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Background. Streptococcus pyogenes–related skin infections are increasingly implicated in the development of rheumatic heart 
disease (RHD) in lower-resource settings, where they are often associated with scabies. The true prevalence of S pyogenes–related 
pyoderma may be underestimated by bacterial culture.

Methods. A multiplex quantitative polymerase chain reaction (qPCR) assay for S pyogenes, Staphylococcus aureus, and 
Sarcoptes scabiei was applied to 250 pyoderma swabs from a cross-sectional study of children aged <5 years in The Gambia. 
Direct PCR-based emm-typing was used to supplement previous whole genome sequencing (WGS) of cultured isolates.

Results. Pyoderma lesions with S pyogenes increased from 51% (127/250) using culture to 80% (199/250) with qPCR. Compared 
to qPCR, the sensitivity of culture was 95.4% for S pyogenes (95% confidence interval {CI}, 77.2%–99.9%) in samples with S pyogenes 
alone (22/250 [9%]), but 59.9% (95% CI, 52.3%–67.2%) for samples with S aureus coinfection (177/250 [71%]). Direct PCR-based 
emm-typing was successful in 50% (46/92) of cases, identifying 27 emm-types, including 6 not identified by WGS (total 52 emm-types).

Conclusions. Bacterial culture significantly underestimates the burden of S pyogenes in pyoderma, particularly with S aureus 
coinfection. Molecular methods should be used to enhance the detection of S pyogenes in surveillance studies and clinical trials of 
preventive measures in RHD-endemic settings.
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Superficial bacterial skin infections (pyoderma) are common 
in childhood, and approximately 162 million children globally 

are affected at any one time [1]. A high prevalence is seen in 
low- and middle-income countries and in marginalized 
groups within high-income countries such as indigenous pop
ulations [1–3]. Streptococcus pyogenes and Staphylococcus au
reus are the dominant causative pathogens, although 
microbiological data from pyoderma studies conducted in 
these settings are scarce [1]. Previous studies have shown 
that polymerase chain reaction (PCR) improves the detection 
of S pyogenes in pharyngitis, but the use of molecular assays 
for S pyogenes in cases of pyoderma has been infrequently 
evaluated [4–6]. In addition to a broad range of acute infec
tions, postinfectious immune-mediated sequelae of S pyogenes 
include acute poststreptococcal glomerulonephritis and acute 
rheumatic fever (ARF), leading to rheumatic heart disease 
(RHD) [7]. RHD following S pyogenes pharyngitis is well- 
described, but there is growing recognition of the role of S pyo
genes pyoderma in driving RHD in settings with the highest bur
den of disease [8–10].

Pyoderma caused by both S pyogenes and S aureus is also fre
quently associated with Sarcoptes scabiei infection (scabies) in 
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RHD-endemic settings, which in turn is independently associ
ated with poverty and overcrowding [11–14]. The recent devel
opment of a PCR assay to detect S scabiei offers potential for a 
noninvasive, objective diagnosis of scabies infection and inte
gration alongside diagnostics for pyoderma [15].

Strain typing is an important component of epidemiological 
surveillance of S pyogenes infections, commonly carried out by 
sequencing the emm gene that encodes the M surface protein 
[16]. The M protein has also been identified as a major S pyogenes 
vaccine target; therefore, characterization of emm-type distribu
tion is essential to ensure adequate vaccine coverage globally 
[17]. In high-income settings, the majority of S pyogenes infec
tions are attributed to a small number of different emm-types; 
however, much greater genetic diversity exists in resource-poor 
settings, with no clear emm-type dominance [18].

We previously conducted a cross-sectional study of 1441 
children in The Gambia that identified pyoderma in 250 of 
1441 (17% [95% confidence interval {CI}, 10%–28%]) children 
<5 years old. Wound swab cultures yielded S aureus in 81% and 
S pyogenes in 51% of cases. Scabies infection (diagnosed clini
cally) was seen in 16% of children (95% CI, 12%–20%) and 
was significantly associated with pyoderma [19]. Whole ge
nome sequencing (WGS) of cultured samples demonstrated di
verse emm-types [20]. Here, we use a newly established 
multiplex quantitative PCR (qPCR) assay for S pyogenes, 
S aureus, and S scabiei, applied to wound swab samples from 
this study, to explore whether the presence of these pathogens 
was underestimated by clinical criteria and bacterial culture. 
Furthermore, we attempt to enhance our data on strain diver
sity by using direct PCR-based emm-typing on S pyogenes 
qPCR-positive samples that were either culture negative, or 
where WGS of cultured isolates failed.

