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Abstract 

Bias in epidemiological studies can adversely affect the validity of study findings. Sensitivity 
analyses, termed quantitative bias analyses, are available to quantify potential residual bias 
arising from measurement error, confounding, and selection into the study. Effective 
application of these methods benefits from the input of multiple parties including clinicians, 
epidemiologists, and statisticians. In this article, we provide an overview of a few common 
methods to facilitate both the use of these methods and critical interpretation of applications 
in the published literature. Quantitative bias analysis methods are described and illustrated 
using examples. Considerations to be made when choosing between methods are outlined and 
limitations of quantitative bias analysis are discussed. 
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Key points 

• Quantitative bias analysis methods allow investigators to quantify potential residual 
bias and to objectively assess the sensitivity of study findings to this potential bias. 

• Bias formulas, bounding methods, and probabilistic bias analysis can be used to 
assess sensitivity of results to potential residual bias. Each of these approaches has 
strengths and limitations.  

• Quantitative bias analysis relies on assumptions about bias parameters (e.g. the 
strength of association between unmeasured confounder and outcome) which can be 
informed by sub-studies, secondary studies, the literature, or expert opinion. 

• When applying, interpreting, and reporting quantitative bias analysis it is important to 
transparently report assumptions, to consider multiple biases if relevant, and to 
account for random error. 

 

Bias in epidemiological studies is a major concern. Biased studies have the potential to 
mislead, and as a result to negatively impact on clinical practice and public health. The 
potential for residual systematic error due to measurement bias, confounding, or selection 
bias is often acknowledged in publications but is seldom quantified. 1 Therefore, for many 
studies it is difficult to judge the extent to which residual bias could impact study findings, 
and how confident we should be about their conclusions. Increasingly large datasets with 
millions of patients are available for research, such as insurance claims data and electronic 
health records. With increasing dataset size, random error decreases but bias remains, 
potentially leading to incorrect conclusions. 

Sensitivity analyses to quantify potential residual bias are available. 2-7 However, usage of 
these methods is limited. Effective use typically requires input from multiple parties 
including clinicians, epidemiologists, and statisticians, to bring together clinical and domain-
area knowledge, epidemiological expertise, and a statistical understanding of the methods. 
Improved awareness of these methods and their pitfalls will enable more frequent and 
effective implementation, as well as critical interpretation of their application in the medical 
literature. 

In this article our aim is to provide an accessible introduction, description, and demonstration 
of three common approaches of quantitative bias analysis, and to describe their potential 
limitations. We briefly review bias in epidemiological studies due to measurement error, 
confounding, and selection. We then introduce quantitative bias analyses, methods to 
quantify the potential impact of residual bias (i.e. bias that has not been accounted for 
through study design or statistical analysis). Finally, we discuss limitations and pitfalls in the 
application and interpretation of these methods.  

Types of bias 

All clinical studies, both interventional and non-interventional, are potentially vulnerable to 
bias. Bias is ideally prevented or minimised through careful study design and the choice of 
appropriate statistical methods. In non-interventional studies three major biases that can 
impact findings are measurement bias (also known as information bias) due to measurement 
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error (referred to as misclassification for categorical variables), confounding and selection 
bias.  

Misclassification occurs when one or more categorical variables (such as the exposure, 
outcome, and/or covariates) are mismeasured or misreported. 8 Continuous variables may also 
be mismeasured leading to measurement error. As one example, misclassification occurs in 
some studies of alcohol consumption due to misreporting by study participants of their 
alcohol intake. 9, 10 As another example, in studies using electronic health records or insurance 
claims data there may be outcome misclassification if the outcome is not always reported to, 
or recorded by, the individual’s health care professional. 11 Measurement error is said to be 
differential when the probability of error depends on another variable (e.g., differential 
participant recall of exposure status depending on the outcome). Errors in measurement of 
multiple variables may be dependent (i.e. associated with each other) particularly when data 
is collected from a single source (e.g., electronic health records). Measurement error can lead 
to biased study findings in both descriptive and aetiological (i.e. cause-effect) non-
interventional studies. 12  

Confounding arises in aetiological studies when the association between exposure and 
outcome is not solely due to the causal effect of the exposure, but rather is partly or wholly 
due to one or more other causes of the outcome associated with the exposure. For example, it 
has been found that greater adherence to statins is associated with a reduction in motor 
vehicle accidents and an increase in the use of screening services. 13 However, this is almost 
certainly not due to a causal effect of statins on these outcomes, but more probably because 
attitudes to precaution and risk that are associated with these outcomes are also associated 
with adherence to statins.  

Selection bias occurs when non-random selection of people or person-time into the study 
results in systematic differences between results obtained in the study population and results 
that would have been obtained in the population of interest. 14, 15 This bias can arise due to 
selection at study entry or due to differential loss to follow-up. For example, in a cohort study 
where the patients selected are those admitted to hospital in respiratory distress, COVID-19 
and COPD may be negatively associated, even if there was no association in the overall 
population, because if you do not have one condition it is more likely you have the other in 
order to be admitted. 16  Selection bias can affect both descriptive and etiological non-
interventional studies. 

