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Abstract
Background: Many malaria-endemic areas experience seasonal fluctuations in case incidence as Anopheles
mosquito and Plasmodium parasite life cycles respond to changing environmental conditions. Identifying
location-specific seasonality characteristics is useful for planning interventions. While most existing maps of malaria
seasonality use fixed thresholds of rainfall, temperature, and/or vegetation indices to identify suitable transmission
months, we construct a statistical modelling framework for characterising the seasonal patterns derived directly from
monthly health facility data.

Methods: With data from 2669 of the 3247 health facilities in Madagascar, a spatiotemporal regression model was
used to estimate seasonal patterns across the island. In the absence of catchment population estimates or the ability
to aggregate to the district level, this focused on the monthly proportions of total annual cases by health facility level.
The model was informed by dynamic environmental covariates known to directly influence seasonal malaria trends.
To identify operationally relevant characteristics such as the transmission start months and associated uncertainty
measures, an algorithm was developed and applied to model realisations. A seasonality index was used to incorporate
burden information from household prevalence surveys and summarise ‘how seasonal’ locations are relative to their
surroundings.

Results: Positive associations were detected between monthly case proportions and temporally lagged covariates of
rainfall and temperature suitability. Consistent with the existing literature, model estimates indicate that while most
parts of Madagascar experience peaks in malaria transmission near March–April, the eastern coast experiences an
earlier peak around February. Transmission was estimated to start in southeast districts before southwest districts,
suggesting that indoor residual spraying should be completed in the same order. In regions where the data
suggested conflicting seasonal signals or two transmission seasons, estimates of seasonal features had larger
deviations and therefore less certainty.

Conclusions: Monthly health facility data can be used to establish seasonal patterns in malaria burden and augment
the information provided by household prevalence surveys. The proposed modelling framework allows for
evidence-based and cohesive inferences on location-specific seasonal characteristics. As health surveillance systems
continue to improve, it is hoped that more of such data will be available to improve our understanding and planning
of intervention strategies.
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Background
Malaria is a disease caused by the Plasmodium parasite
and remains a major cause of child mortality in sub-
Saharan Africa [1]. As with many vector-borne diseases,
malaria transmission exhibits seasonality across endemic
areas. That is, malaria burden, which can be measured
by metrics including parasite prevalence or the number
of clinical cases, follows an annually recurring seasonal
pattern that is typically attributed to the relationship of
the mosquito vector and parasite life cycles with the
environment. The rationale for developing methods capa-
ble of enumerating location-specific seasonal characteris-
tics is to assist planning for intervention distributions to
improve their efficacy, develop early warning systems, and
improve the temporal resolution and overall accuracy of
malaria burden estimation models [2].
Past studies on the seasonality of malaria vary in

their degree of sophistication and scope. For example,
some give empirical descriptions of the cyclic patterns
at specific locations, while others model the time series
by relating them to underlying seasonal conditions or
mathematical structures such as in seasonal autoregres-
sive integrated moving average models and trigonometric
models [3–8].
To guide intervention policies, there have also been

attempts to derive maps related to seasonality. By using
thresholds of, for example, rainfall, temperature, and veg-
etation cover, it is possible to estimate the start, the end,
and the length of the period suitable for transmission [9–
11]. Maps of malaria seasonality patterns are relevant to
the planning of intervention campaigns to maximise their
impact. For example, seasonal malaria chemoprevention
(SMC) has been shown to be most effective when deliv-
ered in areas with highly seasonal transmission. As such,
the World Health Organization guidelines recommend
targeted SMC in malaria endemic areas where more than
60% of clinical cases occur during a short period of about
4 months [12].
Despite their potential utility, the threshold-based

malaria seasonality maps have several limitations. For
example, metrics such as total rainfall can be linked to
either the creation or the washing away of mosquito
breeding sites depending on the local topology and rainfall
intensity [13, 14]. Using fixed environmental thresholds
does not account for the variation of responses to envi-
ronmental forcing or allow for other potential drivers
such as seasonal migration of human populations [15, 16].
Likewise, because the distribution of vector species is spa-
tially heterogeneous and their preferences for breeding
sites vary, a one-size-fits-all approach for characterising
malaria seasonality may miss important nuances [17].
Another class of seasonality maps consists of concen-

tration indices that aim to quantify the proportion of an
annual amount (of any variable of interest) which falls

