

[36], were fastest to adapt to the new trend, and the Hub ensemble slowest. In December, cases

rose again in Germany, with all models under-predicting this growth to varying extents. As in

October, the renewal model captured the phase of exponential growth in cases slightly better

than other approaches, but again overshot when reported case numbers fell over Christmas.

Fig 2. Two week ahead forecasts and corresponding scores. A, C: Visualisation of 50% prediction intervals of two week ahead forecasts against the

reported values. Forecasts that were not scored (because there was no complete set of death forecasts available) are greyed out. B, D: Visualisation of

corresponding WIS.

https://doi.org/10.1371/journal.pcbi.1010405.g002
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The large variance in predictions in January in Germany (severe under-prediction followed by

severe over-prediction) may in part be caused by the fact that the renewal model operated on

daily data and therefore was susceptible to fluctuations in daily reporting around Christmas

that would not have influenced on weekly reporting. Similar trends in performance were

Fig 3. Distribution of scores. A: Distribution of weighted interval scores for two week ahead forecasts of the different models and forecast targets.

Points denote single forecasts scores, while the shaded area shows an estimated probability density. B: Distribution of WIS separate by country. Black

squares indicate median and black circles mean scores.

https://doi.org/10.1371/journal.pcbi.1010405.g003
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evident in Poland, with the crowd forecast quickest at adapting to the change in trend in

November. In general, there were fewer large outlier forecasts in Poland and in particular the

renewal model performed more in line with other forecasts there.

All forecasting approaches, including the Hub ensemble, were overconfident, i.e. they

showed lower than nominal coverage (meaning that 50% (90%) prediction intervals generally

covered less than 50% (90%) of the actually observed values) (Fig 1C and 1D). Coverage for all

forecasts deteriorated with increasing forecast horizon, indicating that all forecasting

approaches struggled to quantify uncertainty appropriately for case forecasts. This was espe-

cially an issue for crowd forecasts, which had markedly shorter prediction intervals (i.e., nar-

rower and more confident predictive distributions) than other approaches (Fig 1E) and only

showed a small increase in uncertainty across forecast horizons. The crowd forecasts predic-

tion intervals were also noticeably narrower than the default baseline shown to forecasters in

the application (see S25 Fig).

In spite of good performance in terms of the absolute error (Fig 1G), the narrow forecast

intervals led to forecasts which were severely overconfident (covering only 36% and 55% of all

observations with the 50% and 90% prediction intervals of all forecasts made at a two week

forecast horizon, and only 5% and 38% four weeks ahead) (Fig 1C and 1D as well as S2 and S3

Tables). Despite worse performance in terms of absolute error (Fig 1G), the renewal model

achieved better calibration (comparable to the Hub ensemble), as uncertainty increased rap-

idly across forecast horizons. The crowd forecasts, on the other hand, showed a smaller bias

than the renewal model, but were overconfident.

The renewal model exhibited a noticeable tendency towards over-predicting reported cases

across all horizons. The crowd forecast tended to over-predict at longer forecast horizons,

whereas the Hub ensemble showed no systematic bias (Fig 1F). Regardless of a general relative

tendency to over-predict, all forecasting approaches incurred larger absolute penalties from

over- than from under-prediction (see decomposition of the WIS into absolute penalties for

over-prediction, under-prediction and dispersion in Fig 1A and 1B, as well as S2 and S3 Tables).

Generally, trends in overall performance were broadly similar across locations (S4 and S5

Figs). Due to the differing population sizes and numbers of notifications in Germany and

Poland absolute scores were difficult to compare directly. However, relative to the Hub ensem-

ble, the crowd forecasts performed noticeably better in Germany than in Poland and the

renewal model better in Poland than in Germany (S5(A), S5(G), S2 and S3 Figs).

Death forecasts

For deaths, the Hub ensemble outperformed the crowd forecasts as well as our model-based

approaches across all forecast horizons and locations (Fig 1B and S4(B) Fig). Relative WIS

values for the models two weeks ahead were 1.22 (convolution model), 1.26 (crowd forecast),

1 (Hub ensemble) and 1.79 (renewal model). The crowd forecasts performed better than the

renewal model across all forecast horizons and locations (Fig 1B and S4(B) Fig), and also

better than the convolution model three and four weeks ahead. Poor performance of the

renewal model, especially at longer horizons, indicates that an approach that does not know

about past cases, but instead estimates and projects a separate Rt trace from deaths, does not

use the available information efficiently. The convolution model was able to outperform

both the renewal model and the crowd forecasts at shorter forecast horizons (where the

delay between cases and deaths means that future deaths are largely informed by present

cases), but saw performance deteriorate at three and four weeks ahead (where case predic-

tions from the renewal model were increasingly used to inform death predictions) (Fig 1B,

S3 Table).
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As past cases and hospitalisations can be used as predictors, predicting a change in trend

may be easier for deaths than for cases. Even though all forecasts generally struggled with this,

there were some instances where changing trends were well captured or even anticipated. In

Poland, for example, the Hub ensemble was able to capture or even anticipate the peak in

deaths in December quite well (whereas the renewal model and crowd forecast did not). The

renewal model, which mostly exhibited trend-following behaviour, correctly predicted another

increase in weekly deaths in mid-January (potentially based on changes in daily deaths, as the

renewal model did not know about past cases). In Germany in early January, all models pre-

dicted a decrease in deaths two to three weeks before it actually happened. Predictions from

the renewal model at that time were likely strongly influenced by an unexpected drop in

reported deaths in December. The other forecasting approaches and in particular, the convolu-

tion model may have been affected by potentially under-reported case numbers around Christ-

mas. When the decrease that all models had predicted to happen in early January failed to

materialise, the renewal model and the crowd forecast noticeably over-corrected and over-pre-

dicted deaths in the following weeks, while the Hub ensemble, and to a slightly lesser degree,

the convolution model were able to capture the downturn well when it finally happened at the

end of January.

Death forecasts, generally, showed greater coverage of the 50% and 90% prediction intervals

than case forecasts and no decrease in coverage across forecast horizons, indicating that it

might be easier to appropriately quantify uncertainty for death forecasts. The Hub ensemble

had the greatest coverage, with empirical coverage of the 50% and 90% prediction intervals

exceeding 50%, and 90%, respectively, across all forecast horizons. Coverage for the crowd

forecasts and our model-based approaches was generally lower than that of the Hub ensemble

and mostly slightly lower than nominal coverage (Fig 1C and 1D). As for cases, the crowd fore-

cast tended to have the narrowest prediction intervals and uncertainty increased most slowly

across forecast horizons, and the renewal model forecasts generally were widest. The convolu-

tion model had relatively narrow prediction intervals for short forecast horizons, but had rap-

idly (and non-linearly) increasing uncertainty for longer forecast horizons, driven by

increasing uncertainty in the underlying case forecasts.

For deaths, the ensemble of crowd forecasts had a consistent tendency to over-predict (see

Fig 1F). The convolution model had a strong tendency to under-predict, with the magnitude

of under-prediction steadily decreasing for longer forecast horizons. The renewal model

(which over-predicted for cases) and the Hub ensemble slightly tended towards under-predic-

tion. For deaths, absolute over- and under-prediction penalties were more in line with a gen-

eral relative tendency to over- or under-predict than for cases (Fig 1A and 1B, as well as S2 and

S3 Tables).

Contribution to the forecast Hub

Of our three models, only the renewal model and the crowd forecast were included in the offi-

cial Forecast Hub median ensemble (“hub-ensemble-realised”), while the convolution model

was never included as it was deemed too similar to the existing renewal model. In the official

Hub ensemble, there were on average 7.1 models included (including our own), with a median

of 7, a minimum of 4 (on 28 December 2020 over the Christmas period) and a maximum of

10. Versions that included either all of our models (“hub-ensemble-with-all”) or only one of

them (“hub-ensemble-with-X”) were computed retrospectively. An overview of all models and

ensemble versions is shown in S10 Table.

For cases, our contributions (compared to the Hub ensemble without our contributions)

consistently improved performance across all forecasting horizons (rel. WIS 0.9 two weeks
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ahead, see S4 Table). Contributions from the crowd forecasts alone also improved perfor-

mance of the Hub ensemble across all forecast horizons, while contributions from the renewal

model had a negative effect for longer horizons (rel. WIS 1.02 three weeks ahead, 1.06 four

weeks ahead). The realised ensemble including both models performed better or equal com-

pared to all versions with only one model included for up to three weeks ahead, suggesting

synergistic effects. Only for predictions four weeks ahead would removing the renewal model

have improved performance (S5 Table). The realised ensemble performed comparably to the

crowd forecasts for predictions one to two weeks ahead, and worse for greater forecast

horizons.

For deaths, contributions from the renewal model and crowd forecast together improved

performance only for one week ahead predictions and showed an increasingly negative impact

on performance for longer horizons (rel. WIS of the Hub-ensemble-realised 1.01 two weeks

ahead, 1.05 four weeks ahead, S4 and S5 Tables). Individual contributions from both the

renewal model and the crowd forecast were largely negative, while a version of the Hub ensem-

ble with only the convolution model included would have performed consistently better across

all forecast horizons (with the positive impact increasing for longer horizons). This is especially

interesting as the convolution model performed consistently worse than the pre-existing Hub

ensemble (Fig 1) and especially worse for longer horizons.

We also considered the impact of our contributions on a version of the Hub ensemble con-

structed by taking the quantile-wise mean, rather than the median. General trends were simi-

lar, with the notable exception of the convolution model, which had a consistently positive

impact on the median ensemble, but a mixed and mostly slightly negative impact on the mean

ensemble (Fig 4B and S21(B) Fig). This may happen if a model is more correct directionally

relative to the pre-existing ensemble, but overshoots in absolute terms, thereby moving the

ensemble too far. For both the mean and the median ensemble, changes in performance from

adding or removing models were of a similar order of magnitude, suggesting that at least in

this instance, with a relatively small ensemble size, the median ensemble was not necessarily

more ‘robust’ to changes than the mean ensemble. However, the ensemble version with all our

forecasts included (“hub-ensemble-with-all”) tended to perform relatively better for the

median ensemble than the mean ensemble, suggesting that adding more models may be more

beneficial or ‘safer’ for the median than for the mean ensemble as directional errors can more

easily cancel out than errors in absolute terms.

Discussion

Epidemiological forecasting modelling combines knowledge about infectious disease dynam-

ics with the subjective opinion of the researcher who develops and refines the model. In this

study, we compared forecasts of cases of and deaths from COVID-19 in Germany and Poland

based purely on human judgement and elicited from a crowd of researchers and volunteers

against forecasts from two semi-mechanistic epidemiological models. In spite of the small

number of participants and a general tendency to be overconfident, crowd forecasts consis-

tently outperformed our epidemiological models as well as the Hub ensemble when forecasting

cases but not when forecasting deaths. This suggests that humans might be relatively good at

foreseeing trends that are hard to model but may struggle to form an intuition for the exact

relationship between cases and deaths.

Past studies have evaluated the performance of model-based forecasting approaches as well

as human experts and non-experts in various contexts. However, most of these studies either

focused only on the evaluation of (expert-tuned) model-based approaches [e.g. 12,13,14], or

exclusively on human forecasts [19, 20, 24, 25]. In contrast, we directly compared human and
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model-based forecasts. This is similar to the approach taken by [11], but extends it in several

ways. While Farrow et al. only asked for point predictions and constructed a predictive distri-

bution from these, we asked participants to provide a full predictive distribution, allowing us

to compare human forecasts and models without any further assumptions, as well as to analyse

how humans quantified their uncertainty. In addition, we compared crowd forecasts to two

semi-mechanistic models informed by basic epidemiological knowledge of COVID-19, allow-

ing us to assess not only relative performance but also to analyse qualitative differences

Fig 4. Relative aggregate performance metrics across forecast horizons for different versions of the Hub median ensemble. “Hub-ensemble”

excludes all our models, Hub-ensemble-all includes all of our models, “Hub-ensemble-realised” is the actual hub-ensemble observed in reality, which

includes the renewal model and the crowd forecasts, but not the convolution model. A, B: mean weighted interval score (WIS) across horizons relative

to the Hub ensemble (lower values indicate better performance). C, D: Empirical coverage of the 50% and 90% prediction intervals minus empirical

coverage observed for the Hub ensemble. E: Dispersion relative to the dispersion of the Hub ensemble. Higher values mean greater dispersion of the

forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (complete

under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast relative to the Hub ensemble. H. Standard

deviation of all WIS values for different horizons relative to the Hub ensemble.

https://doi.org/10.1371/journal.pcbi.1010405.g004
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between human judgement and model-based insight. In terms of interpretability of the results,

exact knowledge of our two models, as well as focus on a limited set of targets and locations

was a major advantage of our study compared to larger studies conducted by the Forecast

Hubs [12–15, 17].

The strong performance of crowd forecasts in our study is in line with results from Farrow

et al. who also report strong performance of human predictions in past Flu challenges despite

difficulties to recruit a large number of participants. The advantage of crowd forecasts we

observed over our semi-mechanistic models is likely in part explained by the fact that we com-

pared an ensemble of crowd forecasts with single models. However, this probably explains

only part of the difference, and performance relative to the Hub ensemble strongly suggests

that human insight is valuable when forecasting highly volatile and potentially hard-to-predict

quantities such as case numbers. One potential explanation is that humans can have access to

data that is not available to or hard to integrate into model-based forecasts. Relatively good

performance of our semi-mechanistic models short-term, but not longer-term, suggests that

model-based forecasts are helpful to extrapolate from current conditions, but require some

form of human intervention or additional assumptions to inform forecasts when conditions

change over time. This human intervention may be particularly important when dealing with

artefacts in reporting and data anomalies (and especially when using daily, rather than weekly

data). The large variance in predictions in January in Germany for example (severe under-pre-

diction followed by severe over-prediction, see Fig 3A), may in part be caused by the fact that

the renewal model operated on daily data and therefore was susceptible to fluctuations in daily

reporting which have less of an influence on weekly reporting.

Our results suggest that human intervention may be less beneficial when forecasting deaths

(especially at shorter horizons, when deaths are largely dependent on already observed cases),

which benefits from the ability to model the delays and exact epidemiological relationships

between different leading and lagged indicators. Relatively good performance of the convolu-

tion model, especially compared to the poor performance of the renewal model on deaths

(which used only deaths to estimate and predict the effective reproduction number) underlines

the importance of including leading indicators such as cases as a predictor for deaths.

Given the low number of participants in our study, it is difficult to generalise conclusions

about crowd predictions to other settings. Using R shiny as a platform for the web application

arguably created some limits to user experience and performance, influencing the number of

participants and potentially creating a self-selection effect. Motivating forecasters to contribute

regularly proved challenging, especially given that the majority of our participants were from

the UK and may not have been familiar with all relevant details of the situation in Germany

and Poland. On the other hand, R shiny facilitated quick development and allowed us to pro-

vide our crowd forecasting tooling as an open source R package, meaning that it is available

for others to use, for example in settings like early-stage outbreaks where model-based fore-

casts are not available. In light of the relatively small number of Hub ensemble models, perfor-

mance of the Hub ensemble is also difficult to generalise. More research is needed to replicate

these findings and investigate how crowd forecasts compare against the types of models and

model ensembles policy makers use to inform their decisions.

Our work suggests that crowd forecasts and model-based forecasts could have different

strengths and may be able to complement each other. When choosing a suitable approach for

a given task it is important to take into account how the output will be used. In this work we

focused on forecasts (which aim to predict future data points whilst accounting for all factors

that might influence them), whereas policy makers might be more interested in projections

(which show what would happen in the absence of any events that could change the trend) or

scenario modelling. Forecasts may not be a suitable basis for informing policy decisions, if
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forecasters already have factored in the expectation of a future intervention. Model-based

approaches can be either forecasts or projections depending on the assumptions, whereas elic-

iting projections that are not influenced by implicit assumptions about the future from

humans may be harder.

Further work should explore the effects of humans refining their mathematical models or

changing model outputs in more detail. Model-based forecasts could be used as an input to

human judgement, with researchers adjusting predictions generated by models. Seeing a

model-based forecast could help humans calibrate uncertainty better, while allowing for man-

ual intervention to adapt spurious trend predictions. Tools need to be developed to facilitate

this process at a larger scale. Human insight could also be used as an input to models. Such a

‘hybrid’ forecasting approach could for example ask humans to predict the trend of the effec-

tive reproduction number Rt or the doubling rate (i.e. how the epidemic evolves) into the

future and use this to estimate the exact number of cases, hospitalisations or deaths this would

imply. In light of severe overconfidence, yet good performance in terms of the absolute error,

post-processing of human forecasts to adjust and widen prediction intervals may be another

promising approach. Crowd forecasting in general could benefit greatly from the availability

of tools suitable to appeal to a greater audience. Given the good performance we and previous

authors observed in spite of the limited resources available and the small number of partici-

pants, this seems worthwhile to further develop and explore.
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S2 Table. Scores for one and two week ahead forecasts. Scores are cut to three significant

digits and rounded). Note that scores for cases (which include the whole period from Octo-

ber 12th 2020 until March 1st 2021) and deaths (which include only forecasts from the 21st

of December 2020 on) are computed on different subsets. Numbers in brackets show the

metrics relative to the Hub ensemble (i.e. the median ensemble of all other models submit-

ted to the German and Polish Forecast Hub, excluding our contributions). WIS is the mean

weighted interval score (lower values are better), WIS—sd is the standard deviation of all

scores achieved by a model. Dispersion, over-prediction and under-prediction together

sum up to the weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the gen-

eral average tendency of a model to over- or underpredict. 50% and 90%-coverage are the

percentage of observed values that fell within the 50% and 90% prediction intervals of a

model.
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S3 Table. Scores for three and four weeks ahead forecasts. Scores are cut to three significant

digits and rounded). Note that scores for cases (which include the whole period from October

12th 2020 until March 1st 2021) and deaths (which include only forecasts from the 21st of
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German and Polish Forecast Hub, excluding our contributions). WIS is the mean weighted

interval score (lower values are better), WIS—sd is the standard deviation of all scores achieved

by a model. Dispersion, over-prediction and under-prediction together sum up to the

weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the general average
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prediction intervals of a model.
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excluding our contributions). WIS is the mean weighted interval score (lower values are bet-

ter), WIS—sd is the standard deviation of all scores achieved by a model. Dispersion, over-pre-

diction and under-prediction together sum up to the weighted interval score. Bias (between -1

and 1, 0 is ideal) represents the general average tendency of a model to over- or underpredict.

50% and 90%-coverage are the percentage of observed values that fell within the 50% and 90%

prediction intervals of a model.
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mean ensemble. Scores are cut to three significant digits and rounded. Note that scores for

cases (which include the whole period from October 12th 2020 until March 1st 2021) and

deaths (which include only forecasts from the 21st of December 2020 on) are computed on dif-

ferent subsets. Numbers in brackets show the metrics relative to the Hub mean ensemble (i.e.
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ter), WIS—sd is the standard deviation of all scores achieved by a model. Dispersion, over-pre-

diction and under-prediction together sum up to the weighted interval score. Bias (between -1

and 1, 0 is ideal) represents the general average tendency of a model to over- or underpredict.

50% and 90%-coverage are the percentage of observed values that fell within the 50% and 90%

prediction intervals of a model.
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S7 Table. Scores for three and four week ahead forecasts for the different versions of the

mean ensemble. Scores are cut to three significant digits and rounded. Note that scores for

cases (which include the whole period from October 12th 2020 until March 1st 2021) and

deaths (which include only forecasts from the 21st of December 2020 on) are computed on dif-

ferent subsets. Numbers in brackets show the metrics relative to the Hub mean ensemble (i.e.
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the mean ensemble of all other models submitted to the German and Polish Forecast Hub,

excluding our contributions). WIS is the mean weighted interval score (lower values are bet-

ter), WIS—sd is the standard deviation of all scores achieved by a model. Dispersion, over-pre-

diction and under-prediction together sum up to the weighted interval score. Bias (between -1

and 1, 0 is ideal) represents the general average tendency of a model to over- or underpredict.

50% and 90%-coverage are the percentage of observed values that fell within the 50% and 90%

prediction intervals of a model.
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S8 Table. Scores for one and two week ahead forecasts (sensitivity analysis). Scores are cut

to three significant digits and rounded. In the original analysis, cases and deaths were scored

on different periods, as the convolution model was only added later. This table shows perfor-

mance of all models restricted to the period from December 14 2020 until March 1st 2021

where all models were available. Numbers in brackets show the metrics relative to the Hub

ensemble (i.e. the median ensemble of all other models submitted to the German and Polish

Forecast Hub, excluding our contributions). WIS is the mean weighted interval score (lower

values are better), WIS—sd is the standard deviation of all scores achieved by a model. Disper-

sion, over-prediction and under-prediction together sum up to the weighted interval score.

Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to over-

or underpredict. 50% and 90%-coverage are the percentage of observed values that fell within

the 50% and 90% prediction intervals of a model.

(PDF)

S9 Table. Scores for three and four week ahead forecasts (sensitivity analysis). Scores are

cut to three significant digits and rounded. In the original analysis, cases and deaths were

scored on different periods, as the convolution model was only added later. This table shows

performance of all models restricted to the period from December 14 2020 until March 1st

2021 where all models were available. Numbers in brackets show the metrics relative to the

Hub ensemble (i.e. the median ensemble of all other models submitted to the German and Pol-

ish Forecast Hub, excluding our contributions). WIS is the mean weighted interval score

(lower values are better), WIS—sd is the standard deviation of all scores achieved by a model.

Dispersion, over-prediction and under-prediction together sum up to the weighted interval

score. Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to

over- or underpredict. 50% and 90%-coverage are the percentage of observed values that fell

within the 50% and 90% prediction intervals of a model.

(PDF)

S10 Table. Overview of the models and ensembles used.

(PDF)

S1 Fig. Screenshot of the crowdforecasting app used to elicit predictions (made in June

2021).

(TIF)

S2 Fig. Visualisation of aggregate performance metrics for forecasts one to four weeks into

the future in Germany. A, B: mean weighted interval score (WIS, lower indicates better per-

formance) across horizons. WIS is decomposed into its components dispersion, over-predic-

tion and under-prediction. C: Empirical coverage of the 50% prediction intervals (50%

coverage is perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion

(same as in panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris

paribus a worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values
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are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G:

Absolute error of the median forecast (lower is better). H. Standard deviation of all WIS values

for different horizons

(TIF)

S3 Fig. Visualisation of aggregate performance metrics for forecasts one to four weeks into

the future in Poland. A, B: mean weighted interval score (WIS, lower indicates better perfor-

mance) across horizons. WIS is decomposed into its components dispersion, over-prediction

and under-prediction. C: Empirical coverage of the 50% prediction intervals (50% coverage is

perfect). D: Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in

panel A, B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a

worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values are

between -1 (complete under-prediction) and 1 (complete over-prediction) and 0 ideally. G:

Absolute error of the median forecast (lower is better). H. Standard deviation of all WIS values

for different horizons.

(TIF)

S4 Fig. Visualisation of aggregate performance metrics across locations. A, B: mean

weighted interval score (WIS, lower indicates better performance) across horizons. WIS is

decomposed into its components dispersion, over-prediction and under-prediction. C: Empir-

ical coverage of the 50% prediction intervals (50% coverage is perfect). D: Empirical coverage

of the 90% prediction intervals. E: Dispersion (same as in panel A, B). Higher values mean

greater dispersion of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general

(relative) tendency to over- or underpredict. Values are between -1 (complete under-predic-

tion) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast

(lower is better). H. Standard deviation of WIS values.

(TIF)

S5 Fig. Visualisation of aggregate performance metrics across locations in relative terms.

A, B: mean weighted interval score (WIS) across locations (lower values indicate better perfor-

mance). C, D: Empirical coverage of the 50% and 90% prediction intervals. E: Dispersion.

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast. H. Standard deviation of WIS values.

(TIF)

S6 Fig. Visualisation of daily report data. The black line represents weekly data divided by

seven. Data were last accessed through the German and Polish Forecast Hub on August 21

2021.

(TIF)

S7 Fig. Visualisation of the absolute difference between the daily report data at the time

and the data now. In Germany, there were zero cases and deaths reported on 2020–10-12, and

only later 2467 cases and 6 deaths were added. Data were last accessed through the German

and Polish Forecast Hub on May 10 2022.

(TIF)

S8 Fig. Visualisation of the relative difference between the weekly report data at the time

and the data now. Apart from the data that was retrospectively added on 2020–10-12, data

updates did not have a noticeable effect on weekly data (as shown in the forecasting
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application). Data were last accessed through the German and Polish Forecast Hub on May

10 2022.

(TIF)

S9 Fig. Visualisation of forecasts and scores for one week ahead forecasts. A, C: Visualisa-

tion of 50% prediction intervals of one week ahead forecasts against the reported values. Fore-

casts that were not scored (because there was no complete set of death forecasts available) are

greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S10 Fig. Visualisation of forecasts and scores for three week ahead forecasts. A, C: Visuali-

sation of 50% prediction intervals of three week ahead forecasts against the reported values.

Forecasts that were not scored (because there was no complete set of death forecasts available)

are greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S11 Fig. Visualisation of forecasts and scores for three week ahead forecasts. A, C: Visuali-

sation of 50% prediction intervals of four week ahead forecasts against the reported values.

Forecasts that were not scored (because there was no complete set of death forecasts available)

are greyed out. B, D: Visualisation of corresponding WIS.

(TIF)

S12 Fig. Distribution of weighted interval scores for one week ahead forecasts. A: Distribu-

tion of weighted interval scores for one week ahead forecasts of the different models and fore-

cast targets pooled across locations. B: Distribution of WIS separate by country.

(TIF)

S13 Fig. Distribution of weighted interval scores for three week ahead forecasts. A:

Distribution of weighted interval scores for three week ahead forecasts of the different

models and forecast targets pooled across locations. B: Distribution of WIS separate by

country.

(TIF)

S14 Fig. Distribution of weighted interval scores for four week ahead forecasts. A: Distribu-

tion of weighted interval scores for four week ahead forecasts of the different models and fore-

cast targets pooled across locations. B: Distribution of WIS separate by country.

(TIF)

S15 Fig. Distribution of model ranks (in terms of WIS) for one week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for one week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S16 Fig. Distribution of model ranks (in terms of WIS) for two week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for two week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S17 Fig. Distribution of model ranks (in terms of WIS) for three week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for three week ahead
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forecasts of the different models and forecast targets, pooled across locations. B: Distribution

of ranks separate by country.

(TIF)

S18 Fig. Distribution of model ranks (in terms of WIS) for four week ahead forecasts. A:

Distribution of the ranks (determined by the weighted interval score) for four week ahead fore-

casts of the different models and forecast targets, pooled across locations. B: Distribution of

ranks separate by country.

(TIF)

S19 Fig. Difference in WIS between the Crowd forecast and the Hub ensemble for

two week ahead forecasts. Values below zero mean better performance of the Crowd fore-

casts.

(TIF)

S20 Fig. Difference in WIS between the Crowd forecast and the Renewal model for two

week ahead forecasts. Values below zero mean better performance of the Crowd forecasts.

(TIF)

S21 Fig. Visualisation of aggregate performance metrics across forecast horizons for the

different versions of the Hub mean ensemble. “Hub-ensemble” excludes all our models,

Hub-ensemble-all includes all of our models, “Hub-ensemble-realised” is the actual hub-

ensemble observed in reality, which includes the renewal model and the crowd forecasts, but

ont the convolution model. Values (except for Bias) are computed as differences to the Hub

ensemble which excludes our contributions. For Coverage, this is an absolute difference, for

other metrics this is a percentage difference. A, B: mean weighted interval score (WIS) across

horizons relative to the Hub ensemble (lower values indicate better performance). C, D:

Empirical coverage of the 50% and 90% prediction intervals minus empirical coverage

observed for the Hub ensemble. E: Dispersion relative to the dispersion of the Hub ensemble.

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- orunderpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast relative to the Hub ensemble. H. Standard deviation of all WIS values for

different horizons relative to the Hub ensemble.

