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Abstract

The risk of tuberculosis (TB) is variable among individuals with latent Mycobacterium 
tuberculosis infection (LTBI), but validated estimates of personalized risk are lacking. In pooled 

data from 18 systematically identified cohort studies from 20 countries, including 80,468 

individuals tested for LTBI, 5-year cumulative incident TB risk among people with untreated 

LTBI was 15.6% (95% confidence interval (CI), 8.0-29.2%) among child contacts, 4.8% (95% 

CI, 3.0-7.7%) among adult contacts, 5.0% (95% CI, 1.6-14.5%) among migrants and 4.8% (95% 

CI, 1.5-14.3%) among immunocompromised groups. We confirmed highly variable estimates 

within risk groups, necessitating an individualized approach to risk stratification. Therefore, 

we developed a personalized risk predictor for incident TB (PERISKOPE-TB) that combines 

a quantitative measure of T cell sensitization and clinical covariates. Internal-external cross-

validation of the model demonstrated a random effects meta-analysis C-statistic of 0.88 (95%CI, 

0.82-0.93) for incident TB. In decision curve analysis, the model demonstrated clinical utility for 

targeting preventative treatment, compared to treating all, or no, people with LTBI. We challenge 

the current crude approach to TB risk estimation among people with LTBI in favor of our 

evidence-based and patient-centered method, in settings aiming for pre-elimination worldwide.

Globally, TB accounts for the greatest number of deaths from a single pathogen, with an 

estimated 1.5 million deaths and 10 million incident cases in 20181. The World Health 

Organization’s End TB Strategy ambitiously aims for a 95% reduction in TB mortality and 

a 90% reduction in TB incidence by 20352. As part of this strategy, the priority for low 

transmission settings is to achieve pre-elimination (annual incidence of <1 per 100,000) by 

20352. Preventative antimicrobial treatment for LTBI is considered critical for achieving this 

objective2,3. In the absence of an assay to detect viable M. tuberculosis bacteria, LTBI is 

currently clinically defined as evidence of T cell memory to M. tuberculosis, in the absence 

of concurrent disease and any previous treatment4,5. Individuals with LTBI are generally 

considered to have a lifetime TB risk ranging from 5% to 10%4, which is reduced by 

65–80% with preventative treatment6.
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The positive predictive value (PPV) for TB using the current definition of LTBI is less 

than 5% over a 2-year period among risk groups, such as adult TB contacts7–9. This might 

lead to a large burden of unnecessary preventative treatment, with associated risks of drug 

toxicity to patients and excess economic costs to health services. The low PPV might also 

undermine the cascade of care, including uptake of preventative treatment among individuals 

in target groups, who perceive their individual risk of developing TB to be low10,11. In fact, 

the risk of TB among individuals with LTBI is highly variable between study populations, 

with incidence rates ranging from 0.3 to 84.5 per 1,000 person-years of follow-up7,12. Thus, 

quoting the 5–10% lifetime estimate is likely to be inaccurate for many people. Improved 

risk stratification is, therefore, essential to enable precise delivery of preventative treatment 

to those most likely to benefit5,13. Multiple studies have shown that the magnitude of the 

T cell response to M. tuberculosis is associated with incident TB risk, raising hope that 

quantitative tuberculin skin test (TST) or interferon gamma release assay (IGRA) results 

might improve predictive ability14,15. However, implementing higher diagnostic thresholds 

alone does not improve prediction on a population level owing to a marked loss of sensitivity 

with this approach16.

In this study, we first sought to characterize the population risk of TB among people tested 

for LTBI using an individual participant data meta-analysis (IPD-MA). To study progression 

from LTBI to TB disease more accurately, we focused on settings with low transmission 

(defined as annual incidence ≤20 per 100,000 persons), where there is a minimal risk of 

reinfection during follow-up.

We confirmed highly variable estimates of risk, necessitating an individual-level approach to 

risk estimation. Finally, we developed and validated a directly data-driven personalized risk 

predictor for incident TB (PERISKOPE-TB) that combines a quantitative T cell response 

measure with key clinical covariates.

Results

Systematic review

Our systematic review identified 26 studies that aimed to assess the risk of progression 

to TB disease among individuals tested for LTBI in low TB transmission settings; 

corresponding authors of these studies were invited to contribute individual-level data 

(Extended Data Fig. 1). Of these, we received 18 individual-level data sets, including 

participants recruited in 20 countries. The pooled data set included a total of 82,360 

individual records; of these individuals, 51,697 had evidence of LTBI, and 826 were 

diagnosed with TB. Of the received data, 80,468 participants (including 803 TB cases) 

had sufficient data for inclusion in the primary analysis (Extended Data Fig. 2). The 

characteristics of the included study data sets are summarized in Table 1 and Supplementary 

Table 1. Characteristics of the eight eligible studies for which IPD were not obtained were 

similar to those included in the analysis (Supplementary Table 2). Eight studies recruited 

adults only; the remainder recruited both adults and children. The target population was 

recent TB contacts in nine studies17–25, people living with HIV in two studies26,27, mixed 

immunocompromised groups in two studies28,29, transplant recipients in one study30, mixed 

population screening in two studies31,32, recent migrants in one study33 and a combination 
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of recent contacts and migrants in one study9. Median follow-up of all participants was 

3.7 years (interquartile range (IQR), 2.1–5.3 years). All contributing studies reported 

baseline assessments for prevalent TB through routine clinical evaluations, and all included 

culture-confirmed and clinically diagnosed TB cases in their case definitions. Four studies 

had a proportion of participants lost to follow-up of more than 5%18,24,27,28; baseline 

characteristics of those lost to follow-up were similar to those followed-up in each of these 

studies (Supplementary Table 3). All contributing studies achieved quality assessment scores 

of 6/6, 6/7 or 7/7 (Supplementary Table 4).

Population-level analysis

In the pooled data set, the 2-year cumulative risk of incident TB was estimated as 4.0% 

(95% CI, 2.6–6.3%) among people with LTBI who did not receive preventative therapy, 

0.7% (0.4–1.3%) in people with LTBI who commenced preventative therapy and 0.2% 

(0.1–0.4%) in people without LTBI (Fig. 1 and Supplementary Table 5). The corresponding 

5-year risk of incident TB among these groups was 5.4% (3.5–8.5%), 1.1% (0.6–2.0) and 

0.3% (0.2–0.5%), respectively.