within a subannual window of fixed size. In order to quan-
tify the distribution of malaria cases in each district over a
year, Mabaso et al. usedMarkham’s concentration index, a
measure previously used to determine rainfall concentra-
tions [18]. In their analysis, the concentration maps from
the case numbers that were estimated using a Bayesian
spatiotemporal regression model displayed clearer spatial
patterns compared to those derived from raw case num-
bers. Spatiotemporal models smooth out idiosyncratic
deviations, thus enabling the main seasonal trend to be
discerned more easily. They are also useful for explic-
itly relating the seasonality to input covariates as well as
accounting for unknown spatiotemporal effects.
In this paper, we build on previous attempts and map

malaria seasonality in Madagascar, a country of marked
ecological and epidemiological diversity that is struggling
to meet targets for malaria burden reductions and hence
where further information for optimising interventions
would be valuable [1, 19]. We demonstrate how common
descriptors of seasonality can be made comparable across
locations to facilitiate modelling and support policy deci-
sions, a topic of interest for not just modellers but also
the wider public health community. The modelling frame-
work, which aims to provide a cohesive and evidence-
based analysis, is applied to 2013–2016 health facility case
data fromMadagascar. Despite the lack of catchment pop-
ulation estimates or data from all health facilities, we show
that the monthly case data can be used to model spatially
heterogenous seasonal patterns of malaria. We identify
seasonality features such as the peak and length of trans-
mission by estimating the proportions of cases in each
month using a log-linear spatiotemporal regression model
and fits to rescaled von Mises densities. By applying the
algorithm to posterior samples of the monthly proportion
curves, we also obtain uncertainty measures associated
with each derived seasonal characteristic. To reflect both
the timing and the amplitude aspects of seasonality, a
seasonality index is used to synthesise the monthly case
proportion estimates with existing annual case or parasite
incidence (API) estimates.

Methods
Study data
Malaria seasonality in Madagascar was modelled using
monthly case reports submitted by health facilities to
the centralised Ministry of Health between 2013 and
2016. This dataset was provided by the National Malaria
Control Programme (NMCP) in Madagascar and gave
the number of patients who tested positive for malaria
by rapid diagnostic tests (RDTs), irrespective of species.
After cleaning the data to ensure consistent nomencla-
ture, 2801 health facilities were successfully geo-located
and verified using a database of 3274 geo-located health
facilities from the Institut Pasteur de Madagascar (IPM).
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The IPM database itself was further validated against a
database of 120 global positioning system (GPS) geo-
located health facilities from the President’s Malaria Ini-
tiative (PMI).
To account for year-on-year trends and help avoid

unwanted bias in the monthly health facility data from,
for example, stock-outs of RDTs, median monthly case
counts were derived for each site. With a focus on
location-specific seasonal trends, monthly proportions
were obtained by dividing the monthly case medians by
their annual sum. This is illustrated for an example Mala-
gasy health centre in Fig. 1. After excluding sites with
incomplete intra-annual patterns, data from 2669 health
facilities were used in the later analysis.
By focusing on proportions instead of the case counts,

we bypass the need to estimate catchment populations for
the health facilities. Deriving incidence measures using
catchment population data is commonly used to adjust for
magnitude differences in count data, but estimating these
catchment population sizes could have introduced bias
to the analysis as only an incomplete set of health facil-
ity geolocation data was available to inform this analysis.
Additional features of this modelling approach include the
following: (a) utilising a standardised definition of a trans-
mission period as the months with the proportion of cases
exceeding 1/12 of the annual total, and (b) restricting the
analysis to dynamic environmental covariates like rainfall
and temperature that are likely to impact seasonal malaria
transmission patterns.
A suite of environmental variables were assembled

as 5 km spatial grids. These were temporally aligned
with the health facility data and included the Climate
Hazards Group Infrared Precipitation and Station data
(CHIRPS), enhanced vegetation index (EVI), daytime land
surface temperature (LST_day), diurnal difference in land
surface temperature (LST_delta), night-time land sur-
face temperature (LST_night), tasselled cap brightness

(TCB), tasselled cap wetness (TCW), and the tempera-
ture suitability indices for Plasmodium falciparum and
Plasmodium vivax (TSI_Pf and TSI_Pv). Details on the
sources of these data are available elsewhere [19, 20]. To
relate the observed seasonal patterns to the potential driv-
ing factors, monthly medians of these environmental data
were derived and standardised. One to 3 month lags were
included for each covariate to allow for delayed and accu-
mulated responses to these environmental variables [19].