Handling bias in practice 

All three biases should ideally be minimised through study design and analysis. For example, 
misclassification can be reduced by the use of a more accurate measure, confounding through 
measurement of all relevant potential confounders and their subsequent adjustment, and 
selection bias through appropriate sampling from the population of interest and accounting 
for loss to follow-up. Other biases should also be addressed, for example immortal time bias 
through the appropriate choice of time zero, and sparse data bias through collection of a 
sample of sufficient size or by the use of penalised estimation. 17, 18 



5 
 

Even with the best available study design and most appropriate statistical analysis, we 
typically cannot guarantee that residual bias will be absent. For instance, it is often not 
possible to perfectly measure all required variables, or it may be either impossible or 
impractical to collect or obtain data on every possible potential confounder. For instance, 
studies conducted using data collected for non-research purposes, such as insurance claims 
and electronic health records, are often limited to the variables previously recorded. It may 
also not be practically feasible to sample randomly from the population of interest, especially 
if individuals are not willing to participate. 

To ignore potential residual biases can lead to misleading results and erroneous conclusions. 
Often the potential for residual bias is acknowledged qualitatively in the discussion, but these 
qualitative arguments are typically subjective and often downplay the impact of any bias. 
Heuristics are frequently relied on, but these can lead to an misestimation of the potential for 
residual bias. 19 Quantitative bias analysis allows both authors and readers to assess 
robustness of study findings to potential residual bias rigorously and quantitatively.   

Quantitative bias analysis 

When designing or appraising a study there are a number of key questions related to bias that 
need to be considered (box 1). 20 If, on the basis of the answers to these questions, there is 
potential for residual bias(es), then quantitative bias analysis methods can be considered to 
estimate the robustness of findings.  

Box 1: Key bias-related questions when designing and appraising a non-
interventional study 

• Misclassification and measurement error: Are the exposure, outcome, and 
covariates likely to be measured and recorded accurately? 

• Confounding: Are there potential causes of the outcome, or proxies for these 
causes, which may differ in prevalence between exposure groups? Are these 
potential confounders measured and controlled through study design or 
analysis? 

• Selection bias: What is the target population? Are individuals in the study 
representative of this target population?  

 

There are a large number of quantitative bias analysis methods, though only a few of these 
are regularly applied in practice. In this article we will introduce three straightforward, 
commonly applied, and general approaches1: bias formulas, bounding methods, and 
probabilistic bias analysis. Alternative methods, including methods for bias-adjustment of 
linear regression with a continuous outcome, are also available. 7, 21, 22 Methods for dealing 
with misclassification of categorical variables are outlined in this article. Corresponding 
methods for sensitivity analysis to address mismeasurement of continuous variables are 
available and are described in depth in the literature. 23, 24 
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Bias formulas 

We can use simple mathematical formulas to estimate the bias in a study and to estimate what 
the results would be in the absence of that bias. 4, 25-28 Commonly applied formulas, along 
with details of available software to implement methods listed, are provided in the 
appendices. Some of these methods can be applied to the summary results (e.g. risk ratio), 
whereas other methods require access to 2x2 tables or participant-level data.  

These formulas require us to specify additional information, typically not obtainable from the 
study data itself, in the form of bias parameters. Values for these parameters quantify the 
extent of bias present due to confounding, misclassification, or selection.  

Bias formulas for unmeasured confounding generally require us to specify the following bias 
parameters:1) the prevalence of the unmeasured confounder in the unexposed individuals, 2) 
the prevalence of the unmeasured confounder in the exposed individuals (or alternatively the 
association between exposure and unmeasured confounder), 3) the association between 
unmeasured confounder and outcome. 4, 28, 29   

These bias formulas can be applied to the summary results (e.g. risk ratios, odds ratios, risk 
differences, hazard ratios etc.) and to 2x2 tables, and they produce “corrected” results 
assuming the specified bias parameters are correct. Generally, the exact bias parameters are 
unknown so a range of parameters can be entered into the formula, producing a range of 
possible bias-adjusted results under more or less extreme confounding scenarios. 

Bias formulas for misclassification work in a similar way, but typically require us to specify 
positive predictive value and negative predictive value, or sensitivity and specificity, of 
classification, stratified by exposure and/or outcome. These formulas typically require study 
data in the form of 2x2 tables. 7, 30  

Bias formulas for selection bias are applicable to the summary results (e.g. risk ratios, odds 
ratios) or to 2x2 tables, and normally require us to specify probabilities of selection into the 
study for different levels of exposure and outcome. 25 An example of the application of bias 
formulas for selection bias is given in Box 2. When participant-level data is available, a very 
general method of bias analysis is to weight each individual by the inverse of their probability 
of selection. 31  
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Box 2: An application of bias formulas for selection bias 

In a cohort study of pregnant women investigating the association between lithium use, 
relative to non-use, and cardiac malformations in live-born infants, the observed 
covariate-adjusted risk ratio was 1.65 (95% CI, 1.02-2.68). 32 Only live-born infants 
were selected into the study, and therefore there was potential for selection bias if there 
were differences in the termination probabilities of foetuses with cardiac malformations 
between exposure groups.  