Among untreated people with LTBI, 2-year risk of incident TB was 14.6% (95% CI, 

7.5–27.4) among recent child (<15 years) contacts, 3.7% (2.3–6) among adult contacts, 

4.1% (1.3-–12) among migrants and 2.4% (0.8–6.8) among people screened owing 

to immunocompromise (without an index exposure). Corresponding 5-year risk was 

15.6% (8.0–29.2) among recent child contacts, 4.8% (3.0–7.7) among adult contacts, 

5.0% (1.6–14.5) among migrants and 4.8% (1.5–14.3) among people screened owing to 

immunocompromise. Among recent child contacts, risk was markedly higher among those 

younger than 5 years old compared to those aged 5-14 years (2-year risk, 26.0% (9.4–60.1) 

versus 12.4% (5.7–25.6); Fig. 1).

Among child contacts, 85.4% and 93.7% of cumulative risk was accrued in the first 1 and 

2 years of follow-up, respectively. Among adult contacts and migrants, the annual risk also 

declined markedly with time. Of the cumulative 5-year risk, 58.2% and 77.6% were accrued 

in the first 1 and 2 years of follow-up for adult contacts, with corresponding values among 

migrants of 66.4% and 81.6%, respectively. There was a more even distribution of risk 

during follow-up in the immunocompromised group.

TB incidence rates in years 0–2 and 2–5 of follow-up, stratified by LTBI result, 

commencement of preventative treatment and indication for screening, are shown in 

Extended Data Figs. 4 and 5. Within each of the risk groups assessed, incidence rates among 

untreated people with LTBI were markedly higher in the 0-2-year interval, compared to the 

2–5-year interval, but were highly heterogeneous across studies (I2 statistics, representing 

the proportion of variance that is considered owing to between-study heterogeneity, ranged 

from 54% to 91% for incidence rates during the 0–2-year interval among untreated people 

with LTBI, when stratified by indication for screening; forest plots are shown in Extended 

Data Fig. 5). These findings suggest highly variable TB risk among people with LTBI, even 

within risk groups.
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Prediction model development

The observed heterogeneity in TB incidence rates across studies, even after stratification by 

binary LTBI result, commencement of preventative treatment and indication for screening, 

suggests that an individual-level approach to risk stratification is required. We, therefore, 

developed a personalized risk prediction model using a subset of the received data (where 

sufficient individual-level variables were available), including 528 patients with TB among 

31,721 participants from 15 studies (Extended Data Fig. 2). All of these data sets were 

used for model development and validation, using the internal-external cross-validation 

(IECV) framework34 described below. Characteristics of the studies included in prediction 

model development and validation were similar to those that were not (Table 1). Our 

modeling approach used a flexible parametric survival model with two degrees of freedom 

on a proportional hazards scale, because this showed the best fit in each imputed data 

set. From our list of a priori variables of interest, we evaluated nine candidate predictors, 

of which only previous Bacille Calmette–Guérin (BCG) vaccination and gender were 

omitted from the final model. The final prediction model included age, a composite ‘TB 

exposure’ variable (modeled with time-varying covariates to account for non-proportional 

hazards), time since migration for migrants from countries with high TB incidence, HIV 

status, solid organ or hematological transplant receipt, normalized LTBI test result and 

preventative treatment commencement. The final model coefficients and standard errors, 

pooled across multiply imputed data sets, are summarized in Supplementary Table 6, with 

visual representations of associations between each variable and incident TB risk shown in 

Fig. 2.

IECV—Next, we used the IECV framework, iteratively discarding one study data set 

from the model training set and using this for external validation, to concurrently validate 

the prediction model, explore between-study heterogeneity and examine generalizability34. 

Model discrimination and calibration parameters for 2-year risk of incident TB from the 

primary validation studies are shown in Fig. 3. We assessed discrimination using the C-

statistic, which ranged from 0.78 (95% CI, 0.47–1.0) in a study of immunocompromised 

participants with a small number of incident TB cases29 to 0.97 (0.94-0–99) in a study 

of TB contacts18. The random effects meta-analysis estimate of the C-statistic was 0.88 

(0.82–0.93).

Calibration assesses agreement between predicted and observed risk. We assessed 

calibration visually using grouped calibration plots, supplemented by the calibration-in-the-

large (CITL) and slope statistics (Fig. 3). Visual calibration plots suggested reasonable 

calibration in most studies (Extended Data Fig. 6). Because incident TB is an infrequent 

outcome, predictions were appropriately low, with average predicted risk less than 10% in 

all quintiles of risk. CITL and calibration slopes of 0 and 1 indicate perfect calibration, 

respectively. The pooled random effects meta-analysis CITL estimate was 0.14 (95% CI, 

–0.24 to 0.53), with evidence of systematic under-estimation of risk in one study (CITL, 

1.02 (0.61–1.43)) and over-estimation in one study (CITL, –0.64 (–1.09 to 0.19)). The 

pooled random effects meta-analysis calibration slope estimate was 1.11 (0.83–1.38). Slopes 

appeared heterogeneous, although visual assessment of calibration plots suggested that these 
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were prone to being extreme owing to the skewed distribution of predicted and observed 

risk, likely reflecting the relatively rare occurrence of incident TB events.

Distribution of predicted risk and individual predictions

Figure 4 shows the distributions of predicted TB risk among participants who did not 

commence preventative treatment from the pooled IECV validation sets, stratified by 1) 

binary LTBI test result and 2) indication for screening (among those with a positive test). 

The median predicted 2-year TB risk was 2.0% (IQR, 0.8–3.7%) and 0.2% (IQR, 0.1–0.3%) 

among participants with positive and negative binary LTBI test results, respectively. We then 

examined incident TB risk in four quartiles of predicted risk among untreated participants 

with positive LTBI tests from the pooled validation sets. Kaplan–Meier plots of the four 

quartiles showed clear separation of observed risk among these four groups (Fig. 4c), 

with illustrative predicted survival curves for one randomly sampled individual patient per 

quartile shown in Fig. 4d.

Decision curve analysis

Net benefit quantifies the tradeoff between correctly identifying true-positive patients 

(progressing to incident TB) and incorrectly detecting false positives, with weighting of 

each by the threshold probability35,36. The threshold probability corresponds to a measure 

of both the perceived risk:benefit ratio of initiating preventative treatment and the threshold 

of predicted risk above which treatment is recommended. How patients and clinicians weigh 

the relative costs of drug-related adverse events (as a result of inappropriate treatment) 

against the benefits of preventing a case of TB can be subjective. Among untreated 

participants with LTBI from the pooled validation sets in IECV, net benefit for the prediction 

model was greater than either treating all LTBI patients or treating none, throughout a 

range of threshold probabilities from 0% to 20% (reflecting a range of clinician and patient 

preferences) (Fig. 5).