Spatiotemporal monthly proportion model
Proportions or probabilities are often modelled using
multinomial or compositional regressions. However, in
this scenario, this would mean computing ratios with
respect to a fixed reference month. By using monthly case
proportions, it is easier to relate each month’s propor-
tion to the values of its covariates explicitly. To estimate
monthly case proportions over the study region, we use
the following spatiotemporal model which can be viewed
as the linear predictor of a multinomial regression written
in a log-linear form:

log(pi,j) = X ijβ + φij + εij. (1)

Here, pi,j is the average proportion of cases at location j in
month i. To avoid applying logarithms on zeros, we added
an offset of 0.00001 to pi,j and rescaled the raw monthly
proportions at each location to sum to one before mod-
elling. Similarly, rescaling was conducted after modelling
with a location-specific normalising constant. This allows
locations to be more or less sensitive to the variation in
the underlying covariates.
In Eq. (1), X ij ∈ R

n×m is a covariate design matrix
including an intercept, β ∈ R

m is the corresponding
parameter vector, and ε ∼ N(0, σ 2

e ) denotes the inde-
pendent, identically distributed noise. The spatiotemporal
Gaussian field φ is constructed such that:

Fig. 1 a Number of positive rapid diagnostic tests (RDTs) reported from an example Malagasy health centre recorded monthly between 2013 and
2016. b The corresponding monthly proportions computed by dividing the monthly medians by the annual total
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φi,j =
{

ξ1j for i = 1,
aφi−1,j + ξi,j for i = 2, . . . , 12, (2)

|a| < 1 and ξi,j correspond to zero-mean Gaussian inno-
vations which are temporally independent but spatially
coloured with a Matérn covariance:

Cov(h) =
σ 2
f

�(ν)2ν−1 (κh)νKν(κh), (3)

where h is the distance between two locations and κ > 0
is a scaling parameter. In practice, it is difficult to identify
the order of the modified Bessel function of second kind,
denoted by Kν in Eq. (3) [21]. Thus, this was set to 1 as per
the convention in the R-INLA package, which was used
for model fitting and selection [22–24].
Before fitting themodel, the log proportions were exam-

ined and outliers were excluded to model prototypical
seasonal behaviour. Based on the histogram of log(pi,j)
values in Additional file 1: Figure S1, log(pi,j) ≤ − 11
were deemed as outliers. Since the proportions were
previously rescaled to sum up to one at each location,
this does not mean that all data zeros were excluded
from the analysis. Instead, zeros were only removed if
much higher case proportions were observed in other
months.
A randomly selected 30% of sites were excluded from

the model fitting to validate our results. Working with
data from the remaining 70% of the locations, the set
of covariates was reduced to facilitate model selection
and account for multicollinearity by iteratively comput-
ing the variance inflation factors (VIFs) and remov-
ing the covariates with the highest VIF value until all
the remaining covariates have VIF values less than 10.
Since these covariates have low correlations with each
other, their estimated regression coefficients are more
robust.
To speed up the covariate selection via backwards

regression, the 70% training set was randomly split into
two smaller sets of equal size and spatial coverage to
search for the best model in terms of deviance information
criterion (DIC). A map of the test and training locations
is shown in Additional file 1: Figure S2. The two result-
ing candidates from the separate backwards regressions
on the two smaller training sets were then refitted to the
whole training set to select the final model with the lower
DIC. After checking for reasonable results on the test data,
the model was refitted to the entire dataset before predic-
tions were made over the gridded surface. An analysis of
the robustness of the methodology to the spatial and tem-
poral extents as well as the quality of the data is provided
in the Additional file 1.

Seasonality index andmonthly case incidence
Seasonality statistics were derived from each posterior
sample of the location-specific monthly proportions. To
quantify ‘how seasonal’ a location is, a seasonality index
was defined [25]. For location j, this index is given by
the product of an entropy measure and the normalised
amplitude:

Sj = Dj × Rj

Rmax
, (4)

whereDj =
12∑
i=1

pi,j log2
(pi,j

q

)
. (5)

Since pi,j is the case proportion for month i and q =
1/12, Dj corresponds to the Kullback–Leibler divergence
between the estimated intra-annual distribution and a
uniform distribution. Thus, it quantifies how different the
monthly proportions are from a uniform distribution over
the year. In the context of malaria, Rj can be represented
by the API at location j and Rmax is themaximumAPI over
the region.
One benefit of using Sj is that it separates the timing and

amplitude aspects of seasonality. Since high-resolution
malaria burden estimates already exist [26–28], the model
did not need to estimate the number of cases and could
focus exclusively on estimating the monthly proportions
at each location. Estimates of the monthly parasite inci-
dence (MPI) for each location could also be obtained by
multiplying the estimated monthly proportions with the
mean Pf API estimates for 2016. This synthesises the esti-
mated seasonal pattern obtained from the health facility
data with the magnitude-level information provided by
household prevalence surveys since these were used in the
API model.