(TIF)

S22 Fig. Visualisation of aggregate performance metrics across forecast horizons (period

from December 14th 2020 on). From December 14th 2020 on, all models were available. In

the original analysis, cases and deaths were scored on different periods, as the convolution

model was only added later. This sensitivity analysis shows performance of all models

restricted to the period from December 14 2020 until March 1st 2021 where all models were

available. A, B: mean weighted interval score (WIS, lower indicates better performance) across

horizons. WIS is decomposed into its components dispersion, over-prediction and under-pre-

diction. C: Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D:

Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in panel A, B).

Higher values mean greater dispersion of the forecast and imply ceteris paribus a worse score.

F: Bias, i.e. general (relative) tendency to over- or underpredict. Values are between -1 (com-

plete under-prediction) and 1 (complete over-prediction) and 0 ideally. G: Absolute error of

the median forecast (lower is better). H. Standard deviation of all WIS values for different hori-

zons

(TIF)
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S23 Fig. Number of participants who submitted a forecast over time.

(TIF)

S24 Fig. Number of member models in the official Hub ensemble. This includes our crowd

forecasts and the renewal model. Note that the renewal model was not included in the ensem-

ble on December 28th 2020.

(TIF)

S25 Fig. Crowd forecasts and baseline shown in the application for a two week horizon.

Shown are the median, as well as the 50% and 90% prediction intervals (in order of decreasing

opacity). For any given point in time, the baseline shown in red is what forecasters saw when

they opened the app (the baseline shown was constant across all forecast horizons).

(TIF)

S1 Acknowledgements. Members of the CMMID COVID-19 working group.

(PDF)
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(APPENDIX) Supplementary information 1

Supplementary information 2

Scoring metrics used 3

Table S1. Overview of the scoring metrics used.

Metric Explanation

WIS (Weighted)
interval score

The weighted interval score (smaller values are better) is a
proper scoring rule for quantile forecasts. It converges to the
continuos ranked probability score (which itself is a
generalisation of the absolute error to probabilistic forecasts)
for an increasing number of intervals. The score can be
decomposed into a dispersion (uncertainty) component and
penalties for over- and underprediction. For a single interval,
the score is computed as

ISα(F, y) = (u− l)+
2

α
·(l−y) ·1(y ≤ l)+

2

α
·(y−u) ·1(y ≥ u),

where 1() is the indicator function, y is the true value, and l
and u are the α

2 and 1− α
2 quantiles of the predictive

distribution F , i.e. the lower and upper bound of a single
prediction interval. For a set of K prediction intervals and
the median m, the score is computed as a weighted sum,

WIS =
1

K + 0.5
·
(
w0 · |y −m|+

K∑

k=1

wk · ISα(F, y)

)
,

where wk is a weight for every interval. Usually, wk = αk

2
and w0 = 0.5.
Its proximity to the absolute error means that when
averaging across multiple targets (e.g. different weeks), it will
be dominated by targets with higher absolute values.

Interval
coverage

Interval coverage is a measure of marginal calibration and
indicates the proportion of observed values that fall in a
given prediction interval range. Nominal coverage represents
the percentage of observed values that should ideally be
covered (e.g. we would like a 50 percent prediction interval to
cover on average 50 percent of the observations), while
empirical coverage is the actual percentage of observations
covered by a certain prediction interval.
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Table S1. Overview of the scoring metrics used. (continued)

Metric Explanation

Bias (Relative) bias is a measure of the general tendency of a
forecaster to over- or underpredict. Values are between -1
and 1 and 0 ideally. For continuous forecasts, bias is given as

B(F, y) = 1− 2 · (F (y)),

where F is the CDF of the predictive distribution and y is
the observed value.
For quantile forecasts, F (y) is replaced by a quantile rank.
The appropriate quantile rank is determined by whether the
median forecast is below or above the true value. We then
take the innermost quantile rank for which the quantile is
still larger (under-prediction) or smaller (over-prediction)
than the observed value.
In contrast to the over- and underprediction penalties of the
interval score it is bound between 0 and 1 and represents a
general tendency of forecasts to be biased rather than the
absolute amount of over- and underprediction. It is therefore
a more robust measurement.
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The crowdforecasting app 4

Fig S1. Screenshot of the crowdforecasting app used to elicit predictions (made in June
2021).
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Text S1. Further details on the semi-mechanistic forecasting 5

models 6

Renewal equation model 7

The model was initialised prior to the first observed data point by assuming constant 8

exponential growth for the mean of assumed delays from infection to case report. 9

It = I0 exp (rt) (1)
I0 ∼ LN (log Iobs, 0.2) (2)
r ∼ LN (robs, 0.2) (3)

Where Iobs and robs are estimated from the first week of observed data. For the time 10

window of the observed data infections were then modelled by weighting previous 11

infections by the generation time and scaling by the instantaneous reproduction number. 12

These infections were then convolved to cases by date (Ot) and cases by date of report 13

(Dt) using log-normal delay distributions. This model can be defined mathematically as 14

follows, 15

logRt = logRt−1 +GPt (4)

It = Rt

15∑

τ=1

w(τ |µw, σw)It−τ (5)

Ot =
15∑

τ=0

ξO(τ |µξO , σξO )It−τ (6)

Dt = α

15∑

τ=0

ξD(τ |µξD , σξD )Ot−τ (7)

Ct ∼ NB
(
ω(t mod 7)Dt, ϕ

)
(8)

Where,

w ∼ G(µw, σw) (9)
ξO ∼ LN (µξO , σξO ) (10)
ξD ∼ LN (µξD , σξD ) (11)

This model used the following priors for cases, 16

R0 ∼ LN (0.079, 0.18) (12)
µw ∼ N (3.6, 0.7) (13)
σw ∼ N (3.1, 0.8) (14)
µξO ∼ N (1.62, 0.064) (15)
σξO ∼ N (0.418, 0.069) (16)
µξD ∼ N (0.614, 0.066) (17)
σξD ∼ N (1.51, 0.048) (18)
α ∼ N (0.25, 0.05) (19)
ω

7
∼ Dirichlet(1, 1, 1, 1, 1, 1, 1) (20)

ϕ ∼ 1√
N (0, 1)

(21)
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and updated the reporting process as follows when forecasting deaths, 17

µξD ∼ N (2.29, 0.076) (22)
σξD ∼ N (0.76, 0.055) (23)
α ∼ N (0.005, 0.0025) (24)

α, µ, σ, and ϕ were truncated to be greater than 0 and with ξ, and w normalised to 18

sum to 1. 19

The prior for the generation time was sourced from [51] but refit using a log-normal 20

incubation period with a mean of 5.2 days (SD 1.1) and SD of 1.52 days (SD 1.1) with 21

this incubation period also being used as a prior [52] for ξO. This resulted in a 22

gamma-distributed generation time with mean 3.6 days (standard deviation (SD) 0.7), 23

and SD of 3.1 days (SD 0.8) for all estimates. We estimated the delay between symptom 24

onset and case report or death required to convolve latent infections to observations by 25

fitting an integer adjusted log-normal distribution to 10 subsampled bootstraps of a 26

public linelist for cases in Germany from April 2020 to June 2020 with each bootstrap 27

using 1% or 1769 samples of the available data [45,53] and combining the posteriors for 28

the mean and standard deviation of the log-normal distribution [40,42,46,54]. 29

GPt is an approximate Hilbert space Gaussian process as defined in [55] using a 30

Matern 3/2 kernel using a boundary factor of 1.5 and 17 basis functions (20% of the 31

number of days used in fitting). The length scale of the Gaussian process was given a 32

log-normal prior with a mean of 21 days, and a standard deviation of 7 days truncated 33

to be greater than 3 days and less than 60 days. The magnitude of the Gaussian process 34

was assumed to be normally distributed centred at 0 with a standard deviation of 0.1. 35

From the forecast time horizon (T ) and onwards the last value of the Gaussian 36

process was used (hence Rt was assumed to be fixed) and latent infections were 37

adjusted to account for the proportion of the population that was susceptible to 38

infection as follows, 39

It = (N − Ict−1)

(
1− exp

( −I ′t
N − IcT

))
, (25)

where Ict =
∑

s<t Is are cumulative infections by t− 1 and I ′t are the unadjusted 40

infections defined above. This adjustment is based on that implemented in the 41

epidemia R package [56,57]. 42

Convolution model The convolution model shares the same observation model as 43

the renewal model but rather than assuming that an observation is predicted by itself 44

using the renewal equation instead assumes that it is predicted entirely by another 45

observation after some parametric delay. It can be defined mathematically as follows, 46

Dt ∼ NB

(
ω(t mod 7)α

30∑

τ=0

ξ(τ |µ, σ)Ct−τ , ϕ

)
(26)

with the following priors, 47
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ω

7
∼ Dirichlet(1, 1, 1, 1, 1, 1, 1) (27)

α ∼ N (0.01, 0.02) (28)
ξ ∼ LN (µ, σ) (29)
µ ∼ N (2.5, 0.5) (30)
σ ∼ N (0.47, 0.2) (31)

ϕ ∼ 1√
N (0, 1)

(32)

with α, µ, σ, and ϕ truncated to be greater than 0 and with ξ normalised such that 48∑30
τ=0 ξ(τ |µ, σ) = 1. 49

Model fitting 50

Both models were implemented using the EpiNow2 R package (version 1.3.3) [40]. Each 51

forecast target was fitted independently for each model using Markov-chain Monte 52

Carlo (MCMC) in stan [46]. A minimum of 4 chains were used with a warmup of 250 53

samples for the renewal equation-based model and 1000 samples for the convolution 54

model. 2000 samples total post warmup were used for the renewal equation model and 55

4000 samples for the convolution model. Different settings were chosen for each model 56

to optimise compute time contingent on convergence. Convergence was assessed using 57

the R hat diagnostic [46]. For the convolution model forecast the case forecast from the 58

renewal equation model was used in place of observed cases beyond the forecast horizon 59

using 1000 posterior samples. 12 weeks of data was used for both models though only 3 60

weeks of data were included in the likelihood for the convolution model. 61
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Tables with results of the forecast evaluation 62

Table S2. Scores for one and two week ahead forecasts (cut to three significant digits
and rounded). Note that scores for cases (which include the whole period from October
12th 2020 until March 1st 2021) and deaths (which include only forecasts from the 21st
of December 2020 on) are computed on different subsets. Numbers in brackets show the
metrics relative to the Hub ensemble (i.e. the median ensemble of all other models
submitted to the German and Polish Forecast Hub, excluding our contributions). WIS
is the mean weighted interval score (lower values are better), WIS - sd is the standard
deviation of all scores achieved by a model. Dispersion, over-prediction and
under-prediction together sum up to the weighted interval score. Bias (between -1 and
1, 0 is ideal) represents the general average tendency of a model to over- or underpredict.
50% and 90%-coverage are the percentage of observed values that fell within the 50%
and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Crowd forecast 7010 (0.8) 7480 (0.64) 2680 (0.73) 1700 (1.38) 2630 (0.68) -0.01 10400 (0.82) 0.55 0.79

Hub-ensemble 8770 (1) 11700 (1) 3670 (1) 1230 (1) 3870 (1) -0.04 12700 (1) 0.57 0.811 wk ahead
Renewal 8740 (1) 11800 (1.01) 2190 (0.6) 2720 (2.21) 3830 (0.99) 0.18 12000 (0.94) 0.48 0.71

Crowd forecast 16200 (0.89) 16600 (0.76) 3660 (0.6) 5930 (1.56) 6600 (0.78) -0.01 23300 (0.87) 0.36 0.55

Hub-ensemble 18300 (1) 21900 (1) 6140 (1) 3800 (1) 8410 (1) -0.03 26800 (1) 0.43 0.642 wk ahead
Renewal 25600 (1.4) 33800 (1.54) 5420 (0.88) 5920 (1.56) 14200 (1.69) 0.17 34600 (1.29) 0.43 0.67

Deaths
Convolution 255 (1.03) 343 (1.01) 82 (0.89) 142 (1.23) 31.1 (0.75) -0.18 399 (1.19) 0.42 0.79

Crowd forecast 265 (1.07) 317 (0.94) 78.2 (0.85) 82 (0.71) 105 (2.52) 0.08 402 (1.2) 0.38 0.79

Hub-ensemble 248 (1) 338 (1) 92.2 (1) 115 (1) 41.6 (1) -0.04 334 (1) 0.62 0.921 wk ahead

Renewal 298 (1.2) 403 (1.19) 87 (0.94) 107 (0.93) 105 (2.52) -0.07 413 (1.24) 0.50 0.79

Convolution 357 (1.22) 573 (1.49) 104 (0.79) 204 (1.89) 48.8 (0.94) -0.10 565 (1.32) 0.33 0.79

Crowd forecast 368 (1.26) 442 (1.15) 107 (0.81) 102 (0.94) 160 (3.08) 0.14 576 (1.34) 0.38 0.75

Hub-ensemble 292 (1) 385 (1) 132 (1) 108 (1) 51.9 (1) 0.01 429 (1) 0.62 0.962 wk ahead

Renewal 524 (1.79) 671 (1.74) 155 (1.17) 133 (1.23) 236 (4.55) -0.02 750 (1.75) 0.50 0.71
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Table S3. Scores for three and four week ahead forecasts (cut to three significant digits
and rounded). Note that scores for cases (which include the whole period from October
12th 2020 until March 1st 2021) and deaths (which include only forecasts from the 21st
of December 2020 on) are computed on different subsets. Numbers in brackets show the
metrics relative to the Hub ensemble (i.e. the median ensemble of all other models
submitted to the German and Polish Forecast Hub, excluding our contributions). WIS
is the mean weighted interval score (lower values are better), WIS - sd is the standard
deviation of all scores achieved by a model. Dispersion, over-prediction and
under-prediction together sum up to the weighted interval score. Bias (between -1 and
1, 0 is ideal) represents the general average tendency of a model to over- or underpredict.
50% and 90%-coverage are the percentage of observed values that fell within the 50%
and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Crowd forecast 27000 (0.81) 26200 (0.64) 4750 (0.52) 11000 (1.43) 11200 (0.67) 0.02 39000 (0.83) 0.14 0.48

Hub-ensemble 33400 (1) 40700 (1) 9130 (1) 7690 (1) 16600 (1) -0.01 46900 (1) 0.29 0.623 wk ahead
Renewal 50600 (1.51) 70000 (1.72) 10800 (1.18) 7710 (1) 32100 (1.93) 0.13 68700 (1.46) 0.29 0.55

Crowd forecast 39200 (0.7) 38600 (0.52) 5970 (0.49) 15600 (1.26) 17600 (0.56) 0.07 54800 (0.74) 0.05 0.38

Hub-ensemble 55900 (1) 73700 (1) 12200 (1) 12400 (1) 31300 (1) 0.01 74400 (1) 0.24 0.524 wk ahead
Renewal 91700 (1.64) 135000 (1.83) 19500 (1.6) 8990 (0.72) 63200 (2.02) 0.09 125000 (1.68) 0.31 0.48

Deaths
Convolution 541 (1.7) 802 (2.45) 157 (0.91) 279 (3.01) 105 (1.91) -0.04 747 (1.53) 0.54 0.75

Crowd forecast 414 (1.3) 526 (1.6) 137 (0.8) 82 (0.88) 194 (3.52) 0.12 648 (1.33) 0.42 0.83

Hub-ensemble 319 (1) 328 (1) 172 (1) 92.7 (1) 55.1 (1) -0.03 488 (1) 0.54 0.963 wk ahead

Renewal 724 (2.27) 916 (2.79) 249 (1.45) 158 (1.7) 317 (5.75) -0.01 1040 (2.13) 0.46 0.83

Convolution 763 (1.8) 932 (2.1) 268 (1.26) 331 (2.63) 164 (1.91) 0.01 985 (1.46) 0.54 0.75

Crowd forecast 498 (1.17) 633 (1.43) 168 (0.79) 83.6 (0.66) 246 (2.87) 0.14 756 (1.12) 0.38 0.79

Hub-ensemble 424 (1) 443 (1) 212 (1) 126 (1) 85.7 (1) -0.06 675 (1) 0.58 0.924 wk ahead

Renewal 959 (2.26) 1210 (2.73) 337 (1.59) 200 (1.59) 421 (4.91) -0.05 1350 (2) 0.50 0.79
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Aggregate performance by location 63

Performance in Germany 64

Fig S2. Visualisation of aggregate performance metrics for forecasts one to four weeks
into the future in Germany. A, B: mean weighted interval score (WIS, lower indicates
better performance) across horizons. WIS is decomposed into its components dispersion,
over-prediction and under-prediction. C: Empirical coverage of the 50% prediction
intervals (50% coverage is perfect). D: Empirical coverage of the 90% prediction
intervals. E: Dispersion (same as in panel A, B). Higher values mean greater dispersion
of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative)
tendency to over- or underpredict. Values are between -1 (complete under-prediction)
and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast
(lower is better). H. Standard deviation of all WIS values for different horizons
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Performance in Poland 65

Fig S3. Visualisation of aggregate performance metrics for forecasts one to four weeks
into the future in Poland. A, B: mean weighted interval score (WIS, lower indicates
better performance) across horizons. WIS is decomposed into its components dispersion,
over-prediction and under-prediction. C: Empirical coverage of the 50% prediction
intervals (50% coverage is perfect). D: Empirical coverage of the 90% prediction
intervals. E: Dispersion (same as in panel A, B). Higher values mean greater dispersion
of the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative)
tendency to over- or underpredict. Values are between -1 (complete under-prediction)
and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast
(lower is better). H. Standard deviation of all WIS values for different horizons
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Performance across locations in absolute terms 66

Fig S4. Visualisation of aggregate performance metrics across locations. A, B: mean
weighted interval score (WIS, lower indicates better performance) across horizons. WIS
is decomposed into its components dispersion, over-prediction and under-prediction. C:
Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D:
Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in panel A,
B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a
worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values
are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0
ideally. G: Absolute error of the median forecast (lower is better). H. Standard
deviation of WIS values.
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Performance across locations in relative terms 67

Fig S5. Visualisation of relative aggregate performance metrics across locations. A, B:
mean weighted interval score (WIS) across locations (lower values indicate better
performance). C, D: Empirical coverage of the 50% and 90% prediction intervals. E:
Dispersion. Higher values mean greater dispersion of the forecast and imply ceteris
paribus a worse score. F: Bias, i.e. general (relative) tendency to over- orunderpredict.
Values are between -1 (complete under-prediction) and 1 (complete over-prediction) and
0 ideally. G: Absolute error of the median forecast. H. Standard deviation of WIS
values.
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Visualisation of daily reported cases and deaths 68

Fig S6. Visualisation of daily report data. The black line represents weekly data
divided by seven. Data were last accessed through the German and Polish Forecast Hub
on August 21 2021.
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Fig S7. Visualisation of the absolute difference between the daily report data at the
time and the data now. In Germany, there were zero cases and deaths reported on
2020-10-12, and only later 2467 cases and 6 deaths were added. Data were last accessed
through the German and Polish Forecast Hub on May 10 2022.
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Fig S8. Visualisation of the relative difference between the weekly report data at the
time and the data now. Apart from the data that was retrospectively added on
2020-10-12, data updates did not have a noticeable effect on weekly data (as shown in
the forecasting application). Data were last accessed through the German and Polish
Forecast Hub on May 10 2022.
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Visualisation of scores and forecasts 1, 3, 4 weeks ahead 69

Fig S9. A, C: Visualisation of 50% prediction intervals of one week ahead forecasts
against the reported values. Forecasts that were not scored (because there was no
complete set of death forecasts available) are greyed out. B, D: Visualisation of
corresponding WIS.
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Fig S10. A, C: Visualisation of 50% prediction intervals of three week ahead forecasts
against the reported values. Forecasts that were not scored (because there was no
complete set of death forecasts available) are greyed out. B, D: Visualisation of
corresponding WIS.
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Fig S11. A, C: Visualisation of 50% prediction intervals of four week ahead forecasts
against the reported values. Forecasts that were not scored (because there was no
complete set of death forecasts available) are greyed out. B, D: Visualisation of
corresponding WIS.
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Distribution of scores 70

Absolute scores 71

Fig S12. A: Distribution of weighted interval scores for one week ahead forecasts of the
different models and forecast targets. B: Distribution of WIS separate by country.

Fig S13. A: Distribution of weighted interval scores for three week ahead forecasts of
the different models and forecast targets. B: Distribution of WIS separate by country.
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Fig S14. A: Distribution of weighted interval scores for four week ahead forecasts of
the different models and forecast targets. B: Distribution of WIS separate by country.

Ranks achieved by forecasts 72

Fig S15. A: Distribution of the ranks (determined by the weighted interval score) for
one week ahead forecasts of the different models and forecast targets. B: Distribution of
ranks separate by country.
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Fig S16. A: Distribution of the ranks (determined by the weighted interval score) for
two week ahead forecasts of the different models and forecast targets. B: Distribution of
ranks separate by country.

Fig S17. A: Distribution of the ranks (determined by the weighted interval score) for
three week ahead forecasts of the different models and forecast targets. B: Distribution
of ranks separate by country.
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Fig S18. A: Distribution of the ranks (determined by the weighted interval score) for
four week ahead forecasts of the different models and forecast targets. B: Distribution
of ranks separate by country.

Fig S19. Density plot with the difference in WIS between the Crowd forecast and the
Hub ensemble (values below zero mean better performance of the Crowd forecasts) for a
2 week ahead forecast horizon.
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Fig S20. Density plot with the difference in WIS between the Crowd forecast and the
Renewal model (values below zero mean better performance of the Crowd forecasts) for
a 2 week ahead forecast horizon.
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Comparison of ensembles 73

Performance visualisation mean ensemble 74

Fig S21. Visualisation of aggregate performance metrics across forecast horizons for
the different versions of the Hub mean ensemble. “Hub-ensemble” extitexcludes all our
models, Hub-ensemble-all extitincludes all of our models, “Hub-ensemble-realised” is the
actual hub-ensemble observed in reality, which includes the renewal model and the
crowd forecasts, but ont the convolution model. Values (except for Bias) are computed
as differences to the Hub ensemble which excludes our contributions. For Coverage, this
is an absolute difference, for other metrics this is a percentage difference. A, B: mean
weighted interval score (WIS) across horizons relative to the Hub ensemble (lower values
indicate better performance). C, D: Empirical coverage of the 50% and 90% prediction
intervals minus empirical coverage observed for the Hub ensemble. E: Dispersion
relative to the dispersion of the Hub ensemble. Higher values mean greater dispersion of
the forecast and imply ceteris paribus a worse score. F: Bias, i.e. general (relative)
tendency to over- orunderpredict. Values are between -1 (complete under-prediction)
and 1 (complete over-prediction) and 0 ideally. G: Absolute error of the median forecast
relative to the Hub ensemble. H. Standard deviation of all WIS values for different
horizons relative to the Hub ensemble.

Tables median ensemble 75

Tables mean ensemble 76

February 24, 2023 24/34



Table S4. Scores for one and two week ahead forecasts (cut to three significant digits
and rounded) for the different versions of the median ensemble. Note that scores for
cases (which include the whole period from October 12th 2020 until March 1st 2021)
and deaths (which include only forecasts from the 21st of December 2020 on) are
computed on different subsets. Numbers in brackets show the metrics relative to the
Hub ensemble (i.e. the median ensemble of all other models submitted to the German
and Polish Forecast Hub, excluding our contributions). WIS is the mean weighted
interval score (lower values are better), WIS - sd is the standard deviation of all scores
achieved by a model. Dispersion, over-prediction and under-prediction together sum up
to the weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the general
average tendency of a model to over- or underpredict. 50% and 90%-coverage are the
percentage of observed values that fell within the 50% and 90% prediction intervals of a
model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Hub-ensemble 8770 (1) 11700 (1) 3670 (1) 1230 (1) 3870 (1) -0.04 12700 (1) 0.57 0.81

Hub-ensemble-realised 6970 (0.79) 8260 (0.71) 3060 (0.83) 943 (0.77) 2970 (0.77) 0.04 10800 (0.85) 0.55 0.83

Hub-ensemble-with-crowd 7820 (0.89) 9630 (0.82) 3270 (0.89) 1210 (0.98) 3330 (0.86) -0.02 12000 (0.94) 0.48 0.811 wk ahead

Hub-ensemble-with-renewal 7960 (0.91) 10300 (0.88) 3190 (0.87) 1020 (0.83) 3760 (0.97) 0.04 12100 (0.95) 0.57 0.83

Hub-ensemble 18300 (1) 21900 (1) 6140 (1) 3800 (1) 8410 (1) -0.03 26800 (1) 0.43 0.64

Hub-ensemble-realised 16400 (0.9) 19600 (0.89) 5350 (0.87) 3290 (0.87) 7730 (0.92) 0.02 24200 (0.9) 0.43 0.69

Hub-ensemble-with-crowd 16900 (0.92) 19600 (0.89) 5230 (0.85) 4310 (1.13) 7370 (0.88) 0.00 24600 (0.92) 0.38 0.642 wk ahead

Hub-ensemble-with-renewal 17500 (0.96) 21400 (0.98) 5830 (0.95) 2880 (0.76) 8770 (1.04) 0.00 25500 (0.95) 0.45 0.71

Deaths
Hub-ensemble 248 (1) 338 (1) 92.2 (1) 115 (1) 41.6 (1) -0.04 334 (1) 0.62 0.92

Hub-ensemble-realised 235 (0.95) 332 (0.98) 88.6 (0.96) 90.4 (0.79) 55.5 (1.33) -0.01 323 (0.97) 0.62 0.88

Hub-ensemble-with-all 234 (0.94) 331 (0.98) 85.2 (0.92) 98.1 (0.85) 50.2 (1.21) -0.05 329 (0.99) 0.62 0.92

Hub-ensemble-with-convolution 234 (0.94) 329 (0.97) 90.7 (0.98) 118 (1.03) 25.3 (0.61) -0.08 333 (1) 0.62 0.92

Hub-ensemble-with-crowd 239 (0.96) 337 (1) 85.2 (0.92) 99.6 (0.87) 54.2 (1.3) -0.03 322 (0.96) 0.62 0.92
1 wk ahead

Hub-ensemble-with-renewal 246 (0.99) 342 (1.01) 91.5 (0.99) 106 (0.92) 48.6 (1.17) -0.06 342 (1.02) 0.67 0.92

Hub-ensemble 292 (1) 385 (1) 132 (1) 108 (1) 51.9 (1) 0.01 429 (1) 0.62 0.96

Hub-ensemble-realised 296 (1.01) 398 (1.03) 125 (0.95) 91 (0.84) 80.2 (1.55) 0.05 486 (1.13) 0.58 0.92

Hub-ensemble-with-all 303 (1.04) 423 (1.1) 115 (0.87) 122 (1.13) 66.1 (1.27) 0.00 483 (1.13) 0.62 0.88

Hub-ensemble-with-convolution 270 (0.92) 385 (1) 121 (0.92) 119 (1.1) 29.9 (0.58) -0.04 403 (0.94) 0.58 0.96

Hub-ensemble-with-crowd 303 (1.04) 392 (1.02) 122 (0.92) 106 (0.98) 74.6 (1.44) 0.03 499 (1.16) 0.58 0.92
2 wk ahead

Hub-ensemble-with-renewal 296 (1.01) 397 (1.03) 128 (0.97) 97.1 (0.9) 71.2 (1.37) -0.01 462 (1.08) 0.67 0.92
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Table S5. Scores for three and four week ahead forecasts (cut to three significant digits
and rounded) for the different versions of the median ensemble. Note that scores for
cases (which include the whole period from October 12th 2020 until March 1st 2021)
and deaths (which include only forecasts from the 21st of December 2020 on) are
computed on different subsets. Numbers in brackets show the metrics relative to the
Hub ensemble (i.e. the median ensemble of all other models submitted to the German
and Polish Forecast Hub, excluding our contributions). WIS is the mean weighted
interval score (lower values are better), WIS - sd is the standard deviation of all scores
achieved by a model. Dispersion, over-prediction and under-prediction together sum up
to the weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the general
average tendency of a model to over- or underpredict. 50% and 90%-coverage are the
percentage of observed values that fell within the 50% and 90% prediction intervals of a
model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Hub-ensemble 33400 (1) 40700 (1) 9130 (1) 7690 (1) 16600 (1) -0.01 46900 (1) 0.29 0.62