Because the outcome is rare, the odds ratio approximates the risk ratio, and we can 
apply a bias formula for the odds ratio to the risk ratio. The bias parameters are 
selection probabilities for the unexposed with outcome 𝑆!", exposed with outcome 𝑆"", 
unexposed without outcome 𝑆!!, and exposed without outcome 𝑆"!. 

𝑂𝑅#$%&'() = 𝑂𝑅*+&
𝑆!"𝑆"!
𝑆!!𝑆""

 

For example, if we assume that probability of terminations is 30% among unexposed 
with malformations, 35% among exposed with malformations, 20% among unexposed 
without malformations, and 25% among exposed without malformations, then the bias-
adjusted odds ratio is 1.67. 

𝑂𝑅#$%&'() = 1.65 ×
0.7 × 0.75
0.65 × 0.8 = 1.67 

In the study, a range of selection probabilities, stratified by exposure and outcome 
status, were specified, informed by the literature. Depending on assumed selection 
probabilities, the bias-adjusted estimates of the risk ratio ranged from 1.65 to 1.80 
(Figure 1), indicating that the estimate was robust to this selection bias under given 
assumptions. 
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Figure 1: Bias-adjusted risk ratio for different assumed selection probabilities  

* Selection probability of unexposed without cardiac malformations was assumed to be 
0.8 (i.e. 20% probability of termination). Selection probabilities in exposed were 
defined relative to unexposed by outcome status (i.e. -0%, -5%, and -10%).  

 

It is possible to incorporate measured covariates in these formulas, but specification then 
generally becomes more difficult as we typically have to specify bias parameters, such as the 
prevalence of the unmeasured confounder, within strata of measured covariates.    

Although we may not be able to estimate these unknowns from the main study itself, we can 
specify plausible ranges based on the published literature, clinical knowledge, or a secondary 
study or sub-study. Secondary studies or sub-studies, in which additional information from a 
subset of study participants or from a representative external group are collected, are 
particularly valuable as they are more likely to accurately capture unknown values. 33 
However, depending on the particular situation, they may be infeasible for a given study due 
to data access limitations and resource constraints. The published literature can be 
informative if there are relevant publications and the study populations in the published 
studies are sufficiently similar to the population under investigation. Subjective judgements 
of plausible values for unknowns are vulnerable to the viewpoint of the investigator, and as a 
result may not accurately reflect the true unknown values.  The validity of quantitative bias 



9 
 

analysis depends critically on the validity of the assumed values. When implementing 
quantitative bias analysis, or appraising quantitative bias analysis in a published study, it is 
important to question the choices made for these unknowns, and for study investigators to 
report these choices with transparency. 

Bounding methods 

Bounding methods are mathematical formulas, similar to bias formulas,  that we can apply to 
study results for confounding, selection bias, and misclassification. 5, 34-36 However, unlike 
bias formulas, they require only a subset of the unknown values to be specified. While this 
seems advantageous, one important disadvantage is that bounding methods generate a bound 
on the maximum possible bias, rather than an estimate of the association adjusted for bias. 
When values for all unknown parameters (e.g., prevalence of an unmeasured confounder) can 
be specified, and there is reasonable confidence in their validity, bias formulas or 
probabilistic bias analysis can generally be applied, and provide more information than 
bounding methods. 37 

One very popular bounding method for unmeasured confounding is the E-value. 5, 35 Using E-
value formulas it is possible to calculate a bound on the bias-adjusted estimate by specifying 
the association (e.g. risk ratio) between exposure and unmeasured confounder and between 
unmeasured confounder and outcome, while leaving the prevalence of the unmeasured 
confounder unspecified. The E-value itself is the minimum value on the risk ratio scale that 
either the association between exposure and unmeasured confounder or between unmeasured 
confounder and outcome must exceed to potentially reduce the bias-adjusted findings to the 
null (or alternatively to some specified value e.g., a protective risk ratio of 0.8). If the 
plausible strength of association between the unmeasured confounder and both exposure and 
outcome is smaller than the E-value then that one confounder could not fully explain the 
observed association, providing support to the study findings. If the strength of association 
between the unmeasured confounder and either exposure or outcome is plausibly larger than 
the E-value, then we can only conclude that residual confounding might explain the observed 
association, but it is not possible to say whether such confounding is in truth sufficient, as we 
have not specified the prevalence of the unmeasured confounder. The use of bounding 
methods for unmeasured confounding is illustrated in Box 3. Although popular, the 
application of E-values has been criticised as they have been commonly misinterpreted, and 
have been used frequently without careful consideration of a specific unmeasured 
confounder, or the possibility of multiple unmeasured confounders or other biases. 38  
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Box 3: An application of bounding-methods 