MATERIALS AND METHODS

Study Design, Sampling, and Bacterial Culture

Samples were taken during our previous cross-sectional, 
cluster-randomized, population-based study in Sukuta, a peri
urban region in The Gambia, as previously described [19]. 
Ethical approval was provided by The Gambia Government/ 
Medical Research Council Joint Ethics Committee (SCC1587). 
All participants were examined over a 4-month period between 
May and September 2018 with the rainy season defined as after 
26 June 2018, when the first rains of the year occurred. Pyoderma 
was defined as any skin lesion with evidence of pus or crusts. In 
this previous study, children <5 years old within all households 
in each cluster underwent skin examination by trained research 
nurses. Skin lesions were clinically classified as scabies, infected 
scabies, pyoderma, or fungal skin infection. Where pyoderma 
was diagnosed, superficial saline cleansing was done followed 
by a single nylon flocked swab (Copan) collected from the largest 
lesion into liquid Amies transport medium. Swabs were removed 

from transport media and inoculated the same day on 5% sheep 
blood agar and incubated overnight at 37°C. Staphylococcus 
aureus and S pyogenes were identified through purity plates 
(where there was mixed infection), catalase, and agglutination 
testing (Remel Staphaurex Plus or Streptex latex, Thermo 
Fisher Scientific). Transport media were stored at −80°C until 
DNA extraction for this study in February 2023.

DNA Extraction and qPCR

DNA was extracted from 500 μL of transport media using the 
QIAmp DNA Mini Kit (Qiagen). A pellet formed by centrifuga
tion at 7000g for 5 minutes was resuspended in 180 μL enzymatic 
lysis buffer containing 40 μL each of lysostaphin (1 mg/mL) and 
lysozyme (100 mg/mL). An incubation at 37°C for 45 minutes 
was followed by addition of 25 μL proteinase K and 200 μL AL 
buffer before a further incubation at 56°C for 60 minutes. 
DNA purification was then carried out according to manufactur
er instructions.

Bacterial loads were quantified using standard curves. DNA 
was extracted from pure broth cultures of S pyogenes reference 
strain H293, S aureus strain SH1000, and linearized plasmid 
DNA containing the S scabiei SSR5 microsatellite sequence 
[15, 21]. Genomic DNA was quantified using a NanoDrop 
Microvolume Spectrophotometer (Thermo Fisher Scientific) 
and eight 10-fold serial dilutions generated from 10 000 000 
to 1 genome copy per PCR reaction.

Previously described S pyogenes (speB gene), S aureus (nuc 
gene), and S scabiei (SSR5 microsatellite) PCR assays were in
tegrated to establish a multiplex qPCR (Luna Universal Probe 
qPCR Master Mix [New England Biolabs] and primers and 
probes as outlined in Supplementary Table 1) [15, 21–23]. 
Nuclease-free water replicates were included as PCR-negative 
controls. Thermocycling conditions consisted of an initial 10 
minutes at 95°C, followed by 40 amplification cycles of 94°C 
for 15 seconds and 58°C for 40 seconds. Limits of detection 
(LODs) were determined using standard curves generated by 
eight 2.5-fold serial dilutions from 1000 to 1.64 genome copies 
per PCR reaction, run in 11 replicates. The LOD was defined as 
the lowest genome copy number that was amplified at a 95% 
detection rate [24]. When tested in 2 replicates, the LOD was 
31.1 copies for S pyogenes, 3 copies for S aureus, and 4.5 copies 
for S scabiei. Samples were run in duplicate, with the assay re
peated if high intrareplicate variation was seen (cycle threshold 
standard deviation >0.5). Amplification curves were reviewed 
to ensure consistency with true target amplification. Samples 
were deemed positive if there was target amplification and a 
copy number above the LOD.