Hub-ensemble-realised 30800 (0.92) 38600 (0.95) 7910 (0.87) 6890 (0.9) 16000 (0.96) 0.03 44200 (0.94) 0.29 0.62

Hub-ensemble-with-crowd 30800 (0.92) 34100 (0.84) 7500 (0.82) 8960 (1.17) 14300 (0.86) 0.02 44100 (0.94) 0.24 0.553 wk ahead

Hub-ensemble-with-renewal 34000 (1.02) 43100 (1.06) 8860 (0.97) 6300 (0.82) 18900 (1.14) 0.02 48100 (1.03) 0.29 0.60

Hub-ensemble 55900 (1) 73700 (1) 12200 (1) 12400 (1) 31300 (1) 0.01 74400 (1) 0.24 0.52

Hub-ensemble-realised 51200 (0.92) 69900 (0.95) 10900 (0.89) 11100 (0.9) 29300 (0.94) 0.04 69600 (0.94) 0.19 0.57

Hub-ensemble-with-crowd 48800 (0.87) 58600 (0.8) 9700 (0.8) 13700 (1.1) 25400 (0.81) 0.00 65800 (0.88) 0.19 0.484 wk ahead

Hub-ensemble-with-renewal 59100 (1.06) 84100 (1.14) 12600 (1.03) 10100 (0.81) 36400 (1.16) 0.01 78900 (1.06) 0.29 0.55

Deaths
Hub-ensemble 319 (1) 328 (1) 172 (1) 92.7 (1) 55.1 (1) -0.03 488 (1) 0.54 0.96

Hub-ensemble-realised 332 (1.04) 388 (1.18) 158 (0.92) 78.7 (0.85) 95 (1.72) -0.02 547 (1.12) 0.46 1.00

Hub-ensemble-with-all 321 (1.01) 385 (1.17) 153 (0.89) 100 (1.08) 68.1 (1.24) -0.01 535 (1.1) 0.54 1.00

Hub-ensemble-with-convolution 298 (0.93) 337 (1.03) 155 (0.9) 106 (1.14) 37.5 (0.68) -0.04 441 (0.9) 0.67 0.92

Hub-ensemble-with-crowd 319 (1) 342 (1.04) 160 (0.93) 85.1 (0.92) 73.6 (1.34) -0.02 547 (1.12) 0.54 0.96
3 wk ahead

Hub-ensemble-with-renewal 332 (1.04) 363 (1.11) 168 (0.98) 86.1 (0.93) 78.2 (1.42) -0.02 528 (1.08) 0.58 0.96

Hub-ensemble 424 (1) 443 (1) 212 (1) 126 (1) 85.7 (1) -0.06 675 (1) 0.58 0.92

Hub-ensemble-realised 445 (1.05) 532 (1.2) 193 (0.91) 107 (0.85) 144 (1.68) -0.03 700 (1.04) 0.54 0.92

Hub-ensemble-with-all 399 (0.94) 438 (0.99) 195 (0.92) 105 (0.83) 97.9 (1.14) -0.05 692 (1.03) 0.46 1.00

Hub-ensemble-with-convolution 384 (0.91) 387 (0.87) 196 (0.92) 122 (0.97) 65.9 (0.77) -0.06 602 (0.89) 0.54 0.96

Hub-ensemble-with-crowd 407 (0.96) 456 (1.03) 202 (0.95) 105 (0.83) 101 (1.18) -0.03 669 (0.99) 0.67 0.96
4 wk ahead

Hub-ensemble-with-renewal 457 (1.08) 527 (1.19) 208 (0.98) 129 (1.02) 121 (1.41) -0.06 744 (1.1) 0.50 0.96
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Table S6. Scores for one and two week ahead forecasts (cut to three significant digits
and rounded) for the different versions of the mean ensemble. Note that scores for cases
(which include the whole period from October 12th 2020 until March 1st 2021) and
deaths (which include only forecasts from the 21st of December 2020 on) are computed
on different subsets. Numbers in brackets show the metrics relative to the Hub mean
ensemble (i.e. the mean ensemble of all other models submitted to the German and
Polish Forecast Hub, excluding our contributions). WIS is the mean weighted interval
score (lower values are better), WIS - sd is the standard deviation of all scores achieved
by a model. Dispersion, over-prediction and under-prediction together sum up to the
weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the general average
tendency of a model to over- or underpredict. 50% and 90%-coverage are the percentage
of observed values that fell within the 50% and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Hub-ensemble-mean 8680 (1) 10300 (1) 3700 (1) 1460 (1) 3520 (1) -0.02 13400 (1) 0.50 0.86

Hub-ensemble-realised-mean 7600 (0.88) 8770 (0.85) 3360 (0.91) 1090 (0.75) 3140 (0.89) 0.01 11900 (0.89) 0.52 0.90

Hub-ensemble-with-crowd-mean 8050 (0.93) 9070 (0.88) 3520 (0.95) 1410 (0.97) 3120 (0.89) -0.02 12600 (0.94) 0.48 0.881 wk ahead

Hub-ensemble-with-renewal-mean 8090 (0.93) 9780 (0.95) 3490 (0.94) 1110 (0.76) 3490 (0.99) 0.02 12700 (0.95) 0.57 0.88

Hub-ensemble-mean 19000 (1) 22100 (1) 5960 (1) 3690 (1) 9340 (1) 0.02 28800 (1) 0.33 0.79

Hub-ensemble-realised-mean 17100 (0.9) 20600 (0.93) 5550 (0.93) 2850 (0.77) 8660 (0.93) 0.05 26000 (0.9) 0.38 0.76

Hub-ensemble-with-crowd-mean 17600 (0.93) 20000 (0.9) 5540 (0.93) 3790 (1.03) 8230 (0.88) 0.01 26800 (0.93) 0.36 0.762 wk ahead

Hub-ensemble-with-renewal-mean 18300 (0.96) 22600 (1.02) 5910 (0.99) 2640 (0.72) 9720 (1.04) 0.06 27700 (0.96) 0.38 0.76

Deaths
Hub-ensemble-mean 229 (1) 292 (1) 101 (1) 90.4 (1) 36.7 (1) -0.07 315 (1) 0.71 0.92

Hub-ensemble-realised-mean 219 (0.96) 289 (0.99) 96.8 (0.96) 79.8 (0.88) 42.6 (1.16) -0.04 297 (0.94) 0.71 0.88

Hub-ensemble-with-all-mean 217 (0.95) 287 (0.98) 95.3 (0.94) 83.1 (0.92) 38.7 (1.05) -0.07 300 (0.95) 0.67 0.88

Hub-ensemble-with-convolution-mean 225 (0.98) 292 (1) 98.7 (0.98) 94.2 (1.04) 32 (0.87) -0.09 314 (1) 0.71 0.92

Hub-ensemble-with-crowd-mean 222 (0.97) 289 (0.99) 98 (0.97) 84.1 (0.93) 39.6 (1.08) -0.04 295 (0.94) 0.71 0.88
1 wk ahead

Hub-ensemble-with-renewal-mean 225 (0.98) 290 (0.99) 99.7 (0.99) 84.7 (0.94) 40.5 (1.1) -0.05 314 (1) 0.71 0.88

Hub-ensemble-mean 256 (1) 306 (1) 138 (1) 64.5 (1) 53.2 (1) 0.04 374 (1) 0.67 0.96

Hub-ensemble-realised-mean 270 (1.05) 338 (1.1) 136 (0.99) 65.2 (1.01) 68.1 (1.28) 0.06 413 (1.1) 0.75 0.92

Hub-ensemble-with-all-mean 268 (1.05) 346 (1.13) 133 (0.96) 78.7 (1.22) 57.1 (1.07) 0.05 408 (1.09) 0.75 0.96

Hub-ensemble-with-convolution-mean 259 (1.01) 322 (1.05) 133 (0.96) 81.7 (1.27) 44.4 (0.83) 0.03 380 (1.02) 0.67 0.96

Hub-ensemble-with-crowd-mean 264 (1.03) 315 (1.03) 133 (0.96) 70.1 (1.09) 60 (1.13) 0.06 404 (1.08) 0.71 0.96
2 wk ahead

Hub-ensemble-with-renewal-mean 264 (1.03) 332 (1.08) 141 (1.02) 60.1 (0.93) 63.1 (1.19) 0.06 390 (1.04) 0.79 0.92
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Table S7. Scores for three and four week ahead forecasts (cut to three significant digits
and rounded) for the different versions of the mean ensemble. Note that scores for cases
(which include the whole period from October 12th 2020 until March 1st 2021) and
deaths (which include only forecasts from the 21st of December 2020 on) are computed
on different subsets. Numbers in brackets show the metrics relative to the Hub mean
ensemble (i.e. the mean ensemble of all other models submitted to the German and
Polish Forecast Hub, excluding our contributions). WIS is the mean weighted interval
score (lower values are better), WIS - sd is the standard deviation of all scores achieved
by a model. Dispersion, over-prediction and under-prediction together sum up to the
weighted interval score. Bias (between -1 and 1, 0 is ideal) represents the general average
tendency of a model to over- or underpredict. 50% and 90%-coverage are the percentage
of observed values that fell within the 50% and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Hub-ensemble-mean 35600 (1) 42100 (1) 9340 (1) 7050 (1) 19200 (1) 0.03 51200 (1) 0.26 0.62

Hub-ensemble-realised-mean 32100 (0.9) 40500 (0.96) 8830 (0.95) 4920 (0.7) 18300 (0.95) 0.07 47200 (0.92) 0.29 0.64

Hub-ensemble-with-crowd-mean 32200 (0.9) 36700 (0.87) 8430 (0.9) 7190 (1.02) 16500 (0.86) 0.04 46900 (0.92) 0.24 0.643 wk ahead

Hub-ensemble-with-renewal-mean 35200 (0.99) 46000 (1.09) 9630 (1.03) 4600 (0.65) 20900 (1.09) 0.08 51000 (1) 0.38 0.67

Hub-ensemble-mean 60300 (1) 79300 (1) 15700 (1) 10400 (1) 34100 (1) 0.04 78600 (1) 0.29 0.57

Hub-ensemble-realised-mean 55000 (0.91) 77100 (0.97) 14600 (0.93) 6620 (0.64) 33800 (0.99) 0.11 75200 (0.96) 0.33 0.64

Hub-ensemble-with-crowd-mean 53400 (0.89) 66600 (0.84) 13700 (0.87) 10600 (1.02) 29200 (0.86) 0.06 70400 (0.9) 0.26 0.604 wk ahead

Hub-ensemble-with-renewal-mean 61700 (1.02) 89800 (1.13) 16400 (1.04) 6400 (0.62) 38900 (1.14) 0.12 82900 (1.05) 0.31 0.64

Deaths
Hub-ensemble-mean 289 (1) 293 (1) 178 (1) 45.9 (1) 65.7 (1) 0.01 443 (1) 0.58 1.00

Hub-ensemble-realised-mean 310 (1.07) 348 (1.19) 182 (1.02) 42 (0.92) 86.5 (1.32) 0.08 502 (1.13) 0.58 1.00

Hub-ensemble-with-all-mean 315 (1.09) 339 (1.16) 178 (1) 62.2 (1.36) 74 (1.13) 0.07 507 (1.14) 0.62 1.00

Hub-ensemble-with-convolution-mean 297 (1.03) 292 (1) 174 (0.98) 67.7 (1.47) 55 (0.84) 0.01 452 (1.02) 0.67 1.00

Hub-ensemble-with-crowd-mean 294 (1.02) 299 (1.02) 172 (0.97) 48 (1.05) 74.2 (1.13) 0.03 476 (1.07) 0.58 1.00
3 wk ahead

Hub-ensemble-with-renewal-mean 310 (1.07) 349 (1.19) 189 (1.06) 39.4 (0.86) 81.9 (1.25) 0.05 482 (1.09) 0.62 1.00

Hub-ensemble-mean 437 (1) 568 (1) 232 (1) 72 (1) 134 (1) 0.00 702 (1) 0.62 1.00

Hub-ensemble-realised-mean 445 (1.02) 598 (1.05) 237 (1.02) 56.4 (0.78) 152 (1.13) 0.06 707 (1.01) 0.58 1.00

Hub-ensemble-with-all-mean 421 (0.96) 520 (0.92) 239 (1.03) 49.9 (0.69) 132 (0.99) 0.05 678 (0.97) 0.58 1.00

Hub-ensemble-with-convolution-mean 398 (0.91) 465 (0.82) 235 (1.01) 55.6 (0.77) 107 (0.8) 0.00 628 (0.89) 0.67 1.00

Hub-ensemble-with-crowd-mean 418 (0.96) 533 (0.94) 222 (0.96) 66.8 (0.93) 129 (0.96) 0.03 662 (0.94) 0.58 1.00
4 wk ahead

Hub-ensemble-with-renewal-mean 467 (1.07) 636 (1.12) 248 (1.07) 61 (0.85) 158 (1.18) 0.05 755 (1.08) 0.67 1.00
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Sensitivity analysis 77

In the original analysis, cases and deaths were scored on different periods, as the 78

convolution model was only added later. This sensitivity shows performance of all 79

models restricted to the period from December 14 2020 until March 1st 2021 where all 80

models were available. 81

Fig S22. Visualisation of aggregate performance metrics across forecast horizons only
for the period from December 14th 2020 on where all models were available. A, B: mean
weighted interval score (WIS, lower indicates better performance) across horizons. WIS
is decomposed into its components dispersion, over-prediction and under-prediction. C:
Empirical coverage of the 50% prediction intervals (50% coverage is perfect). D:
Empirical coverage of the 90% prediction intervals. E: Dispersion (same as in panel A,
B). Higher values mean greater dispersion of the forecast and imply ceteris paribus a
worse score. F: Bias, i.e. general (relative) tendency to over- or underpredict. Values
are between -1 (complete under-prediction) and 1 (complete over-prediction) and 0
ideally. G: Absolute error of the median forecast (lower is better). H. Standard
deviation of all WIS values for different horizons
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Table S8. Scores for one and two week ahead forecasts (cut to three significant digits
and rounded) calculated on forecasts made between December 14th 2020 and March 1st
2021. Numbers in brackets show the metrics relative to the Hub ensemble (i.e. the
median ensemble of all other models submitted to the German and Polish Forecast Hub,
excluding our contributions). WIS is the mean weighted interval score (lower values are
better), WIS - sd is the standard deviation of all scores achieved by a model. Dispersion,
over-prediction and under-prediction together sum up to the weighted interval score.
Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to
over- or underpredict. 50% and 90%-coverage are the percentage of observed values that
fell within the 50% and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Crowd forecast 4980 (0.74) 5730 (0.64) 2070 (0.6) 728 (0.74) 2190 (0.94) 0.09 7810 (0.82) 0.54 0.88

Hub-ensemble 6730 (1) 8960 (1) 3430 (1) 978 (1) 2330 (1) -0.09 9550 (1) 0.62 0.921 wk ahead
Renewal 9640 (1.43) 13300 (1.48) 1970 (0.57) 4170 (4.26) 3500 (1.5) 0.09 12700 (1.33) 0.46 0.71

Crowd forecast 10700 (0.99) 13800 (1.1) 2880 (0.58) 2350 (0.85) 5430 (1.79) 0.08 15400 (1.07) 0.46 0.62

Hub-ensemble 10800 (1) 12500 (1) 4940 (1) 2780 (1) 3030 (1) -0.13 14400 (1) 0.54 0.752 wk ahead
Renewal 25000 (2.31) 34000 (2.72) 4780 (0.97) 8710 (3.13) 11500 (3.8) 0.05 32000 (2.22) 0.50 0.67

Deaths
Convolution 255 (1.03) 343 (1.01) 82 (0.89) 142 (1.23) 31.1 (0.75) -0.18 399 (1.19) 0.42 0.79

Crowd forecast 265 (1.07) 317 (0.94) 78.2 (0.85) 82 (0.71) 105 (2.52) 0.08 402 (1.2) 0.38 0.79

Hub-ensemble 248 (1) 338 (1) 92.2 (1) 115 (1) 41.6 (1) -0.04 334 (1) 0.62 0.921 wk ahead

Renewal 298 (1.2) 403 (1.19) 87 (0.94) 107 (0.93) 105 (2.52) -0.07 413 (1.24) 0.50 0.79

Convolution 357 (1.22) 573 (1.49) 104 (0.79) 204 (1.89) 48.8 (0.94) -0.10 565 (1.32) 0.33 0.79

Crowd forecast 368 (1.26) 442 (1.15) 107 (0.81) 102 (0.94) 160 (3.08) 0.14 576 (1.34) 0.38 0.75

Hub-ensemble 292 (1) 385 (1) 132 (1) 108 (1) 51.9 (1) 0.01 429 (1) 0.62 0.962 wk ahead

Renewal 524 (1.79) 671 (1.74) 155 (1.17) 133 (1.23) 236 (4.55) -0.02 750 (1.75) 0.50 0.71

Table S9. Scores for three and four week ahead forecasts (cut to three significant digits
and rounded) calculated on forecasts made between December 14th 2020 and March 1st
2021. Numbers in brackets show the metrics relative to the Hub ensemble (i.e. the
median ensemble of all other models submitted to the German and Polish Forecast Hub,
excluding our contributions). WIS is the mean weighted interval score (lower values are
better), WIS - sd is the standard deviation of all scores achieved by a model. Dispersion,
over-prediction and under-prediction together sum up to the weighted interval score.
Bias (between -1 and 1, 0 is ideal) represents the general average tendency of a model to
over- or underpredict. 50% and 90%-coverage are the percentage of observed values that
fell within the 50% and 90% prediction intervals of a model.

Model WIS WIS - sd dispersion Underpred. Overpred. Bias Abs. error 50%-Cov. 90%-Cov.

Cases
Crowd forecast 17200 (1) 16000 (0.98) 3800 (0.63) 5660 (0.85) 7770 (1.74) 0.07 26800 (1.1) 0.08 0.58

Hub-ensemble 17200 (1) 16300 (1) 6030 (1) 6670 (1) 4470 (1) -0.16 24400 (1) 0.33 0.673 wk ahead
Renewal 37700 (2.19) 55900 (3.43) 8840 (1.47) 10700 (1.6) 18100 (4.05) -0.03 49800 (2.04) 0.33 0.58

Crowd forecast 26100 (0.95) 21000 (0.84) 4810 (0.7) 11300 (0.83) 10100 (1.43) 0.04 39400 (1.05) 0.00 0.46

Hub-ensemble 27600 (1) 25000 (1) 6900 (1) 13600 (1) 7060 (1) -0.19 37400 (1) 0.29 0.544 wk ahead
Renewal 48900 (1.77) 77800 (3.11) 13800 (2) 11900 (0.88) 23200 (3.29) -0.10 65500 (1.75) 0.38 0.58

Deaths
Convolution 541 (1.7) 802 (2.45) 157 (0.91) 279 (3.01) 105 (1.91) -0.04 747 (1.53) 0.54 0.75

Crowd forecast 414 (1.3) 526 (1.6) 137 (0.8) 82 (0.88) 194 (3.52) 0.12 648 (1.33) 0.42 0.83

Hub-ensemble 319 (1) 328 (1) 172 (1) 92.7 (1) 55.1 (1) -0.03 488 (1) 0.54 0.963 wk ahead

Renewal 724 (2.27) 916 (2.79) 249 (1.45) 158 (1.7) 317 (5.75) -0.01 1040 (2.13) 0.46 0.83

Convolution 763 (1.8) 932 (2.1) 268 (1.26) 331 (2.63) 164 (1.91) 0.01 985 (1.46) 0.54 0.75

Crowd forecast 498 (1.17) 633 (1.43) 168 (0.79) 83.6 (0.66) 246 (2.87) 0.14 756 (1.12) 0.38 0.79

Hub-ensemble 424 (1) 443 (1) 212 (1) 126 (1) 85.7 (1) -0.06 675 (1) 0.58 0.924 wk ahead

Renewal 959 (2.26) 1210 (2.73) 337 (1.59) 200 (1.59) 421 (4.91) -0.05 1350 (2) 0.50 0.79
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Overview of models and forecasters 82

Table S10. Overview of the models and ensembles used.

Name Explanation

Hub-ensemble-realised Official Forecast Hub median ensemble.
Created by the Forecast Hub officially under
the name ’KITCOVIDhub-median_ensemble’
and used as the default ensemble. Included are
our crowd forecasts as well as the renewal model
(with one missed submission on December 28
2020, but not the convolution model which was
deemed to similar to the renewal model.

Hub-ensemble-realised-mean Official Forecast Hub mean ensemble. Created
by the Forecast Hub officially under the name
’KITCOVIDhub-mean_ensemble’.

Hub-ensemble Version of the official Hub median ensemble
which excludes all our contributions.

Hub-ensemble-mean Version of the official Hub mean ensemble
which excludes all our contributions.

Hub-ensemble-with-renewal,
Hub-ensemble-with-renewal-
mean

Versions of the official Hub ensembles which of
our contributions includes only the Renewal
model.

Hub-ensemble-with-crowd,
Hub-ensemble-with-crowd-
mean

Versions of the official Hub ensembles which of
our contributions includes only the Crowd
forecast.

Hub-ensemble-with-
convolution,
Hub-ensemble-with-
convolution-mean

Versions of the official Hub ensembles which of
our contributions includes only the Convolution
model (which originally was never included in
any official Hub ensemble).

Hub-ensemble-with-all,
Hub-ensemble-with-all-mean

Versions of the official Hub ensembles which
includes all our contributions. For cases, this is
identical to the official Hub ensembles, but for
deaths the convolution model was added.

Crowd forecast Submitted to the Forecast Hub as
’epiforecasts-EpiExpert’

Renewal model Submitted to the Forecast Hub as
’epiforecasts-EpiNow2’

Convolution model Submitted to the Forecast Hub as
’epiforecasts-EpiNow2_secondary’
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Fig S23. Number of participants who submitted a forecast over time.
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Fig S24. Number of member models (including our crowd forecasts and the renewal
model) in the official Hub ensemble. Note that the renewal model was not included in
the ensemble on December 28th 2020.
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Comparison of crowd forecasts and application baseline 83

Fig S25. Crowd forecasts and baseline shown in the application for a two week horizon.
Shown are the median, as well as the 50% and 90% prediction intervals (in order of
decreasing opacity). For any given point in time, the baseline shown in red is what
forecasters saw when they opened the app (the baseline shown was constant across all
forecast horizons).
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5 Transformation of forecasts for evaluating
predictive performance in an epidemiological
context

Chapter 4 revealed a few shortcomings of the weighted interval score as it is commonly
applied in epidemiology. We saw that average scores were dominated by outliers, and overall
scores scaled with incidences. This made it difficult to compare forecasts across time and
location, and in particular across forecast targets. More importantly, there is a tension
when evaluating forecasts on the absolute distance between forecast and observation, while
the underlying process we try to model is exponential in nature. It might therefore be
more appropriate to evaluate forecasts of infectious disease based on how well they capture
the exponential growth rate of a disease process. This could provide a more meaningful
signal about which forecasters to trust in the future, as it more closely represents the actual
modelling task one has to solve in order to create an accurate representation of the spread of
the infectious disease.

Different scores emphasise different kinds of errors differently. For example, in Chapter 4,
the WIS penalised forecasts that overshot after missing a peak strongly. It did, however,
penalise models only minimally if they were too late to predict an increase in numbers while
incidences were still low. Arguably, this kind of early warning is something that policy
makers would care about, but which is neglected in current evaluations. Forecast evaluations
play an important role not only as a signal to modellers who aim to improve their models.
They also help decision makers select which models should inform their policies in the future.
If the score does not accurately reflect what policy makers care about in a good forecast,
then policy makers may not pick the best model to guide their decisions.

Chapter 5 explores ways in which the forecast evaluation can be aligned more closely with
what forecast consumers actually care about. One possible solution is to transform forecasts
and observations before applying the WIS. We propose and analyse the natural logarithm as
a transformation that is particularly attractive in an epidemiological context, but there are
many more possible transformations. In particular, the idea of transforming forecasts opens
up the possibility of creating composite scores, in which a score is constructed as a linear
combination of scores obtained after various different transformations. This could, in the
future, enable policy makers to create their own custom scores which exactly reflect what
they care about.
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Abstract

Forecast evaluation is essential for the development of predictive epidemic models and can

inform their use for public health decision-making. Common scores to evaluate epidemiolog-

ical forecasts are the Continuous Ranked Probability Score (CRPS) and the Weighted Inter-

val Score (WIS), which can be seen as measures of the absolute distance between the

forecast distribution and the observation. However, applying these scores directly to pre-

dicted and observed incidence counts may not be the most appropriate due to the exponen-

tial nature of epidemic processes and the varying magnitudes of observed values across

space and time. In this paper, we argue that transforming counts before applying scores

such as the CRPS or WIS can effectively mitigate these difficulties and yield epidemiologi-

cally meaningful and easily interpretable results. Using the CRPS on log-transformed values

as an example, we list three attractive properties: Firstly, it can be interpreted as a probabi-

listic version of a relative error. Secondly, it reflects how well models predicted the time-vary-

ing epidemic growth rate. And lastly, using arguments on variance-stabilizing

transformations, it can be shown that under the assumption of a quadratic mean-variance

relationship, the logarithmic transformation leads to expected CRPS values which are inde-

pendent of the order of magnitude of the predicted quantity. Applying a transformation of log

(x + 1) to data and forecasts from the European COVID-19 Forecast Hub, we find that it

changes model rankings regardless of stratification by forecast date, location or target

types. Situations in which models missed the beginning of upward swings are more strongly

emphasised while failing to predict a downturn following a peak is less severely penalised

when scoring transformed forecasts as opposed to untransformed ones. We conclude that

appropriate transformations, of which the natural logarithm is only one particularly attractive

option, should be considered when assessing the performance of different models in the

context of infectious disease incidence.
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Author summary

Scores like the Continuous Ranked Probability Score (CRPS) or the Weighted Interval

Score (WIS) are commonly used to evaluate epidemiological forecasts and are a measure

of absolute distance between forecast and observation. Due to the exponential nature of

epidemic processes, evaluating the absolute distance between forecast and observation

may not be ideal. We argue that transforming counts before applying the CRPS or WIS

can yield more meaningful results. The natural logarithm is a particularly attractive

transformation in epidemiological settings. Scores computed on log-transformed values

can be interpreted as a probabilistic version of a relative error and reflect how well fore-

casters predict the time-varying epidemic growth rate. If the data-generating process has

a quadratic mean-variance relationship, the logarithmic transformation also leads to

expected CRPS values which are independent of the order of magnitude of the predicted

quantity. We illustrate these properties using data from the European COVID-19 Fore-

cast Hub and find that scoring transformed counts changes model rankings. Stronger

emphasis is given to situations in which forecasters missed the beginning of upward

swings, while failing to predict a downturn following a peak is less severely penalised.

We generally recommend including evaluations of transformed counts when assessing

forecaster performance.

Introduction

Probabilistic forecasts [1] play an important role in decision-making in epidemiology and pub-

lic health [2], as well as other areas as diverse as economics [3] or meteorology [4]. Forecasts

based on epidemiological modelling in particular have received widespread attention during

the COVID-19 pandemic. Evaluations of forecasts can provide feedback for researchers to

improve their models and train ensembles. They moreover help decision-makers distinguish

good from bad predictions and choose forecasters and models that are best suited to inform

future decisions.

Probabilistic forecasts are usually evaluated using so-called (strictly) proper scoring rules

[5], which return a numerical score as a function of the forecast and the observed data.