Sensitivity analyses

We re-examined population-level TB risk without any exclusion of prevalent TB (cases 

diagnosed <42 d from testing), resulting in markedly higher cumulative risk for each risk 

group (Extended Data Fig. 3). Recalculation of model predictor parameters revealed similar 

directions and magnitudes of effect to the primary model when using shorter and longer 

definitions of prevalent TB (baseline risk was expectedly higher with shorter definitions) and 

when excluding participants who received preventative treatment (Supplementary Table 7). 

Model parameters were noted to be more extreme when using a complete case approach 

(for variables other than HIV, which was assumed negative when missing). The pooled 

random effects meta-analysis C-statistic from IECV when limiting to participants who did 

not receive preventative treatment was 0.89 (95% CI, 0.82–0.93), similar to the primary 

analysis (Extended Data Fig. 7a). The pooled random effects meta-analysis C-statistic, 

including only participants with a positive binary LTBI test, was 0.77 (0.70–0.83). This 

finding indicates good discrimination even among participants with a conventional diagnosis 

of LTBI, albeit lower than discrimination when also including participants with a negative 

binary LTBI test, likely owing to the high negative predictive value of LTBI tests when using 

standard cutoffs (Extended Data Fig. 7b). Finally, to assess model performance in situations 
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where the quantitative test results are not available, we imputed an average quantitative 

positive or negative LTBI test result (based on the medians among the study population), 

according to the binary result in the validation sets. This analysis provided a pooled random 

effects meta-analysis C-statistic of 0.86 (0.76–0.93; Extended Data Fig. 7c), and net benefit 

appeared higher when using this model than the strategies of treating either all patients 

with evidence of LTBI or no patients, across the range of threshold probabilities. However, 

the model using a binary test result had a lower C-statistic and slightly lower net benefit 

across most threshold probabilities compared to the full model using quantitative test results 

(Extended Data Fig. 7d).

Discussion

In this study, we examined population-level incident TB risk in a pooled data set of 

more than 80,000 individuals tested for LTBI in 20 countries with low M. tuberculosis 
transmission (annual incidence ≤20 per 100,000 persons). We found cumulative 5-year risk 

of incident TB among people with untreated LTBI approaching 16% among child contacts 

and approximately 5% among recent adult contacts, migrants from high TB-burden settings 

and immunocompromized individuals. Most cumulative 5-year risk was accrued during the 

first year among risk groups with an index exposure, supporting previous data suggesting 

that risk of progressive TB declines markedly with increasing time since infection13. 

However, we noted substantial variation in incidence rates even within these risk groups, 

suggesting that an individual-level approach to risk stratification is required. Therefore, 

we developed the first directly data-driven model, to our knowledge, to incorporate the 

magnitude of the T cell response to M. tuberculosis with readily available clinical metadata 

to capture heterogeneity within risk groups and generate personalized risk predictions for 

incident TB in settings aiming for pre-elimination. Clinical covariates in the final model 

included age, recent contact (including proximity and infectiousness of the index case), 

migration from high TB-burden countries (and time since arrival), HIV status, solid organ or 

hematological transplant receipt and commencement of preventative treatment. The model 

was externally validated by quantifying the meta-analysis C-statistic for predicting incident 

disease over 2 years and by evaluating its calibration, using recommended methods37. Most 

importantly, the model showed clear clinical utility for informing the decision to initiate 

preventative treatment compared to treating all or no patients with LTBI.

The personalized predictions from our model will enable more precise delivery of 

preventative treatment to those at highest risk of TB disease while concurrently reducing 

toxicity and costs related to treatment of people at lower risk. Moreover, the model will 

allow clinicians and patients to make more informed and individualized choices when 

considering initiation of preventative treatment. The model also challenges the fundamental 

notion of an arbitrary binary test threshold for diagnosis of LTBI. By incorporating 

a quantitative measure of immunosensitization to M. tuberculosis, we facilitate a shift 

from the conventional paradigm of LTBI as a binary diagnosis toward personalized risk 

stratification for progressive TB. This approach takes advantage of stronger T cell responses 

being a correlate of risk while guarding against a loss of sensitivity by arbitrarily introducing 

higher test thresholds programmatically16.
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The results of our analyses are consistent with and extend existing evidence. Recent analyses 

report similar population-level TB incidence rates among adult contacts12, with markedly 

higher risk among young children38. Moreover, these recent meta-analyses confirm highly 

heterogeneous population-level estimates, thus justifying an individual-level approach to 

risk estimation12,38. Previous models developed and validated in Peru, a high transmission 

setting, have generated individual or household-level TB risk estimates for TB contacts39–41. 

Another model, parameterized using aggregate data estimates from multiple sources, seeks 

to estimate TB risk after LTBI testing in all settings42. However, there are currently no 

publicly available validation data to support its use, and the model omits key predictor 

variables identified in the current study (including the magnitude of the T cell response and 

infectiousness of index cases)42.

Strengths of the current study include the size of the data set, curated through comprehensive 

systematic review in accordance with Preferred Reporting Items for a Systematic Review 

and Meta-analysis of Individual Participant Data standards43 and with IPD obtained for 18 

of 26 (69%) eligible studies. This allowed us to examine progression from LTBI to TB 

disease using the largest adult and pediatric data set available to date, to our knowledge. 

We conducted population-level analyses using both one- and two-stage IPD-MA approaches 

to present both cumulative TB risk and time-stratified incidence rates, respectively, with 

consistent results from both. We adhered to Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)44 standards, using the 

recommended approach of IECV37, leading to a fully data-driven and validated model for 

personalized risk estimates after LTBI testing. The coefficients presented in the model are 

clinically plausible and have been made publicly available to facilitate further independent 

external validation. Moreover, the contributing data sets included heterogeneous populations 

of adults, children, recent TB contacts, migrants from high TB-burden countries and 

immunocompromised groups from 20 countries across Europe, North America, Asia and 

Oceania, thus making our results generalizable to settings aiming for pre-elimination 

globally.

We also used a comprehensive approach to addressing missing data by using multi-level 

multiple imputation in the primary analysis, assuming missingness at random and in keeping 

with recent guidance34,45. This approach facilitated imputation of variables that were 

systematically missing from some included studies. Previous BCG vaccination and HIV 

status were noted to be missing from a large proportion of participants. This missingness 

might have reduced our power to detect an association between these variables and 

incident TB, and BCG vaccination was notably not included in the final prognostic model. 