Deriving seasonality features
Locations were considered as potentially seasonal if their
entropy Dj > 0. When this criterion was satisfied, a
rescaled von Mises (RvM) density was fitted via least
squares to the estimated monthly proportions. This is
illustrated for an exampleMalagasy health facility in Addi-
tional file 1: Figure S3.
By treating the month in a year as a random variable

on a circle, i.e. defining θ = 2π i
12 where i = 1, . . . , 12, the

two-component RvM density function can be written as
follows:

f (θ ; s,ω,μ1, κ1,μ2, κ2) = s
[
ωf1(θ ;μ1, κ1)

+(1 − ω)f2(θ ;μ2, κ2)
] (6)

where fk(θ ;μk , κk) = 1
2π I0(κk)

exp{κk cos(θ − μk)}
(7)
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is a one-component vM density for k = 1, 2 with mean
and concentration parameters μk and κk . Here, I0 is the
modified Bessel function and ω is a probability weight.
The scale parameter s > 0 modulates between the con-
tinuous density function and monthly proportions over
discrete months.
Instead of identifying characteristics based on the

monthly proportion estimates directly, seasonal features
were based on fitted vM curves, which further smoothed
out the estimates. The benefit of using a circular dis-
tribution was the continuity of the curve between the
months of December and January. Using vM densities, in
particular, is convenient for identifying the peaks of the
distribution since these correspond to the mean parame-
ters [29]. By comparing the values of the fitted curve, the
major and the minor peaks of a bimodal distribution can
be identified. Although an arbitrary number of von Mises
components can be used, one or two were used because
areas with seasonal malaria transmission typically have
one or two main seasons [2].
To reduce computational burden, a bimodal distribution

was only considered if the error from the fit of a unimodal
distribution exceeded a set threshold ε̃ > 0. For Madagas-
car, ε̃ was empirically chosen to be 0.0015. Based on the
fitted vM curve, the transmission periods were identified
by marking the months where the curve was at or above
1
12 . In this way, the start, end, and length of each season
could also be estimated. Algorithm 1 summarises the pro-
cedure used to obtain the seasonality statistics from the
monthly proportion realisation curves.
To quantify the uncertainty associated with the derived

statistics, the results from 100 posterior samples of the
monthly proportions were summarised. A location was
deemed as unimodal or bimodal if more than half of
the samples supported that interpretation and the degree
of certainty was the proportion of such samples. Based
on this majority decision and the corresponding sam-
ples, the uncertainty was also assessed in the estimated
seasonal characteristics. Circular medians and deviations
were used for the start, end, and peak of each transmis-
sion season [30]. To interpret the deviations in terms of
months, the circular deviations was multiplied by 12

2π .

Results
Dominant environmental relationship
The regression component of the log-linear spatiotem-
poral model allows us to infer the dominant relationship
between the monthly case proportions and the envi-
ronmental covariates while the spatiotemporal random
field accounts for deviations from this. As expected,
the selected model (Table 1) suggests positive relations
between the monthly case proportions and rainfall for
the concurrent month as well as at 2- and 3-month lags
[20, 31, 32]. There is also a positive relation with the

Algorithm 1 Algorithm for deriving seasonality statistics
from a monthly proportion realisation curve of location j.

Require: pi,j ≥ 0,
12∑
i=1

pi,j = 1 and error threshold ε̃ > 0.

Record Dj = ∑12
i=1 pi,j log2

(
12pi,j

)
if Dj > 0 then

Fit a rescaled, one-component von Mises density to
{pi,j}i=1,...,12.

if the squared error of the fit > ε̃ then
Fit a rescaled, two-component von Mises den-

sity to {pi,j}i=1,...,12.
end if
Record the major peak months and the minor peak

months where applicable.
Record the start, end and length of each transmis-

sion season based on when the fitted values exceed
1
12 .

