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A B S T R A C T   

Smallholder farms are major contributors to agricultural production, food security, and socio- 
economic growth in many developing countries. However, they generally lack the resources to 
fully maximize their potential. Subsequently they require innovative, evidence-based and lower- 
cost solutions to optimize their productivity. Recently, precision agricultural practices facilitated 
by unmanned aerial vehicles (UAVs) have gained traction in the agricultural sector and have great 
potential for smallholder farm applications. Furthermore, advances in geospatial cloud computing 
have opened new and exciting possibilities in the remote sensing arena. In light of these recent 
developments, the focus of this study was to explore and demonstrate the utility of using the 
advanced image processing capabilities of the Google Earth Engine (GEE) geospatial cloud 
computing platform to process and analyse a very high spatial resolution multispectral UAV 
image for mapping land use land cover (LULC) within smallholder farms. The results showed that 
LULC could be mapped at a 0.50 m spatial resolution with an overall accuracy of 91%. Overall, 
we found GEE to be an extremely useful platform for conducting advanced image analysis on UAV 
imagery and rapid communication of results. Notwithstanding the limitations of the study, the 
findings presented herein are quite promising and clearly demonstrate how modern agricultural 
practices can be implemented to facilitate improved agricultural management in smallholder 
farmers.   

1. Introduction 

Smallholder farms which are typically less than 2 ha in size, contribute an inordinate amount to food production relative to the area 
they occupy and, therefore, can play a pivotal role in tackling food security challenges [1–4]. In many developing countries, 
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smallholder farms are not only major contributors to agricultural production and food security but are also one of the main drivers of 
socio-economic growth [3,5]. Despite their relative importance, smallholder farms generally lack the resources of their larger-scale 
commercial counterparts and do not receive sufficient support from government led-initiatives due to capacity constraints [4]. 

Subsequently, this may contribute to their potential agricultural productivity not being fulfilled, resulting in these farms not 
effectively contributing to addressing food security and socio-economic challenges [3,6,7]. In order to remedy this situation, local 
government and agricultural decision-makers in these regions require innovative, evidence-based, context-specific and lower-cost 
solutions that can assist in better managing agricultural practices in smallholder farms to optimize their productivity [7,8]. 

Quantifying spatio-temporal land use land cover (LULC) dynamics within smallholder farms can play an important role in more 
effectively managing resources and enhancing the productivity of these farms, as it facilitates changes in agricultural crop types, 
management practices, climatic influences, water use efficiency and vegetation health to be assessed in near-real-time allowing for 
quick and decisive operational management actions to be taken [4,5,9–13]. Several studies have demonstrated the potential of using 
remote sensing technologies for agricultural applications such as cropland mapping [11,13–16]. Satellite-earth observation datasets 

Fig. 1. Location of the study site at Swayimane within the KwaZulu-Natal province of South Africa.  
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and associated products can provide information at various spatial, spectral and temporal resolutions. However, their application in 
smallholder farm settings is limited [11]. 

The spatial resolution of these open-access datasets or products is often too coarse to capture the spatial heterogeneity generally 
found within smallholder farms [7,11,14]. Whereas more advanced satellite-earth observation systems and manned-aerial vehicles 
which can capture data at finer spatial resolutions (metre to sub-metre spatial resolution) are often too costly for widespread and 
long-term smallholder agricultural applications [14]. Furthermore, satellite revisit and repeat cycles coupled with the influence of 
cloud cover reduces the frequency at which data can be captured and processed [7,17]. 

Recently, precision agricultural practices facilitated by unmanned aerial vehicles (UAVs) have gained traction in the agricultural 
sector [14,18,19]. UAVs have been shown to hold vast potential for agricultural applications, as their low flight altitudes can 
potentially capture very-high spatial resolution data at various spectral resolutions (depending on the optical-properties of the 
on-board camera). Moreover, data can be captured at user-determined intervals and are less severely impacted by the effects of cloud 
cover allowing data to be captured more frequently than satellite-based approaches [14,17,20,21]. The aforementioned features and 
the relatively lower costs of UAVs has seen them emerge as a promising tool for smallholder agricultural applications [14,22]. 