Although increasing data support a role for BCG vaccination in reducing sensitization to M. 
tuberculosis46,47, additional data are required to further assess the association between BCG 

vaccination and incident TB risk after adjustment for other covariates, including quantitative 

T cell responses. We supported our primary multiple imputation approach using a complete 

case sensitivity analysis (for variables other than HIV, which was assumed to be negative 

when missing). This sensitivity analysis revealed similar findings to the primary analyses, 

although effect estimates were noted to be more extreme in the complete case approach, 

likely owing to a degree of bias in the latter, because complete cases analysis assumes no 

association between the pattern of missingness and the outcome (that is, incident TB) after 
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adjusting for all other covariates48. Given that TB incidence and predictor missingness both 

varied according to contributing study, this assumption is unlikely to be valid in the current 

context.

We also used a range of arbitrary definitions of prevalent TB in the primary and sensitivity 

analyses, because the aim of our prognostic model was to assess the risk of incident 

TB, after prevalent TB has been clinically ruled out, to inform risk:benefit decisions 

regarding preventative treatment initiation. With increasing recognition of the continuum 

of M. tuberculosis infection using novel diagnostics (including incipient and/or subclinical 

phases)49, the distinction between prevalent and incident disease is becoming increasingly 

blurred. Future studies could consider integration of our prognostic model with next-

generation biomarkers, such as blood transcriptional signatures for incipient TB50,51.

A limitation of this study is that its generalizability is restricted to low transmission settings 

(annual incidence ≤20 per 100,000 persons). The rationale for limiting to such settings was, 

first, to examine progression from LTBI to TB disease more accurately by reducing risk of 

re-infection with M. tuberculosis during follow-up. Second, most of the population in high 

transmission settings are likely to have a positive LTBI test result, further undermining test 

specificity for progression to TB disease52. Because the quantitative LTBI test result is a 

strong predictor in our model, a different prediction model might, therefore, be required in 

such settings. For example, a recent study developing a prediction model for TB among 

close contacts in Peru found that the TST result added no value to the model39. Future 

studies could test our model for use in high transmission settings, updating the parameters as 

necessary, to extend its application to these settings. A second limitation of the current study 

is that model calibration was observed to be imperfect during external validation. However, 

conventional metrics (such as the calibration slope) might not be entirely appropriate in this 

context, which has a highly skewed distribution of predicted and observed risk, reflecting 

the rare occurrence of incident TB events. Reassuringly, in decision curve analysis, which 

accounts for both discrimination and calibration performance in quantifying net benefit, the 

model showed clinical utility35. Future studies might evaluate the full health economic effect 

of programmatic implementation of the model.

A further limitation is that, owing to a lack of data from contributing studies, other 

potential predictors that might be associated with incident TB risk (including diabetes, 

malnutrition, fibrotic chest x-ray lesions and other immunosuppression)4 were not evaluated. 

These unmeasured covariates might have contributed to imperfect discrimination and 

calibration, along with residual heterogeneity in model performance between data sets. 

As additional studies are published, the prognostic model can be prospectively evaluated 

and updated as required. We also note that offer and acceptance of preventative treatment 

might be more likely among people at higher risk of TB. We, therefore, accounted for 

preventative treatment provision in the model by including it as a covariate along with 

our other predictors of interest, as widely recommended53. However, residual confounding 

by indication cannot be excluded in observational studies. In addition, the present model 

is not applicable for patients commencing biologic agents, because no data sets were 

identified that examined the natural history of LTBI in the context of biologic therapy, 

in the absence of preventative treatment for TB. A ‘hybrid’ modeling approach, with 
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mathematical parameterization of relative risk for any given biologic agent, might be 

required to extend its application to these therapies. Because the quantitative LTBI test 

result is a strong predictor in our model, predictions might also be attenuated in the context 

of advanced immunosuppression7. Reassuringly, performance appeared adequate in a data 

set of immunocompromised individuals during validation29.

In summary, we present a freely available and directly data-driven personalized risk 

predictor for incident TB (PERISKOPE-TB; peris-kope.org). This tool will allow a 

programmatic paradigm shift for TB prevention services in settings aiming for pre-

elimination globally by facilitating shared decision-making between clinicians and patients 

for preventative treatment initiation.

Methods

Systematic review and pooling of individual participant data

We conducted a systematic review and IPD-MA, in accordance with Preferred Reporting 

Items for a Systematic Review and Meta-analysis of Individual Participant Data standards43, 

to investigate the risk of progression to TB disease among people tested for LTBI in low 

transmission settings. The study is registered with PROSPERO (CRD42018115357). We 

searched Medline and Embase for studies published from January 1, 2002, to December 

31, 2018, using comprehensive MeSH and keyword terms for ‘TB’, ‘IGRA’, ‘TST’, ‘latent 

TB’ and ‘predictive value’, without language restrictions. Longitudinal studies that primarily 

aimed to assess the risk of progression to TB disease among individuals tested for LTBI 

and that were conducted in a low TB transmission setting (defined as annual incidence 

≤20 per 100,000 persons at the midpoint of the study) were eligible for inclusion. The 

full search strategy and eligibility criteria are provided in Supplementary Tables 8 and 9. 

Titles and abstracts underwent a first screen; relevant articles were selected for the second 

screen, which included full text review. Both first and second screens were performed by 

two independent reviewers, with disagreements resolved through discussion and arbitration 

by a third reviewer when required. Corresponding authors of eligible studies were invited 

to contribute IPD. Received data were mapped to a master variables list, and the integrity 

of the IPD was examined by comparing original reported results with re-analyzed results 

using contributed data. Quality assessment was performed using a modified version of the 

Newcastle-Ottawa Scale for cohort studies54.

Definitions

Participants entered the cohort on the day of LTBI screening or diagnosis and exited on the 

earliest of censor date (last date of follow-up), active TB diagnosis date, date of death or 

date of loss to follow-up (where available). LTBI was defined as any positive LTBI test (TST 

or commercial IGRA), using TST thresholds as defined by the contributing study (a 10-mm 

cutoff was used for studies that assessed multiple thresholds). Quantitative IGRA thresholds 

were calculated according to standard manufacturer guidelines.

IGRAs included three generations of QuantiFERON TB assays (QuantiFERON Gold-In-

Tube, QuantiFERON Gold and QuantiFERON-TB Gold Plus; Qiagen), which were assumed 
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to be equivalent25, and T-SPOT.TB (Oxford Immunotec). Microbiologically confirmed 

and/or clinically diagnosed TB cases were included, as per contributing study definitions. 

In the absence of a widely accepted temporal distinction between prevalent and incident 

disease, prevalent TB at the time of screening was arbitrarily defined as a TB diagnosis 

within 42 d of enrolment; these cases were omitted from the primary analysis. Alternative 

shorter and longer temporal definitions were tested as sensitivity analyses. Participants with 

missing outcomes or durations of follow-up were considered lost to follow-up. ‘Preventative 

treatment’ was defined as any LTBI treatment regimen recommended by the World Health 

Organization52. All contributing studies included regimens consistent with this guidance; the 

effectiveness of each regimen was assumed to be equivalent55.