Label the location as ‘bimodal’ if it has two seasons
and ‘unimodal’ otherwise.
end if

Plasmodium vivax temperature suitability index at a 2-
month lag. The latter is a modelled parameter that esti-
mates the combined effect of temperature on Anopheles
survival as well as the development of sporozoites within
mosquitoes. A high temperature suitability value indicates
that manymosquitoes will survive long enough to become
infectious. Since this index was derived from a biological
model, it accounts for a non-linear relationship with the
monthly proportions.

Seasonality categories andmonthly parasite incidence
estimates
‘How seasonal’ malaria is in a location is related to
both the magnitude and the intra-annual distribution
of cases. This is quantified using the seasonality index.
Figure 2 shows the map of seasonal types derived from the
median seasonality index, as computed using 100 realisa-
tions from the fitted model for Madagascar. The different
degrees of seasonality (‘Non-seasonal’, ‘Low’, ‘Medium’,
and ‘High’) were defined for the unimodal and bimodal
locations separately using the quartiles of their seasonality
indices.
Examples of the estimated MPI curves for each sea-

sonal category are shown alongside the map. In general,
we observe that higher seasonality indices are associ-
ated with higher average levels of MPI as well as greater
amplitudes of the fluctuations. As shown in Additional
file 1: Figure S4, the bimodal locations (i.e. those with
two seasonal peaks in MPI) tend to have lower seasonal
index values than the unimodal locations because their
distributions are more spread out over the year.
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Table 1 Parameter posterior summaries of the refitted model for Madagascar

Description Term Posterior median 95% credible interval

Intercept Intercept − 2.655 (− 2.740,− 2.570)

Precipitation CHIRPS_r 0.060 (0.029, 0.090)

CHIRPS_r_lag1 0.019 (− 0.012, 0.050)

CHIRPS_r_lag2 0.051 (0.021, 0.082)

CHIRPS_r_lag3 0.053 (0.022, 0.084)

Temperature suitability TSI_Pv_r 0.013 (− 0.022, 0.047)

TSI_Pv_r_lag2 0.074 (0.039, 0.109)

Vegetation cover EVI_r_lag3 0.006 (− 0.021, 0.032)

Tasselled cap brightness TCB_r − 0.019 (− 0.050, 0.012)

TCB_r_lag3 0.011 (− 0.020, 0.043)

Observation variance σ 2
e 0.326 (0.318, 0.333)

Field variance σ 2
f 0.245 (0.221, 0.268)

Matérn scaling parameter κ 3.163 (2.834, 3.522)

Autoregressive parameter a 0.756 (0.718, 0.777)
The posterior medians of the statistically significant parameters under a 5% significance level are italicized. The Matérn smoothness parameter ν was fixed to 1

Fig. 2Map of seasonality types based on quartiles of the estimated seasonality index as well as representative examples of the estimated monthly
parasite incidence for the categories. Here, ‘1’ and ‘2’ refer to the unimodal and bimodal intra-annual distributions, respectively, while ‘Low’,
‘Medium’, and ‘High’ refer to the different degrees of seasonality
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Seasonal features and associated uncertainties
Next, we focus on the timing aspect of seasonality and
derive seasonality characteristics such as the start and
peak months of transmission. Since we work with the
estimated monthly case proportions which rely on the
environmental covariates and spatiotemporal correlation,
we also obtain results for areas deemed ‘non-seasonal’
via the seasonal index in Fig. 2. Following the definition
of the seasonality index in Eq. (4), such non-seasonality
could arise due to a relatively uniform intra-annual distri-
bution of cases or extremely low malaria burden. In the
latter scenario, the derived seasonality features describe a
theoretical transmission season which could materialise if
transmission re-establishes itself.
From Fig. 2, we see that most of the island was deemed

to have unimodal seasonality. However, as shown in Fig. 3,
there is generally less certainty along the western and
northern coasts. This is consistent with the analysis of
Liebmann et al. which described increased likelihood of
bimodal rainfall patterns on the west coast and unimodal