Direct PCR-Based emm-Typing

The emm gene was amplified from swab DNA extracts 
using US Centers for Disease Control and Prevention (CDC) 
primers CDC1 (5′-TATTSGCTTAGAAAATTAA-3′) and CDC2 
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(5′-GCAAGTTCTTCAGCTTGTTT-3′) [25]. PCR was performed 
with GoTaq polymerase (Promega) as per manufacturer’s in
structions, with each reaction containing 200 nM of the prim
ers and 10 μL of DNA extract. Reaction conditions were at 94°C 
for 1 minute; followed by 30 cycles of 94°C for 15 seconds, 47°C 
for 30 seconds, and 72°C for 85 seconds; and final extension at 
72°C for 7 minutes. PCR products were cleaned (Monarch PCR 
and DNA Cleanup Kit, New England Biolabs) and eluted into 
10 μL, then used as the template for nested PCR using the 
same conditions and primers CDC1 and CDC3 (5′-TTCTT 
CAAGCTCTTTGTT-3′). After gel visualization, bands corre
sponding to the emm gene (∼1100 bp) were purified (Monarch 
DNA Gel Extraction Kit, New England Biolabs) and sent for 
Sanger sequencing (Genewiz, Azenta). If no band was seen on 
gel visualization, the first 2 PCR rounds were repeated from geno
mic DNA, followed by a third-round nested PCR using high- 
fidelity polymerase Q5 (New England Biolabs) and primers 
CDC1 and CDC2 (500 nM each). Cycling conditions were 98°C 
for 30 seconds; followed by 34 cycles at 98°C for 10 seconds, 
47°C for 30 seconds, and 72°C for 30 seconds; and final elonga
tion at 72°C for 5 minutes.

Emm-types were assigned using the CDC emm-typing data
base tool. An emm-type was assigned if >92% identity was ob
served over the first 90 bases of the emm gene, in accordance 
with CDC guidance [26].

Data Analysis

Statistical analysis was performed using R Statistical Software 
(v4.2.2; R Core Team 2022). Data were compared using a 
2-tailed Mann Whitney U test for continuous data or Fisher ex
act test for categorical data. A P value of <.05 was considered 
statistically significant, with the Benjamini-Hochberg proce
dure applied for multiple hypothesis testing. Raw P values are 
reported where they remain statistically significant after adjust
ing for multiple testing; others are reported as not statistically 
significant. The Simpson Reciprocal Index of diversity was cal
culated for samples with emm-types defined by WGS alone, and 
following addition of direct PCR–typed samples [27, 28].

RESULTS

Quantitative PCR Shows Greater Diagnostic Yield Than Bacteriological 
Culture

All transport media samples from pyoderma swabs underwent 
qPCR (n = 250). One hundred samples (40%) had either 
S pyogenes or S aureus detected by qPCR but not culture 
(Supplementary Table 2). The greatest additional diagnostic 
yield was in S pyogenes, identified in 72 of 250 samples (29%) 
by qPCR but not culture, resulting in 80% of pyoderma cases 
being positive for S pyogenes. All S pyogenes culture-positive 
samples were also qPCR positive, but 8 of 250 samples (3%) 
that were S aureus culture positive were S aureus qPCR 

negative. Staphylococcus aureus and S pyogenes coinfection 
was seen in 71% (177/250) of samples by qPCR compared 
to 42% (104/250) by culture (Supplementary Figure 1). 
Compared to qPCR, the sensitivity of culture was 95.4% for 
S pyogenes (95% CI, 87%–100%) and 91.1% for S aureus (95% 
CI, 83%–99%) in samples in which a single bacterial pathogen 
was identified, but 59.9% for S pyogenes (95% CI, 53%–67%) 
and 86.4% for S aureus (95% CI, 81%–91%) from samples in 
which coinfection was present.