Proper scoring rules are constructed such that they encourage honest forecasting and cannot

be ‘gamed’ or ‘cheated’. Assuming that the forecaster’s actual best judgement corresponds to

a predictive distribution F, a proper score is constructed such that if F was the data-generat-

ing process, no other distribution G would yield a better expected score. A scoring rule is

called strictly proper if there is no other distribution that under F achieves the same expected

score as F, meaning that any deviation from F leads to a worsening of expected scores. Fore-

casters (anyone or anything that issues a forecast) are thus incentivised to report their true

belief F about the future. Common proper scoring rules are the logarithmic or log score [6]

and the continuous ranked probability score (CRPS, [5]). The log score is the predictive log

density or probability mass evaluated at the observed value. It is supported by the likelihood

principle [7] and has many desirable theoretical properties; however, the particularly severe

penalties it assigns to occasional misguided forecasts make it little robust [8]. Moreover, it is

not easily applied to forecasts reported as samples or quantiles, as used in many recent dis-

ease forecasting efforts. It is nonetheless occasionally used in epidemiology (see e.g., [1, 9]),

but in recent years the CRPS and the weighted interval score (WIS, [8]) have become increas-

ingly popular.
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The CRPS measures the distance of the predictive distribution to the observed data as

CRPSðF; yÞ ¼
Z 1

� 1

ðFðxÞ � 1ðx � yÞÞ2 dx; ð1Þ

where y is the true observed value, F is the cumulative distribution function (CDF) of the pre-

dictive distribution, and 1() is the indicator function. The CRPS can be understood as a gener-

alisation of the absolute error to predictive distributions, and interpreted on the natural scale

of the data. The WIS is an approximation of the CRPS for predictive distributions represented

by a set of predictive quantiles and is currently used to assess forecasts in the so-called

COVID-19 Forecast Hubs in the US [10, 11], Europe [12] and Germany and Poland [13, 14],

as well as the US FluSight project on influenza forecasting [15]. The WIS is defined as

WISðF; yÞ ¼
1

K
�
XK

k¼1

2� 1ðy � qtkÞ � tk
h i

� ðqtk � yÞ; ð2Þ

where qτ is the τ quantile of the forecast F, y is the observed outcome and K is the number of

(roughly equally spaced) predictive quantiles provided. The WIS can be decomposed into

three components, dispersion, underprediction and overprediction, which reflect the spread of

the forecast and whether it was centred above or below the observed value. We show an alter-

native definition based on central prediction intervals in S1 Text which illustrates this

decomposition.

The notion of absolute distance encoded by the CRPS and WIS provides a straightforward

interpretation, but may not always be the most useful perspective in the context of infectious

disease spread. Especially in their early phase, outbreaks are best conceived as exponential pro-

cesses, characterized by potentially time varying reproduction numbers Rt [16] or epidemic

growth rates rt [17]. If the true modelling task revolves around estimating and forecasting

these quantities, then evaluating forecasts based on the absolute distance between forecasted

and observed incidence values penalises underprediction (of the reproduction number or

growth rate) less than overprediction by the same amount. For illustration, consider an inci-

dence forecast issued at time 0 and referring to time t that misses the correct average growth

rate �rt by either −� or + �. Then the ratio of the resulting absolute errors on the scale of

observed incidences yt is

jy0 exp½ð�rt � �Þ � t� � y0 expð�rttÞj
jy0 exp½ð�rt þ �Þ � t� � y0 expð�rttÞj

¼ expð� �tÞ < 1: ð3Þ

If one is to measure the ability to forecast the underlying infection dynamics, it may thus be

more desirable to evaluate errors on the scale of the growth rate directly.

Another argument against using notions of absolute distance between predicted and

observed incidence values is that forecast consumers may find errors on a relative scale easier

to interpret and more useful in order to track predictive performance across targets of different

orders of magnitude. [18] have proposed the scaled CRPS (SCRPS) which is locally scale

invariant; however, it does not correspond to a relative error measure and lacks a straightfor-

ward interpretation as available for the CRPS.

Lastly, it may be considered desirable to give all forecast targets similar weight in an overall

performance evaluation. As the CRPS typically scales with the order of magnitude of the quan-

tity to be predicted, this is not the case for the CRPS, which will typically assign higher scores

to forecast targets with high expected values (e.g., in large locations or around the peak of an

epidemic). Bracher et al. [8] have argued that this is a desirable feature, directing attention to

situations of particular public health relevance. An evaluation based on absolute errors,
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however, will assign little weight to other potentially important aspects, such as the ability to

correctly predict future upswings while observed numbers are still low.

In many fields, it is common practice to forecast transformed quantities (see e.g. [19] in

finance, [20] in macroeconomics, [21] in hydrology or [22] in meteorology). While the goal of

the transformations is often to improve the accuracy of the predictions, they can also be used

to enhance and complement the evaluation process. In this paper, we argue that the aforemen-

tioned issues with evaluating epidemic forecasts based on measures of absolute error on the

natural scale can be addressed by transforming the forecasts and observations prior to scoring

using some strictly monotonic transformation. Strictly monotonic transformations can shift

the focus of the evaluation in a way that may be more appropriate for epidemiological fore-

casts, while guaranteeing that the score remains proper. Many different transformations may

be appropriate and useful, depending on the exact context, the desired focus of the evaluation,

and specific aspects forecast consumers care most about (see Discussion).

For conceptual clarity and to allow for a more in-depth discussion, we focus mostly on the

natural logarithm as a particularly attractive transformation in the context of epidemic phe-

nomena. We refer to this transformation as ‘log-transformation’ and to scores that have been

computed from log-transformed forecasts and observations as scores ‘on the log scale’ (as

opposed to scores ‘on the natural scale’, which involve no transformation). In the theoretical

part of the paper, ‘log-transformation’ and ‘log scale’ generally refer to a transformation of

loge(x). For practical applications in the later sections we also use these terms to describe a

transformation of loge(x + a) with a small a> 0 in order to keep the terminology and notation

simple. For a prediction target with strictly positive support, the CRPS after applying a log-

transformation is given by

CRPSðFlog; log yÞ ¼
Z 1

� 1

ðFlogðxÞ � 1ðx � log yÞÞ2dx: ð4Þ

Here, y is again the observed outcome and Flog is the predictive CDF of the log-transformed

outcome, i.e.,

FlogðxÞ ¼ FðexpðxÞÞ; ð5Þ

with F the CDF on the original scale. Instead of a score representing the magnitude of absolute

errors, applying a log-transformation prior to the CRPS yields a score which a) measures rela-

tive error, b) provides a measure for how well a forecast captures the exponential growth rate

of the target quantity and c) is less dependent on the expected order of magnitude of the quan-

tity to be predicted). We therefore argue that such evaluations on the logarithmic scale should

complement the prevailing evaluations on the natural scale. Other transformations may like-

wise be of interest. We briefly explore the square root transformation as an alternative trans-

formation. Our analysis mostly focuses on the CRPS (or WIS) as an evaluation metric for

probabilistic forecasts, given its widespread use throughout the COVID-19 pandemic. We

note that the logarithmic score has scale invariance properties which imply that score differ-

ences between different forecasts are invariant to strictly monotonic transformations (see [23]

on corresponding properties of likelihood ratios and [24]). The question of the right scale to

evaluate forecasts on does therefore not arise for the log score.

The remainder of the article is structured as follows. First, we provide some mathematical

intuition on applying the log-transformation prior to evaluating the CRPS, highlighting the

connections to relative error measures, the epidemic growth rate and variance stabilizing

transformations. We then discuss the effect of the log-transformation on forecast rankings as

well as practical considerations for applying transformations in general and the log-
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transformation in particular. To analyse the real-world implications of the log-transformation

we use forecasts submitted to the European COVID-19 Forecast Hub [12, 25]. Finally, we pro-

vide scoring recommendations, discuss alternative transformations that may be useful in dif-

ferent contexts, and suggest further research avenues).

Logarithmic transformation of forecasts and observations

Interpretation as a relative error

To illustrate the effect of applying the natural logarithm prior to evaluating forecasts we con-

sider the absolute error, which the CRPS and WIS generalize to probabilistic forecasts. We

assume strictly positive support (meaning that no specific handling of zero values is needed), a

restriction we will address when applying this transformation in practice. When considering a

point forecast ŷ for a quantity of interest y, such that

y ¼ ŷ þ ε; ð6Þ

the absolute error is given by |ε|. When taking the logarithm of the forecast and the observa-

tion first, thus considering

log y ¼ log ŷ þ ε∗; ð7Þ

the resulting absolute error |ε*| can be interpreted as an approximation of various common

relative error measures. Using that log(a)� a − 1 if a is close to 1, we get

jε∗j ¼ jlog ŷ � log yj ¼
�
�
�
�log

ŷ
y

� ��
�
�
� �

if ŷ � y
�
�
�
�
ŷ
y
� 1

�
�
�
� ¼

�
�
�
�
ŷ � y
y

�
�
�
�: ð8Þ

The absolute error after log transforming is thus an approximation of the absolute percent-
age error (APE, [26]) as long as forecast and observation are close. As we assumed that ŷ � y,

we can also interpret it as an approximation of the relative error (RE, [26])

�
�
�
�
ŷ � y
ŷ

�
�
�
� ð9Þ

and the symmetric absolute percentage error (SAPE; see e.g., [27])

�
�
�
�

ŷ � y
y=2þ ŷ=2

�
�
�
�: ð10Þ

As Fig 1 shows, the alignment with the SAPE is in fact the closest and holds quite well even

if predicted and observed value differ by a factor of two or three. Generalising to probabilistic

forecasts, the CRPS applied to log-transformed forecasts and outcomes can thus be seen as a

probabilistic counterpart to the symmetric absolute percentage error, which offers an appeal-

ing intuitive interpretation.

Interpretation as scoring the exponential growth rate

Another interpretation for the log-transform is possible if the generative process is framed as

exponential with a time-varying growth rate r(t) (see e.g. [28]), i.e.

d
dt
yðtÞ ¼ rðtÞyðtÞ ð11Þ
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which is solved by

yðtÞ ¼ y0 exp
�Z t

0

rðt0Þdt0
�

¼ y0 expð�rt tÞ ð12Þ

where y0 is an initial data point and �rt is the mean of the growth rate between the initial time

point 0 and time t.
If a forecast ŷðtÞ for the value of the time series at time t is issued at time 0 based on the data

point y0 then the absolute error after log transformation is

�∗ ¼ jlog ½ŷðtÞ� � log ½yðtÞ�j

¼ jlog ½y0 expð �̂rt tÞ� � log ½y0 expð�rt tÞ�j

¼ tj �̂rt � �rt j

ð13Þ

where �rt is the true mean growth rate and �̂rt is the forecast mean growth rate. We thus evaluate

the error in the mean exponential growth rate, scaled by the length of the time period consid-

ered. Again generalising this to the CRPS and WIS implies a probabilistic evaluation of fore-

casts of the epidemic growth rate.

Interpretation as a variance-stabilising transformation

When evaluating models across sets of forecasting tasks, it may be desirable for each target to

have a similar impact on the overall results. This could be motivated by the assumption that

forecasts from different geographical units and time periods provide similar amounts of infor-

mation about how well a forecaster performs. One would then like the resulting scores to be

independent of the order of magnitude of the target to predict. CRPS values on the natural

scale, however, typically scale with the order of magnitude of the quantity to be predicted.

Average scores are then dominated by the results achieved for targets with high expected out-

comes in a way that does not necessarily reflect the underlying predictive ability well.

Fig 1. Numerical comparison of different measures of relative error: Absolute percentage error (APE), relative error (RE), symmetric absolute

percentage error (SAPE) and the absolute error applied to log-transformed predictions and observations. We denote the predicted value by ŷ and

display errors as a function of the ratio of observed and predicted value. A: x-axis shown on a linear scale. B: x-axis shown on a logarithmic scale.

https://doi.org/10.1371/journal.pcbi.1011393.g001
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If the predictive distribution for the quantity Y equals the true data-generating process F
(an ideal forecast), the expected CRPS is given by [5]

E½CRPSðF; yÞ� ¼ 0:5� EjY � Y 0j; ð14Þ

where Y and Y0 are independent samples from F. This corresponds to half the mean absolute
difference, which is a measure of dispersion. If F is well-approximated by a normal distribution

N(μ, σ2), the approximation

EF½CRPSðF; yÞ� �
s
ffiffiffi
p
p ð15Þ

can be used. This means that the expected CRPS scales roughly with the standard deviation,

which in turn typically increases with the mean in epidemiological forecasting. In order to

make the expected CRPS independent of the expected outcome, a variance-stabilising transfor-
mation (VST, [29, 30]) can be employed. The choice of this transformation depends on the

mean-variance relationship of the underlying process.

If the mean-variance relationship of the data-generating distribution is quadratic with σ2 =

c × μ2, the natural logarithm can serve as the VST. Denoting by Flog the predictive distribution

for log(Y), we can use the delta method (a first-order Taylor approximation, see e.g., [30]), to

show that

EF½CRPSfFlog; logðyÞg� �
s=m
ffiffiffi
p
p ¼

ffiffi
c
p

ffiffiffi
p
p : ð16Þ

As σ and μ are linked through the quadratic mean-variance relationship (or linear mean-

standard deviation relationship, s ¼
ffiffi
c
p
� m), the expected CRPS thus stays constant regard-

less of the expected value of the data-generating distribution μ. The assumption of a quadratic

mean-variance relationship is closely linked to the aspects discussed earlier. It implies that rela-

tive errors have constant variance and can thus be meaningfully compared across different tar-

gets. Also, it arises naturally if we assume that our capacity to predict the epidemic growth rate

does not depend on the expected outcome, i.e. does not depend on the current phase of the

epidemic or the order of magnitude of current observations.

If the mean-variance relationship is linear with σ2 = c × μ, as with a Poisson-distributed var-

iable, the square root is known to be a VST [30]. Denoting by F ffiffip the predictive distribution

for
ffiffiffiffi
Y
p

, the delta method can again be used to show that

EF½CRPSfF ffiffip ;
ffiffiffiyp g� �

s=
ffiffiffi
m
p

2
ffiffiffi
p
p ¼

ffiffi
c
p

2
ffiffiffi
p
p : ð17Þ

We note that while standard in the derivation of variance-stabilizing transformations, the

application of the delta method in Eqs (16) and (17) requires the probability mass of F to be

tightly distributed. If this is not the case, the approximation and thus the variance stabilization

may be less accurate.

To strengthen our intuition on how transforming outcomes prior to applying the CRPS

shifts the emphasis between targets with high and low expected outcomes, Fig 2 shows the

expected CRPS of ideal forecasters under different mean-variance relationships and transfor-

mations. We consider a Poisson distribution where σ2 = μ, a negative binomial distribution

with size parameter θ = 10 and thus σ2 = μ + μ2/10, and a truncated normal distribution with

practically constant variance. We see that when applying the CRPS on the natural scale, the

expected CRPS grows monotonically as the variance of the predictive distribution (which is

equal to the data-generating distribution for the ideal forecaster) increases. The expected
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CRPS is constant only for the distribution with constant variance, and grows in μ for the other

two. When applying a log-transformation first, the expected CRPS is almost independent of μ
for the negative binomial distribution and large μ, while smaller targets have higher expected

CRPS in case of the Poisson distribution and the normal distribution with constant variance.

When applying a square-root-transformation, the expected CRPS is independent of the mean

for the Poisson-distribution, but not for the other two (with a positive relationship in the nor-

mal case and a negative one for the negative binomial). As can be seen in Fig 2 and S3 Fig, the

approximations presented in Eqs (16) and (17) work quite well for our simulated example.

Effects on model rankings

Rankings between different forecasters based on the CRPS may change when making use of a

transformation, both in terms of aggregate and individual scores. We illustrate this in Fig 3

with two forecasters, A and B, issuing two different distributions with different dispersion.

When showing the obtained CRPS as a function of the observed value, it can be seen that the

ranking between the two forecasters may change when scoring the forecast on the logarithmic,

rather than the natural scale. In particular, on the natural scale, forecaster A, who issues a

more uncertain distribution, receives a better score than forecaster B for observed values far

away from the centre of the respective predictive distribution. On the log scale, however,

Fig 2. Expected CRPS scores as a function of the mean and variance of the forecast quantity. We computed expected CRPS values for three different

distributions, assuming an ideal forecaster with predictive distribution equal to the true underlying (data-generating) distribution. These expected

CRPS values were computed for different predictive means based on 10,000 samples each and are represented by dots. Solid lines show the

corresponding approximations of the expected CRPS from Eqs (16) and (17). S3 Fig shows the quality of the approximation in more detail. The first

distribution (red) is a truncated normal distribution with constant variance (we chose σ = 1 in order to only obtain positive samples). The second

(green) is a negative binomial distribution with variance θ = 10 and variance σ2 = μ + 0.1μ2. The third (blue) is a Poisson distribution with σ2 = μ. To

make the scores for the different distributions comparable, scores were normalised to one, meaning that the mean score for every distribution (red,

green, blue) is one. A: Normalised expected CRPS for ideal forecasts with increasing means for three distribution with different relationships between

mean and variance. Expected CRPS was computed on the natural scale (left), after applying a square-root transformation (middle), and after adding one

and applying a log-transformation to the data (right). B: A but with x and y axes on the log scale.

https://doi.org/10.1371/journal.pcbi.1011393.g002
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forecaster A receives a lower score for large observed values, being more heavily penalised for

assigning large probability to small values (which, in relative terms, are far away from the

actual observation). We note that the chosen example involving a geometric forecast distribu-

tion is somewhat constructed; as illustrated in our practical example, rankings between models

in practice stay quite stable for a single forecast.

Overall model rankings would be expected to differ more when scores are averaged across

multiple forecasts or targets. The change in rankings of aggregate scores usually is mainly

driven by the order of magnitude of scores for different forecast targets across time, location

and target type and less so by the kind of changes in model rankings for single forecasts dis-

cussed above. Large observations will dominate average CRPS values when evaluation is done

on the natural scale, but much less so after log transformation. Depending on how different

models perform across targets of different orders of magnitude, rankings in terms of average

scores may change when applying a transformation.

Practical considerations and other transformations

In practice, one issue with the log transform is that it is not readily applicable to negative or

zero values, which need to be removed or otherwise handled. One common approach to this

end is to add a small positive quantity, such as a = 1, to all observations and predictions before

taking the logarithm [31]. This still represents a strictly monotonic transformation, but the

choice of a does influence scores and rankings (measures of relative errors shrink the larger

the chosen value a). As a rule of thumb, if if x> 5a, the difference between log (x + a) and log

(x) is small, and it becomes negligible if x> 50a. Choosing a suitable offset a thus balances two

competing concerns: on the one hand, choosing a small a makes sure that the transformation

is as close to a natural logarithm as possible and scores can be interpreted as outlined in the

previous sections. On the other hand, choosing a larger a can help stabilise scores for forecasts

and observations close to zero, avoiding giving excessive weight to forecasts of small quantities.

For increasing a, less relative weight is given to smaller forecast targets. For very large values of

a, log(x + a) is roughly linear in x, so that using a very large a implies similar relative weighting

as applying no transformation at all. In practice, a user could explore the effect of different

Fig 3. Illustration of the effect of the log-transformation of the ranking for a single forecast. Shown are CRPS (or WIS, respectively) values as a

function of the observed value for two forecasters. Model A issues a geometric distribution (a negative binomial distribution with size parameter θ = 1)

with mean μ = 10 and variance σ2 = μ + μ2 = 110), while Model B issues a Poisson distribution with mean and variance equal to 10. Zeroes in this

illustrative example were handled by adding one before applying the natural logarithm.

https://doi.org/10.1371/journal.pcbi.1011393.g003
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values of a graphically and choose a such that the relative weightings of times and regions with

high and low incidence correspond to their preferences.

A related issue occurs when the predictive distribution has a large probability mass on zero

(or on very small values), as this can translate into an excessively wide forecast in relative

terms. In our applied example this is illustrated in S7 Fig. In such instances, the dispersion

component of the WIS is inflated for scores obtained after applying the natural logarithm

because forecasts contained zero in its prediction intervals. To deal with this issue one could

choose to use a higher a value when applying a transformation log(x + a), for example a = 10

instead of the a = 1 that we chose to use.

A natural question is which other transformations could be applied and whether resulting

scores remain (strictly) proper. In principle, any transformation function can be applied

simultaneously to forecasts and observations as long as the definition of the transformation is

independent of the forecasts and any quantities unknown at the time of forecasting, including

the observed value. This simply corresponds to a re-definition of the forecasting target. How-

ever, applying non-invertible transformations leads to a loss in information conveyed by fore-

casts, which we consider undesirable. The resulting score will be proper, but it may not be

strictly proper anymore (as forecasts differing from the forecaster’s true belief on the original

scale may be identical on the transformed scale). When using the CRPS or the WIS, it seems

most appropriate to use only strictly monotonic transformations such as the natural logarithm

or the square root as otherwise the encoded notion of distance may become meaningless.

Some other strictly monotonic transformations that can be applied are scaling by the popu-

lation size or scaling by past observations. The latter is similar to applying a log-transforma-

tion, but corresponds to evaluating a forecast of multiplicative, rather than exponential growth

rates. The arising issue of dividing by zero can again be solved by adding a small offset a. Scal-

ing a forecast by the later observed value (as opposed to scaling by past observations) is gener-

ally not permissible as it can result in improper scores (see [32] on the closely related topic of

weighting scores with a function of the observed value). Similarly, scaling forecasts and obser-

vations by a function of the predictive distribution (like the predictive mean) may lead to

improper scores; however, we are unaware of existing theoretical arguments on this.

When applying a transformation, the order of the operations matters, and applying a trans-

formation after scores have been computed generally does not guarantee that the score

remains proper. In the case of log transforms, taking the logarithm of the CRPS values, rather

than scoring the log-transformed forecasts and data, results in an improper score. We illustrate

this point using simulated data in S1 Fig, where it can be seen that in the example overconfi-

dent models perform best in terms of the log WIS. We note that strictly speaking, re-scaling

average scores by the average score of a baseline model or average scores across different mod-

els to obtain skill scores likewise leads to improper scores [5]. The application of such skill

scores, however, is established practice and considered largely unproblematic.

We note that in the practical evaluation of operational forecasting systems several addi-

tional challenges arise, which we do not study in detail. These concern e.g., the removal of out-

lying observations and forecasts and the handling of missing forecasts. The solutions we

employed in practice are detailed below.

Empirical example: The European Forecast Hub

Setting

As an empirical comparison of evaluating forecasts on the natural and on the log scale, we use

forecasts from the European Forecast Hub [12, 25]. The European COVID-19 Forecast Hub is

one of several COVID-19 Forecast Hubs [11, 13] which have been systematically collecting,
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aggregating and evaluating forecasts of several COVID-19 targets created by different teams

every week. Forecasts are made one to four weeks ahead into the future and follow a quantile-

based format with a set of 23 quantiles (0.01, 0.025, 0.05, . . ., 0.5, . . .0.95, 0.975, 0.99).

The forecasts used for the purpose of this illustration are forecasts submitted between the

8th of March 2021 and the 5th of December 2022 for reported cases and deaths from COVID-

19. Target dates range from the 13th of March 2021 to the 10th of December 2022, for a total

of 92 weeks. See [12] for a more thorough description of the data. We filtered all forecasts sub-

mitted to the Hub to only include the seven models which have submitted forecasts for both

deaths and cases for 4 horizons in 32 locations on at least 46 forecast dates (see S4 Fig). We

removed all observations marked as data anomalies by the European Forecast Hub [12] as well

as all remaining negative observed values. These anomalies made up a relevant fraction of all

observations. On average across locations, 12.1 out of 92 (13.2%) observations were removed

for cases and 12.4 out of 92 (13.5%) for deaths. S5 Fig displays the number of anomalies

removed for each location. In addition, we filtered out a small number of erroneous forecasts

that were in extremely poor agreement with the observed data, as defined by any of the condi-

tions listed in S2 Table. S6 Fig shows the percentage of forecasts removed for each model.

Those few (less than 0.2% of forecasts for each model) erroneous outlier forecasts had excessive

influence on average scores and relative skill scores in a way that was not representative of nor-

mal model behaviour. We removed them here in order to better illustrate the effects of the log-

transformation on scores that one would expect in a well-behaved scenario. In a regular fore-

cast evaluation such erroneous forecasts should usually not be removed and would count

towards overall model scores.

All predictive quantiles were truncated at 0. We applied the log-transformation after adding

a constant a = 1 to all predictions and observed values. The choice of a = 1 in part reflects con-

vention, but also represents a suitable choice as it avoids giving excessive weight to forecasts

close to zero, while at the same time ensuring that scores for observations >5 can be inter-

preted reasonably. S2 Fig illustrates the effect of adding a small quantity before taking the loga-

rithm. The analysis was conducted in R [33], using the scoringutils package [34] for

forecast evaluation. All code is available on GitHub (https://github.com/epiforecasts/

transformation-forecast-evaluation). Where not otherwise stated, we report results for a two-

week-ahead forecast horizon.

In addition to the WIS we use pairwise comparisons [11] to evaluate the relative perfor-

mance of models across countries in the presence of missing forecasts. In the first step, score

ratios are computed for all pairs of models by taking the set of overlapping forecasts between

the two models and dividing the score of one model by the score achieved by the other model.

The relative skill for a given model compared to others is then obtained by taking the geomet-

ric mean of all score ratios which involve that model. Low values are better, and the “average”

model receives a relative skill score of 1.

Illustration and qualitative observations

When comparing examples of forecasts on the natural scale with those on the log scale (see Fig

4, S7 and S8 Figs) a few interesting patterns emerge. Missing the peak, i.e. predicting increas-

ing numbers while actual observations are already falling, tends to contribute a lot to overall

scores on the natural scale (see forecasts during the peak in May 2022 in Fig 4A and 4B). On

the log scale, these have less of an influence, as errors are smaller in relative terms (see Fig 4C

and 4D). Conversely, failure to predict an upswing while numbers are still low, is less severely

penalised on the natural scale (see forecasts in July 2021 and to a lesser extent in July 2022 in

Fig 4A and 4B), as overall absolute errors are low. On the log scale, missing lower inflection
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points tends to lead to more severe penalties (see Fig 4C and 4D). One can also observe that on

the natural scale, scores tend to track the overall level of the target quantity (compare for exam-

ple forecasts for March-July with forecasts for September-October in Fig 4E and 4F). On the

log scale, scores do not exhibit this behaviour and rather increase whenever forecasts are far

away from the truth in relative terms, regardless of the overall level of observations.

Across the dataset, the average number of observed cases and deaths varied considerably by

location and target type (see Fig 5A and 5B). On the natural scale, scores show a pattern quite

similar to the observations across targets (see Fig 5D) and locations (see Fig 5C). On the log

scale, scores were more evenly distributed between targets (see Fig 5D) and locations (see Fig

5C). Both on the natural scale as well on the log scale, scores increased considerably with

increasing forecast horizon (see Fig 5E). This reflects the increasing difficulty of forecasts fur-

ther into the future and, for the log scale, corresponds with our expectations based on the theo-

retical considerations detailed above.

Fig 4. Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-ensemble made in Germany. Missing values are due to data

anomalies that were removed. A, E: 50% and 90% prediction intervals and observed values for cases and deaths on the natural scale. B, F:

Corresponding scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

https://doi.org/10.1371/journal.pcbi.1011393.g004
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To assess the impact of the choice of offset value a we extend the display from Fig 5C by

results obtained under different specifications. Results are shown in Fig 6, where for com-

pleteness we also added the square root transformation. Smaller values of a increase the rel-

ative weight of smaller locations in the overall evaluation. In the most extreme considered

Fig 5. Observations and scores across locations and forecast horizons for the European COVID-19 Forecast Hub data. Locations are sorted

according to the mean observed value in that location. A: Average (across all time points) of observed cases and deaths for different locations. B:

Corresponding boxplot (y-axis on log-scale) of all cases and deaths. C: Scores for two-week-ahead forecasts from the EuroCOVIDhub-ensemble

(averaged across all forecast dates) for different locations, evaluated on the natural scale as well as after transforming counts by adding one and applying

the natural logarithm. D: Corresponding boxplots of all individual scores of the EuroCOVIDhub-ensemble for two-week-ahead predictions. E: Boxplots

for the relative change of scores for the EuroCOVIDhub-ensemble across forecast horizons. For any given forecast date and location, forecasts were

made for four different forecast horizons, resulting in four scores. All scores were divided by the score for forecast horizon one. To enhance

interpretability, the range of visible relative changes in scores (relative to horizon = 1) was restricted to [0.1, 10].

https://doi.org/10.1371/journal.pcbi.1011393.g005
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case a = 0.001, the smallest locations in fact receive the largest weight both for deaths

and cases. For very large values (see the third row of Fig 6), the relative weights strongly

resemble those of the evaluation on the natural scale. We recommend using displays of this

type to get an intuition for the role different locations may play for overall evaluation

results.