Fig. 3 Probability of locations having one seasonal peak in malaria
cases. This is calculated by the proportion of posterior samples which
indicate that the locations have unimodal intra-annual case
distributions rather than bimodal distributions

trends on the east coast [33]. The lower data avail-
ability (see Additional file 1: Figure S2) as well as the
remoteness of western and northern coasts could also
contribute to the uncertainty of the estimates in these
regions [34]: lower reporting rates and differing care-
seeking behaviour, which could arise due to the lower
accessibility of the health facilities, can cause conflicting
seasonal signals in the data.
The median peak months and associated deviations of

the first transmission season are shown in Fig. 4. The
results are consistent with the existing literature [34].
Large parts of the island experience peaks inMarch–April
while the east coast sees an earlier peak around Febru-
ary. The heterogeneity in Fig. 4a in the western region
of Melaky (near 45◦ E, 17◦ S) is associated with high
deviations. This may be due to its remoteness and low
population density [34]. In Additional file 1: Figure S5, we
show the time series of the number of people tested posi-
tive for malaria via RDTs between 2013 and 2016 at three
example health facilities in Melaky. The relatively low and
highly variable case numbers lead to higher stochastic-
ity in the observed and estimated seasonality patterns.
Reporting difficulties, as illustrated by the multiple gaps
in the time series, add further uncertainty to the derived
monthly proportion curves. Additional seasonality plots
including themaps of transmission endmonths and trans-
mission season duration can be found in the Additional
file 1.

Discussion
This paper introduces a statistical modelling framework
for mapping malaria seasonality in Madagascar using
health facility data. The approach relies on a log-linear
spatiotemporal regression model to smooth and estimate
location-specific monthly proportions of cases. As coun-
tries increasingly adopt digital surveillance platforms such
as the District Health Information Software 2 (DHIS2) for
the digital recording of cases at the health facility level, it
is hoped that more of such data will be available to inform
seasonal and localised intervention strategies.
Due to the nature of the health facility data, only rela-

tive levels of burden can be derived to inform location-
specific seasonal trends. The modelling framework lever-
ages existing API maps to bring together the amplitude
as well as timing aspects of seasonality. For a cohesive
analysis, characteristics such as the start, peak, and length
of each transmission season as well as MPI estimates are
obtained via the same estimated curve of monthly pro-
portions. The latter is also used to compute a seasonality
index and categorise seasonality types. For each seasonal
feature, measures of uncertainty are also presented to
facilitate statistically sound decision-making.
In Madagascar, the 2018–2022 National Strategic Plan

includes indoor residual spraying (IRS) as a tool to help
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Fig. 4 aMedian peak months of the first transmission season in Madagascar. b The associated deviations

reduce transmission in the highest disease burden dis-
tricts and as an emergency response tool to epidemic
outbreaks [35, 36]. Given that sprayed insecticide gener-
ally remains efficacious for less than 6 months (depending
on the insecticide used and types of surfaces sprayed)[37],
local seasonality patterns are important to guide optimal
timing of IRS campaigns. Sprayingmust be timed for com-
pletion ahead of the start of transmission, but not so early
that the insecticide bio-efficacy will wear off before the
end of the season. Through this modelling framework,
we can estimate the median start months and associated
deviations of the first transmission season. The results, as
illustrated in Fig. 5, suggest that IRS should be completed
in southeast districts ahead of the southwest. This is in
line with PMI’s 2017–2018 strategy.
Despite the many advantages of this approach, there

are some limitations. An important assumption was made
when the empirical monthly proportions were computed
by averaging case counts over a number of years. The
notion that there should be a static seasonal trend over
multiple years is a common and practical one; however,
while climatic patterns are broadly predictable, there is
significant inter-annual variability in factors such as the
beginning of the rainy season. The impact of the annual
cyclone season inMadagascar is particularly significant in
this respect, triggering both unusually high rainfall (and
subsequently increased mosquito vector abundance) and
infrastructure damage which can severely disrupt malaria
control intervention efforts, resulting in unusual patterns

of malaria outbreaks [34, 38]. Likewise, periodic events
related to El Niño-Southern Oscillation and/or global cli-
mate change also impact malaria seasonal patterns [31].
Changes in vector species composition and behaviour
driven by large-scale coverage of vector control interven-
tions (such as the 2013 and 2015 national campaigns to
distribute insecticide-treated nets) could potentially also
result in shifts to the timings of the transmission season
[39]. For example, a novel vector, Anopheles coustani, was
recently described in the Malagasy highlands [40], and
evidence of strong, fine-spatial scale differences in vector
behaviour also allows for adaptive plasticity in response
to external pressures which could translate to changes in
parasite transmission over time [41]. Given this reality,
future iterations of this work could use a moving window
approach to continually update the model with new data.
Another noteworthy limitation of the proposed