Furthermore, with advances in geospatial cloud computing platforms such as Google Earth Engine (GEE) many more users are now 
able to implement sophisticated image analysis techniques without being limited by computational power and access to specialised 
proprietary software [23–25]. According to Bennet et al. [21], with the increased use of UAVs for various applications and the growing 
popularity of utilizing cloud-based computing platforms for image analysis, it is important to develop reproducible, adaptable and 
distributable techniques that can facilitate more efficient analysis of UAV imagery for future applications. 

Despite, their immense potential for accurately mapping crops in smallholder farms as shown by Chew et al. [5], Alabi et al. [12] 
and Hall et al. [26], the application of UAV and cloud computing technologies in these settings is limited [5,27]. Considering that the 
potential of the aforementioned technologies remains largely untapped for smallholder farm applications, in this study we aim to 
explore and demonstrate the utility of using GEE to develop a semi-automated workflow to i) process multi-spectral UAV imagery for 
the purpose of mapping LULC within smallholder rural farms at a localized level and ii) widely share these results in a simplified 
manner through a user-friendly interactive data visualization web-based app. 

2. Materials and methods 

2.1. Study site description 

The study site is located within Ward 8 of the rural community of Swayimane which forms part of the uMshwati Local Municipality 
situated within the KwaZulu-Natal province of South Africa (Fig. 1). Swayimane is approximately 880 m. a.s.l and covers a geographic 
extent of approximately 36 km2. A generally warm climate with cooler, dry winters and warm wet summers is experienced within the 
study area with a mean annual temperature of 18.0 ◦C [28]. Mean annual precipitation ranges between 600 and 1200 mm, with the 
majority of this rainfall being received during the summer months as high-intensity thundershowers [28]. 

The community of Swayimane are largely dependent on subsistence farming to support their livelihoods. Farming activities consist 
of cropping and animal husbandry, with crops dominating the agrarian system. Farmers grow various crops including maize, ama
dumbe (taro), sugarcane and sweet potato [28]. Although the study area is characterised by good rainfall and deep soils, these soils are 
depleted in some mineral elements which are essential to good and sustained crop production [29]. Further compounding this situation 
is the influence of short-term droughts on crop performance. With projected increases in the frequency of extreme events, threats to 
food security and livelihoods are an ever-present danger which the immediate and surrounding communities are expected to face [29, 
30]. 

Considering the socio-economic circumstances of this community in concert with the biophysical factors which influence crop 
production, this study site provides the ideal opportunity to demonstrate how the use of UAVs can be utilized to provide a relatively 
cost-effective approach to provide spatially explicit information in near real-time which can then be used to inform and guide 
operational decision making at a localized level to enhance crop production and mitigate the risk of crop failure in the future. 

2.2. Data acquisition and processing 

The images for the study area were collected using a consumer-grade DJI Matrice 300 (M − 300) UAV fitted with a Micasense Altum 
multispectral sensor and Downwelling Light Sensor 2 (DLS-2). The Altum imaging sensor captures both multi-spectral (blue, green, 
red, red-edge and near infra-red) and thermal data (https://micasense.com/altum/). It should be noted that the thermal band was not 
used in this study. The Altum imaging sensor was configured to capture images that have a side and front overlap of 70 and 80%, 
respectively, across the study area. 

The study area boundary which covered a geographic extent of approximately 0.11 km2 was digitised within Google Earth and 
saved as a Keyhole Markup Language (kml) file which was then imported into a DJI smart controller connected to the internet 
following the DJI user account creation. The kml file was used to design an optimal flight path to acquire images covering the entire 
study area. The DJI Matrice 300 was configured to fly at an altitude of 100 m, which was sufficient to capture data at a 0.07 m pixel 
resolution for the entire study area. Light intensity changes during the day were accounted for through calibration before and after 
each flight mission using the MicaSense Altum calibrated reflectance panel (CRP). The UAV images were acquired between 8:00 and 
10:00 a.m. UTC on the 28th of April 2021. All images that were captured were pre-processed using Pix4D fields software (version 1.8) 
before further analysis. Pre-processing of the UAV images essentially involved performing atmospheric and radiometric corrections 
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with the corrected images then being mosaicked to create a single georeferenced orthomosaic. 
The orthomosaic was saved in a GeoTIFF file format as this is the format that is required for upload to GEE [21]. The GeoTIFF 