In a cohort study investigating the association between proton pump inhibitors, relative to 
H2 receptor antagonists, and all-cause mortality, investigators found evidence that 
individuals prescribed proton pump inhibitors were at higher risk of death after adjusting 
for several measured covariates including age, sex, and comorbidities (covariate-adjusted 
hazard ratio [HR] 1.38, 95% CI 1.33-1.44). 39 However, unmeasured differences in frailty 
between users of H2 receptor antagonists and users of proton pump inhibitors may bias 
findings. Because the prevalence of the unmeasured confounder in the different exposure 
groups was unclear, the E-value was calculated. Because the outcome was rare at the end of 
follow-up, and therefore the risk ratio approximates the hazard ratio given proportional 
hazards40, the E-value formula, which applies to the risk ratio, was applied to the hazard 
ratio.  

E-value = 𝑅𝑅*+& + 5𝑅𝑅*+&(𝑅𝑅*+& − 	1) 

= 1.38 +	51.38 × (1.38 − 	1) = 2.10	
 

The E-value for the point estimate of the adjusted HR, 1.38, was 2.10. Hence either the 
adjusted risk ratio between exposure and unmeasured confounder, or that between 
unmeasured confounder and outcome, must be greater than 2.10 to potentially explain the 
observed association of 1.38. The E-value can be applied to the bounds of the confidence 
interval to account for random error. The calculated E-value for the lower bound of the 95% 
confidence interval (i.e. covariate-adjusted HR = 1.33) was 1.99. We can plot a curve to 
show the values of risk ratios necessary to potentially reduce to the null the observed 
association as estimated by a) the point estimate and b) the lower bound of the confidence 
interval (Figure 2). An unmeasured confounder with strengths of associations below the 
green line could not fully explain the point estimate, and below the orange line could not 
fully explain the lower bound of the confidence interval.  
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Probabilistic bias analysis 

Probabilistic bias analysis takes a different approach to handling uncertainty around the 
unknown values. Rather than specifying a single value or a range of values for an unknown, a 
probability distribution (e.g. a normal distribution) is specified for each of the unknown 
quantities. This represents the uncertainty about the unknown values, and values are sampled 
repeatedly from this distribution before applying bias formulas using the sampled values. 
This approach can be applied to either summary or participant-level data. The result is a 
distribution of bias-adjusted estimates. Resampling should be performed a sufficient number 
of times (e.g. 10,000 times), though this can become computationally burdensome when 
performing corrections at the patient record-level. 41 An example of probabilistic bias analysis 
for misclassification is given in Box 4. 

 
Figure 2: E-value plot for unmeasured confounding of association between proton 
pump inhibitors and mortality 

Given risk ratios >2 observed in the literature between frailty and mortality, unmeasured 
confounding could not be ruled out as a possible explanation for observed findings. 
However, given that we used a bounding method, and did not specify unmeasured 
confounder prevalence, we could not say with certainty whether such confounding was 
likely to explain the observed result. Additional unmeasured or partially measured 
confounders may have also contributed to the observed association. 
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Probabilistic bias analysis can readily handle a large number of unknowns, which makes it 
particularly useful for handling multiple biases simultaneously. 42 However, it can be difficult 
to specify a realistic distribution if there is little information on the unknowns from published 
studies or from additional data collection. Commonly chosen distributions include uniform, 
trapezoidal, triangular, beta, and normal distributions. 7 Sensitivity analyses can be conducted 
varying the distribution and assessing the sensitivity of findings to distribution chosen. .  
When performing corrections at the patient record-level, analytical methods such as 
regression can be applied after correction to adjust associations for measured covariates. 43  
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Pitfalls of methods 

Incorrect assumptions 

Study investigators and readers of published research should be aware that the outputs of 
quantitative bias analyses are only as good as the assumptions made. These include both 

Box 4: An application of probabilistic bias analysis 

In a cohort study of pregnant women conducted in insurance claims data, the observed 
covariate-adjusted risk ratio for the association between antidepressant use and congenital 
cardiac defects, among women with depression, was 1.02 (95% CI, 0.90-1.15). 44  

Some misclassification of the outcome, congenital cardiac defects, was expected, and 
therefore probabilistic bias analysis was conducted. A validation study was conducted to 
assess the accuracy of classification. In this validation study, full medical records were 
obtained and used to verify diagnoses for a subset of pregnancies with congenital cardiac 
defects recorded in the insurance claims data. Based on positive predictive values estimated 
in this validation study, triangular distributions of plausible values for sensitivity (Figure 3) 
and of specificity of outcome classification were specified and were used for probabilistic 
bias analysis.  