Population-level analysis

Survival analysis—In a one-stage IPD-MA approach, we used flexible parametric 

survival models, with a random effect intercept by source study to account for between-

study heterogeneity, to examine population-level risk of incident TB, stratified by LTBI 

screening result (positive versus negative) and provision of LTBI treatment (commenced 

versus not commenced). We further examined progression risk among untreated participants 

with LTBI, stratified by indication for screening (recent child contacts (<15 years) versus 

adult contacts versus migrants versus immunocompromised), by separately fitting random 

effect flexible parametric survival models to each risk group. Child contacts were further 

stratified by age (<5 years versus 5–14 years).

Incidence rates—We also calculated TB incidence rates (per 1,000 person-years) in 

a two-stage IPD-MA approach stratified by LTBI screening result, provision of LTBI 

treatment and indication for screening. Rates were calculated separately for the 0–2-year 

and 2–5-year follow-up intervals. Pooled incidence rate estimates for each risk group and 

follow-up interval were derived using random intercept Poisson regression models, without 

continuity correction for studies with zero events, in the meta package in R56.

Prediction model analysis

Variables of interest—We then developed and validated a personalized prediction model 

for incident TB, in accordance with TRIPOD guidance44. For this analysis, we included 

studies that reported quantitative LTBI test results, proximity and infectiousness (based 

on sputum smear status) of index cases for contacts and country of birth and time since 

entry for migrants, because we considered these variables fundamental a priori. Using this 

subset of the data, we examined the availability of a range of variables of interest, specified 

a priori, in the contributing data sets to determine eligibility for inclusion as candidate 

predictors in the model. We determined that the following predictors were available from 

a sufficient number of data sets for further evaluation: age, gender, quantitative LTBI test 

result, previous BCG vaccination, recent contact (including proximity and infectiousness of 

index case), migration from a high TB incidence setting, time since migration, solid organ or 

hematological transplant receipt, HIV status and TB preventative treatment commencement.

Variable transformations—Previous data showed that quantitative TST, QuantiFERON 

Gold-in-Tube and T-SPOT.TB results are associated with risk of incident TB16. However, 
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each LTBI test was reported using different scales, and it has hitherto been unclear whether 

quantitative values of each test are equivalent with respect to incident TB risk. To assess 

this further, we examined a subpopulation of the entire cohort where all three tests were 

performed among the same participants in head-to-head studies. We normalized quantitative 

results for the TST, QuantiFERON Gold-in-Tube and T-SPOT.TB to a percentile scale using 

this head-to-head population and examined the association between normalized result and 

risk of incident TB using Cox proportional hazards models with restricted cubic splines. 

Because TST cutoffs are frequently stratified by BCG vaccination and HIV status57,58, we 

also examined whether these variables modified the association between quantitative TST 

measurement and incident TB risk in the head-to-head subpopulation. Because there was 

no evidence that including interaction terms for either BCG or HIV improved model fit 

(based on Akaike Information Criteria (AIC)), we used unadjusted TST measurements. 

This analysis revealed that the normalized percentile results for each test (unadjusted TST, 

QuantiFERON Gold-in-Tube and T-SPOT.TB) appeared to be associated with similar risk 

of incident TB (Extended Data Fig. 8). The LTBI tests implemented differed between 

contributing studies. From this point, all LTBI test results were, therefore, normalized 

to this percentile scale to enable data harmonization across studies, by transforming raw 

quantitative results to the relevant percentile using look-up tables derived from the head-

to-head population (Supplementary Table 10). Because most people evaluated for LTBI 

under routine programmatic conditions have a single test performed, we included only one 

test result per participant in the prediction model. We preferentially included tests where 

quantitative results were available. Where quantitative results were available for more than 

one test, we preferentially included the QuantiFERON result (because this was the most 

commonly used test in the data set), followed by T-SPOT.TB and then the TST.

Recent contacts were categorized as either ‘smear positive and household’ or ‘other’ 

contacts, because there was no evidence of separation of risk among additional subgroups 

of the ‘other’ contacts stratum during exploratory univariable analyses (Extended Data Fig. 

8). Because we considered migration from a high TB-burden country (defined as annual TB 

incidence ≥100 per 100,000 persons at the year of migration) to be a proxy for previous 

TB exposure, we included this in a composite ‘TB exposure’ variable, which included four 

mutually exclusive levels: household contact of smear-positive index case; ‘other’ contact; 

migrant from country with high TB incidence, without recent contact; and no exposure. 

There was no evidence of separation of incident TB risk when stratified by TB incidence in 

country of birth above the binary country of birth threshold (TB incidence ≥100 per 100,000 

persons) among migrants or when stratified by country of birth among recent contacts 

(Extended Data Fig. 8).

Age and normalized test result variables were modeled using restricted cubic splines (using 

a default of five knots placed at recommended intervals59) to account for their nonlinear 

associations with incident TB.

Multiple imputation—A data dictionary and a summary of missingness of candidate 

predictor variables are provided in Supplementary Table 11. We performed multi-level 

multiple imputation to account for sporadically and systematically missing data (assuming 

missingness at random48) while respecting clustering by source study, in accordance with 
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recent guidance45, using the micemd package in R60. We used predictive mean matching 

for continuous variables owing to their skewed distributions. We included all variables 

(including transformations) assessed in the downstream prediction model in the imputation 

model, along with auxiliary variables, to ensure congeniality. Multi-level imputation was 

done separately for contacts and non-contacts owing to expected heterogeneity between 

these groups. We generated ten multiply imputed data sets, with 25 between-imputation 

iterations. Model convergence was assessed by visually examining plots of imputed 

parameters against iteration number. All downstream analyses were done in each of the 

ten imputed data sets; model coefficients and standard errors were combined using Rubin’s 

rules61. No imputation was done for participants missing binary LTBI test results or for 

those lost to follow-up; these individuals were excluded. For recent TB contacts or people 

screened owing to HIV infection with missing data on transplant status, this was assumed 

to be negative owing to the very low prevalence of transplant receipt when observed among 

these risk groups (<0.5%).

Variable selection and final model development—We performed backward selection 

of the nine candidate predictors in each of the pooled imputed data sets using AIC. 

Variables that were selected in more than 50% of the imputed data sets were included 

in the final model. T cell responses to M. tuberculosis might be impaired in the context 

of immunosuppression (including among people with HIV or transplant recipients)7. We, 

therefore, also tested whether there was a significant interaction between HIV or transplant 

and the normalized percentile test result variable, to assess whether the association between 

the quantitative test result and incident TB risk varied according to HIV or transplant 

status. This analysis showed no evidence of effect modification, based on AIC; thus, these 

interaction terms were not included in the final model.