Fig 6. Mean WIS in different locations for different transformations applied before scoring. Locations are sorted according to the mean observed

value in that location. Shown are scores for two-week-ahead forecasts of the EuroCOVIDhub-ensemble. On the natural scale (with no transformation

prior to applying the WIS), scores correlate strongly with the average number of observed values in a given location. The same is true for scores

obtained after applying a square-root transformation, or after applying a log-transformation with a large offset a. For illustrative purposes, a was chosen

to be 101630 for cases and 530 for deaths, 10 times the respective median observed value. For large values of a, log(x + a) grows roughly linearly in x,

meaning that we expect to observe the same patterns as in the case with no transformation. For decreasing values of a, we give more relative weight to

scores in small locations.

https://doi.org/10.1371/journal.pcbi.1011393.g006
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Regression analysis to determine the variance-stabilizing transformation

As argued above, the mean-variance, or mean-CRPS, relationship determines which transfor-

mation can serve as a VST. We can analyse this relationship empirically by running a regres-

sion that explains the WIS (which approximates the CRPS) as a function of the central

estimate of the predictive distribution. We ran the regression

log½WISðF; yÞ� ¼ aþ b� log½medianðFÞ�; ð18Þ

where the predictive distribution F and the observation y are on the natural scale. This is equiv-

alent to

WISðF; yÞ ¼ expðaÞ �medianðFÞb; ð19Þ

meaning that we estimate a polynomial relationship between the predictive median and

achieved WIS. Note that we are using predictive medians rather than means as only the former

are available in the European COVID-19 Forecast Hub. As (under the simplifying assumption

of normality; see the previous theoretical discussion on the mean-variance relationship) the

WIS/CRPS of an ideal forecaster scales with the standard deviation, a value of β = 1 would

imply a quadratic median-variance relationship; the natural logarithm could then serve as a

VST. A value of β = 0.5 would imply a linear median-variance relationship, suggesting the

square root as a VST. We applied the regression to case and death forecasts, stratified for one

through four-week-ahead forecasts. Results are provided in Table 1. It can be seen that the esti-

mates of β always take a value somewhat below 1, implying a slightly sub-quadratic mean-vari-

ance relationship. The logarithmic transformation should thus approximately stabilize the

variance (and WIS), possibly leading to somewhat higher scores for smaller forecast targets.

The square-root transformation, on the other hand, can be expected to still lead to higher WIS

values for targets of higher orders of magnitude.

To check the relationship after the transformation, we ran the regressions

WISðFlog; log yÞ ¼ alog þ blog � log ðmedianðFÞÞ; ð20Þ

where Flog is the predictive distribution for log(y), and

WISðF ffiffip ; ffiffiffiyp Þ ¼ a ffiffip þ b ffiffip �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
medianðFÞ

p
; ð21Þ

where F ffiffip is the predictive distribution on the square-root scale. A value of βlog = 0 (or

b ffiffip ¼ 0, respectively) would imply that scores are linearly independent of the median

Table 1. Coefficients of three regressions for the effect of the magnitude of the median forecast on expected scores. The first regression was log[WIS(F, y)] = α + β ×
log[median(F)], where F is the predictive distribution and y the observed value.The second one was WIS(Flog, log y) = αlog + βlog � log (median(F)), where Flog is the predic-

tive distribution for log y. The third one was WISðF ffiffiffip ;
ffiffiffiyp Þ ¼ a ffiffiffip þ b ffiffiffip �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmedianðFÞÞ

p
; where F ffiffiffip is the predictive distribution for

ffiffiffiyp .

Horizon Target α β a ffiffip b ffiffip αlog βlog

1 Cases -0.862 0.876 0.790 0.087 0.433 -0.024

2 Cases -0.243 0.877 0.959 0.162 0.660 -0.031

3 Cases 0.372 0.855 1.109 0.238 0.882 -0.037

4 Cases 0.816 0.837 1.645 0.296 1.009 -0.036

1 Deaths -1.146 0.832 0.457 0.048 0.376 -0.035

2 Deaths -0.981 0.867 0.443 0.084 0.416 -0.028

3 Deaths -0.807 0.885 0.349 0.131 0.453 -0.019

4 Deaths -0.602 0.891 0.125 0.194 0.501 -0.011

https://doi.org/10.1371/journal.pcbi.1011393.t001
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prediction after the transformation. A value smaller (larger) than 0 would imply that smaller

(larger) targets lead to higher scores. As can be seen from Table 1, the results indeed indicate

that small targets lead to larger average WIS when using the log transform (βlog < 0), while the

opposite is true for the square-root transform (b ffiffip > 0). The results of the three regressions

are also displayed in Fig 7. In this empirical example, the log transformation thus helps (albeit

not perfectly), to stabilise WIS values, and it does so more successfully than the square-root

transformation. As can be seen from Fig 7, the expected WIS scores for case targets with medi-

ans of 10 and 100,000 differ by more then a factor of ten for the square root transformation,

but only a factor of around 2 for the logarithm.

Fig 7. Relationship between median forecasts and scores. Black dots represent WIS values for two-week ahead predictions of the EuroCOVIDhub-

ensemble. Drawn in red are the regression lines as discussed in the main text and shown in Table 1. A: WIS for two-week-ahead predictions of the

EuroCOVIDhub-ensemble against median predicted values. B: Same as A, with scores obtained after applying a square-root-transformation to the data.

C: Same as A, with scores obtained after applying a log-transformation to the data.

https://doi.org/10.1371/journal.pcbi.1011393.g007
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Impact of logarithmic transformation on model rankings

For individual forecasts, rankings between models for single forecasts are mostly preserved,

with differences increasing across forecast horizons (see Fig 8A). While rankings between fore-

casters remain similar for a single forecast, this is not true anymore when looking at rankings

obtained after averaging scores across multiple forecasts made at different times or in different

locations. As discussed earlier, scores on the natural and on the log scale penalise errors very

differently, e.g. when looking at performance during peaks or troughs. When evaluating per-

formance averaged across different forecasts and forecast targets, relative skill scores of the

models therefore change considerably (Fig 8B). The correlation between relative skill scores

also decreases noticeably with increasing forecast horizon.

Fig 9 shows the changes in the ranking between different forecasting models. Encouragingly

for the European Forecast Hub, the Hub ensemble, which is the forecast the organisers suggest

forecast consumers make use of, remains the top model across scoring schemes. For cases, the

ILM-EKF model and the Forecast Hub baseline model exhibit the largest change in relative

skill scores. For the ILM-EKF model the relative proportion of the score that is due to overpre-

diction is reduced when applying a log-transformation before scoring (see Fig 9E. Instances

where the model has overshot are penalised less heavily on the log scale, leading to an overall

better score. For the Forecast Hub baseline model, the fact that it often puts relevant probabil-

ity mass on zero (see S7 Fig), leads to worse scores after applying log-transformation due to

large dispersion penalties. For deaths, the baseline model seems to get similarly penalised for

its in relative terms highly dispersed forecasts. The performance of other models changes as

well, but patterns are less discernible on this aggregate level.

Discussion

In this paper, we proposed the use of transformations, with a particular focus on the natural log-

arithmic transformation, when evaluating forecasts in an epidemiological setting. These

Fig 8. Correlations of rankings on the natural and logarithmic scale. A: Average Spearman rank correlation of scores for individual forecasts. For

every individual target (defined by a combination of forecast date, target type, horizon, location), one score was obtained per model. Then, for every

forecast target, the Spearman rank correlation was computed between scores on the natural scale and on the log scale for all the models that had made a

forecast for that specific target. These individual rank correlations were then averaged across locations and time and are displayed stratified by horizon

and target types, representing average accordance of model ranks for a single forecast target on the natural and on the log scale. B: Correlation between

relative skill scores. For every forecast horizon and target type, a separate relative skill score was computed per model using pairwise comparisons, which

is a measure of performance of a model relative to the others for a given horizon and target type that accounts for missing values. The plot shows the

correlation between the relative skill scores on the natural vs. on the log scale, representing accordance of overall model performance as judged by scores

on the natural and on the log scale.

https://doi.org/10.1371/journal.pcbi.1011393.g008
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transformations can address issues that arise when evaluating epidemiological forecasts based

on measures of absolute error and their probabilistic generalisations (i.e CRPS and WIS). We

showed that scores obtained after log-transforming both forecasts and observations can be inter-

preted as a) a measure of relative prediction errors, as well as b) a score for a forecast of the expo-

nential growth rate of the target quantity and c) as variance stabilising transformation in some

settings. When applying this approach to forecasts from the European COVID-19 Forecast

Hub, we found overall scores on the log scale to be more equal across, time, location and target

type (cases, deaths) than scores on the natural scale. Scores on the log scale were much less influ-

enced by the overall incidence level in a country and showed a slight tendency to be higher in

locations with very low incidences. We found that model rankings changed noticeably.

On the natural scale, missing the peak and overshooting was more severely penalised than

missing the nadir and the following upswing in numbers. Both failure modes tended to be

more equally penalised on the log scale (with undershooting receiving slightly higher penalties

in our example).

Applying a log-transformation prior to the WIS means that forecasts are evaluated in terms

of relative errors and errors on the exponential growth rate, rather than absolute errors. The

most important strength of this approach is that the evaluation better accommodates the expo-

nential nature of the epidemiological process and the types of errors forecasters who accurately

model those processes are expected to make. The log-transformation also helps avoid issues

with scores being strongly influenced by the order of magnitude of the forecast quantity, which

can be an issue when evaluating forecasts on the natural scale. A potential downside is that

forecast evaluation is unreliable in situations where observed values are zero or very small. One

Fig 9. Changes in model ratings as measured by relative skill for two-week-ahead predictions for cases (top row) and deaths (bottom row). A:

Relative skill scores for case forecasts from different models submitted to the European COVID-19 Forecast Hub computed on the natural scale. B:

Change in rankings as determined by relative skill scores when moving from an evaluation on the natural scale to one on the logarithmic scale. Red

arrows indicate that the relative skill scores deteriorated when moving from the natural to the log scale, green arrows indicate they improved. C:

Relative skill scores based on scores on the log scale. D: Difference in relative skill scores computed on the natural and on the logarithmic scale, ordered

as in C. E: Relative contributions of the different WIS components (overprediction, underprediction, and dispersion) to overall model scores on the

natural and the logarithmic scale. F, G, H, I, J: Analogously for deaths.

https://doi.org/10.1371/journal.pcbi.1011393.g009
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could argue that this correctly reflect inherent uncertainty about the future course of an epi-

demic when numbers are small. Users nevertheless need to be aware that this can pose issues

in practice. Including very small values in prediction intervals (see S7 Fig for an example) can

lead to excessive dispersion values on the log scale. Similarly, locations with lower incidences

may get disproportionate weight (i.e. high scores) when evaluating forecasts on the log scale.

[8] argue that it is desirable to give large weight to forecasts for locations with high incidences,

as this reflects performance on the targets we should care about most. On the other hand, scor-

ing forecasts on the log scale may be less influenced by outliers and better reflect consistent

performance across time, space, and forecast targets. Furthermore, decision makers may spe-

cifically care about situations in which numbers start to rise from a previously low level.

The log-transformation is only one of many transformations that may be useful and appro-

priate in an epidemiological context. One obvious option is to apply a population standardiza-

tion to obtain incidence forecasts e.g., per 100,000 population [35]. We suggested using the

natural logarithm as a variance-stabilising transformation (VST). This is appropriate for vari-

ables that are approximately normally distributed and have a quadratic mean-variance relation-

ship with σ2 = c × μ2 (this is e.g. approximately true for the negative binomoial distribution and

large μ). Alternatively, the square-root transformation can be appropriate in the case of a Pois-

son distributed variable [30]. Other VST like the Box-Cox [36] are conceivable as well. If one is

interested in multiplicative, rather than exponential growth rates, one could, instead of applying

a log transformation, convert forecasts into forecasts for the multiplicative growth rate by divid-

ing numbers by the last value that was observed at the time the forecast was made. Forecasters

would then implicitly predict a separate multiplicative growth rate from today to horizon 1, 2,

etc. Instead of dividing by the last observed value, another promising transformation would be

to divide each forecast by the forecast of the previous week (and analogously for observations),

in order to obtain forecasts for week-to-week growth rates. Alternatively, one could also take

first differences of values on the log scale. This approach would be akin to evaluating the shape

of the predicted trajectory against the shape of the observed trajectory (for a different approach

to evaluating the shape of a forecast, see [37]). Dividing values by the previous value, unfortu-

nately, is not feasible under the current quantile-based format of the Forecast Hubs, as the

growth rate of the α-quantile may be different from the α-quantile of the growth-rate. However,

it may be an interesting approach if predictive samples are available or if quantiles for weekwise

growth rates have been collected. Potentially, the variance stabilising time-series forecasting lit-

erature may be a useful source of other transformations for various forecast settings.

It is possible to go beyond choosing a single transformation by constructing composite

scores as a weighted sum of scores based on different transformations. This would make it pos-

sible to create custom scores and allow forecast consumers to choose and assign explicit

weights to different qualities of the forecasts they might care about.

Exploring transformations is a promising avenue for future work that could help bridge the

gap between modellers and policymakers by providing scoring rules that better reflect what

forecast consumers care about. In this paper, we did not make any particular assumptions

about policy makers’ priorities and preferences. Rather, we aimed to enable users to make an

informed choice by showing how different transformations lead to different relative weights

for the kinds of prediction errors forecast consumers may care about, such as absolute vs. rela-

tive errors or the size of penalties for over- vs. underprediction. In practice, engagement with

decision makers is important to determine what their priorities are and how different ways to

measure predictive importance should be weighed.

We have shown that the natural logarithm transformation can lead to significant changes in

the relative rankings of models against each other, with potentially important implications for

decision-makers who rely on the knowledge of past performance to make a judgement about
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which forecasts should inform future decisions. While it is commonly accepted that multiple

proper scoring rules should usually be considered when comparing forecasts, we think this

should be supplemented by considering different transformations of the data to obtain a richer

picture of model performance. More work needs to be done to better understand the effects of

applying transformations in different contexts, and how they may impact decision-making.
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S1 Fig. Illustration of the effect of applying a transformation after scoring. We assume Y�
LogNormal(0, 1) and evaluate the expected CRPS for predictive distributions LogNormal(0, σ)
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S2 Fig. Illustration of the effect of adding a small quantity to a value before taking the nat-

ural logarithm. For increasing x, all lines eventually approach the black line (representing a

transformation with no offset applied). For a given solid line, the dashed line of the same col-

our marks the x-value that is equal to 5 times the corresponding offset. It can be seen that for a
values smaller than one fifth of the transformed quantity, the effect of adding an offset is gener-

ally small. When choosing a suitable a, the trade-off is between staying close to the interpreta-

tion of a pure log-transformation (choosing a small a) and not giving excessive weights to

small observations (by choosing a larger a, see Fig 6).

(TIF)

S3 Fig. Visualisation of expected CRPS values against approximated scores. This is using

the approximation detailed in theoretical discussion on model rankings (see also Fig 2).

Expected CRPS scores are shown for three different distributions once on the natural scale

(top row) and once scored on the log scale (bottom row).

(TIF)

S4 Fig. Number of forecasts available from different models for each forecast date.

(TIF)

S5 Fig. Number of observed values that were removed as anomalous. The values were

marked as anomalous by the European Forecast Hub team.

(TIF)
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S6 Fig. Number of forecasts marked as erroneous and removed. Forecasts that were in

extremely poor agreement with the observed values were removed from the analysis according

to the criteria shown in S2 Table.

(TIF)

S7 Fig. Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-

baseline made in Germany. The model had zero included in some of its 50 percent inter-

vals (e.g. for case forecasts in July 2021), leading to excessive dispersion values on the log

scale. One could argue that including zero in the prediction intervals constituted an unrea-

sonable forecast that was rightly penalised, but in general care has to be taken with small

numbers. One potential way to do deal with this could be to use a higher a value when

applying a transformation log(x + a), for example a = 10 instead of a = 1. A, E: 50% and

90% prediction intervals and observed values for cases and deaths on the natural scale. B, F:

Corresponding scores. C, G: Forecasts and observations on the log scale. D, H: Correspond-

ing scores.

(TIF)

S8 Fig. Forecasts and scores for two-week-ahead predictions from the epiforecasts-Epi-

Now2 model made in Germany. A, E: 50% and 90% prediction intervals and observed values

for cases and deaths on the natural scale from the EpiNow2 model [38]. B, F: Corresponding

scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.

(TIF)
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A Supplementary information1

A.1 Alternative Formulation of the WIS2

Instead of defining the WIS as an average of scores for individual quantiles, we can define it using an average of3

scores for symmetric predictive intervals. For a single prediction interval, the interval score (IS) is computed4

as the sum of three penalty components, dispersion (width of the prediction interval), underprediction and5

overprediction,6

ISα(F, y) = (u− l) +
2

α
· (l − y) · 1(y ≤ l) +

2

α
· (y − u) · 1(y ≥ u) (1)7

= dispersion + underprediction + overprediction, (2)8

where 1() is the indicator function, y is the observed value, and l and u are the α
2 and 1 − α

2 quantiles of9

the predictive distribution, i.e. the lower and upper bound of a single central prediction interval. For a set10

of K∗ prediction intervals and the median m, the WIS is computed as a weighted sum,11

WIS =
1

K∗ + 0.5
·
(
w0 · |y −m|+

K∗∑

k=1

wk · ISαk
(F, y)

)
, (3)12

where wk is a weight for every interval. Usually, wk = αk

2 and w0 = 0.5.13

Figure SI.1: Illustration of the effect of applying a transformation after scoring. We assume Y ∼
LogNormal(0, 1) and evaluate the expected CRPS for predictive distributions LogNormal(0, σ) with varying
values of σ ∈ [0.1, 2]. For the regular CRPS (left) and CRPS applied to log-transformed outcomes (middle),
the lowest expectation is achieved for the true value σ = 1. For the log-transformed CRPS, the optimal
value is 0.9, i.e. there is an incentive to report a forecast that is too sharp. The score is therefore no longer
proper.

1



Figure SI.2: Illustration of the effect of adding a small quantity to a value before taking the natural logarithm.
For increasing x, all lines eventually approach the black line (representing a transformation with no offset
applied). For a given solid line, the dashed line of the same colour marks the x-value that is equal to 5 times
the corresponding offset. It can be seen that for a values smaller than one fifth of the transformed quantity,
the effect of adding an offset is generally small. When choosing a suitable a, the trade-off is between staying
close to the interpretation of a pure log-transformation (choosing a small a) and not giving excessive weights
to small observations (by choosing a larger a, see Figure 6).

target type quantity measure natural log

Cases Observations mean 61979 9.19
Cases Observations sd 171916 2.10
Cases Observations var 29555122130 4.42
Deaths Observations mean 220 3.89
Deaths Observations sd 435 1.96

Deaths Observations var 189051 3.83
Cases WIS mean 15840 0.27
Cases WIS sd 53117 0.28
Deaths WIS mean 31 0.23
Deaths WIS sd 65 0.28

Table SI.1: Summary statistics for observations and scores for forecasts from the ECDC data set.

True value & Median prediction

> 0 > 100× true value
> 10 > 20× true value
> 50 < 1/50× true value
= 0 > 100

Table SI.2: Criteria for removing forecasts. Any forecast that met one of the listed criteria (represented by
a row in the table), was removed. Those forecasts were removed in order to be better able to illustrate the
effects of the log-transformation on scores and eliminating distortions caused by outlier forecasters. When
evaluating models against each other (rather than illustrating the effect of a transformation), one would
prefer not to condition on the outcome when deciding whether a forecast should be taken into account.

2



Figure SI.3: This is using the approximation detailed in the theoretical discussion on model rankings (see
also Fig 2). Expected CRPS scores are shown for three different distributions once on the natural scale (top
row) and once scored on the log scale (bottom row).
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Figure SI.4: Number of forecasts available from different models for each forecast date.

Figure SI.5: Number of observed values that were removed as anomalous. The values were marked as
anomalous by the European Forecast Hub team.
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Figure SI.6: Number of forecasts marked as erroneous and removed. Forecasts that were in extremely poor
agreement with the observed values were removed from the analysis according to the criteria shown in Table
SI.2.
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Figure SI.7: Forecasts and scores for two-week-ahead predictions from the EuroCOVIDhub-baseline made
in Germany. The model had zero included in some of its 50 percent intervals (e.g. for case forecasts in
July 2021), leading to excessive dispersion values on the log scale. One could argue that including zero in
the prediction intervals constituted an unreasonable forecast that was rightly penalised, but in general care
has to be taken with small numbers. One potential way to do deal with this could be to use a higher a
value when applying a transformation log(x + a), for example a = 10 instead of a = 1. A, E: 50% and
90% prediction intervals and observed values for cases and deaths on the natural scale. B, F: Corresponding
scores. C, G: Forecasts and observations on the log scale. D, H: Corresponding scores.
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Figure SI.8: Forecasts and scores for two-week-ahead predictions from the epiforecasts-EpiNow2 model (?)
made in Germany. A, E: 50% and 90% prediction intervals and observed values for cases and deaths on
the natural scale. B, F: Corresponding scores. C, G: Forecasts and observations on the log scale. D, H:
Corresponding scores.
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6 Human Judgement Forecasting of COVID-
19 in the UK

The crowd forecasts submitted to the German and Polish Forecast Hub described in Chapter 4
formed part of an acute COVID-19 response effort and therefore exhibited a few shortcomings
that the study presented in this chapter aims to address. In particular, the study in Germany
and Poland suffered from a low number of participants, both in terms of the crowd forecast
as well as the number of model-based predictions submitted to the Forecast Hub. This makes
it difficult to generalise findings. Forecasts were also only evaluated on the natural scale with
all the shortcomings discussed in Chapter 5.

This chapter describes a follow-up study conducted in the UK. In order to increase and
diversify participation, we organised the study in the form of a public forecasting tournament,
the “UK Crowd Forecasting Challenge”. This allowed us to analyse whether findings from
the initial study would hold in a different setting with a larger pool of participants. Forecasts
were analysed both on the natural and on the log scale, providing a more complete picture
of the predictive performance of human judgement forecasts.

This chapter also extends the work in Chapter 4 by exploring a novel way to combine
human judgement and mathematical modelling as proposed in the original work. Instead
of asking forecasters to predict case and death incidences directly, we elicited forecasts of
the effective reproduction number Rt which then got mapped to cases and deaths using an
epidemiological model. The motivation behind this idea was twofold. On the one hand this
might be a possibility to improve forecasts by providing a means to harness the respective
strengths of human judgement and mathematical modelling. On the other hand, combining
human judgement and mathematical modelling might be a way to make human judgement
forecasting more scalable by reducing the cognitive load and the number of forecasts an
individual needs to provide.
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Abstract 

Background

In the past, two studies found ensembles of human judgement 
forecasts of COVID-19 to show predictive performance comparable to 
ensembles of computational models, at least when predicting case 
incidences. We present a follow-up to a study conducted in Germany 
and Poland and investigate a novel joint approach to combine human 
judgement and epidemiological modelling.

Methods

From May 24th to August 16th 2021, we elicited weekly one to four 
week ahead forecasts of cases and deaths from COVID-19 in the UK 
from a crowd of human forecasters. A median ensemble of all 
forecasts was submitted to the European Forecast Hub. Participants 
could use two distinct interfaces: in one, forecasters submitted a 
predictive distribution directly, in the other forecasters instead 
submitted a forecast of the effective reproduction number Rt . This 
was then used to forecast cases and deaths using simulation methods 
from the EpiNow2 R package. Forecasts were scored using the 
weighted interval score on the original forecasts, as well as after 
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applying the natural logarithm to both forecasts and observations.

Results

The ensemble of human forecasters overall performed comparably to 
the official European Forecast Hub ensemble on both cases and 
deaths, although results were sensitive to changes in details of the 
evaluation. Rt forecasts performed comparably to direct forecasts on 
cases, but worse on deaths. Self-identified “experts” tended to be 
better calibrated than “non-experts” for cases, but not for deaths.

Conclusions

Human judgement forecasts and computational models can produce 
forecasts of similar quality for infectious disease such as COVID-19. 
The results of forecast evaluations can change depending on what 
metrics are chosen and judgement on what does or doesn't constitute 
a "good" forecast is dependent on the forecast consumer. 
Combinations of human and computational forecasts hold potential 
but present real-world challenges that need to be solved.
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Introduction
Infectious disease modelling and forecasting has attracted  
wide-spread attention during the COVID-19 pandemic and  
helped inform decision making in public health organisations 
and governments1,2. Most forecasts used to inform decision 
making were based on computational models of COVID-19,  
but some authors also explored human judgement forecasting  
as an alternative or in combination3–6.

Past research found that in the context of infectious disease  
forecasting, human judgement forecasts could achieve predic-
tive performance broadly comparable to forecasts generated 
based on mathematical modelling, in particular when fore-
casting incident cases, rather than lagged indicators indica-
tors like deaths. Farrow et al.7 found that an aggregate of human  
predictions outperformed computational models when predict-
ing the 2014/15 and 2015/16 flu season in the US. However,  
a comparable approach performed worse than computational 
models at predicting the 2014/15 outbreak of chikungunya 
in the Americas. Bosse et al.3 found an ensemble of human  
forecasters to outperform an ensemble of computational  
models when predicting cases of COVID-19 in Germany and  
Poland, but performing worse when predicting incident deaths. 
Similarly, McAndrew et al.5 reported an ensemble of human 
forecasters to perform comparably to an ensemble of compu-
tational models when predicting incident COVID-19 cases, 
and worse when predicting incident deaths. Farrow et al.7  
and in particular Bosse et al.3 struggled to recruit many par-
ticipants (numbers of active forecasters ranged from 22 to 61 
in McAndrew et al.5, 7 to 24 in Farrow et al.7, and 4 to 10 in  
Bosse et al.3). It is important to note that in previous studies  
(and also this one) human forecasters were free to use any  
resources, including computational models, in the process of 
creating a forecast, making it difficult to completely separate  
human judgement and computational modelling.

In some situations, human judgement forecasting may have 
advantages relative to computational models. Human judgment  

may be particularly useful to provide timely forecasts in situ-
ations where data is sparse and many parameters are hard to  
quantify. Humans are also generally able to answer a broad set 
of question (such as for example the likelihood that a given  
actor will take some specified action) and can take factors  
into account that are hard to encode in a computational model.  
On the other hand, human judgement forecasting is difficult  
to scale due to the time and effort required, and humans may 
be at a disadvantage at tasks that strongly benefit from the  
ability to perform complex computations. Also, the use of  
human judgement forecasts by decision makers may be com-
plicated by the lack of clarity of the basis on which they were  
made.

Methods that aim to combine human judgement and math-
ematical modelling are therefore appealing, though we note that  
presenting this as a binary choice is misleading. Most com-
putational models in use in epidemiology have at least some  
element of human judgement supporting their structure or 
usage. Also, human forecasters often make use of approaches  
such as calculating a base rate of incidences, or extrapolating  
current trends, which are in reality equivalent to simple  
models. One explicit method to combine separate human  
judgement and computational model forecasts with the goal of 
improving predictive performance is an ensemble. This has been 
shown to improve performance across model types5. Farrow  
et al.7, Bosse et al.3, Swallow et al.8 and others suggested 
additional possibilities in the context of infectious diseases  
that may also help reduce the amount of human effort required. 
One approach is to use human forecasts, for example of  
relevant disease parameters, as an input to computational  
modelling. Another approach is to use mathematical modelling  
in explicit combination with human judgement, for example 
by giving experts the option to make post-hoc adjustments to  
model outputs. Bosse et al.3 proposed asking human forecast-
ers to forecast the effective reproduction number Rt (the aver-
age number of people an infected person would infect in turn)  
based on modelled estimates and to then use this forecast in 
a mathematical simulation model in order to obtain forecasts  
for observed case and death numbers.