 
Figure 3: Specified distribution of values for sensitivity of outcome ascertainment 

Values were sampled at random 1,000 times from these distributions and were used to 
calculate a distribution of bias-adjusted estimates incorporating random error. The median 
bias-adjusted estimate was 1.06, and the 95% simulation interval was 0.92-1.22. This finding 
indicates that under the given assumptions the results were robust to outcome 
misclassification, as the bias-adjusted results were similar to the initial estimates. Both sets of 
estimates suggested no evidence of association between antidepressant use and congenital 
cardiac defects. 
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assumptions about the values chosen for the bias parameters (see Table 1), and assumptions 
inherent to the methods. For example, applying the E-value formula directly to a hazard ratio 
rather than a risk ratio is an approximation, and only a good approximation when the outcome 
is rare. 45  

Simplifying assumptions are required by many quantitative bias analysis methods. For 
example, it is often assumed that the exposure does not modify the unmeasured confounder-
outcome association. 4 If these assumptions are not met then the findings of quantitative bias 
analysis may be inaccurate.  

Ideally, assumptions would be based on supplemental data collected in a subset of the study 
population (e.g. internal validation studies to estimate predictive values of misclassification) 
or, in the case of selection bias, in the source population from which the sample was selected, 
but this is not always feasible. 7 Validation studies can be an important source of evidence on 
misclassification, though proper design is important to obtain valid estimates. 33 

Multiple biases 

It is a mistake to assume that if the results are robust to one source of bias, they must 
necessarily reflect the causal effect. Depending on the particular study there may be multiple 
residual biases, and jointly quantifying the impact of all of these is necessary to properly 
assess robustness of results. 34 Bias formulas and probabilistic bias analyses can be applied 
for multiple biases, but specification is more complicated, and the biases should typically be 
accounted for in the reverse order from which they arise (see Appendix 2 for an applied 
example). 7, 46, 47 Bounding methods are available for multiple biases. 34  

Prespecification 

Prespecification of quantitative bias analysis in the study protocol is valuable so that choice 
of unknown values and choice to report bias analysis is not influenced by whether the results 
of bias analysis are in line with the investigators expectations. Clearly a very large range of 
analyses is possible, though we would encourage judicious application of these methods to 
address biases judged to be of specific importance given the limitations of the specific study 
being conducted. 

Accounting for random and systematic error 

Both systematic errors, such as bias due to misclassification, and random error due to 
sampling, impact study results. To accurately reflect this issue, quantitative bias analysis 
should jointly account for random error as well as systematic bias. 48 Bias formulas, bounding 
methods, and probabilistic bias analysis approaches can be adapted to account for random 
error (Appendix 1). 

Reporting  

Deficiencies in the reporting of quantitative bias analysis have been previously noted. 1, 48-50 
When reporting quantitative bias analysis, it is important to state: 

(1) The method used and how it has been implemented 
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(2) Details of the residual bias anticipated (such as which specific potential confounder 
was unmeasured) 

(3) Any estimates for unknown values that have been used, with justification for the 
chosen values or distribution for these unknowns 

(4) Which simplifying assumptions (if any) have been made  

Quantitative bias analysis is a valuable addition to a study, but as with any aspect of a study, 
should be interpreted critically and reported in sufficient detail to allow for critical 
interpretation.  

Alternative methods 

Commonly applied and broadly applicable methods have been described in this article. Other 
methods are available, and include modified likelihood and predictive value weighting with 
regression analyses51-53, propensity score calibration using validation data54, 55, multiple 
imputation using validation data56, methods for matched studies3, and Bayesian bias analysis 
if a fully Bayesian approach is desired. 57, 58  

Conclusions 

Quantitative bias methods provide a means to quantitatively and rigorously assess the 
potential for residual bias in non-interventional studies. Increasing the appropriate use, 
understanding, and reporting of these methods has potential to improve the robustness of 
clinical epidemiological research and reduce the likelihood of erroneous conclusions. 
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Table 1: Common bias parameters for bias formulas and probabilistic bias analysis 

Confounding Selection Bias Misclassification 

• Prevalence of 
unmeasured 
confounder in 
unexposed 

• Prevalence in 
exposed (or 
association 
between exposure 
and confounder) 

• Association 
between 
confounder and 
outcome 

• Probabilities of 
selection into the 
study for different 
levels of exposure 
and outcome 

• Positive predictive 
value and negative 
predictive value 

Or: 
• Sensitivity and 

specificity 
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Appendix 1: Commonly applied bias formulas and bounding methods 

Quantitative bias analysis for unmeasured confounding 

Bias formulas 

Risk ratios 

The simplest setting is when there is a binary exposure Z, binary outcome Y, binary 
unmeasured confounder U, and no interaction between the effects of the exposure and 
unmeasured confounder on the outcome on the risk ratio scale. Formulas are available that 
take account of interaction. 1 