We used flexible parametric survival models to facilitate estimation of baseline risk 

throughout the duration of follow-up62 using the rstpm2 package63. We examined a range of 

degrees of freedom for the baseline hazard, using proportional hazards and odds scales, and 

selected the final model parameters based on the lowest AIC across the imputed data sets. 

Visual inspection of survival curves suggested non-proportional hazards for the composite 

exposure category; we, therefore, assessed whether including this variable as a time-varying 

covariate (by including an interaction between the composite exposure covariate of interest 

and time) improved model fit64. Because the AIC for the time-varying covariate model was 

lower across all imputed data sets, this time-varying covariate approach was used for the 

final model.

IECV—After development of the final model, we used the IECV framework for 

model validation, allowing concurrent assessment of between-study heterogeneity and 

generalizability34. In this process, one entire contributing study data set is iteratively 

discarded from the model training set and used for external validation. This process is 

repeated until each data set has been used once for validation. The primary outcome for 

validation was 2-year risk of incident TB. We included data sets with a minimum of five 

incident TB cases, and where participants had been included regardless of LTBI test result, 

as the primary validation sets. We assessed model discrimination using the C-statistic for 
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2-year TB risk. Model calibration was assessed by visually examining calibration plots of 

predicted risk versus Kaplan–Meier-estimated observed 2-year risk in quintiles and using 

the calibration slope and CITL statistics65. Calibration slopes greater than 1 suggest under-

fitting (predictions are not varied enough), whereas slopes less than 1 indicate over-fitting 

(predictions are too extreme). Slopes were calculated by fitting survival models with the 

model linear predictor as the sole predictor; the calculated coefficient for the linear predictor 

provides the calibration slope. CITL indicates whether predictions are systematically too low 

(CITL> 0) or too high (CITL < 0). We calculated CITL for each validation set by fixing 

all model coefficients from model development (including the baseline hazard terms) and 

re-estimating the intercept. The difference between the development model and recalculated 

validation model intercepts provided the CITL statistic66.

Pooling of IECV parameters and random effects meta-analysis—IECV was 

performed on each imputed data set. Validation set C-statistics, calibration slopes and CITL 

metrics were pooled for each study across imputations using Rubin’s rules61. We then meta-

analyzed these metrics across validation studies with random effects, using logit-transformed 

C-statistics as previously recommended67, to derive pooled discrimination and calibration 

estimates. The IECV validation sets were also pooled, with averaging of the predicted 2-year 

risk of TB for each individual in the validation sets across imputations, for downstream 

decision curve analyses as described below.

Decision curve analysis—Decision curve analysis complements model validation 

parameters by assessing the potential clinical utility of a prediction model35,36. Net 

benefit quantifies the proportion of true-positive cases detected minus the proportion of 

false positives, with weighting of each by the ‘threshold probability’35. The ‘threshold 

probability’ reflects both the risk:benefit ratio of initiating preventative treatment and the 

percentage cut-point for the prediction model, above which treatment is recommended. We 

calculated net benefit across a range of clinically relevant threshold probabilities (to account 

for a range of clinician and patient preferences) in comparison to the default strategies of 

treating either all or no patients with a positive LTBI test. We analyzed net benefit using the 

stdca command from the ddsjoberg/dca package in R68, using the stacked validation sets of 

untreated participants with positive LTBI tests from IECV (to ensure that each individual for 

whom a prediction was generated had not been included in the model training set used to 

derive that prediction).

Sensitivity analyses—First, we re-examined population-level TB risk without exclusion 

of prevalent TB cases. Second, we recalculated prediction model parameters using 

alternative definitions of prevalent TB (ranging from diagnosis within 0–180 d of 

recruitment); a complete case approach (for all variables except for HIV status, which was 

assumed to be negative where this was missing); and exclusion of participants who received 

preventative treatment. Parameters for each of these models were compared with the primary 

model (without time-varying covariates to facilitate interpretation).

We also examined IECV discrimination parameters for validation data sets when 1) 

restricted to participants with positive binary LTBI tests; 2) excluding those who received 

preventative treatment; and 3) imputing an average quantitative positive or negative LTBI 

Gupta et al. Page 15

Nat Med. Author manuscript; available in PMC 2023 July 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



test result (based on the medians among the study population), according to the binary 

result. The latter analysis was done to assess model performance in situations where the 

quantitative test result was not available.

Ethics

This study involved analyses of fully de-personalized data from previously published cohort 

studies, with data pooling via a safe haven. Ethical approvals for sharing of data were sought 

and obtained by contributors of individual participant data, where required.

Extended Data

Extended Data Fig. 1. Flow chart outlining systematic review process.
The systematic search strategy and eligibility criteria are shown in Supplementary Tables 8 

and 9.
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Extended Data Fig. 2. Flow chart showing inclusion of participants in the population-level and 
prediction modelling analyses.
The systematic search strategy and eligibility criteria are shown in Supplementary Tables 8 

and 9.
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Extended Data Fig. 3. Cumulative risk of prevalent and incident tuberculosis during follow-up.
Risk is stratified by binary latent TB test result, provision of preventative treatment, and 

indication for screening among participants with untreated latent infection (total n = 80,468 

participants). Cumulative risk is estimated using flexible parametric survival models with 

random effects for the intercept by source study, separately fitted to each risk group. 

Prevalent TB cases (diagnosed within 42 days of recruitment) are included in this sensitivity 

analysis. Each plot is presented as point estimates (solid line) and 95% confidence intervals 

(shaded area). PT = preventative treatment.
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Extended Data Fig. 4. Pooled TB incidence rates among adults, stratified by risk group.
Pooled incidence rates are shown on log10 scale among participants with: latent TB 

infection (LTBI) with no preventative therapy (PT); LTBI commencing PT; and without 

evidence of LTBI. Rates are further stratified by follow-up interval (0–2 years vs. 2–5 

years) and indication for screening (total n = 52,576 participants). Pooled incidence rate 

estimates were derived from random intercept Poisson regression models, without continuity 

correction for studies with zero events. Numeric results are shown for the subgroups with 

untreated latent TB infection in the forest plots in Extended Data Fig. 5. Plots show point 
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estimates (filled circles) and 95% confidence intervals (vertical error bars). No pooled 

estimate could be calculated for child contacts without evidence of LTBI for the 2–5 year 

interval since there were no incident events.