For both S pyogenes and S aureus, qPCR bacterial load was 
significantly higher in samples that were culture positive com
pared to those that were culture negative (both P < .0001) 
(Figure 1A and 1B). Streptococcus pyogenes load in coinfected 
samples was significantly lower than in S pyogenes monoinfec
tions (P = .00094), whereas S aureus load was higher in coin
fected samples than in those with S aureus alone (P = .00078; 
Figure 1C and 1D).

Forty-three of 250 pyoderma swabs (17%) tested positive by 
qPCR for S scabiei. Of the 25 swabs from lesions classified clin
ically as infected scabies, only 4 (16%) were positive by qPCR 
(Supplementary Table 3). In 45 cases where scabies was diag
nosed clinically in another body site, 7 (16%) were qPCR pos
itive for S scabiei, along with 18% (32/180) of samples from 
pyoderma cases where no clinical scabies diagnosis was made.

Bacterial Etiology and Load Associations With Age, Body Site, and Season

The proportion of individuals with each pathogen increased 
with age (Figure 2). Within those with pyoderma, age category 
was significantly associated with pattern of infection as defined 
by qPCR result (Fisher exact test, P = .039), with no partici
pants aged <1 year having infection with S pyogenes alone, 
and fewer participants having coinfection with both S pyogenes 
and S aureus compared to older participants. Within all study 
participants, 3% (10/302) of those <1 year of age had pyoderma 
with S pyogenes, rising to 13% (41/329) in those aged 12–24 
months and 18% (55/300) in those aged 48–59 months. 
Clinical sample bacterial load of S pyogenes and S aureus did 
not significantly vary with participant age (Supplementary 
Figure 2).

Pyoderma was most commonly identified above the neck 
(50% of lesions), followed by leg or foot (33%). Using qPCR, 
S pyogenes was detected more commonly than S aureus in the 
lower limb (98% vs 85% of pyoderma lesions; Supplementary 
Figure 3A). In contrast, in pyoderma lesions above the neck, 
S aureus was detected in 91% of lesions compared to S pyogenes 
in 70%. There was a significant association between site of pyo
derma and S pyogenes detection (Fisher exact test, P < .0001), 
but not S aureus detection (P = .28). A greater S pyogenes 
load was seen in lower-limb compared to above-the-neck le
sions (P < .0001; Supplementary Figure 3B), whereas no differ
ence in S aureus load was seen between these sites.
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Figure 1. Bacterial quantity in polymerase chain reaction–positive samples for Streptococcus pyogenes (A) and Staphylococcus aureus (B) by bacteriological culture status, 
and for S pyogenes (C ) and S aureus (D) in coinfected samples compared to samples with a single identified bacterial pathogen. Statistical differences determined using a 
2-tailed Mann Whitney U test.

4 • JID • Hall et al

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/advance-article/doi/10.1093/infdis/jiae359/7713856 by guest on 30 July 2024



Our previous study reported a significant increase in the 
prevalence of pyoderma during the rainy season at 23%, com
pared to 9% before the start of the rains. Coinfections and 
monoinfections with both S pyogenes and S aureus increased af
ter the start of the rainy season (Figure 3A), but the proportion 
of each infection type was not significantly different in cases 
sampled before or after the start of the rainy season 
(Figure 3B). There was, however, a small but statistically signif
icant increase in both S pyogenes and S aureus bacterial loads in 
pyoderma lesions sampled during the rainy season (Figure 3C
and 3D).

Emm-Type Distribution Can Be Enhanced by Direct PCR-Based Typing

Of the samples that were S pyogenes qPCR positive, 127 of 199 
were S pyogenes culture positive and previously underwent 
WGS. High-quality sequence data were obtained for 107 of 
127, from which 46 different emm-types were previously re
ported [20]. emm-typing by PCR was attempted on the remain
ing 92 of 199 samples, made up of 20 of 92 culture-positive 

samples without high-quality WGS data, and 72 of 92 that 
were S pyogenes qPCR positive but culture negative. emm-types 
were successfully assigned by direct PCR-based typing for 
46 of 92, with 27 different emm-types identified, including 
6 additional emm-types not identified by WGS (emm66, 73, 
82, 102, 111, 208) (Supplementary Table 4). In S pyogenes 
qPCR-positive but culture-negative samples, the bacterial 
load was significantly higher in samples that were successfully 
typed by direct PCR than untypeable samples (P < .0001) 
(Supplementary Figure 4). The most common emm-type iden
tified by WGS alone was emm80 (6/107); however, with the ad
dition of the direct PCR-typing data, the most common 
emm-type overall was emm4 (10/153) (Figure 4A).