In this situation a bias formula can be applied to the observed risk ratio, 𝑅𝑅,-(*+&), to 
calculate a bias-adjusted risk ratio 𝑅𝑅,-(#$%&'()).  The bias formula (1) is based on the risk 
ratio between unmeasured confounder and outcome 𝑅𝑅0-|, adjusted for exposure, the 
prevalence of the unmeasured confounder amongst exposed, P(U = 1|Z = 1), and 
unexposed, P(U = 1|Z = 0), and the observed risk ratio 𝑅𝑅,-(*+&). 2 

𝑅𝑅,-(#$%&'()) = 𝑅𝑅,-(*+&)
1 + 	P(U = 1|Z = 0)@𝑅𝑅0-|, − 	1A
1 + 	P(U = 1|Z = 1)@𝑅𝑅0-|, − 	1A

(1) 

 

Categorical and multiple unmeasured confounders 

We can instead specify that U is categorical, with reference level u’. In this setting we must 
specify stratum-specific prevalence of the unmeasured confounder and associations between 
each level of unmeasured confounder u and outcome, relative to the reference level u’. Again, 
we assume no interaction between the effects of the exposure and unmeasured confounder on 
the outcome on the risk ratio scale, leading to the bias formula (2). 1 

𝑅𝑅,-(#$%&'()) = 𝑅𝑅,-(*+&) 	
	P(U = u′|Z = 0) +	∑ 𝑅𝑅22!-|,	P(U = u|Z = 0)2 	
	P(U = u′|Z = 1) +	∑ 𝑅𝑅22!-|,	P(U = u|Z = 1)2 	

(2) 

 

To incorporate multiple unmeasured confounders, we can specify multiple variables as one 
categorical variable (e.g. for alcohol and tobacco consumption: non-smoker non-drinker, 
smoker non-drinker, non-smoker drinker, smoker drinker). 

Risk difference 

We can calculate a bias-adjusted risk difference, 𝑅𝐷,-(#$%&'()), with a simple formula 
assuming a binary unmeasured confounder and no interaction between the effects of the 
exposure and unmeasured confounder on the outcome on the risk difference scale. We need 
only specify the observed risk difference, 𝑅𝐷,-(*+&), the risk difference for the unmeasured 
confounder-outcome association adjusted for exposure, 𝑅𝐷0-|,, and the difference in 
prevalence of the unmeasured confounder between exposure groups, as follows1: 
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𝑅𝐷,-(#$%&'()) = 𝑅𝐷,-(*+&) − 𝑅𝐷0-|,(P(U = 1|Z = 1) − 	𝑃(𝑈 = 1|𝑍 = 0))	 (3) 

Formulas for more general cases relaxing these assumptions are available, such as for 
categorical unmeasured confounders, though these formulas become more complicated to 
specify. 1 

Other effect estimates 

We can use formulas (1) and (2) for rate ratios, replacing all risk ratios in the equation with 
rate ratios. 

If the outcome is rare, and hence the odds ratio is a good approximation to the risk ratio, we 
can substitute the odds ratio for the risk ratio in formulas (1) and (2). 1 Exact formulas for the 
bias of the odds ratio are available, but are more difficult to specify practically. 1 If the 
outcome is rare at the end of follow-up and hazards are proportional, the hazard ratio 
approximates the risk ratio3, and can be substituted for the risk ratio in formulas (1) and (2). 4  

Random error 

Formulas (1-3) can be applied to the bounds of the 95% CI to account for random error. 1 
Alternatively, when participant-level data is available, bootstrapping can be used to calculate 
confidence intervals by repeatedly resampling participants with replacement, calculating the 
effect estimate, and applying the bias formula. 1 Random error can also be incorporated as 
part of a probabilistic bias analysis. 5 

Incorporating measured covariates 

We can apply formulas (1-3) to effect measures conditioned on measured covariates. 
However, we then need to use ratios or differences between unmeasured confounder and 
outcome within strata of measured covariates, and the prevalence of the unmeasured 
confounder within each stratum of the measured covariates. 1   

If we assume no effect measure modification of the exposure-outcome association by the 
measured covariates, then we can use prevalence of unmeasured confounder within any one 
stratum of measured covariates to calculate a bias-adjusted association (e.g. if adjusting for 
binary [yes/no] diabetes status, then prevalence of unmeasured confounder amongst exposed 
and unexposed diabetics). Bias formulas are also available for marginal treatment effects 
such as the average effect of treatment in the overall study population, the average effect of 
treatment among the treated group, and the average effect of treatment amongst the untreated 
group. 1 

Bounding methods 

Cornfield conditions 

We can specify bounds on the bias-adjusted estimate. In order for an unmeasured confounder 
positively associated with the outcome to potentially reduce the positive bias-adjusted risk 
ratio between exposure and outcome to a specific value (e.g. a risk ratio of one, a typical null-
hypothesis value), the association between unmeasured confounder and outcome 𝑅𝑅0-|,, and 
between exposure and unmeasured confounder 𝑅𝑅,0, must be greater than the ratio of the 
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observed risk ratio 𝑅𝑅,-(*+&) to the bias-adjusted risk ratio (4, 5). 2, 6, 7 These bounds are 
known as Cornfield conditions. 