orthomosaic image was uploaded and imported in GEE for further processing. All the spectral bands captured by the UAV on-board 
sensor, as well as 9 vegetation indices (Table 1) for each of the training and validation points were extracted and used as cova
riates to train the classification algorithm [9]. The selection of vegetation indices (VIs) to be used was subjective and guided by their 
frequency of application and performance in the literature [31–36]. However, it should be noted that the methods implemented herein 
allow for additional VIs to be included or feature selection (to optimize the combination of bands and VIs) to be employed during the 
classification. 

Training data points used for the image classification were acquired through a mix of data collected in the field and visual in
spection of the GeoTIFF orthomosaic [9]. Five broad LULC were identified, and training data was collected by identifying pixels within 
the image that completely contained one of these classes (Table 2). The selection of these pixels were guided by a priori knowledge of 
the study area acquired from multiple site visits. A total of 150 points were randomly captured for each class. A total of 750 points were 
available for model training (70%) and validation (30 %) of the classification accuracy [9,37]. For each of the training and validation 
data points, covariates (UAV spectral bands and VIs) were extracted from the image captured on the 28th of April 2021. 

In order to model and predict the 5 broad LULC classes, some of the commonly used machine learning classification algorithms i) 
Classification and Regression Tree (CART), ii) Support Vector Machine (SVM), iii) Random Forest (RF) and iv) Gradient Tree Boost 
(GTB) available in GEE were deployed [38]. Default hyper-parameter values for each of the aforementioned classification algorithms 
were used during model development and validation. However, the number of decision trees (n = 10) was specified for the RF and GTB 
classifiers as this is a requirement when using these classification algorithms in GEE. The performance of each classification algorithm 
was then determined by comparing the overall accuracy (OA), user accuracy (UA), producer accuracy (PA) and kappa coefficient. The 
model which achieved the highest accuracy scores across all the performance metrics was then selected to perform the image 
classification. 

Once the best performing classifier had been established and applied for the original image (0.07 m), the spatial resolution of the 
original UAV image was resampled in GEE using bilinear interpolation to produce lower resolution images (0.50, 1.00 and 5.00 m). 
The classification process was then repeated using the best performing classifier and these images, to identify the optimal resolution for 
mapping LULC within the study area. Once the optimal spatial resolution had been established a final classification was performed (C1) 
using all of the previously collected training data points, the best performing classifier and the optimal spatial resolution. An overview 
of the classification workflow is provided in Fig. 2. 

3. Results 

3.1. Identifying the best performing classifier for the original UAV image 

The best performing classification algorithm was the RF classifier, marginally outperforming GTB classifier. The LULC classification 
using the RF model achieved an OA of 86.00%, as shown in Table 3. The average class-specific PA and UA for the RF classification were 
85.40 % (±8.30) and 85.20 % (±8.32). The buildings and infrastructure class was most accurately predicted within the RF classifi
cation, whereas the crops class was least accurately predicted. 

3.2. Comparison of best performing classifier at different spatial resolutions 

The classification results for each of the different spatial resolution UAV images that were classified using the RF classification 

Table 1 
List of vegetation indices used in this study.  

Name Equation 

Normalized Difference Vegetation Index NIR − Red
NIR + Red 

Green Normalized Difference Vegetation Index NIR − Green
NIR + Green 

Red-Edge Normalized Difference Vegetation Index NIR − Rededge

NIR + Rededge 

Enhanced Vegetation Index 
2.5 ∗

(
(NIR − Red)

(NIR + 6 ∗ Red − 7.5 ∗ Blue) + 1

)

Soil Adjusted Vegetation Index (Rededge − RED)
(Rededge + RED + 0.5) ∗ 1.5 

Simple Blue and Red-Edge Ratio BLUE
Rededge 

Simple NIR and Red-Edge Ratio NIR
Rededge 

Simple NIR Ratio NIR
Red 

Green Chlorophyll Index NIR
Green

− 1   
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algorithm are shown in Table 4. An interactive web-based app to visualize the differences between the classifications at the various 
spatial resolutions can be accessed from https://shaedengokool.users.earthengine.app/view/swayimane-landcover-maps. The overall 
classification accuracy and kappa coefficient for each of these classifications was relatively high. However, the highest level of ac
curacy was achieved using a spatial resolution of 0.50 m, whereas the lowest classification accuracy was obtained at a spatial reso
lution of 5.00 m. 