Extended Data Fig. 5. Forest plots showing incidence rates by source study among participants 
with untreated LTBI.
Forest plots are stratified by follow-up interval (0–2 years vs. 2–5 years) and indication 

for screening (total n =52,576 participants). Pooled incidence rate estimates (shown 

as diamonds) were derived from random intercept Poisson regression models, without 

continuity correction for studies with zero events. Incidence rates per study are shown with 
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a continuity correction of 0.5 for studies with zero events. Plots show study-level point 

estimates (grey squares) and 95% confidence intervals (CIs; horizontal error bars).

Extended Data Fig. 6. Calibration plots from internal-external validation of prediction model, 
stratified by validation study.
Data from nine primary validation studies are shown, from internal-external cross-validation 

of the model (developed among n = 31,090 participants; validated among 25,504 in this 

analysis). X-axis shows predicted risk, in quintiles, with corresponding Kaplan Meier 2-year 
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risk of incident TB on the Y-axis (95% confidence intervals are shown by vertical error 

bars).

Extended Data Fig. 7. Model validation sensitivity analyses.
Forest plots showing recalculation of the C-statistics from internal-external cross validation, 

limiting validation sets to a, participants who did not receive preventative therapy (n = 

23,060 participants); b, participants with a positive LTBI test (n = 9,063 participants); and c, 

binary LTBI test results (using an average quantitative positive or negative LTBI test result 

as appropriate, based on the medians among the study population; n = 25,504 participants). 

‘TB’ column indicates number of incident TB cases within 2 years of study entry and 

‘N’ indicates total participants per study included in analysis. Each forest plot shows point 

estimates (squares) and 95% confidence intervals (error bars). Pooled estimates are shown 

as diamonds. Panel d, shows decision curve analyses (n = 6,418 participants) when using 

the prediction model using a binary LTBI test result, compared to the full prediction model, 

‘treat all’ and ‘treat none’ strategies across a range of threshold probabilities (x-axis). Net 

benefit appeared higher for the binary model than either the strategies of treating all patients 
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with evidence of LTBI, or no patients, throughout the range of threshold probabilities. The 

full model had highest net benefit across most threshold probabilities.

Extended Data Fig. 8. Data supporting assumptions underlying PERISKOPE-TB model.
a, Quantitative results for the tuberculin skin test (TST), QuantiFERON Gold-in-tube (QFT-

GIT) and T-SPOT.TB are normalised to a percentile scale using a head-to-head population 

among whom all three tests were performed from 3 studies including recent TB contacts, 

migrants and immunocompromised participants (n = 8,335; 158 TB cases). We examined the 

association between normalised test result and risk of incident TB using Cox proportional 

hazards models with restricted cubic splines. Normalised results for each test appeared to 

be associated with similar risk of incident TB. b, Kaplan Meier plots from pooled dataset 

showing cumulative risk of incident TB, stratified by proximity and infectiousness of index 

cases among contacts (n = 22,231 participants). There was no evidence of separation of 

risk of additional subgroups of the ‘other’ (non-smear positive household) contacts stratum. 

PTB = pulmonary TB; EPTB = extra-pulmonary TB. c, Kaplan Meier plots from pooled 

dataset showing cumulative risk of incident TB among people with positive latent TB 
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tests, stratified by TB incidence in country of birth among migrants from high TB burden 

countries (n = 1,031 participants). P value represents Log-rank test. d, Kaplan Meier plots 

from pooled dataset showing cumulative risk of incident TB among people with positive 

latent TB tests, stratified by country of birth among recent contacts (n = 5,917 participants). 

P value represents Log-rank test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Population-level cumulative risk of incident TB during follow-up.
Risk is stratified by binary latent TB test result, provision of preventative treatment (PT) and 

indication for screening among participants with untreated latent infection (total n=80,468 

participants). Cumulative risk is estimated using flexible parametric survival models with 

random effects intercepts by source study, separately fitted to each risk group. Prevalent TB 

cases (diagnosed within 42 d of recruitment) are excluded. Each plot is presented as point 

estimates (solid line) and 95% CIs (shaded area). Child contacts are shown stratified by age 

(<5 years and 5-14 years). PT = preventative treatment. Numbers of participants, TB cases 

and numeric cumulative risk estimates for each plot are presented in Supplementary Table 5. 

Cumulative TB risk, including prevalent TB cases, is presented in Extended Data Fig. 3.
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Fig. 2. Visual representations of associations between predictors and incident TB.
Illustrative estimates are shown for a 33-year-old migrant from a high TB-burden setting. 

The example ‘base case’ patient does not commence preventative treatment, is not living 

with HIV, has not received a previous transplant and has an ‘average’ positive latent TB test. 

We vary one of these predictors in each plot ((a) age; (b) normalized latent TB test result; 

(c) years since migration; (d) exposure to M. tuberculosis; (e) HIV status; (f) transplant 

receipt; and (g) preventative treatment). Each plot is presented as point estimates (solid 

line) and 95% CIs (shaded area). The model was trained on a pooled data set (n = 31,090 

participants). Model parameters are provided in Supplementary Table 6. ‘Household smear 

+ contact’ = household contact of sputum smear-positive index case; ‘Other contact’ = 
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contact of non-household or smear-negative index case; ‘Migrant’ = migrant from high TB 

incidence country, without recent contact.
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Fig. 3. Forest plots showing model discrimination and calibration metrics for predicting 2-year 
risk of incident TB.
Discrimination is presented as the C-statistic; calibration is presented as CITL and the 

calibration slope. Data from nine primary validation studies are shown, from IECV of the 

model (developed among n = 31,090 participants; validated among 25,504 participants in 

this analysis). ‘TB’ column indicates number of incident TB cases within 2 years of study 

entry, and ‘n’ indicates total participants per study included in analysis. Each forest plot 

shows point estimates (squares) and 95% CIs (error bars). Pooled estimates are shown as 

diamonds. Calibration slopes greater than 1 suggest under-fitting (predictions are not varied 

enough), whereas slopes less than 1 indicate over-fitting (predictions are too extreme). CITL 

indicates whether predictions are systematically too low (CITL>O) or too high (CITL<O). 