𝑅𝑅0-|, ≥
𝑅𝑅,-(*+&)

𝑅𝑅,-(#$%&'())
	 (4) 

𝑅𝑅,0 ≥
𝑅𝑅,-(*+&)

𝑅𝑅,-(#$%&'())
	 (5) 

These bounds also apply exactly to rate ratios (replacing risk ratios with the outcome with 
rate ratios), and approximately to odds ratio or hazard ratios when the outcome is rare. 8 

These bounds, while true, are very conservative. We can only rule out unmeasured 
confounding as an explanation if either of these inequalities is not true. We cannot say that 
unmeasured confounding is likely if these inequalities are satisfied. 

E-values 

A less conservative bound, known as the E-Value, can also be specified if we consider jointly 
the association between unmeasured confounder and outcome 𝑅𝑅0-|, and between exposure 
and unmeasured confounder 𝑅𝑅,0. 6 One of the exposure-unmeasured confounder and 
unmeasured confounder-outcome associations must be as large as or larger than the threshold 
(6) to potentially reduce the observed estimate to the specified (usually null) bias-adjusted 
estimate. The calculated E-Value will be larger in value than the Cornfield conditions, 

max@𝑅𝑅,0 , 𝑅𝑅0-|,A ≥ 	 M𝑅𝑅,-(*+&) +N𝑅𝑅,-(*+&)@𝑅𝑅,-(*+&) −	𝑅𝑅,-(#$%&'())AO 𝑅𝑅,-(#$%&'())P 	(6) 

If both of these risk ratios are below this threshold, then the unmeasured confounder cannot 
reduce the observed association to the specified bias-adjusted value. 

This formula can also be applied to the rate ratio, and assuming the outcome is rare, to the 
odds ratio or hazard ratio. 

Random error 

Formulas (4) to (6) can be applied to the limits of the 95% confidence interval to account for 
random error. 6  

Positive associations 

These formulas assume positive associations between unmeasured confounder and outcome 
and between exposure and outcome. Analogous formulas are available for an apparent 
preventive association. 6 

Incorporating measured covariates 

A major advantage of bounding methods for unmeasured confounding is the ease of 
application to adjust for bias with covariate-adjusted estimates. We can apply the bounding 
formulas to covariate-adjusted estimates without the need to specify strata-specific 
prevalence of the unmeasured confounder. 
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Quantitative bias analysis for misclassification 

Bias formulas 

We can apply bias formulas for exposure or outcome misclassification with a binary exposure 
and binary outcome to 2x2 tables. 5  

Exposure misclassification 

Consider a 2x2 table with true binary exposure Z, misclassified binary exposure Z’, and 
binary outcome Y. 

 Z’ = 1 Z’ = 0 

Y = 1 a b 

Y = 0 c d 

 

We can calculate a corrected table using the sensitivity [Se] (i.e. proportion of those who 
truly are exposed who are categorised as exposed) and specificity [Sp] (i.e. proportion of 
those who truly are unexposed who are categorised as unexposed). If misclassification is 
differential (i.e. it depends on the outcome value) then we have to specify sensitivity and 
specificity separately amongst those with and without the outcome (as indicated by SeY1, 
etc.).  

 Z = 1 Z = 0 

Y = 1 𝐴

= 	
𝑎 − (𝑎 + 𝑏)(1 − 𝑆𝑝-")
𝑆𝑒-" +	𝑆𝑝-" − 1

 

𝐵	 = 	𝑎	 + 	𝑏	– 	𝐴 

Y = 0 
𝐶 = 	

𝑐 − (𝑐 + 𝑑)(1 − 𝑆𝑝-!)
𝑆𝑒-! +	𝑆𝑝-! − 1

 𝐷	 = 	𝑐	 + 	𝑑	– 	𝐶 

 

Outcome misclassification 

Consider a 2x2 table with misclassified binary outcome Y’ and binary exposure Z. 

 Z= 1 Z = 0 

Y’ = 1 a b 

Y’ = 0 c d 

 

We can calculate a corrected table using the sensitivity [Se] (i.e. proportion of those who 
truly have the outcome who are categorised as having the outcome) and specificity [Sp] (i.e. 
proportion of those who truly do not have outcome who are categorised as not having the 
outcome). If misclassification is differential (i.e. it depends on the exposure value) then we 
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have to specify sensitivity and specificity separately for exposed and unexposed groups (as 
indicated by SEZ1, etc.). 