The classification using the 0.50 m spatial resolution image achieved an OA of 91.00 %, with an average PA and UA of 92.00 
(±7.31) and 91.20 (±8.70) %, respectively. The Buildings and infrastructure as well as the bareground classes were most accurately 
predicted within this classification, whereas crops were the least accurately predicted. Following the analyses and results of identifying 
the optimal classifier and spatial resolution for mapping LULC in the study area, the original UAV image (0.07 m) was resampled to a 
0.50 m spatial resolution prior to performing the final LULC classifications using the RF model (Fig. 3). 

Table 2 
A description of the LULC classes that were identified and categorized for mapping.  

Broad LULC classes LULC present in each broad LULC class 

1. Buildings and infrastructure Buildings, roads, water tanks and solar panels 
2. Bareground Bare soil, harvested crops, dirt roads 
3. Crops Maize, sugarcane, amadumbe, sweet potato and butternut 
4. Grassland Grassland 
5. Trees and shrubs Intermediate and tall trees or shrubs  

Fig. 2. A conceptual representation of the classification workflow used to create the LULC maps for the study area.  

Table 3 
Classification accuracies for the original spatial resolution (0.07 m) UAV image classified using the various classification algorithms available in GEE.  

Accuracy Assessment 

Classification algorithm CART SVM RF GTB 

Overall Accuracy (%) 81.00 83.00 86.00 85.00 
Kappa Coefficient 0.77 0.79 0.82 0.81  

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Buildings and infrastructure 98.00 88.00 88.00 100.00 98.00 93.00 98.00 91.00 
Bareground 85.00 100.00 100.00 89.00 93.00 97.00 88.00 97.00 
Crops 80.00 69.00 67.00 77.00 78.00 78.00 84.00 79.00 
Grassland 69.00 79.00 78.00 73.00 80.00 80.00 76.00 80.00 
Trees & shrubs 76.00 76.00 86.00 80.00 81.00 81.00 81.00 79.00  
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4. Discussion 

This study explored the utility of using the GEE geospatial cloud computing platform to process and analyse a multi-spectral UAV 
image to map LULC within smallholder rural farms, with a particular focus on croplands. In general, we found that were able to map 

Table 4 
Classification accuracies for the UAV images at differing spatial resolutions classified using the GTB classification algorithm.  

Accuracy Assessment 

Spatial resolution 0.07 m 0.50 m 1.00 m 5.00 m 

OA (%) 86.00 91.00 88.00 81.00 
Kappa Coefficient 0.82 0.89 0.84 0.77  

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Buildings and infrastructure 98.00 93.00 96.00 100.00 97.00 93.00 87.00 84.00 
Bareground 93.00 97.00 100.00 95.00 90.00 100.00 77.00 69.00 
Crops 78.00 78.00 87.00 77.00 78.00 76.00 84.00 86.00 
Grassland 80.00 80.00 82.00 94.00 88.00 84.00 89.00 87.00 
Trees & shrubs 81.00 81.00 95.00 90.00 85.00 88.00 71.00 82.00  

Fig. 3. LULC classification result across the study area at a 0.50-m spatial resolution for the 28th April 2021.  
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LULC at a relatively high accuracy, capture the spatial heterogeneity within the study area and adequately distinguish between crops 
and other LULC classes. The average PAs and UAs for crops across the various classification algorithms for the original UAV image 
(0.07 m) was approximately 75 %. However, once the best performing classifier and an optimal spatial resolution for mapping had 
been identified and applied, the average PA and UA for crops increased to approximately 82 %, which is relatively close to the 85% 
target accuracy specified by McNairn et al. [39]. These results are consistent and within the range of values reported in similar studies 
[5,12,26]. Overall, the C1 classification was able to adequately capture the spatial heterogeneity within the study area and fairly 
accurately distinguish crops from other LULC classes. 