Dashed lines indicate line of no discrimination (C-statistic) and perfect calibration (CITL 

and slope), respectively.
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Fig. 4. Distribution of predictions and risk of incident TB in four quartiles of risk for people with 
positive latent TB tests.
Distribution of risk from prediction model using pooled validation sets of people not 

receiving preventative therapy from IECV of the model (n = 27,511 participants), stratified 

by (a) binary latent TB test result and (b) indication for screening among untreated people 

with positive LTBI tests. c, Kaplan-Meier plots for quartile risk groups (1 = lowest risk) of 

untreated individuals with positive LTBI tests (n = 6,418 participants). Quartiles represent 

four equally sized groups based on predicted risk of incident TB, from the pooled validation 

sets derived from IECV of the prediction model. P value represents log-rank test (P = 

1.137 × 10-40). d, Randomly sampled individual patients from each risk quartile. Patient 1 

is a 22-year-old with no TB exposure and a normalized latent TB test result on the 68th 

percentile; Patient 2 is a 41-year-old migrant from a high TB-burden country (3.8 years 

since migration) with normalized latent TB test result on the 80th percentile; Patient 3 is a 
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51-year-old household contact of a smear-positive index TB case with a normalized latent 

TB test result on the 79th percentile; and Patient 4 is a 33-year-old household contact of a 

smear-positive index TB case with a normalized latent TB test result on the 94th percentile. 

All four example patients are HIV negative and are not transplant recipients. Equivalent 

values of normalized percentile test results for QuantiFERON, T-SPOT.TB and TST are 

shown in Supplementary Table 10. Plots (c, d) are presented as point estimates (solid line) 

and 95% CIs (shaded area).
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Fig. 5. Decision curve analysis.
Shown as net benefit of the prediction model among untreated participants from the pooled 

validation sets with positive binary latent TB tests (n = 6,418 participants) compared to 

‘treat all’ and ‘treat none’ strategies across a range of threshold probabilities (x axis). 

Net benefit quantifies the tradeoff between correctly identifying true-positive progressors 

to incident TB and incorrectly detecting false positives, with weighting of each by the 

threshold probability35. The threshold probability corresponds to a measure of both the 

perceived risk:benefit ratio of initiating preventative treatment and the percentage cutoff 

for the prediction model, above which treatment is recommended. Net benefit appeared 

higher than either the strategies of treating all patients with evidence of LTBI or no patients, 

throughout the range of threshold probabilities, suggesting clinical utility. For illustration, 

a patient who is very concerned about developing TB disease but not concerned regarding 

side effects of preventative treatment might have a low threshold probability (for example, 

1%, which is equivalent to a risk:benefit ratio of 1:99—that is, the outcome of developing 

TB is considered to be 99 times worse than taking unnecessary preventative treatment). 
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In contrast, a patient who is less concerned about developing TB but is very concerned 

about side effects of preventative treatment might have a higher threshold probability (for 

example, 10%, which is equivalent to a risk:benefit ratio of 1:9). The unit of net benefit is 

‘true positives’35. For instance, a net benefit of 0.01 would be equivalent to a strategy where 

one patient per 100 tested was appropriately given preventative treatment, as they would 

otherwise have progressed to incident TB if left untreated.
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Table 1
Characteristics of contributing studies included in individual participant data meta-
analysis

Authors Publication 
Year

Country n 
(total)

Adults/
children

Population Follow-
up 
years 
(median 
(IQR))

TB 
cases

Loss to 
follow-
up

Included 
in 
prediction 
modeling

NOSa

Abubakar 
et al.9

2018 UK 10,045 Adults Contacts & migrants 4.7 
(3.7–
5.5)

147 10 
(0.1%)

Yes 7/7

Aichelburg 
et al.26

2009 Austria 830 Adults People with HIV 1.2 
(0.7–
1.4)

11 25 (3%) Yes 7/7

Altet et 
al.17

2015 Spain 1,339 Adults 
& 
children

Contacts 4(4–4) 95 0 (0%) Yes 7/7

Diel et 
al.18

2011 Germany 1,414 Adults 
& 
children

Contacts 3.5 
(2.5–
4.2)

19 381 
(26.9%)

Yes 7/7

Dobler & 
Marks19

2013 Australia 12,212 Adults 
& 
children

Contacts 4.2 (2–
6.9)

94 351 
(2.9%)

Nob 7/7

Doyle et 
al.27

2014 Australia 919 Adults People with HIV 2.9 
(1.7–
3.6)

2 47 
(5.1%)

Yes 7/7

Erkens et 
al.32

2016 Netherlands 14,241 Adults 
& 
children

Mixed population 
screening

5.5 (3–
7.4)

134 NA Nob 6/6

Geis et 
al.20

2013 Germany 1,283 Adults 
& 
children

Contacts 0.8 
(0.4–
1.1)

33 62 
(4.8%)

Yes 6/6

Gupta et 
al.25

2020 UK 623 Adults Contacts 1.9 
(1.6–
2.2)

13 0 (0%) Yes 7/7

Haldar et 
al.21

2013 UK 1,411 Adults 
& 
children

Contacts 1.9 
(1.3–
2.4)

37 30 
(2.1%)

Yes 7/7

Lange et 
al.28

2012 Germany 456 Adults Immunocompromised 2.8 (2–
3.1)

1 42 
(9.2%)

Yes 7/7

Munoz et 
al.30

2015 Spain 76 Adults Transplant recipients 4.3 
(3.6–
4.8)

2 0 (0%) Yes 7/7

Roth et 
al.31

2017 Canada 22,949 Adults 
& 
children

Mixed population 
screening

3 (1.8–
4.3)

58 NA Subsetb 6/6

Sester et 
al.29

2014 Multiple 
European 
countries

1,464 Adults Immunocompromised 2.7 
(1.5–
3.5)

11 7 
(0.5%)

Yes 7/7

Sloot et 
al.22

2014 Netherlands 5,895 Adults 
& 
children

Contacts 5.9 
(3.6–
7.7)

81 NA Yes 7/7

Yoshiyama 
et al.23

2015 Japan 625 Adults 
& 
children

Contacts 1.8 
(1.4–2)

12 0 (0%) Yes 6/7

Zellweger 
et al.24

2015 Multiple 
European 
countries

5,237 Adults 
& 
children

Contacts 2.6 
(1.9–
3.5)

55 1339 
(25.6%)

Yes 7/7
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Authors Publication 
Year

Country n 
(total)

Adults/
children

Population Follow-
up 
years 
(median 
(IQR))

TB 
cases

Loss to 
follow-
up

Included 
in 
prediction 
modeling

NOSa

Zenner et 
al.33

2017 UK 1,341 Adults Migrants 3.7 (3–
4.8)

21 NA Nob 7/7

Total 82,360 3.7 
(2.1–
5.3)

826 2294 (2.8%)

a
Modified version of the Newcastle-Ottawa Scale for cohort studies.

b
Not included in prediction modeling owing to lack of data on proximity or infectiousness of index cases19 or absent quantitative LTBI test 

data32,33. A subset of the data set was included in the prediction model for the Roth et al. study31; contacts and migrants were excluded 
owing to no data being available on country of birth or infectiousness of index cases, respectively. Additional study characteristics are shown in 
Supplementary Table 1.
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