The Simpson Reciprocal Index of diversity was 49.3 (95% CI, 
39.0–66.9) for samples emm-typed by WGS and 45.6 (95% CI, 
37.2–59.0) for all emm-typed samples. A high degree of 
S pyogenes emm-type diversity was seen within the 9 sampled 
community geographical clusters (Figure 4B, Supplementary 
Table 5). Despite geographical proximity (within and between 

Figure 2. Participant infection status by age, as determined by quantitative polymerase chain reaction (qPCR) result. Those with infection status “Negative” had a clinical 
diagnosis of pyoderma but neither Streptococcus pyogenes nor Staphylococcus aureus was detected by qPCR.
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Figure 3. Bacterial etiology and load of pyoderma cases according to season. Participant infection status by season, as determined by quantitative polymerase chain 
reaction (qPCR) result, for all study participants (A) and participants with pyoderma (B). Those with infection status “Negative” had a clinical diagnosis of pyoderma but 
neither Streptococcus pyogenes nor Staphylococcus aureus was detected by qPCR, while those with status “No pyoderma” did not have swabs taken. Sample bacterial 
quantity for S pyogenes (C ) and S aureus (D) in samples taken before the onset of the rainy season compared to during the rainy season. Statistical differences determined 
using a 2-tailed Mann Whitney U test.
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households), the majority of emm-types were represented by a 
single isolate in a given geographical cluster.

DISCUSSION

In children <5 years old with pyoderma, we demonstrate a 
significant additional diagnostic yield for S pyogenes using a 

multiplex qPCR assay in comparison to bacteriological culture 
alone. Culture-based detection was most impacted when 
S aureus coinfection was present (sensitivity 59.9%), compared 
to high sensitivity (95.4%) in S pyogenes monoinfections. 
Samples with higher bacterial loads were more likely to be cul
ture positive. Coinfections with S pyogenes and S aureus were 
common (71% of pyoderma lesions), with contrasting impact 

Figure 4. Distribution of Streptococcus pyogenes emm-types. emm-types from 153 of 199 S pyogenes quantitative polymerase chain reaction (PCR)–positive samples were 
available. A, emm-types by typing method. Direct PCR-based emm-typing increased both the number of samples of 21 emm-types in the whole genome sequencing (WGS)– 
defined dataset, as well as detection of 6 emm-types not in the WGS dataset. B, S pyogenes emm-type by geographical cluster, labeled with the cluster number designated 
during our previous study. Clusters are ordered by detected number of pyoderma cases from high to low. Black boxes and dots in the emm-type legend denote emm-types 
identified by PCR but not WGS.
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on bacterial load of the 2 organisms; lower S pyogenes and high
er S aureus load was seen in coinfections compared to monoin
fections. The prevalence of both organisms increased 
significantly with age, and bacterial loads increased during 
the rainy season. We also describe a novel method for emm- 
typing by PCR directly on patient samples without intermedi
ate culture. Direct PCR-based emm-typing in S pyogenes 
qPCR-positive cases where either culture or WGS had failed 
successfully generated 27 emm-types, further enhancing the di
verse set of emm-types previously generated by WGS.

In studies of pharyngitis, PCR has been demonstrated to 
have greater yield in the detection of S pyogenes when com
pared to bacteriological culture [4, 5]. Our study shows that 
culture also underestimates S pyogenes infection in pyoderma 
lesions, with qPCR identifying S pyogenes in 80% of samples 
compared to 51% of samples by culture. High rates of coinfec
tion with S pyogenes and S aureus have been described previ
ously, with culture-based studies in First Nations populations 
in Australia or Canada reporting rates of 29%–58% [10, 29]. 
We show that most S pyogenes missed by culture are in coin
fected samples. Although overgrowth of S aureus during cul
ture and missed S pyogenes colonies may explain this finding, 
we also find that bacterial loads of S pyogenes prior to culture 
are lower when S aureus is present. Whether this reflects bacte
rial inhibition and competition warrants further investigation.