This paper represents a follow-up study to Bosse et al.3 in 
the United Kingdom with one- to four-week ahead forecasts  
made over the course of thirteen weeks between May 24 and 
August 16, 2021. The study period is after the second wave 
of COVID-19 in the UK (which peaked in January 2021) and  
falls into a time when restrictions in the UK were gradually  
lifted as part of the roadmap out of lockdown (with final 
restrictions lifted on July 19, 2021). Forecasts were elicited  
from experts and laypeople as part of a public forecasting  
tournament, the “UK Crowd Forecasting Challenge”, using 
a web application. All forecasts were submitted to the  
European COVID-19 Forecast Hub, one of several Forecast  
Hubs that have been systematically collating forecasts of  
different COVID-19 forecast targets in the US1, Germany and 
Poland9,10, and Europe11. This study aims to investigate whether 
the original findings in Bosse et al.3 with respect to forecaster 
performance replicate in a different country, in a different  

     Amendments from Version 1
We added a more detailed contextualisation of the study period 
(May to September 2021) and an explanation of the various 
factors that contributed to the pattern of observed cases and 
deaths from COVID-19 in the UK at that time. We also added a 
new Figure to illustrate the study period. We included details 
on the study authors who made forecasts as participants. We 
clarified parts of the discussion related to the evolution of the 
case fatality ratio (CFR) over the study period and provided 
references. We also clarified that our human forecasts were 
included in the overall Hub ensemble against which they are 
compared, likely leading us to underestimate the differences 
between the two. We added suggestions for further research, 
for example on priming effects from defaults shown in the 
user interface or on the effect that the availability of additional 
qualitative data might have on forecast accuracy.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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time period, and with an increased number of participants.  
In addition, it explores the approach proposed in Bosse et al.3  
to ask participants for a forecast of the estimated effective 
reproduction number Rt which is then translated into a forecast  
of cases and deaths using a simulation model. We describe 
this approach as human in the loop computational model-
ling and consider it a formalisation of often practiced manual  
intervention in computational forecasts.

Methods
Interaction with the European Forecast Hub
The European COVID-19 Forecast Hub11 was launched in 
March 2021 in order to elicit weekly predictions for various  
COVID-19 related forecast targets from different research 
groups. The forecasts evaluated in this study were submitted  
every Monday before 11.59pm GMT between May 24 2021  
and August 16 2021. Forecasts were made for incident weekly 
reported numbers of cases of and deaths from COVID-19  
on a national level for various European countries over a one to 
four week forecast horizon. While forecasts were submitted  
on Mondays, weeks were defined as epidemiological weeks, 
ending on a Saturday, and starting on Sunday. Forecast hori-
zons were therefore in fact 5, 12, 19 and 26 days. Submissions  
to the European Forecast Hub followed a quantile-based  
format with 23 quantiles of each output measure at levels  
0.01, 0.025, 0.05, 0.10, 0.15,. . . , 0.95, 0.975, 0.99. Every week, 
forecasts submitted to the hub were automatically checked 
for conformity with the required format and all eligible fore-
casts combined into different ensembles. Until the 12th of July 
2021 the default Hub ensemble (“EuroCOVIDhub-ensemble”)  
shown on all official Forecast Hub visualisations (https://cov-
id19forecasthub.eu/) was a mean ensemble (i.e., the α-quantile  
of the ensemble is given by the mean of all submitted  
α-quantiles). From the 29th of July onwards, the default  
Forecast Hub ensemble became a median ensemble. The  
median number of models included in the Forecast Hub  
ensemble for the UK during the study period was 9 for cases  
and 10 for deaths (see Figure SI.1 in the SI).

Ground-truth data on daily reported test positive cases and 
deaths linked to COVID-19 were provided by the European  
Forecast Hub and sourced from the Johns Hopkins University 
(JHU). Data were subject to reporting artifacts and revisions. 
All data points were marked as anomalous retrospectively by  
the European Forecast Hub if in subsequent updates data 
was changed by more than 5 percent. In August 2022 JHU 
switched the data source for their UK death numbers from 
“deaths within 28 days of a positive COVID test” to “Deaths  
with COVID-19 on the death certificate” and revised all their 
past data to guarantee consistency. The 2021 UK ground truth 
death data as it was made available through the European  
Forecast Hub in 2021 is therefore substantially different and 
on average lower than the data available as of early 2023. Data 
revisions are displayed in Figure SI.2 in the Supplementary  
Information12. All results presented here were derived  
based on the original data available in 2021, which were 
available through the European COVID-19 Forecast Hub  
GitHub repository (https://github.com/covid19-forecast-hub-
europe/covid19-forecast-hub-europe).

Human judgement forecasts
Forecasts of incident cases and deaths linked to COVID-19 
in the UK were elicited from individual participants every 
week through a web application (https://cmmid-lshtm.shin-
yapps.io/crowd-forecast/) described in 3. The application is 
based on R13 shiny14 and is available as an R package called  
crowdforecastr15. When signing up, participants could 
self-identify as “experts” if they worked in infectious disease  
modelling or had professional experience in any related field.

The web application offered participants two different ways 
of making a forecast, called ’direct’ (or ’classical’) and ’Rt 
forecast’. To make a ’direct’ forecast (as described in more 
detail in 3), participants selected a predictive distribution (by  
default a log-normal distribution) and adjusted the median and 
width of the distribution to change the central estimate and  
uncertainty at each forecast horizon.

Just as in the previous study, the default forecast shown was  
a repetition of the last known observation with constant  
uncertainty around it. The shown distribution was the expo-
nential of a normal distribution with mean log(last value) 
and uncertainty set to the standard deviation of the last 
four changes in weekly log observed forecasts (i.e., as  
σ(log(value4) − log(value3), log(value3) − log(value2), . . . )). 
In addition to information about past observations, participants  
could see various metrics and data such as the test positivity  
rate and vaccination rate sourced from Our World in  
Data16. Figure SI.3 in the Supplementary Information12 shows a  
screenshot of the forecast interface for direct forecasts.

In addition to the ‘direct’ forecasts, we implemented a second  
forecasting method (‘Rt forecasts’), where we asked partici-
pants to make a forecast of the effective reproduction number  
Rt. This forecast was made based on a baseline estimate pro-
duced by the EpiNow217 R13 package effective reproduction  
number model which we also used in 3 as a standalone com-
putational model. The estimate produced by EpiNow2 was 
shown as the default forecast and could be adjusted by the user.  
The resulting Rt forecast was then translated into a forecast 
of cases using the simulation model from the EpiNow2 R  
package, which implements a renewal equation based18 gen-
erative process for latent infections. We chose a Gaussian  
Process prior with mean 0 for the first differences of the effec-
tive reproduction number in time, implying that in the absence 
of informative data the reproduction number would remain 
constant on average, with uncertainty increasing with the  
temporal distance to informative data points. Latent infections  
were convolved with delay distributions representing the incu-
bation period and reporting delay, and assumed to follow a  
negative binomial observation model with a day of the week 
effect to produce an estimate of reported cases. This approach  
has been widely used for short-term forecasting3,11 and used 
to produce reproduction number estimates19–21. Further details  
are given in the Supplementary Information12.

To obtain forecasts for deaths, we similarly fit a model that 
convolved observed and predicted reported cases as implied  
by the Rt forecast over a delay distributions20,21 and scaled 
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them by a fixed ratio to model the time between a case 
report and a reported death and the case fatality ratio using 
the EpiNow2 R package17. Further details are given in the  
Supplementary Information12.

As Rt-estimates up to at least two weeks prior to the forecast  
data were uncertain due to their dependence on partially  
complete observations of underlying infections given the delays 
from infection to report, we also asked participants to submit 
an estimate of Rt for the two weeks prior to the current fore-
cast date. Participants were therefore asked to estimate/predict  
six Rt values, four of them beyond the forecast horizon. In order 
to obtain sample trajectories needed as input for the simula-
tion model, we drew 1000 samples from the six provided  
distributions. These samples were ordered and corresponding  
samples treated as one sample trajectory. Samples for daily  
values were obtained by linearly interpolating between weekly 
samples. 

Upon pressing a button, participants could see a pre-
view of the evolution of cases implied by their current Rt  
forecast. However, due to lack of development time, partici-
pants could not preview the death forecast implied by their cur-
rent input for Rt nor could they influence the estimated case  
fatality ratio or delay between reported cases and reported 
deaths. Figure SI.4 in the Supplementary Information12 shows  
a screenshot of the forecast interface for Rt forecasts.

Every week, we submitted an ensemble of individual forecasts  
to the European Forecast Hub. In contrast to the ensemble  
of human forecasts described in Bosse et al.3, we used the  
quantile-wise median, rather than the quantile-wise mean to 
combine predictions, drawing upon insights gained from the 
COVID-19 Forecast Hubs22. We submitted three different ensem-
bles to the Hub: The first one, “epiforecasts-EpiExpert_direct”  
(here called “direct crowd forecast” or “crowd-direct”) was 
a quantile-wise median ensemble of all the direct forecasts.  
“epiforecasts-EpiExpert_Rt” (here called “Rt forecast” or  
“crowd-rt”) was a median ensemble of all forecasts made 
through the Rt interface. “epiforecasts-EpiExpert” (here called  
“combined crowd ensemble” or “crowd-ensemble”) was a 
median ensemble of all forecasts together. A participant could  
enter the combined crowd ensemble twice if they had sub-
mitted both a direct and an Rt forecast. Before creating the  
ensemble, we deleted forecasts that were clearly the 
result of a user or software error (such as forecasts that 
were zero everywhere). Our combined crowd ensemble,  
“epiforecasts-EpiExpert”, but not the other two, entered 
the official European COVID-19 Forecast Hub ensemble  
(“EuroCOVIDhub-ensemble”).

The UK Crowd Forecasting Challenge
To boost participation compared to our last crowd forecasting 
study in Germany and Poland7 which struggled in this regard, 
we announced an official tournament, the “UK Crowd Fore-
casting Challenge”. Participants were asked to submit weekly 
predictions for reported cases and deaths linked to COVID-19  
in the United Kingdom one to four weeks into the future.  

Everyone who had submitted a forecast for targets in the UK 
during the tournament period from the 24th of May 2021 to  
the 16th of August 2021 was deemed a participant and eli-
gible for a prize. The first prize was 100 GBP, second prize  
50 GBP and third prize 25 GBP. Participant performance was 
determined using the mean weighted interval score (WIS) on  
the log scale (see details in the next Section), averaged across  
forecast dates, horizons and forecast targets. For the tournament 
ranking, participants who did not submit a forecast in a given 
week were assigned the median score of all other participants 
who submitted a forecast that week. The UK crowd forecast-
ing challenge was announced over Twitter and our networks. In 
addition, we created a project website, https://crowdforecastr.org,  
made weekly posts on Twitter and sent participants who had 
registered on the online application weekly emails with a 
reminder and a summary of their past performance. A public 
leaderboard was available on our website https://epiforecasts.io.  
Participants could choose to make a direct forecast as well as 
an Rt forecast and were counted as two separate forecasters and 
eligible for prizes twice. Weekly forecasts had to be submitted  
between Sunday 12pm and Monday 8pm UK time.

Analysis
We scored forecasts using the weighted interval score23. 
For (1-α)⋅100% prediction interval, the interval score is  
computed as

2 2
( , ) ( ) ( ) 1( ) ( ) 1( ),IS F y u l l y y l y u y u= − + ⋅ − ⋅ ≤ + ⋅ ⋅ ≥−
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where wk is a weight for every interval. Usually, 
2
k

kw =  and  
w0 = 0.5.

The WIS is a strictly proper scoring rule yielding non-negative  
values, with smaller values implying better performance. A 
forecaster, in expectation, optimises their score by providing 
a predictive distribution F that is equal to the data-generating  
distribution G, and is therefore incentivised to report their 
true belief. The WIS can be understood as an approximation 
of the continuous ranked probability score (CRPS, Gneiting  
et al.24) for forecasts in a quantile-based format. The CRPS,  
in turn, represents a generalisation of the absolute error to  
predictive distributions. The WIS can be decomposed into 
three separate penalty components (corresponding to the 
three terms in the definition of the interval score): forecast  
dispersion (i.e., uncertainty of forecasts), overprediction and  
underprediction.

Bosse et al.25 recently suggested to transform forecasts and 
observations using the natural logarithm prior to applying the  
WIS to better reflect the exponential nature of the underlying  

Page 6 of 22

Wellcome Open Research 2024, 8:416 Last updated: 21 MAR 2024



disease process. We, therefore, also compute WIS values  
after transforming all forecasts and observations using the  
function f : x → log(x + 1). In the following, we refer to WIS 
scores obtained without a transformation as “scores on the  
natural scale”, and WIS values obtained after log-transforming  
forecasts and observations as “scores on the log scale”. To 
make scores easier to interpret, we report relative WIS scores, 
where the average score for a given model was divided by 
the average score for the European Forecast Hub ensemble  
(“EuroCOVIDhub-ensemble”). In addition, we computed ranks 
based on WIS values.

In order to measure probabilistic calibration24, we used the 
empirical coverage of all central 50% and 90% prediction  
intervals. Empirical coverage refers to the percentage of 
observations falling inside any given central prediction inter-
val (e.g., the cumulative percentage of observed values that  
fall inside all central 50% prediction intervals).

If not otherwise stated, we present results for two-week-ahead 
forecasts, following the practice adopted by the COVID-19  
Forecast Hubs, which found predictive performance to be poor 
and unreliable beyond this horizon1,9,11. We analysed all fore-
casts stratified by forecast target (cases or deaths), forecast  
horizon, and forecast approach. We compared the performance  
of the direct vs. Rt forecasting approach using instances where 
we had both a direct forecasts and an Rt forecast from the  
same person.

For self-reported “experts” and “non-experts”, a simple  
comparison of scores would be confounded by individual dif-
ferences in participation and the timing of individual fore-
casts. We therefore compared the performance of self-reported 
“experts” vs. “non-experts” by creating and evaluating two 
modified median ensembles, one including only “experts”  
and the other only “non-experts”.

Forecasts were evaluated using the scoringutils26 package 
in R. All code and data used for this analysis, including  
individual-level forecasting data is available at https://github.
com/epiforecasts/uk-crowd-forecasting-challenge. All code used 
to submit the forecasts to the European Forecast Hub is available  
at https://github.com/epiforecasts/europe-covid-forecast.

Ethics statement
This study has been approved by the London School of Hygiene 
& Tropical Medicine Research Ethics Committee (reference 
number 22290). Consent from participants was obtained in  
written form.

Results
Observed values
The study period (forecasts were made between May 24 and  
August 16, 2021, for targets between May 29 and September  
11, 2021) was characterised by an increase in the number of 
cases and deaths in the United Kingdom. Reported cases in  
particular rose rapidly compared to pre-study levels, with 
a peak on July 17, 2021, followed by a trough and another  
subsequent increase in numbers. Death numbers remained 

almost constant in the first four weeks of the study period, fol-
lowed by a steady increase until the end of the study period  
in September 2021. This increase in the case and death num-
bers coincides with the rise of the Delta variant in the UK at 
the beginning of May27,28 as well as the European Football  
Championship29. Reported cases were likely influenced by an 
increased uptake of the NHS COVID-19 app in spring and 
summer 202130. An overview of the reported case and death  
numbers is shown in Figure 1.

Crowd forecast participation
A total number of 90 participants submitted forecasts (more  
precisely, forecasts were submitted from 90 different accounts, 
some of them anonymous). Out of 90 participants, 21  
self-identified as “experts”, i.e., stated they had profes-
sional experience in infectious disease modelling or a related  
field.

The median number of unique participants in any given week 
was 17, the minimum was 6 and the maximum was 51. This  
was higher than the number of participants in 3 (which had a 
median number of 6, a minimum of 2, and a maximum 10).  
With respect to the number of submissions from an individual 
participant, we observed similar patterns as 3: An individual  
forecaster participated on average in 2.6 weeks out of 13. The 
median number of submissions from a single individual was 
one, meaning that similar to 3 most forecasters dropped out  
after their first submission. Only five participants submitted  
a forecast in ten or more weeks and only two submitted a  
forecast in all thirteen weeks, one of whom is an author on 
this study (S. Abbott). Three other authors participated in the 
study (S. Funk, N. Bosse, and E. van Leuwwen). A total of 535  
forecasts were submitted by human forecasters, 118 (22%) of 
these were submitted by authors of this study. The number of 
direct forecasts (median: 13 for cases and 12 for deaths) was 
higher than the number of Rt forecasts (median: 6 for both  
cases and deaths) in all weeks (see Figure 2A). The median 
number of “non-experts” (11 for cases, 10 for deaths) was 
higher than the median number of “experts” (8 for cases and  
deaths) (see Figure 2B).

Case forecasts
At the beginning of the study period, human forecasters as  
well as the Forecast Hub ensemble, consistently underpredicted  
case numbers (see Figure 5A). All forecasting approaches  
overshot the peak in case numbers on July 17, 2021, overpre-
dicting case numbers severely in the three weeks after, followed  
again by a small tendency to underpredict when case numbers  
rose once more in the 4th week after the peak.

All forecasting approaches exhibited underdispersion when 
predicting cases, meaning that forecasts on average were too  
narrow and not uncertain enough. Empirical coverage for 
case forecasts was below nominal coverage for all forecasting  
approaches for forecasts more than one week into the future 
(see Figure 3E,F). For 50% prediction intervals, empirical  
coverage was worst for the direct crowd forecasts (0.31), best for  
the Rt forecasts (0.46) and in between for the Hub ensemble  
and the crowd ensemble (both 0.38, see Table 1). For 90%  
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Figure 2. Number of forecasts across the study period. A: number of forecasts included in the Hub ensemble and the combined crowd 
ensemble. B: number of forecasts by “experts” and “non-experts”. Expert status was determined based on the participant’s answer to the 
question whether they “worked in infectious disease modelling or had professional experience in any related field”.

Figure 1. Observed cases and deaths of COVID-19 in the UK. Observed daily (bars) and weekly (black lines and points) numbers of cases 
and deaths as available through the European Forecast Hub when the study concluded in 2021. The green rectangle marks the study period 
from May 24 until September 11, 2021. Daily numbers were multiplied by seven in order to appear on the same scale as weekly numbers.
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Figure 3. Predictive performance across forecast horizons. A–D: WIS stratified by forecast horizon for cases and deaths on the natural 
and log scale. E, F: Empirical coverage of the 50% and 90% prediction intervals stratified by forecast horizon and target type. Grey dashed 
lines denote the nominal coverage that a model should ideally achieve.

Table 1. Performance for two-week-ahead forecasts. Values have been cut to three significant digits 
and rounded.

Model Target

WIS - natural WIS - log scale
Coverage 

50%
Coverage 

90%abs. rel. sd abs. rel. sd

EuroCOVIDhub-ensemble Cases 38.2k 1 55.6k 0.25 1 0.22 0.38 0.69

crowd-ensemble Cases 40.1k 1.05 69.4k 0.22 0.91 0.25 0.38 0.69

crowd-direct Cases 39.3k 1.03 67k 0.23 0.96 0.27 0.31 0.69

crowd-rt Cases 45.9k 1.2 74.7k 0.23 0.93 0.24 0.46 0.62

EuroCOVIDhub-ensemble Deaths 37.9 1 26.9 0.13 1 0.04 0.77 1

crowd-ensemble Deaths 40.2 1.06 41.5 0.12 0.97 0.07 0.54 0.77

crowd-direct Deaths 33.9 0.89 30.6 0.13 0.99 0.08 0.54 0.85

crowd-rt Deaths 79.5 2.1 72.7 0.25 1.98 0.13 0.15 0.46
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prediction intervals, coverage was worst for the Rt forecasts 
(0.62) and slightly better for the other approaches (all 0.69).  
Coverage for all forecasts deteriorated further with increasing  
forecast horizon (see Figure 3E,F).

In terms of WIS on the log scale, all human forecasting 
approaches outperformed the Forecast Hub ensemble for two 
week ahead forecasts of cases (see Figure 3). WIS values relative  
to the Hub ensemble (=1) were 0.91 for the combined crowd 
ensemble, 0.96 for the direct crowd forecasts and 0.93 for  
the Rt forecasts (see Table 1). In contrast, in terms of WIS on 
the natural scale, the Hub ensemble outperformed all human  
forecasting approaches. Relative WIS values on the natural  
scale for two week ahead forecasts were 1.05 for the  
combined crowd ensemble, 1.03 for the direct crowd fore-
casts and 1.2 for the Rt forecasts. The discrepancy between  
performance on the log and natural scale can be attrib-
uted to case forecasts from the Hub ensemble tending to 
be lower than forecasts from human judgement approaches 
(see Figure 4). On the natural scale, this resulted in smaller  
overprediction penalties, putting it ahead of human forecasts 
(see Figure 3A,C). On the log scale, however, it led to large  
penalties for underprediction.

Performance of the Hub ensemble relative to the human fore-
casting approaches improved with increasing forecast horizon  
(see Figure 3). For a four-week-ahead forecast horizon, the 
Hub ensemble outperformed all other approaches both on the  
log scale (rel. WIS values the human forecasts of 1.02, 1.05,  
1.06) and on the natural scale (rel. WIS values of 1.21, 1.25,  
1.3) (compare Table SI.1 in the Supplementary Information12).

In terms of relative model ranks for two week ahead forecasts, 
the Hub ensemble and the Rt forecast showed a higher variance  
than the combined crowd ensemble and the direct forecasts 
(See Figure 5), despite forecasts being about the same or more  
dispersed (see Figure 3). Both the Hub ensemble and the Rt 
forecast were more often in first place than other approaches  
(4 times each, both on the log and on the natural scale). 
However, they were also most often in the last place (Hub 
ensemble: 6 on the log scale and 5 on the natural scale, Rt : 5 
on the log scale and 6 on the natural scale). The direct fore-
casts placed relatively equally in places 1-4. The crowd ensem-
ble never placed fourth, but also had the lowest number of first  
places (2, both on the log and the natural scale). Aggregated 
model ranks only changed marginally when switching between  
the log and the natural scale (see Figure 5).

When comparing WIS values on the log scale with those on 
the natural scale, scores were more equally distributed across  
the study period on the log scale and more weight was given 
to forecasts in June and July which underpredicted the extent  
to which case number would rise (see Figure 4). On the  
natural scale, the WIS as a measure of the absolute distance  
between forecast and observation increased or decreased with 
the magnitude of the forecast target23,25. Average scores were  
therefore dominated by performance around the peak when 

cases were highest, in particular by forecasts made on the 19th  
of July for the 31st of July (see Figure 4). For all forecast-
ing approaches, overprediction was the largest contributor  
to overall scores (see Figure 3A). On the log scale, underpredic-
tion played a larger role (see Figure 3C). Switching between 
scores on the log and on the natural scale had the strong-
est effect on the Rt forecasts, which had a relative WIS value  
of 0.96 on the log scale and 1.2 on the natural scale. The Rt  
forecasts tended to be higher than both the direct forecasts 
and the Forecast Hub ensemble, especially around the peak, 
leading to high scores on the natural scale, but not on the log  
scale.

Death forecasts
In the first part of the study period, most forecasting 
approaches (albeit not the direct crowd forecasts), showed a 
tendency to overpredict the increase in death numbers (see  
Figure 5B). All forecasting approaches started to underpredict  
death numbers four weeks after the peak in case numbers  
on July 17, 2021, expecting a consequent drop in deaths that  
did not occur.

All forecasting approaches except the Rt forecasts showed 
higher empirical coverage for deaths than for cases (see  
Figure 3). Forecasts from the Hub ensemble generally tended 
to be wider than the human forecasts (see Figure 4 and  
Figure 3B,D). For 50% prediction intervals, the Hub ensemble 
exceeded the nominal coverage noticeably (0.77) (see Table 1).  
Rt forecasts failed to get close to nominal coverage (0.15), 
while the combined crowd ensemble and the direct forecasts 
had empirical coverage close to nominal coverage (both 0.54).  
For 90% prediction intervals, the Hub ensemble again exceeded 
nominal coverage and covered all observations (1) while  
the Rt forecasts again failed to get close to nominal coverage 
(0.46). The crowd ensemble exhibited some underdispersion  
(0.77) while the direct forcecasts almost reached nominal  
coverage for two week ahead forecasts of deaths (0.85).

In terms of WIS on the log scale for two week ahead predic-
tions of deaths, the combined crowd ensemble (0.97) and the 
direct crowd forecasts (0.99) were marginally ahead of the  
Hub ensemble, while the Rt forecasts performed noticeably  
worse (1.98) (see Figure 3D and Table 1). For the Hub ensem-
ble, the dispersion component played by far the largest role, 
while this was less the case for the human forecasts, which 
got higher penalties from both over- and underprediction.  
Combining the Rt forecasts and the direct forecasts led to an 
ensemble that performed better than either of them alone on 
the log scale despite the poor overall performance of the Rt  
forecasts. In terms of WIS on the natural scale, only the direct 
forecasts (0.89) performed better for two week ahead death  
predictions than the Hub ensemble, while the combined 
crowd ensemble performed slightly worse (1.06) and the Rt  
forecasts again noticeably worse (2.1).

In terms of relative model ranks for two week ahead death 
forecasts, the Rt forecasts took the fourth place most often (9  
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Figure 4. Forecasts and corresponding WIS for 2-week ahead forecasts of cases and deaths from COVID-19 in the UK. A: 50% 
prediction intervals (coloured bars) and observed values (black line and points) for cases and deaths on the natural scale. B: Corresponding 
WIS values, decomposed into dispersion, overprediction and underprediction. C: 50% prediction intervals on the log scale, i.e., after applying 
the natural logarithm to all forecasts and observations. D: Corresponding WIS on the log scale, i.e., the WIS applied to the log-transformed 
forecasts and observations.

on the log scale and 10 on the natural scale), while the direct 
forecasts placed first most often (5 on the log scale and 6  
on the natural scale, see Figure 5). Again, the crowd ensemble  
never placed fourth.

When comparing scores on the log and on the natural scale, 
scores on the log scale were again more evenly distributed 
across the study period. On the natural scale, high scores were 

concentrated around the end of the study period, when death  
incidences were highest (see Figure 4).

Rt forecasts
For cases, where participants could observe the case fore-
cast implied by their Rt forecast, predictive performance was 
similar between corresponding direct and Rt forecasts for most  
forecasters who had submitted both (see Figure 6). For 
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Figure 5. Ranks for all forecasting approaches for two week ahead forecasts. Colours indicate how often (out of 13 forecasts)  
a given approach got 1st, 2nd, 3rd, or 4th rank.

Figure 6. Comparison of predictive performance of individual forecasters using either the direct forecasting or Rt interface. 
Comparisons are based only on those instances where forecasters have submitted a prediction using both interfaces. The absolute level for 
a given forecaster relative to others is not meaningful as forecasters differ in the amounts of forecasts they have submitted and when.

deaths, where forecasters could not see the incidence forecast 
implied by their Rt forecast or manually adjust the case fatality  
rate, performance of the Rt forecasts was significantly worse.  
From June to the end of July, Rt forecasts overpredicted deaths 

and were noticeable higher than other forecasts, whereas in  
August, Rt forecasts underpredicted deaths and were substan-
tially lower than other forecasts (see Figure 4). In particular,  
Rt forecasts for deaths were worse than the corresponding  
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direct death forecasts for most forecasters (see Figure 6).  
Changing from the direct forecasting method to Rt forecast-
ing for cases tended to improve scores for better forecasters  
and decrease scores for worse forecasters, although sample  
sizes and the size of the observed effect are both small.