 Z= 1 Z = 0 

Y = 1 
𝐴 = 	

𝑎 − (𝑎 + 𝑐)(1 − 𝑆𝑝,")
𝑆𝑒," +	𝑆𝑝," − 1

 𝐵

= 	
𝑏 − (𝑏 + 𝑑)(1 − 𝑆𝑝,!)
𝑆𝑒,! +	𝑆𝑝,! − 1

 

Y = 0 𝐶	 = 	𝑎	 + 	𝑐	– 	𝐴 𝐷	 = 	𝑏	 + 	𝑑	– 	𝐵 

 

Sensitivity and specificity 

Quantitative bias analysis formulas applied to 2x2 tables are also available which use the 
positive predictive value (PPV) and negative predictive value (NPV). 5 Choice of formula 
will depend on which parameters are easier for the investigator to specify based on 
information available. Sensitivity and specificity may be preferred if using information from 
an external population rather than information from an internal validation, study given that 
PPV and NPV can vary considerably between populations depending on variable prevalence. 
9 

Incorporating measured covariates 

We can stratify the 2x2 tables by measured covariates and average the bias-adjusted results. 
This is, however, challenging if there are a large number of measured covariates, or if there 
are continuous covariates. 

Measured covariates can alternatively be accounted for by patient record-level correction. 10 
Alternatively, modification of the regression likelihood can be used with logistic regression 
to adjust for bias due to outcome misclassification while adjusting for measured covariates. 11 

Random error 

Random error can be incorporated through bootstrapping, through formulas for 
misclassification-adjusted variance estimates, or as part of a probabilistic bias analysis. 12 

Categorical variables with more than two levels 

Quantitative bias analysis for misclassification of categorical variables with more than two 
levels can be conducted using matrix methods. 10 

Quantitative bias analysis for selection bias 

Bias formulas 

2x2 tables 

We can apply simple bias formulas to 2x2 tables or to an odds ratio. 

Consider a 2x2 table with exposure Z and outcome Y. 
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 Z = 1 Z = 0 

Y = 1 a b 

Y = 0 c d 

 

We can create a bias adjusted table by dividing each table cell by the selection probability for 
that combination of exposure and outcome (S00 etc.). 

 Z = 1 Z = 0 

Y = 1 a/S11 b/S01 

Y = 0 c/S10 d/S00 

 

Odds ratios 

To adjust an odds ratio for bias, we can multiply the observed odds ratio by a function of the 
selection probabilities, as follows: 

𝑂𝑅,-(#$%&'()) = 𝑂𝑅,-(*+&)
𝑆!"𝑆"!
𝑆!!𝑆""

 

Risk or hazard ratios 

When the outcome is rare among the selected sample, the odds ratio will approximate the risk 
ratio, and this, in turn, when the outcome is rare at the end of follow-up and hazards are 
proportional, will approximate the hazard ratio. 3 Hence the formula above can be applied to 
the risk ratio or hazard ratio with a rare outcome, with the proviso that it is an approximation 
rather than exact. 

Incorporating measured covariates 

We can apply these bias formulas within strata of measured covariates, though this is 
challenging when there are many covariates. 

If we assume that the probability of selection is independent of measured covariates given 
exposure and outcome, we can apply the formula for the bias-adjusted odds ratio to the odds 
ratio adjusted for measured covariates. 

Incorporating random error 

We can apply the formula for odds ratios not only to the point estimate of association, but 
also to the limits of the 95% confidence interval. More generally, random error can be 
incorporated by bootstrapping or as part of a probabilistic bias analysis. 

Inverse probability of selection weighting 

It can be cumbersome to stratify data by measured covariates, 𝐶, if there are many covariates. 
An alternative is to weight each data point by the inverse of the probability of selection. 13 As 
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regards loss to follow-up, if censoring is independent of the outcome given specified 
covariates that are measured amongst those lost to follow-up, then we can estimate inverse 
probability of censoring weights from the sample data rather specifying the weights based on 
external information. 

𝑤$ =
1

𝑃(𝑆 = 1|𝑍 = 𝑧, 𝑌 = 𝑦, 𝐶 = 𝑐) 

Appendix 2: Tools and packages 

Spreadsheets for conducting quantitative bias analysis, which accompany the book Applying 
Quantitative Bias Analysis by Fox et al. 2021, are available online: 
https://sites.google.com/site/biasanalysis/.  

There are a number of software options for quantitative bias analysis, which have been 
reviewed in depth elsewhere. 14 Software packages for application of bias formulas include a 
STATA packages “episens”, R package “episensr” and SAS macro “sensmac” . SAS and R 
code is available for probabilistic bias analysis for misclassification. 15 Code to generate the 
applied examples in this manuscript, alongside further examples including for multiple 
biases, is provided online (https://jeremy-p-b.github.io/qba-applied) or is alternatively 
available in a supplementary .Rmd file. 

For E-values, an E-value calculator is available online: https://www.evalue-calculator.com/. 
Furthermore, there is an R package “EValue” and a Stata package “EVALUE”. 

 

https://sites.google.com/site/biasanalysis/
https://jeremy-p-b.github.io/qba-applied
https://www.evalue-calculator.com/
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