Our original study reported a rise in pyoderma prevalence 
with age, seen in 7% of those <1 year old compared to 21% 
of those aged 3–4 years. With more complete detection using 
qPCR, we demonstrate that S aureus infections are more com
mon at a younger age, with monoinfections and coinfections 
with S pyogenes increasing in later childhood. More lower 
limb lesions were infected with S pyogenes compared to other 
body sites. This may reflect carriage distribution and transmis
sion patterns, with S pyogenes lower limb pyoderma resulting 
from behavioral factors and child-to-child transmission. 
Similarly, S aureus was more common in lesions above the 
neck, which again could reflect proximity to where S aureus 
carriage burden may be highest in the nose. Compared to pre
vious studies, we identified S aureus in a high proportion of 
pyoderma swabs, at 89%, a potential driver behind the high 
number of above-the-neck lesions observed in our study [1].

There were considerable differences in our S scabiei qPCR 
results in comparison to clinical diagnosis, which may be ex
plained by several factors. DNA extraction conditions we 
used were chosen to enhance extraction from gram-positive 
bacteria rather than arthropods [15, 30]. Swabs were taken of 
the pus and crusts associated with pyoderma lesions rather 
than from skin lesions clinically typical of scabies infection. 
Most importantly, we compared qPCR result to clinical diagno
sis, rather than to a more accurate diagnostic method such 
as microscopy. Previous studies have highlighted significant 
variation in clinical diagnoses in both expert and nonexpert 

examiners, and it is possible there are discrepancies between 
clinical diagnoses and true number of scabies lesions [31, 32].

Streptococcus pyogenes strain diversity was high in our study, 
with WGS- and PCR-based emm-typing identifying 52 differ
ent emm-types across 153 of our isolates. We have previously 
demonstrated much higher genetic diversity in skin infection 
isolates from The Gambia compared to the United Kingdom 
[20]. A high number of different emm-types at low relative 
abundance were seen even within geographical clusters, further 
highlighting a pattern of frequent transmission of diverse emm- 
types between children in this setting. This pattern is reflected 
globally with a higher diversity of emm-types seen in low- 
income settings and may have implications for pathogenesis 
of RHD, with repeated exposures to different emm-types cen
tral to auto–immune priming [18, 33, 34].

We have previously outlined some of the limitations related 
to study design and sampling in of our original study [19]. The 
likelihood of bacterial detection and accurate loads are reliant 
on the quality of the swabbing and the stage of the pyoderma 
lesion. Samples had been archived at −80°C for several years 
prior to undergoing qPCR, with the potential for DNA degra
dation during that time. A small number of samples were pos
itive for S aureus by culture but not on qPCR, suggesting 
laboratory contamination of culture plates, misidentification 
of cultured isolates, or qPCR failure in these samples. Finally, 
qPCR is not able to distinguish between viable organisms and 
organism DNA alone, nor between skin carriage and infection. 
Further research to correlate molecular diagnostic results with 
immunological significance is warranted in settings endemic 
for RHD.

Our findings have implications for the design of interven
tions against pyoderma, both to reduce the burden of skin dis
ease but also as a constituent of the strategy to address RHD. 
With the emerging recognition of the role of S pyogenes pyoder
ma in the development of ARF and RHD, understanding 
whether low-burden detection of S pyogenes in skin lesions 
may contribute to the immune priming implicated in RHD 
pathogenesis will be essential [8–10, 34–36]. With restored 
global interest in the development of a vaccine against S pyo
genes and RHD [37], it is critical to have a robust understanding 
of the epidemiology and strain diversity of S pyogenes infection. 
Molecular methods should be central in enhanced surveillance 
for S pyogenes in high-burden settings to aid the design and as
sessment of future interventions against RHD.
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are the sole responsibility of the authors. Questions or messages 
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