Combining direct crowd forecasts and Rt forecasts improved 
performance on the log scale compared to both direct and Rt  
forecasts alone across all horizons and target types. This was 
not the case on the natural scale, where direct forecasts per-
formed better than the Rt and the direct forecasts for both  
cases and deaths across most horizons. Only for case forecasts  
four weeks ahead on the natural scale was the combined  
ensemble better than the direct forecasts. However, even on 

the natural scale, performance of the combined ensemble was  
better than the average of the WIS of direct and Rt forecasts.

Experts and non-experts
A median ensemble of two week ahead forecasts restricted to 
only those made by either “experts” or “non-experts” (determined  
based on self-reported experience in infectious disease mod-
elling or a related field) performed worse than the combined 
crowd example, both for cases and deaths and both on the 
log scale and on the natural scale (see Figure 7 and Table 2  
and Figure 2B for a visualisation of participation). The median 
number of “non-experts” was 11 for cases and 10 for deaths, 
which was higher than the median number of “experts”,  
which was 8 for cases and deaths.

Figure 7. Predictive performance of self-reported “experts” and “non-experts” across forecast horizons. Forecasts from “experts” 
and “non-experts” were combined to two separate median ensembles, including both direct and Rt forecasts. A–D: WIS stratified by forecast 
horizon for cases and deaths on the natural and log scale. E, F: Empirical coverage of the 50% and 90% prediction intervals stratified by 
forecast horizon and target type. Grey dashed lines denote the nominal coverage that a model should ideally achieve.
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Table 2. Performance for two-week-ahead forecasts of experts and non-experts. Values 
have been cut to three significant digits and rounded.

Model Target

WIS - natural WIS - log scale
Coverage 

50%
Coverage 

90%abs. rel. sd abs. rel. sd

crowd-ensemble Cases 40.1k 1 69.4k 0.22 1 0.25 0.38 0.69

Expert Cases 42.7k 1.06 74.9k 0.24 1.08 0.28 0.46 0.77

Non-Expert Cases 43.1k 1.07 67k 0.26 1.14 0.25 0.31 0.54

crowd-ensemble Deaths 40.2 1 41.5 0.12 1 0.07 0.54 0.77

Expert Deaths 41.2 1.03 41.8 0.16 1.29 0.15 0.54 0.77

Non-Expert Deaths 45.9 1.14 56.8 0.13 1.06 0.08 0.46 0.77

When comparing two week ahead forecasts from “experts” and 
“non-experts”, the ensemble of “experts” was better calibrated  
(see Figure 7). For cases, “experts” achieved better scores than 
“non-experts” both on the log and on the natural scale. WIS  
values relative to the combined crowd ensemble were 1.08 
for “experts” and 1.14 for “non-experts” on the log scale and  
1.06 for “experts” and 1.07 for “non-experts” on the natural 
scale (see Table 2). For deaths, “experts” performed worse than  
“non-experts” in terms of WIS on the log scale (WIS relative  
to the combined crowd ensemble: 1.29 vs. 1.06), but better  
on the natural scale (1.03 vs. 1.14). Both the “expert”- and 
the “non-expert”-ensemble had similar proportions of Rt fore-
casts (mean of 32% for “experts” and 32.2% for “non-experts”  
across cases and deaths together).

For four weeks ahead forecasts of cases, the combined ensem-
ble outperformed both “experts” and “non-experts” on the 
log scale as well as on the natural scale. “Experts” performed  
better than “non-experts” both on the log scale (WIS 
value relative to the combined crowd ensemble of 1.08 for 
“experts” vs. 1.21 for “non-experts”) and on the natural scale  
(1.04 vs. 1.07). For four week ahead forecasts of deaths,  
“Experts” performed better than “Non-experts” on the log 
scale (1.17 vs. 1.18) as well as on the natural scale (0.95 vs.  
1.15).

Discussion
In this paper, we presented a follow-up study to Bosse et al.3, 
analysing human judgement forecasts of cases of and  
deaths from COVID-19 in the United Kingdom submitted to 
the European COVID-19 Forecast Hub between the 24th of  
May and the 16th of August 2021. Human judgement fore-
casts were generated using two different forecasting approaches, 
a) direct forecasts of cases and deaths and b) forecasts of 
the effective reproduction number Rt, which were based on esti-
mates from an open source effective reproduction number  
estimation model and also relied on this model, along with a 
second model relating cases and deaths from the same source,  
to simulate reported cases and deaths.

Just like Bosse et al.3 and Farrow et al.7, this study strug-
gled to retain a large number of participants. Focused public  
outreach efforts such as creating a dedicated website, announc-
ing an official tournament, providing a public leaderboard,  
sending weekly emails with details on past performance and 
weekly announcements on Twitter, did noticeably increase  
participation compared to the previous study in Germany and 
Poland. Nevertheless, retaining participants beyond the initial  
recruitment proved challenging, and most forecasters only  
submitted a single forecast. McAndrew et al.5 had a higher  
number of participants, suggesting that making use of existing 
forecasting platforms that have access to a large existing user  
base and greater resources may be helpful in recruiting a 
larger number of participants, though these platforms lack the  
flexibility and software tooling to run a novel study of this  
kind in real-time as things stand.

The study period was marked by an increase in both case and 
death numbers. Case numbers rose quickly compared to the  
pre-study period, peaking on July 17, 2021, followed by a 
trough and a subsequent further increase. Forecasts displayed  
a pattern where forecasters tended to underpredict while case 
numbers were rising, and overpredict while case numbers  
were falling, particularly following a peak. Similar patterns 
have been observed previously in other short-term forecasts of  
COVID-19 (see e.g. 3,9,11).

Death numbers during the study period were increasing more 
slowly than during the previous peak in January 2021, coinciding  
with the beginning of vaccination efforts and a growing  
immunity in the population28. The peak in case numbers in July 
2021 was not followed by a subsequent peak in death num-
bers (but rather a steady incline over several months), sug-
gesting some decoupling of case and death numbers such as 
would be expected from effects of immunity that are stronger in  
preventing severe disease than any symptoms. Forecasters 
tended to overpredict death numbers in the beginning, while  
underpredicting them in the end, expecting death numbers to 
fall after the peak in cases. The study period coincides with 

Page 14 of 22

Wellcome Open Research 2024, 8:416 Last updated: 21 MAR 2024



the rise of the Delta variant in the UK27,28, as well as the 2021  
European Football Championship, which likely shifted the  
age distribution towards younger cases29.

In line with results from previous work3,11, we found 
almost all forecasts for cases to be underdispersed (i.e., too  
narrow/overconfident). Empirical coverage for death forecasts  
was higher than the corresponding coverage for cases for all  
forecasting approaches except the Rt forecasts.

For forecasts of cases two weeks ahead, performance of the 
human judgement forecasts was better than the European  
Forecast Hub ensemble in terms of WIS on the log scale, and 
worse in terms of WIS on the natural scale. This was linked  
to a tendency of the Hub ensemble to make lower case  
predictions, which led to lower overprediction penalties on the 
natural scale, but noticeably higher underprediction penalties  
on the log scale. For forecasts of deaths two weeks ahead, 
direct human forecasts and the combined crowd ensemble per-
formed better than the Hub ensemble on the log scale. On  
the natural scale, the combined crowd ensemble performed 
worse than the Hub ensemble, while the direct crowd forecasts  
still performed better. Rt forecasts for deaths performed notice-
ably worse than all other approaches both on the log and on  
the natural scale.

In their original study, conducted in Germany and Poland,  
Bosse et al.3 found that humans outperformed an ensemble of 
computational models when predicting cases, but not when  
predicting deaths. They hypothesised that computational mod-
els might have an advantage over human forecasters when  
predicting deaths, benefiting from the ability to model the 
delays and epidemiological relationships between different lead-
ing and lagged indicators. McAndrew et al.5 similarly found in 
their study that humans performed comparably to an ensem-
ble of computational models for cases, but not for predictions 
of deaths of COVID-19. Results in our study do not directly  
support this pattern, but given the low number of observations 
also do not provide strong evidence against it. In this study,  
the combined crowd ensemble performed better than the Hub 
ensemble on both cases and deaths on the log scale, and worse 
on the natural scale. Direct forecasts, which would be most  
comparable to the forecasts in Bosse et al.3, performed worse 
than the Hub ensemble on cases and better on deaths. During the 
study period, the case fatality ratio (CFR) likely changed quite 
quickly compared to the pre-study period. On the one hand, the 
rise of the Delta variant in the UK, which was first detected in 
the UK in March 2021 was estimated to have a higher CFR than  
previous variants27,31 (although Perez-Guzman et al.28 esti-
mated it to be lower than that of the Alpha variant). On the 
other hand, the ongoing COVID-19 vaccination and grow-
ing natural immunity in the population had decreasing effects 
on the CFR. In addition, the age distribution of cases changed 
(hence modifying the overall CFR) throughout study period 
in Summer 2021, in parts related to the European Football  
Championship29. Overall, the CFR was lower than during  
previous peaks of COVID-1928. One possible hypothesis for the 
relatively good performance of human forecasts for deaths com-
pared to previous studies might be that some models submitted 

to the Forecast Hub may have been more negatively affected by 
the changes in CFR during the study period than human fore-
casters or have been slower to update. The present study only 
saw a steady increase in death numbers, which one could argue  
is relatively easy to predict, making it difficult to compare  
forecast performance with performance in other settings. A 
confounding factor, when comparing results from this study 
and the one in Germany and Poland directly, is that we used  
a median ensemble to combine individual forecasts here, while  
the earlier study used a mean ensemble.

Importantly, in this study our combined crowd ensemble 
(“epiforecasts-EpiExpert”) contributed to the European Fore-
cast Hub ensemble. This is in contrast to the study by Bosse  
et al.3, where they compared crowd forecasts against a hypo-
thetical ensemble excluding the crowd forecasts. In the origi-
nal study, including the crowd forecasts improved the Hub  
ensemble on average (however, the overall number of mod-
els included in the German and Polish Hub ensemble was 
smaller than the number of models in the European Forecast  
Hub ensemble). In our study, comparisons between our 
crowd ensembles and the Forecast Hub ensemble are there-
fore confounded by the fact the combined crowd ensemble 
was included in the Forecast Hub ensemble, possibly leading  
us to underestimate differences between the two.

This study explored a novel method of forecasting infectious  
diseases that combines a human forecast of the estimated  
effective reproduction number Rt with epidemiological model-
ling to map the Rt forecast to a forecast of cases and deaths.  
One appeal of this approach is that the forecaster can directly 
forecast the generative process and how they believe it is  
affected by interventions and changes in behaviour. Com-
putational modelling then takes care of dealing with details 
such as reporting delays, generation intervals, day of the week  
periodicity, and the relationship between different indicators. 
This could help reduce cognitive load, and make it easier to  
synthesise various sources in information into a single fore-
cast, at least for forecasters who have an intuitive understanding  
of Rt. Though we note all of these modelling steps and the  
construction of the model itself requires the human construct-
ing the model to make assumptions. Anecdotally, forecasters  
familiar to the authors reported high satisfaction with the  
forecasting experience. One important limitation of the  
approach is that Rt values were estimated based on reported 
numbers of cases. This is susceptible to changes in testing  
and reporting and estimated Rt values may not accurately 
reflect the true underlynig infectious disease dynamics. In our  
study, Rt forecasts of cases were comparable to direct  
forecasts, with a tendency for good forecasters to improve 
when using the Rt method and worse forecasters to deteriorate 
even more. Sample sizes, however, were very low. Given that  
forecasters could simulate cases in the app, it is also possible 
that forecasters were in fact directly forecasting cases. Rt fore-
casts of deaths (which forecasters could not see in the app)  
were noticeably worse than direct forecasts of deaths. The 
computational model underlying our Rt forecasts of deaths 
estimated a constant CFR and delay distribution using the  
last 4 weeks of data, therefore updating relatively slowly to 
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new circumstances and the CFR was assumed to be constant 
over the four week forecast horizon. However, as mentioned  
before, the CFR likely evolved during the study period. Fore-
casters had no way of inspecting the death forecast implied  
by their Rt forecast, likely impacting predictive performance.  
They also had no way to adjust the CFR manually, likely  
impacting forecast accuracy. Allowing human forecasters to see  
their implied death forecasts, as well as giving them the ability  
to adjust the CFR and other model parameters would have  
increased complexity of the interface, but would have solved 
issues with the assumptions of the underlying model. Alter-
natively, a more complex model could have been used which  
allowed for time-varying CFR estimates and forecast these 
changes over the forecast horizon though this approach may still  
have struggled to cope with the rapid changes observed dur-
ing the study period. Another important limitation is that we 
didn’t have full sample trajectories of the Rt-values predicted  
by forecasters. Rather, trajectories had to be constructed 
based on the distributions provided for the different forecast  
horizons, which likely negatively affected forecasts. One poten-
tial way to disentangle the effect of the convolution model 
from the Rt forecasts would have been to use the human  
forecasts for cases as an input to the second computational 
model, which could then have simulated deaths. Future work  
could expose forecasters to different combinations of these 
options with the aim of separating effects of the user inter-
face from ones related to the structure of the underlying  
computational model.

Combining forecasts from “experts” and “non-experts” led to 
better performance for forecasts two weeks ahead for cases as  
well as deaths, and both on the log scale and on the natural 
scale. Combining direct forecasts and Rt forecasts led to better  
performance on the log scale, but not on the natural scale. This 
suggests that combining different forecasts can be beneficial  
in many instances, although there may be differences in terms 
of WIS on the log and the natural scale. In particular, WIS  
values on the natural scale may be more susceptible to mod-
els that would tend to overshoot and miss the peak, while 
WIS on the log scale may be more affected by models that  
underpredict and miss upswings25.

Past studies of expert forecasts of COVID-196 had found  
predictions from experts to outperform those of non-experts. In 
our study, an ensemble of self-reported “experts” outperformed 
an ensemble of “non-experts” when forecasting cases two weeks 
ahead, both on the log scale and on the natural scale. When  
forecasting deaths two weeks ahead, “experts” performed 
worse than “non-experts” on the log scale, but better on the 
natural scale. Forecasts for “experts” tended to be better  
calibrated than non-experts. However results should be taken 
with care considering relatively low sample sizes (median 
of 11 “non-experts” for cases and 10 for deaths, median  
of 8 “experts” for cases and deaths) and given that expert 
status was self-reported. Furthermore, we only asked for  
professional involvement in a field related to infectious disease  

modelling, not specifically for familiarity with modelling of 
COVID-19 in the UK, and only offered participants a binary  
choice. However, as we used ad-hoc recruitment in our  
networks many of these self-identified experts are likely to be  
infectious disease modellers.

It is plausible to hypothesise that the default baseline shown 
to forecasters in the app may influence their predictions. One  
could also interpret the Rt-forecast as a way of showing a  
different baseline forecast to the forecaster compared to the  
direct forecast. In our study, the default was a naive forecast 
with the median equal to the last value and uncertainty equal 
to the standard deviation of the last four changes in weekly  
log values. Bosse et al.3 did not find conclusive evidence to 
that effect, but also did not analyse the question in detail. 
We suggest further research be done into potential priming  
effects that a default forecast can have on users.

Overall, results of our study should be taken with caution due to 
several important limitations. Firstly, our study was restricted  
to one location and to a relatively short period of thirteen  
weeks. Secondly, there were many confounding factors that 
likely influence results. These include the fact that different  
participants made forecasts at different points in time (with the 
median forecaster only submitting a single forecast) and that 
subgroups of interest (e.g. “experts”, or Rt forecasts) had dif-
ferent numbers of forecasters. In most instances, differences in 
scores between forecast approaches were small compared to the  
variance of scores within a single approach. In addition, there 
were many researcher degrees of freedom that could influence  
findings, for example how individual forecasts were combined  
to create an ensemble. Results were influenced by choices  
made during the evaluation with, for example, some conclu-
sions depending on forecast horizon and the transformation 
used prior to scoring. Highlighting this, prizes to the human  
forecasters were paid out based on the combined WIS on the 
log scale across all horizons and forecast targets. Had we  
chosen to instead measure WIS on the natural scale, or to fore-
cast only cases and continue to score on the log scale, rankings  
and payouts would have been different.

Conclusions
The results of our study are broadly consistent with previous  
studies on human judgement forecasting of COVID-19 and  
suggest that human crowd ensembles and an ensemble of com-
putational models are able to produce forecasts of similar  
quality. One interpretation of these findings is that a mixed 
crowd of human forecaster can produce a viable alternative or  
complement to an ensemble of mathematical models created 
by experts. An altnerative interpretation is that an ensemble  
of automated models can produce forecasts over the course 
of several years that are on par with that of an engaged crowd  
of human forecasters. This study, and all previous studies, com-
paring human judgement forecasts and computational mod-
els only ran over short periods of time and the majority of 
them struggled with recruitment and upkeep. Meanwhile,  
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COVID-19 Forecast Hubs have attracted continuous submis-
sions for almost three years and were able to consistently  
provide forecasts of comparable quality.

Our findings do not suggest that humans are necessarily at a 
general disadvantage compared to computational models at  
predicting reported deaths, but evidence in both directions 
is limited and this is made particularly complex as our study  
took place during a period of time when CFR estimates were 
changing rapidly. Despite evaluations being public, it remains 
a challenge to properly incentivise contributors to Forecast  
Hubs to regularly update their forecasting methodology in 
order to maximise utility, predictive performance, or both.  
Combining human judgement and epidemiological modelling  
by mapping Rt forecasts to case and death numbers has 
not yielded competitive forecasts for deaths in this study.  
However, we only presented a prototype of a forecasting 
approach, which, while having appealing properties, proved  
challenging to implement. Subsequent iterations and improve-
ments could likely achieve better results. More research is 
required to obtain a better understanding of the role of subject  
matter expertise in infectious disease forecasting. Similarly, 
it would be interesting to explore the effects on predictive 
accuracy of providing forecasters with additional qualitative  
real-time information such as detailed descriptive reports that 
enhance the forecasters’ understanding of the overall context 
beyond the numerical data that was visible in our application.  
Our results underline that it is difficult to evaluate forecast  
performance devoid of context that helps inform what a good  
or a bad forecast is. Different ways to look at the data let dif-
ferent forecasts appear better or worse. Forecast evaluation  
therefore either needs to be clearly informed by the needs of 
forecast consumers to determine what a good forecast is, or 
it needs a broad array of perspectives to provide a wholistic  
picture as we have attempted to present in this work. Further-
more, evaluating forecasts post-hoc leaves the researchers  
with many degrees of freedom to make decisions that affect 
which models look good and there is a risk of allowing for moti-
vated reasoning. More emphasis should be put on measures 

that prevent this, e.g. by establishing common standards for 
evaluations, pre-registering studies, and making it a norm  
to display a variety of standard metrics.
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Supplementary information
Weighted interval score
The weighted interval score (smaller values are better) is
a proper scoring rule for quantile forecasts. It converges
to the continuous ranked probability score (which itself is
a generalisation of the absolute error to probabilistic fore-
casts) for an increasing number of intervals. The score
can be decomposed into a dispersion (uncertainty) com-
ponent and penalties for over- and underprediction. For
a single interval, the score is computed as

ISα(F, y) = (u−l)+
2
α
·(l−y)·1(y ≤ l)+

2
α
·(y−u)·1(y ≥ u),

where 1() is the indicator function, y is the true value,
and l and u are the α2 and 1− α2 quantiles of the predictive
distribution F , i.e., the lower and upper bound of a single
prediction interval. For a set of K prediction intervals and
the median m, the score is computed as a weighted sum,

W IS =
1

K + 0.5
·

�

w0 · |y −m|+
K
∑

k=1

wk · ISα(F, y)

�

,

where wk is a weight for every interval. Usually, wk =
αk
2

and w0 = 0.5.

Renewal equation model
The model was initialised prior to the first observed data
point by assuming constant exponential growth for the
mean of assumed delays from infection to case report.

It = I0 exp (r t) (1)

I0 ∼LN (log Iobs, 0.2) (2)

r ∼LN (robs, 0.2) (3)

Where Iobs and robs are estimated from the first week of
observed data. For the time window of the observed data
infections were then modelled by weighting previous in-
fections by the generation time and scaling by the instan-
taneous reproduction number. These infections were then
convolved to cases by date (Ot) and cases by date of report
(Dt) using log-normal delay distributions. This model can
be defined mathematically as follows,

log Rt = log Rt−1 +GPt (4)

It = Rt

15
∑

τ=1

w(τ|µw,σw)It−τ (5)

Ot =
15
∑

τ=0

ξO(τ|µξO
,σξO

)It−τ (6)

Dt = α
15
∑

τ=0

ξD(τ|µξD
,σξD

)Ot−τ (7)

Ct ∼ NB
�

ω(t mod 7)Dt ,φ
�

(8)

Where,

w∼ G (µw,σw) (9)

ξO ∼LN (µξO
,σξO

) (10)

ξD ∼LN (µξD
,σξD

) (11)

This model used the following priors for cases,

R0 ∼LN (0.079,0.18) (12)

µw ∼N (3.6,0.7) (13)

σw ∼N (3.1,0.8) (14)

µξO
∼N (1.62,0.064) (15)

σξO
∼N (0.418,0.069) (16)

µξD
∼N (0.614,0.066) (17)

σξD
∼N (1.51,0.048) (18)

α∼N (0.25,0.05) (19)
ω

7
∼ Dirichlet(1, 1, 1,1, 1, 1, 1) (20)

φ ∼
1
p

N (0,1)
(21)

and updated the reporting process as follows when fore-
casting deaths,

µξD
∼N (2.29,0.076) (22)

σξD
∼N (0.76,0.055) (23)

α∼N (0.005,0.0025) (24)

α, µ, σ, and φ were truncated to be greater than 0 and
with ξ, and w normalised to sum to 1.
The prior for the generation time was sourced from [5]
but refit using a log-normal incubation period with a mean
of 5.2 days (SD 1.1) and SD of 1.52 days (SD 1.1) with
this incubation period also being used as a prior [6] for
ξO. This resulted in a gamma-distributed generation time
with mean 3.6 days (standard deviation (SD) 0.7), and SD
of 3.1 days (SD 0.8) for all estimates. We estimated the
delay between symptom onset and case report or death
required to convolve latent infections to observations by
fitting an integer adjusted log-normal distribution to 10
subsampled bootstraps of a public linelist for cases in Ger-
many from April 2020 to June 2020 with each bootstrap
using 1% or 1769 samples of the available data [11, 2]
and combining the posteriors for the mean and standard
deviation of the log-normal distribution [1, 4, 9, 10].
GPt is an approximate Hilbert space Gaussian process as
defined in [7] using a Matern 3/2 kernel using a boundary
factor of 1.5 and 17 basis functions (20% of the number
of days used in fitting). The length scale of the Gaussian
process was given a log-normal prior with a mean of 21
days, and a standard deviation of 7 days truncated to be
greater than 3 days and less than 60 days. The magni-
tude of the Gaussian process was assumed to be normally
distributed centred at 0 with a standard deviation of 0.1.
From the forecast time horizon (T) and onwards the last
value of the Gaussian process was used (hence Rt was
assumed to be fixed) and latent infections were adjusted
to account for the proportion of the population that was
susceptible to infection as follows,

It = (N − I c
t−1)

�

1− exp

�

−I ′t
N − I c

T

��

, (25)
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where I c
t =
∑

s<t Is are cumulative infections by t −1 and
I ′t are the unadjusted infections defined above. This ad-
justment is based on that implemented in the epidemia
R package [8, 3].

Convolution model The convolution model shares the
same observation model as the renewal model but rather
than assuming that an observation is predicted by itself
using the renewal equation instead assumes that it is pre-
dicted entirely by another observation after some para-
metric delay. It can be defined mathematically as follows,

Dt ∼ NB

�

ω(t mod 7)α

30
∑

τ=0

ξ(τ|µ,σ)Ct−τ,φ

�

(26)

with the following priors,

ω

7
∼ Dirichlet(1, 1, 1, 1, 1, 1, 1) (27)

α∼N (0.01, 0.02) (28)

ξ∼LN (µ,σ) (29)

µ∼N (2.5, 0.5) (30)

σ ∼N (0.47, 0.2) (31)

φ ∼
1
p

N (0,1)
(32)

with α, µ, σ, and φ truncated to be greater than 0 and
with ξ normalised such that

∑30
τ=0 ξ(τ|µ,σ) = 1.

Model fitting
Both models were implemented using the EpiNow2 R
package (version 1.3.3) [1]. Each forecast target was
fitted independently for each model using Markov-chain
Monte Carlo (MCMC) in stan [10]. A minimum of 4
chains were used with a warmup of 250 samples for the
renewal equation-based model and 1000 samples for the
convolution model. 2000 samples total post warmup
were used for the renewal equation model and 4000 sam-
ples for the convolution model. Different settings were
chosen for each model to optimise compute time contin-
gent on convergence. Convergence was assessed using
the R hat diagnostic [10]. For the convolution model fore-
cast the case forecast from the renewal equation model
was used in place of observed cases beyond the forecast
horizon using 1000 posterior samples. 12 weeks of data
was used for both models though only 3 weeks of data
were included in the likelihood for the convolution model.
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Figure SI.1. Number of forecasts across the study period. A: number of forecasts included in the Hub ensemble
and the combined crowd ensemble. B: number of forecasts by "experts" and "non-experts". Expert status was
determined based on the participant’s answer to the question whether they "worked in infectious disease mod-
elling or had professional experience in any related field".

Table SI.1. Performance for four-week-ahead forecasts. Values have been cut to three significant digits and
rounded

WIS - natural WIS - log scale

Model Target abs. rel. sd abs. rel. sd Coverage 50% Coverage 90%

EuroCOVIDhub-ensemble Cases 81.5k 1 74.8k 0.45 1 0.3 0.23 0.62
crowd-ensemble Cases 98.4k 1.21 115k 0.45 1.02 0.35 0.23 0.62
crowd-direct Cases 101k 1.25 128k 0.47 1.05 0.41 0.31 0.62
crowd-rt Cases 106k 1.3 118k 0.47 1.06 0.33 0.23 0.46

EuroCOVIDhub-ensemble Deaths 85 1 60.3 0.2 1 0.08 0.77 0.92
crowd-ensemble Deaths 98.2 1.16 103 0.19 0.95 0.13 0.54 0.77
crowd-direct Deaths 88.1 1.04 80.8 0.22 1.08 0.14 0.38 0.77
crowd-rt Deaths 154 1.82 110 0.31 1.51 0.17 0.15 0.46
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Figure SI.2. Observed cases and deaths of COVID-19 in the UK. A: Observed daily (bars) and weekly (black
lines and points) numbers of cases and deaths as available through the European Forecast Hub when the study
concluded in 2021. Daily numbers were multiplied by seven in order to appear on the same scale as weekly
numbers. Red dots represent days for which the original data and the revised data disagreed by more than five
percent. B: Revised data available as of February 14 2023. In August, Johns Hopkins University that provided the
data switched the data stream for their death forecasts to reflect the number of death certificates that mentioned
COVID-19 rather than the number of people who died within 28 days of a positive test. C: Difference between
the original and revised weekly death numbers.
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Figure SI.3. Screenshot of the direct forecasting interface.

Figure SI.4. Screenshot of the Rt forecasting interface.
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Figure SI.5. Ranks for all forecasting approaches for four week ahead forecasts. Colours indicate how often (out
of 13 forecasts) a given approach got 1st, 2nd, 3rd, or 4th rank.
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Figure SI.6. Predictive performance of self-reported "experts" and "non-experts" across forecast horizons. Fore-
casts from "experts" and "non-experts" were combined to two separate median ensembles, including both direct
and Rt forecasts. A-D: WIS stratified by forecast horizon for cases and deaths on the natural and log scale. E, F:
Empirical coverage of the 50% and 90% prediction intervals stratified by forecast horizon and target type.

Table SI.2. Performance for two-week-ahead forecasts of experts and non-experts. Values have been cut to three
significant digits and rounded.