Considering the choice of classification algorithm on classification accuracy, we found that the various machine learning algo
rithms available within GEE performed relatively well at mapping LULC within the study area (OA ≥ 75%). However, it should be 
noted that the training and evaluation of these algorithms were performed using data that was largely collected from visual inspection 
of the UAV True colour image. The collection of training data from visual inspection of the UAV True colour image does promote ease 
of application and expedites the classification process. However, this may contribute to occurrences of misclassification. Some of the 
data points may be incorrectly identified or may not adequately represent the unique spectral properties for each of the classes that are 
to be mapped. Subsequently, it is recommended that more ground truth data be included in the training and evaluation process where 
possible, so that a more accurate and objective assessment of the performance of these classification algorithms can be ascertained [9]. 

Furthermore, since there was no real time kinematic (RTK) or post processing kinematic (PPK) corrections performed on the 
images, positional inaccuracies of pixels within the image may exist. This may also contribute to occurrences of misclassification as the 
spectral signature extracted for a particular training point from the image may not correspond to the LULC class on the ground. 
Subsequently, it is recommended that the use of ground control points (GCPs) to georeference the image or the implementation of PPK 
or RTK corrections be applied where possible to minimise the impact of potential positional inaccuracies [40]. 

During the initial classifications when trying to establish the best performing classifier, the classification accuracy of each LULC 
class ranged between 67 and 100%. The major source of inaccuracy in these classifications was generally due to the confusion between 
crops, grasslands as well as trees and shrubs. This confusion may largely be a consequence of the limited training data that was used 
during the classification process. Training data for crops was collected mainly from sugarcane and maize since these are the dominant 
crops and cover the largest geographic extent within the study area. Consequently, there were fewer training points used for the other 
crops which may have resulted in them being incorrectly classified and contributing to the overall classification inaccuracy for this 
broad LULC class. 

Comparisons between the various classification algorithms showed that the ensemble-machine learning algorithms (RF and GTB) 
performed the best, with similar findings being reported in Orieschnig et al. [38]. This occurrence may have been due to the ability of 
these ensemble-machine learning methods to combine several predictive models to create a single model that can improve predictive 
performance by decreasing variance and bias while significantly improving the classification accuracy relative to other machine 
learning models [38,41]. Furthermore, these models are generally less sensitive to input data and are more well suited for generalized 
LULC applications [38]. While the RF and GTB models were shown to perform better than the SVM and CART models, the accuracies 
that have been presented herein may not represent the maximum possible, as these values will largely be influenced by the 
user-specified parameter choices for each algorithm [42]. 

While it was not within the scope of this study, Abdi [42] recommends that an unbiased evaluation of each algorithm’s performance 
is undertaken through an equally robust hyper-parameter selection where possible, so as not to introduce bias into the model’s per
formance. During this process, these algorithms should be evaluated with respect to their overall accuracy and their ability to 
adequately represent each LULC class [42]. Considering the influence of spatial resolution on classification accuracy, we found that as 
the spatial resolution decreased from 0.07 to 1.00 m, there was an increase in the OA and kappa coefficients. The OA and kappa 
coefficient then decreased to its lowest value when spatial resolution decreased from 1.00 to 5.00 m. 

These results are consistent with the findings presented in Zhao et al. [43] and Liu et al. [44] which indicates that the use of the 
finest spatial resolution image available does not necessarily translate into improved classification accuracy, however there is a limit to 
which the spatial resolution can be reduced. Instead, an intermediate spatial resolution whereby spectral intra-class variation and the 
mixed-pixel effect is minimized will be most appropriate for LULC mapping [44]. While the 0.50 m spatial resolution image produced 
the highest overall and individual class accuracies, this spatial resolution should not be viewed as a generalized optimal spatial res
olution as this may vary for specific LULC classes or agricultural applications [43,44]. Although the C1 classification was not the 
highest spatial resolution image that could have been used for the mapping of LULC within the study area, this spatial resolution more 
than adequately captures the spatial heterogeneity within the study area. 