methodology relates to relying on sparse, spatially dis-
crete health facility reports to establish seasonal patterns
across space. Although the issue of under-reporting due
to RDT stock-outs was mitigated somewhat by averaging
case counts over several years, the issue of zero recorded
cases in a facility still poses a potential problem as these
could be due to the low parasite prevalence (whether
historical or only recent) or the low popularity of the
facility itself. Another consideration is whether a zero is
a true representation of cases in a facility rather than a
placeholder for unreported data. While we have tried to
ensure the accuracy of the response data by, for example,
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Fig. 5 aMedian start months of the first transmission season in Madagascar. b The associated deviations

omitting health facilities with insufficient data to establish
a full year-long seasonal trend, it is possible that flawed
points were included in the model. This possibility is
illustrated in Fig. 6, which shows the empirical and fitted
monthly proportions for three health facilities. Health
Centre B (Fig. 6b) illustrates a scenario where there were
no cases and the model estimated a non-seasonal trend.
In contrast, Health Centre C (Fig. 6c) had no cases but an
estimated seasonal trend. The clearest interpretation of
a pattern in the absence of data is that while there were
no cases reported, the environmental conditions in that
area suggest that if there were to be any cases, they would

tend to peak in April. Such an interpretation is analogous
to the theoretical peak transmission season in a country
that has eliminated malaria, yet continues to experience
seasonally high vector densities.
The presented model establishes the dominant rela-

tionship between environmental covariates and monthly
proportions in the study area. This is driven by data in
obviously seasonal locations such as Health Centre A
in Fig. 6a. The spatiotemporal field accounts for other
unknown factors and smooths out the estimated monthly
proportions between locations. In this way, information
is borrowed from the seasonal locations identified within

Fig. 6 Examples of the model fit and rescaled von Mises density fit for three health facilities. The black line denotes the empirical monthly
proportions of cases, the black dotted lines represent the median proportions and 95% credible intervals, and the red line the fitted rescaled von
Mises density. Note that no cases were reported for Health Centres B and C, leading to a uniform empirical intra-annual distribution.
a Health Centre A. b Health Centre B. c Health Centre C
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the data and applied to areas with similar environmental
profiles.
In addition to the level of malaria burden, spatial scale

affects the amount of stochasticity in seasonality analyses.
Although we bypassed the issue of catchment populations
by modelling monthly proportions instead of case num-
bers, the number of cases seen at a health facility will be
more variable if it serves less people. This was seen for
the Melaky region in the Madagascar case study. If we had
data for all health facilities and aggregated the cases to
the administrative (district) level, it is likely that a stronger
seasonal signal would be observed. The trade-off is that
the relation between administrative-level seasonality and
area-representative environmental covariates (e.g. average
rainfall) may be less strong.
The seasonality we model is limited by the nature of our

data and the available seasonal signal as well as the rela-
tions we can establish. Since we work with case data, if
treatment-seeking behaviour itself is seasonal and related
to environmental factors such as rainfall, the seasonality
we observe and hence model is merely the seasonality of
cases at health facilities which may not be reflective of the
seasonal trends for cases at the population level.
As previously mentioned, different settings can give

rise to different responses to environmental forcing. For
example, while one frequently links increased mosquito
breeding habitats to the period after the rainy season, in
the Brazilian Amazon, this is instead linked to the dry sea-
son when small, isolated water bodies are created with the
receding of rivers [13, 14]. While the spatiotemporal field
in our model helps adjust for differences from the dom-
inant environmental relation, more research is required
on these different settings and how to integrate them into
our model structure. Local knowledge may also be useful
for adjusting the models to, for example, subset the study
regions based on differing responses.

Conclusion
Malaria seasonality maps are useful for targeting inter-
ventions such as seasonal malaria chemoprevention and
indoor residual spraying. As illustrated for Madagascar,
subannual health facility data can be used to estab-
lish seasonal patterns in malaria burden and augment
the information provided by household prevalence sur-
veys. The proposed modelling framework represents
a robust approach towards obtaining evidence-based
seasonality maps and estimates. With the ability to
infer the dominant environmental relation in the study
region as well as to provide cohesive results and uncer-
tainty measures for the estimated seasonal features, this
research presents an advancement from the existing
threshold and concentration-based mapping procedures.
As more health facility case data becomes available, it
is hoped that more of such data will be available to

improve our understanding and planning of intervention
strategies.
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