WIS - natural WIS - log scale

Model Target abs. rel. sd abs. rel. sd Coverage 50% Coverage 90%

crowd-ensemble Cases 40.1k 1 69.4k 0.22 1 0.25 0.38 0.69
Expert Cases 42.7k 1.06 74.9k 0.24 1.08 0.28 0.46 0.77
Non-Expert Cases 43.1k 1.07 67k 0.26 1.14 0.25 0.31 0.54

crowd-ensemble Deaths 40.2 1 41.5 0.12 1 0.07 0.54 0.77
Expert Deaths 41.2 1.03 41.8 0.16 1.29 0.15 0.54 0.77
Non-Expert Deaths 45.9 1.14 56.8 0.13 1.06 0.08 0.46 0.77
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Table SI.3. Performance for four-week-ahead forecasts of experts and non-experts. Values have been cut to three
significant digits and rounded.

WIS - natural WIS - log scale

Model Target abs. rel. sd abs. rel. sd Coverage 50% Coverage 90%

Expert Cases 102k 1.04 121k 0.49 1.08 0.4 0.23 0.54
Non-Expert Cases 105k 1.07 110k 0.55 1.21 0.4 0.15 0.54
crowd-ensemble Cases 98.4k 1 115k 0.45 1 0.35 0.23 0.62

Expert Deaths 93 0.95 81.2 0.23 1.17 0.14 0.38 0.69
Non-Expert Deaths 113 1.15 122 0.23 1.18 0.18 0.46 0.69
crowd-ensemble Deaths 98.2 1 103 0.19 1 0.13 0.54 0.77
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7 Discussion

7.1 Summary and contributions to existing work

The work presented in this thesis has made several contributions related to forecast evaluation
and human judgement forecasting in epidemiology.

Forecast evaluation

The first major contribution is towards improving the evaluation of infectious disease forecasts,
both from a practical and a theoretical perspective.

scoringutils

The scoringutils package helps make forecast evaluation and the necessary tools more
accessible to researchers and decision makers. The package facilitates the evaluation of
probabilistic forecasts using proper scoring rules by providing a general-purpose tool and
a flexible framework. It is also the first package to offer extensive support for evaluating
probabilistic forecasts in the form of predictive quantiles. This quantile-based format was
used throughout this thesis and is a format used by several infectious disease Forecast
Hubs (Reich et al., 2019; Cramer et al., 2022; Sherratt et al., 2022; Bracher et al., 2022).
scoringutils improves usability over existing software for evaluating probabilistic forecasts.
It is especially geared towards comparing forecasts from different models, regardless of how
those forecasts were generated. All forecasts can be scored and summarised in a convenient
data.table format and the package offers functionality to compare performance visually
across different dimensions and account for missing forecasts. scoringutils has since been
used in published and unpublished work supporting major public health organisations such
as the US Centers for Disease Control and Prevention, the European Centre for Disease
Prevention and Control, the UK Health Security Agency, and Médecins Sans Frontièrs.

Scoring epidemiological forecasts on transformed scales

In addition to improving the tools available for forecast evaluations, this thesis made a
theoretical contribution to our understanding of forecast evaluations in the context of
epidemiology. It argued that transforming forecasts and observations prior to applying the
continuous ranked probability score (CRPS) or the weighted interval score (WIS) made
it possible to obtain more meaningful results than with the CRPS and WIS values based
on untransformed forecasts. Both the WIS and the CRPS measure the absolute distance
between the forecast and the observation. Scores therefore tend to increase with the order
of magnitude of the target and do not take the exponential nature of infectious disease
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processes into account. This can be mitigated by transforming the forecasts and observations
before scoring. The natural logarithm is a particularly attractive transformation in an
epidemiological context, as the resulting score represents a measure of how well the forecasts
predicted the exponential growth rate. The CRPS applied to log-transformed forecasts can
also be understood as an approximate probabilistic version of the symmetric relative error.
Furthermore, the natural log transformation can serve as a variance-stabilising transformation,
helping to make scores more comparable across time, locations and forecast targets. We
compared scores on the natural scale and on the log scale for a set of forecasts submitted to
the European COVID-19 Forecast Hub and found that rankings between models changed.
Scores were more evenly distributed across time, locations and forecast targets on the log
scale. Forecasters were less severely penalised for missing the peak on the log scale and
received higher penalties for missing an upswing of incidences.

Human judgement

The second major contribution of this thesis is in improving our understanding of the role
of human judgement in infectious disease forecasting and the potential and limitations of
human judgement forecasts.

In order to be able to compare probabilistic forecasts from human forecasters against compu-
tational models, we developed a new open source platform and R package, crowdforecastr,
which allows the elicitation of probabilistic time series forecasts from individual forecasters.
When we submitted our forecasts to the German and Polish Forecast Hub in 2020 and
2021, our study was the first one in an epidemiological context to compare full predictive
distributions from individual users against model-based predictions. A previous study by
Farrow et al. (2017) had elicited point forecasts from individual participants and combined
them to a probabilistic forecast based on the mean and variation in participants’ predictions.

In the first study presented in Chapter 4, we compared a small crowd of human forecasters
against two minimally-tuned epidemiological models and an ensemble of model-based predic-
tions submitted to the German and Polish Forecast Hub. These submissions contributed
to a shared effort to inform the public and public health decision makers in Germany and
Poland during the earlier phases of COVID-19. We found predictions for cases from human
forecasters to be slightly better in terms of the weighted interval score than forecasts of the
Hub ensemble, but worse when predicting deaths. Our minimally-tuned model forecasts
performed comparable to our crowd forecasts for short horizons but noticeably worse for
longer horizons. This suggests that human judgement is beneficial in guiding model-based
predictions when conditions change over time. We also found that even forecasts that are
worse than a pre-existing ensemble can help to improve ensemble forecasts when including it
in that ensemble.

In the second study in the UK presented in Chapter 6, we repeated the basic set-up of
the first study with a larger number of participants in a different country. Forecasts were
elicited as part of a public forecasting challenge over 13 weeks and submitted to the European
COVID-19 Forecast Hub. In addition, we tested a novel forecasting approach in which users
submitted a forecast of the effective reproduction number Rt, which would then get mapped
to reported cases and deaths using the R package EpiNow2 (Abbott et al., 2020). Following
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the conclusions presented in Chapter 5 we evaluated forecasts using both untransformed
and log-transformed predictions and observations. We found the performance of human and
model-based forecasts to be overall comparable. The Hub ensemble performed slightly better
than human forecasts on the natural scale, and slightly worse when evaluated on the log
scale. Our novel Rt approach performed comparably to other forecasts when predicting cases
(which forecasters could observe directly), and noticeably worse for death predictions (which
forecasters could not see), suggesting that the underlying model did not accurately capture
the relation between cases and deaths.

7.2 Limitations

The work presented in this thesis is subject to various important limitations. This section
gives an overview and summary of those limitations, while further details can be found in
the corresponding chapters.

Forecast evaluation

The scoringutils package is still under active development and is not yet at the point where
it is a fully general forecast evaluation package that can satisfy all needs a typical practitioner
might have. One particular area of improvement is the number of forecast types that are
supported by the package, which is currently limited. For example, the package currently
does not allow users to evaluate forecasts in a binned format or predictions expressed in the
form of closed-form distributions. It also does not support categorical forecasts and a variety
of classification tasks that are common in many fields. The package also currently lacks a
range of functionality, in particular with respect to statistical testing. It also lacks some
visualisations, particularly related to model calibration that are available in other packages.
While the package is aimed to be user-friendly, it still lacks some documentation as well
as vignettes with additional explanations and case studies that make the package easily
accessible to new users.

In terms of the theoretical advancements regarding transformations of forecasts before
scoring, more work needs to be done, both with respect to transformations in general and the
log-transformation in particular. Theoretical considerations suggest that log-transforming
forecasts before applying the CRPS or WIS yields a score that better reflects the exponential
nature of infectious disease processes. However, whether or not scores on the log scale
appear indeed more meaningful to researchers and policy makers in practice remains to
be seen. So far we have only conducted a small case study in order to illustrate the
effects of log-transforming forecasts before evaluation. More work is needed to obtain a
more complete understanding of the behaviour of scores on the log scale across different
applications. Transformations in general may be a promising way of obtaining scores that
are more meaningful to researchers and policy makers, but more work is needed to better
understand when to use which transformation.

Several practical issues arise when transforming forecasts. The natural logarithm, for example,
does not allow any negative or zero values in the forecasts or observations. In Chapter 5
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we suggested to add a small value to all observations and forecasts in order to deal with
zero values. This does not break propriety, but introduces more degrees of freedom and
changes the scores in subtle ways. How to best deal with negative values remains unclear.
Negative values may not be a great problem in an epidemiological context, where observations
are usually counts, but could hinder application in other contexts. Issues may arise even
when no zeros or negative values are present, especially when forecasts or observations are
small. A small absolute difference between forecast and observation can translate to a large
relative difference, causing scores to blow up. This issue can arise in particular if forecasts
and observations are restricted to assume integer values. Users may find that forecasts
made for small targets can dominate overall scores in an undesirable way, depending on the
relationship between the mean and the variance of the forecast target. Bracher et al. (2021a)
argued before that the fact that CRPS scales with the forecast target conveys meaningful
information that gets lost when log-transforming targets. Some desirable transformations
other than the natural logarithm, such as converting absolute forecasts to forecasts of weekly
growth rates by dividing every predicted value by the value in the week before, are restricted
to forecasts that are stored in a format that allows to trace the predictive distribution over
time (such as storing sample forecast trajectories).

Human judgement

This thesis has studied the potential of human judgement to forecast infectious diseases
such as COVID-19. Both studies, however, suffered from a low number of participants. It
therefore remains somewhat unclear how well results could generalise to other settings.

The first study in Germany and Poland, presented in Chapter 4, had a median of six partici-
pants per week (the Hub ensemble had a similar amount of ensemble models). Participants
were also recruited in a very ad hoc fashion among friends and colleagues, making the sample
not representative. In this sense, the study is maybe better understood as a case study of an
acute outbreak response effort using human judgement forecasts. The overall evaluation was
made difficult by the fact that scores varied a lot from week to week and across locations
and forecast horizons. This introduced many researcher degrees of freedom, as results and
interpretations could change depending on how forecasts were evaluated. For the study in
Germany and Poland, we have only looked at forecasts on the natural scale and therefore
lack knowledge of what results would have looked like on the log scale.

Given the very context-dependent nature of human judgement forecasting, results may not
generalise well to other settings. While we attempted to replicate some of our findings in
Germany and Poland in a second study, there are a few factors that make a direct comparison
difficult. In the first study, human forecasts were combined using a mean ensemble, while
in the second study, we used a quantile-wise median (following the practice adopted by all
COVID-19 Forecast Hubs). Changes in the number and composition of forecasters, the
shorter time horizon and the different setting (including vaccination and a different COVID-19
variant) also limit comparability. In both studies, human forecasts were compared against
an ensemble of model-based predictions. However, those ensembles differed both in terms of
their size and their composition.

All forecasts were only analysed at an aggregate level. We therefore could not obtain an
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understanding of how individuals contributed to the overall ensemble forecasts. For example,
we cannot know how the number of participants influenced overall performance, or whether
participants learned over time. Results may have looked different had we successfully retained
participants throughout the studies. In both our studies, most participants only submitted
a single forecast, which may have affected overall performance. In addition, we treated
forecasters more or less as black boxes, without qualitatively investigating their thought
processes in detail.

We asked forecasters to self-identify as “experts” by whether or not they worked in infectious
disease modelling or had professional experience in any related field. However, the value of
that information was limited in a few ways. Firstly, we were not able to check participants’
statements. Secondly, the question we asked was perhaps too broad to provide a useful
measure of the participant’s actual expertise for the task at hand. Something like a short
quiz may have helped to get more detailed information on the participants’ level of expertise.

One aim of the study in Germany and Poland was to improve our understanding of the relative
contributions of human judgement forecasting and epidemiological modelling. However, our
approach of comparing direct human forecasts with minimally-tuned epidemiological models
was likely flawed and may not have entirely achieved this goal. Firstly, there was a partial,
but not complete overlap between the researchers who designed our minimally-tuned models
and the participants of the forecasting study. Had these two groups either been disjunct or
identical, a fairer comparison would have been possible. This, however, would have come at
the expense of an even further reduced number of participants to the point that only one or
two forecasters might have been left on a given date. Furthermore, human forecasters were
allowed to use any model they liked as an input and we therefore cannot make statements
about the extent to which human forecasts were guided by epidemiological modelling. The
notion of “minimally-tuned” we used in our study is very vague, making it unclear how much
our models were actually guided by human judgement rather than being just a mathematical
representation of our abstract understanding of infectious disease dynamics. Furthermore,
we only used two minimally-tuned models for this study. It is unclear whether our models
are able to represent a general class of “minimally-tuned epidemiological models”, or whether
they are just two specific models with particular strengths and weaknesses that may not
generalise to other models.

For the second crowd forecasting study in the UK, we experimented with a novel forecasting
approach that asked human forecasters to predict the effective reproduction number Rt which
then got mapped to reported cases and deaths. Forecasters were able to see a preview of the
case forecast implied by their Rt forecast, but could not see the corresponding prediction for
deaths. Participants therefore had to rely entirely on the underlying model and were not
able to adjust parameters like the CFR or the delay between cases and deaths. The specific
results we obtained therefore depend very strongly on the specific model used and therefore
do not necessarily reflect the overall potential of the proposed approach.
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7.3 Implications and avenues for future work

Forecast evaluation

Broad interest in the scoringutils package suggests that developing and maintaining tools
may be an effective way to contribute to the field of infectious disease forecasting. Unfortu-
nately, academia provides too few mechanisms to incentivise and reward the development
and maintenance of tools in a collaborative and sustainable way. While creating a new tool
allows the authors to get some recognition through the publication of their work, there are
too few ways to reward researchers for contributing to existing projects or to put effort into
continuously developing software after publication. This promotes an ecosystem with a large
number of disconnected tools that solve parts of a larger problem, but do not interface well
with each other. In some sense, the forecast evaluation ecosystem is not much different and
it would be better to have a single forecast evaluation package on which efforts could be
concentrated. For scoringutils, one important challenge will be to turn the package into
a community project that is supported by a larger group of users and contributors from
different institutions and backgrounds. This would make sure that the package is maintained
and developed in a sustainable way in close collaboration with those who actually use it.
In terms of actual development, a broad range of further improvements and features would
be useful. One important area is the addition of tools to determine whether two forecasts
perform significantly differently. Another is the expansion of forecast types supported by
the package. Currently planned are support for categorical forecasts, as well as support
for multivariate forecasts in which a predictive distribution is jointly defined over multiple
targets (e.g. locations or time points). Another interesting idea could be scoring forecasts
against distributions (as opposed to only scoring against observed values). This could be
useful, for example, to evaluate forecasts of quantities like the effective reproduction number
Rt, which are never directly observable, against the final best estimate available later on.
Another planned improvement is the integration of the package with other forecast evaluation
and modelling packages. This means on the one hand creating helper functions to convert
from and to the formats used by different packages. On the other hand, it means creating
vignettes and case studies that explain in detail how to use scoringutils in combination
with other packages.

Despite the widespread use of proper scoring rules, forecast evaluation is far from a solved
problem and much work remains to be done.

Firstly, we only have a rudimentary understanding of how the resulting scores translate into
“usefulness” of the forecasts. For example, in some contexts, such as forecasting hospital bed
occupancy, it might be much worse to underpredict actual numbers than overpredict them,
in a way that is not reflected by ordinary scores. Or it might be that a forecast that is biased
but correctly predicts a trend is more useful than one that shows the wrong trend but is
closer to the actual values and therefore receives a better score. If we show decision makers
different forecasts, which score will choose the model that different decision makers describe
as the most useful one?

Transforming forecasts before scoring is one promising way of approaching this issue. Further
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research into scores on the natural vs. on the log scale is needed. For example, it would be
interesting to investigate whether scores on the log scale tend to be more consistent over time
than those on the natural scale. Furthermore, developing and exploring new transformations
may prove very useful. Forecast transformations may be particularly attractive in combination
with the possibility of creating composite scores as a linear combination of different proper
scoring rules. One could for example create a new score that is a weighted combination of
scores on the natural and on the log scale. Transformations may be particularly useful when
forecasts are represented in the form of predictive samples with sample trajectories. This
would allow, for example, evaluating the shape of the forecast trend line by dividing forecasts
for horizon h by the forecasts for horizon h − 1. Another promising approach may be to
develop custom proper scoring rules for specific applications using Bayes Acts (Brehmer and
Gneiting, 2020) and general loss functions.

Secondly, we do not have a good understanding of what adequate baselines for comparisons
are. For example, predicting whether or not a stone will fall is much easier than predicting
whether or not a stock will rise. This is not reflected through scores that only compare the
forecast and the outcome. This makes comparisons of forecasts across different settings,
locations, times and forecast targets very difficult. Without an appropriate baseline to
compare a forecast against, the raw score alone is somewhat meaningless.

Thirdly, forecast evaluations suffer from a large number of researcher degrees of freedom.
Results change a lot depending on choices such as what metric to use, which forecast horizon
to focus on, whether forecasts are transformed before scoring etc. This introduces a subjective
element into the evaluation and makes results prone to motivated reasoning in a way that is
masked by the apparent objectivity of numerical evaluations. To mitigate this, researchers
should aim to show a broad range of different scores and metrics. It could be a good idea
to establish shared standards of what should be reported in a forecast evaluation and how.
Other ideas include pre-registration of studies or interactive visualisations of scores that
forecast consumers can explore on their own.

Fourthly, we still do not have a very good understanding of how much to trust a forecaster.
In the context of the COVID-19 Forecast Hubs, models often showed consistently good
performance for a long time and then suddenly broke down when circumstances changed.
The Hub ensembles robustly emerged as good (and in most instances the best) choice on
average across several Forecast Hubs and many evaluations. But even the ensemble often
missed changes in trends and performed poorly. Many key questions still remain open: How
much data is needed until we can say confidently that a model/forecaster performs well or
badly? Can we identify some kind of reliability measure that would indicate how much we
can trust a given forecast at a particular time? Should we use significance tests to compare
models/forecasters and if so how much can we trust them? One issue with significance tests
in particular is that forecasts are usually correlated across time and location, reducing the
effective sample size. Also, as Diebold (2015) note, there is a difference between comparing
forecasts with comparing forecasters, as the observed performance of a single set of forecasts
is not necessarily representative of the performance of that forecaster in general.

Fifthly, the high dimensionality of forecasting data poses a problem for forecast evaluation. In
an epidemiological setting, forecasts are often made by several models at different time points

182



for different forecast horizons, locations and forecast targets. Evaluating and visualising
forecasts for different stratification of the data is cumbersome, difficult, and relies heavily
on the researcher’s judgement. It would be helpful to come up with robust ways to handle
the dimensionality of the data better. One obvious candidate is modelling scores using a
regression framework. A major obstacle, however, is that scores (at least in epidemiology)
tend to be heavily skewed and dominated by outliers. Perhaps a combination of transforming
forecasts before scoring and standardising scores may make it possible to use a regression
framework, even if p-values for coefficients may not be reliable.

Finally, we do not have established good ways to provide useful feedback for forecasters on
how to improve their forecasts. The Forecast Hubs published data on scores and average
performance but struggled to provide actionable feedback. One option would be to create
single-model evaluations that explore in detail when and how a model performed well or
badly. A more technically sophisticated option might be to provide forecasters with an
interface that allows them to manipulate past forecasts and observe how e.g. shifting forecasts
or adjusting dispersion would have influenced past scores.

Human judgement forecasting

This thesis has attempted to shed some light on the opportunities and limitations associated
with human judgement forecasting of infectious diseases such as COVID-19. Our studies
provided some evidence that a mixed crowd of human forecasters and an ensemble of model-
based predictions can produce forecasts of comparable quality. However, many of the details
of what drives good performance, both in models and human forecasters, are still poorly
understood.

Human judgement forecasting and mathematical modelling differ in their advantages and
disadvantages. Whether or not one should aim to elicit forecasts from humans or mathematical
models therefore depends mainly on for what purpose and in which circumstances forecasts
are to be used. Eliciting both human judgement forecasts and model-based predictions for
the same thing is useful to obtain an understanding of the relative performance and relative
strength of the two different approaches. Going forward, however, obtaining forecasts for the
exact same targets may not be the best use of resources. Rather, an important question in
the future is how to elicit forecasts in a way that plays to the respective strengths of humans
and mathematical models. Human judgement may be particularly useful in situations where
we are interested in questions that cannot easily captured by modelling or where the relevant
information is hard to feed into models. Human judgement forecasting requires a lot of effort
though, and past studies often struggled to retain participants over a long time. Both our
studies suffered from low participation. For the first study, the low number of participants
was in part due to time constraints - the first forecasts were submitted within three weeks of
the start of this PhD. However, even with more time and preparation, as was possible for the
second study in the UK, we found it hard to recruit and retain a large number of participants.
Generating forecasts over a prolonged period may be easier using mathematical models that
can be automated and only have to be adapted occasionally when circumstances change.
Mathematical modelling may also be advantageous in settings with good data quality and for
forecasting tasks that benefit from the ability to do complex calculations. Another advantage
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of mechanistic models is that they may help us to understand the underlying infectious
disease process better and apply those learnings to other settings.

One interesting question that arose in this thesis was whether humans might have an advantage
when predicting cases, whereas computational models might be better at forecasting a lagged
quantity such as deaths. This was suggested by the results from our first study in Germany,
as well as by McAndrew et al. (2022b). Our second study in the UK did not confirm this
(but also did not provide strong evidence against this hypothesis). However, performance
when forecasting deaths in our second study may have been affected by changes in the age
composition of cases and the rise of the Delta variant in the UK. It could be possible that
humans found it easier to adapt to changes in the case fatality ratio than models, possibly
implying that humans generally tend to be good at incorporating uncertain information and
adapting to novel circumstances. Computational models, on the other hand, could be better
at estimating the delay distribution between cases and deaths precisely, if circumstances
stay constant. This ‘story’ seems compelling, which is exactly why we should treat it with
caution. Given the small number of studies and low sample sizes, we cannot draw strong
conclusions and there is a high risk of overinterpreting noise. Ultimately, this highlights that
we do not really have a sufficiently good understanding of how and why different forecasting
approaches perform well.

One straightforward way to obtain a better understanding of human judgement forecasting
would be to conduct qualitative interviews with forecasters. This could shed light on which
factors forecasters take into account and the reasoning they apply. It could also help us
understand in how far the reasoning of experts and non-experts differs and provide information
on how to improve predictive performance in the future.

Qualitative interviews could be used not only to obtain insights on human judgement
forecasting but also to get a better understanding of the role of human judgement in
infectious disease modelling more generally. In our original study in Germany and Poland we
described the output of mathematical modelling as a mixture between abstract mathematical
assumptions and the subjective human judgement of the researchers developing the models.
One aim of the study was to obtain a better understanding of the influence and effect of that
human judgement has in the model development process. As discussed in the last section on
limitations, it is questionable whether we achieved this to the extent we had aimed for. One
way to address this question more directly would have been to conduct qualitative interviews
with modellers who submitted models to the COVID-19 Forecast Hubs.

Another interesting way of obtaining a better understanding of the influence of human
judgement in infectious disease forecasting would be to ask humans to directly manipulate
model outputs. This could either be done with the researchers themselves who developed
the models or a different set of forecasters. It would then be possible to analyse how human
judgement alone, model-based predictions alone, or a combination of the two would perform.
This would address our original research question more directly and could lead to promising
ways of improving on the accuracy of both human and model-based predictions. Importantly,
general-purpose tools that would allow users to adapt arbitrary forecasts are not readily
available at present. This is somewhat astonishing, given the widespread use of forecasting
and the fact that researchers, at least anecdotally, often meaningfully disagree with aspects
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or details of their own model-based predictions.

Combining human judgement and model-based predictions in order to mitigate weaknesses of
any one approach is appealing. Related efforts generally follow two aims: improving predictive
performance, and making forecasting efforts more scalable by reducing the cognitive load
for humans. Several promising ideas have been proposed. One, having human forecasters
manually adapt model outputs, was mentioned in the last paragraph. A second one, asking a
human forecaster to predict a quantity such as Rt or the growth rate of an infectious disease
process, was discussed in our paper on the UK Crowd Forecasting Challenge in Chapter 6.
While performance in our study was poor, users quite liked the interface. The study explored
an early prototype and there are several improvements that could be made, such as allowing
forecasters to see the implied forecasts for deaths and influence it through adjusting the CFR.
Another approach is to use human judgement in order to estimate or forecast parameters
that are then used as an input to mathematical models (see e.g. Venkatramanan et al., 2022).
This, however, may not be easy as interpreting and estimating technical parameters such as
the serial interval requires expert subject matter knowledge. One could, however, for example,
ask participants to predict the timing and magnitude of a peak and use that information
as a prior to constrain plausible model scenarios. Yet another idea would be to use human
judgement to guide the formation of forecast ensembles. In the past, it has proven surprisingly
difficult to create forecast ensembles that outperform a simple unweighted combination of
individual forecasts (this has been called the "forecast combination puzzle", see e.g. Claeskens
et al., 2016). Weighted ensembles are usually trained based on past performance. However,
training algorithms usually lack a deeper understanding of the models involved. Organisers
of the various COVID-19 Forecast Hubs, on the other hand, had quite a good understanding
of the models involved and their respective strengths and weaknesses in various situations.
Perhaps human judgement that is guided by an understanding of individual models could
help in determining model weights that improve on equal weighting. Again, adequate tools
would be needed to allow users to see the effect of choosing different model weights on the
resulting ensemble. Somewhat related, it could be useful to ask forecasters (for example,
researchers who submit forecasts to Forecast Hubs) for their personal confidence in their
own forecasts. These subjective estimates might be used to improve the ensemble forecast or
provide learning opportunities for participants.

7.4 Conclusion

This thesis has focused on the two areas of forecast evaluation and the comparison of human
judgement forecasting and model-based predictions. Throughout, it has touched on a large
variety of different questions and topics. What are appropriate tools to evaluate and elicit
forecasts? How can we interpret different scores and make them meaningful and useful
to modellers and policy makers alike? How can we create scores that better reflect the
underlying infectious disease processes we are trying to predict? What are the strengths and
weaknesses of human judgement forecasts and model-based predictions and how can we best
cater to the respective strengths in the future?

This work has provided tangible progress on some of these questions. In particular with
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regards to forecast evaluation, both scoringutils and the paper on forecast transformation
(Chapter 5) represent important advances that have found their way into the work of major
institutions. With regard to human judgement forecasting, this thesis has contributed to a
shared understanding of the relative performance of humans and mathematical models in
infectious disease forecasting and has explored several novel approaches to eliciting forecasts
and combining human judgement and computational models.

Overall, likely more questions have been raised than answered. With regard to the human
judgement forecasting parts of this thesis, the majority of the work should best be understood
as exploratory. On the one hand, our work did contribute to existing knowledge both in
terms of our understanding of the performance of human forecasts and the ways that forecast
evaluations in general could be conducted. On the other hand, our two studies highlight
how difficult it is to obtain conclusive answers, how many researcher degrees of freedom are
involved and how many questions remain unsolved. In some sense, the major value of our
work on comparing human and model-based forecasts perhaps comes from using a particular
case study as a starting point for open exploration and reflection, and from raising interesting
questions and suggesting novel areas of inquiry. With regard to the applied and theoretical
work on forecast evaluation in this thesis, our efforts highlight how much there is still to be
done in terms of interpreting the performance of forecasters. It remains difficult to link scores
to the actual usefulness of a forecast. Furthermore, handling the high dimensionality of the
different forecasts targets across time and location, and target types remains a challenge. On
the other hand, the work on transforming forecasts before scoring them presented in this
thesis opens up a large range of exciting possibilities and avenues for future research.

The work in this thesis, the tools and theoretical advancements, as well as the ideas and
questions it raised hopefully contribute to an infectious disease forecasting ecosystem that
allows us to be a little more prepared for the next infectious disease outbreaks than the last.
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