In this particular study we elected to define and map five broad LULC classes within the study area. However, in order for the 
landcover map to be applicable to a wider range of potential applications it would be advantageous to map LULC in greater detail (for 
e.g., identifying individual crop types). The relatively low spectral resolution of the UAV on-board sensor may pose a challenge to this, 
as it may prove difficult to distinguish between certain features which are spectrally similar [44,45]. The acquisition and use of higher 
spectral resolution imaging sensors can address this limitation but these sensors are accompanied by higher costs. 

The fusion of high spatial resolution UAV imagery with freely available higher spectral resolution satellite imagery, does present an 
alternate and more pragmatic approach to potentially address the aforementioned challenges and reduce costs, however, further 
testing is advocated before these are readily implemented [43,45,46]. Overall, the investigations in this study could have benefited 
from the availability of more training data, higher spectral resolution data or model hyper-parameter tuning. However, the results 
were quite promising and can serve as a foundation for the development of improved LULC maps for the study area in the future. 

Additionally, the use of object-based image analysis (OBIA) techniques has been gaining popularity as an alternate to traditional 
pixel-based approaches (such as those applied in this study) or for the classification of high-resolution imagery. Similarly, deep- 
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learning algorithms have shown much promise for producing accurate crop types maps. The application of these approaches albeit 
more complex and computationally intensive, may represent useful alternatives to improving classification accuracy [4,47]. 

The ability to accurately map crops’ location and spatial distribution can play a pivotal role in improving the management of 
smallholder farms [7,48]. Given the unique characteristics of UAVs and UAV imagery, these technologies are well suited for mapping 
LULC within smallholder farms as demonstrated in this study. However, their application in smallholder farming has been relatively 
limited largely due to their perceived high costs coupled with a lack of technical skills to operate and derive meaningful information 
from the acquired images [7]. 

Through creative ownership solutions and the decrease in acquisition and operational costs, UAV technologies are now more 
accessible to various users [7]. Furthermore, the use of freely available open-source UAV image processing software (rather than the 
proprietary software used in this study) such as OpenDroneMap (https://www.opendronemap.org/) and geospatial cloud computing 
platforms such as GEE can be used to develop automated or semi-automated processing and analysis procedures which can be shared 
and used by expert and non-expert users. This may serve to further reduce operational costs and improve the efficiency with which 
tasks are executed. 

Although the choice of classification algorithms and the amount of UAV-acquired data that can be uploaded and stored in GEE is 
limited, the platform provides unparalleled freely available processing power and permits the development of dynamic web-based 
apps which are also freely available and can be used to rapidly communicate results in an aesthetically appealing and comprehend
ible manner to a wide range of users [25]. Considering these advancements and innovative solutions; local government, agricultural 
authorities and researchers are now better placed to assist smallholder farmers to exploit the benefits of modern agricultural practices 
and overcome many of the limitations they have traditionally faced. 

5. Conclusions 

In recent times, the use of UAVs has been gaining traction in the agricultural sector. With the emergence of geospatial cloud 
computing platforms, there are now greater opportunities for local government, agricultural authorities and researchers in developing 
countries to integrate technological advances into agricultural practices that can be used to aid smallholder farmers in optimizing their 
productivity. The synergistic application of these technologies offers the opportunity to develop bespoke, innovative and lower-cost 
solutions which can facilitate improved agricultural management within smallholder farms. Considering these developments, in 
this study we aimed to demonstrate how GEE can be leveraged to maximize the potential of UAVs for mapping LULC in smallholder 
farms. 

The results of these investigations demonstrated that LULC could be mapped fairly accurately with the resultant map also 
adequately representing the spatial heterogeneity within the study area. Furthermore, it was shown that it is possible to sacrifice 
spatial resolution up to a point to expedite data collection and image processing or to reduce costs by purchasing cheaper lower spatial 
resolution imaging sensors, without greatly sacrificing classification accuracy. 

Notwithstanding the limitations of the study, GEE was found to be particularly useful for performing computationally intensive and 
advanced image analysis on a UAV image. The availability of such approaches is particularly beneficial to data-scarce and resource- 
poor regions, as it provides a wide-range of users with a powerful tool to guide and support decision making. This in turn can serve to 
ensure that smallholder farmers in developing countries are not excluded from the big data revolution in agriculture. 
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