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Objectives: Causal inference methods for observational data represent an alternative to randomised controlled trials when they are not
feasible or when real-world evidence is sought. Inverse-probability-of-treatment weighting (IPTW) is one of the most popular approaches to
account for confounding in observational studies. In medical research, IPTW is mainly applied to estimate the causal effect of a binary
treatment, even when the treatment has in fact multiple categories, despite the availability of IPTW estimators for multiple treatment cat-
egories. This raises questions about the appropriateness of the use of IPTW in this context. Therefore, we conducted a systematic review of
medical publications reporting the use of IPTW in the presence of a multi-category treatment. Our objectives were to investigate the fre-
quency of use and the implementation of these methods in practice, and to assess the quality of their reporting.

Study Design and Setting: Using Pubmed, Embase and Web of Science, we screened 5660 articles and retained 106 articles in the final
analysis that were from 17 different medical areas. This systematic review is registered on PROSPERO (CRD42022352669).

Results: The number of treatment groups varied between 3 and 9, with a large majority of articles (90 [84.9%]) including 3 or 4 groups.
The most commonly used method for estimating the weights was multinomial regression (51 [48.1%]) and generalized boosted models (48
[45.3%]). The covariates of the weight model were reported in 91 articles (85.9 %). Twenty-six articles (24.5 %) did not discuss the balance
of covariates after weighting, and only 16 articles (15.1 %) referred to the assumptions needed to obtain correct inferences.

Conclusion: The results of this systematic review illustrate that medical publications scarcely use IPTW methods for more than two
treatment categories. Among the publications that did, the quality of reporting was suboptimal, in particular in regard to the assumptions
and model building. IPTW for multi-category treatments could be applied more broadly in medical research, and the application of the
proposed guidelines in this context will help researchers to report their results and to ensure reproducibility of their research. � 2024
The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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1. Introduction

Randomized controlled trials (RCTs) typically provide the
highest level of evidence for causal inference. In RCTs, par-
ticipants are randomized to treatment groups, which ensures
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that, on average, observed and unobserved participants’ char-
acteristics are balanced across groups [1]. This balance is key
to make causal inferences about the treatment(s) being stud-
ied. However, RCTs are not always feasible for ethical rea-
sons (eg, when the exposure of interest is harmful) [2,3],
are very costly, and sometimes lack generalizability and trans-
portability because of stringent inclusion criteria. Real-world
data have been increasingly used as an alternative or comple-
ment to RCTs [4]. Real-world observational studies present
multiple advantages over RCTs: they usually include a wider
diversity of patients (eg, older patients with comorbidities are
often excluded from trials). Furthermore, the follow-up period
is usually longer in retrospective studies using routinely
collected data, and the data collection is already completed
at the time of study design, reducing the delays for data anal-
ysis. Thus, observational studies are useful for investigating
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What is new?

Key findings
� Medical publications scarcely use IPTW methods

for more than two treatment categories.

� We found that among the publications which report
use IPTW methods for multicategory treatments,
the quality of reporting was suboptimal, in partic-
ular in regard to the assumptions and model
building.

What this adds to what was known?
� We proposed a guideline with different steps for

their reporting in the case of multi-category
treatments.

What is the implication and what should change
now?
� IPTW for multi-category treatments could be

applied more broadly in medical research, and
the application of the proposed guidelines in this
context will help researchers to report their results
and to ensure reproducibility of their research.
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the long-term intervention effects as well as adverse events.
Comparative effectiveness research using observational
data has received increasing attention, and methodological
work has been conducted to propose innovative designs,
statistical tools and strategies for their analysis [5]. In
recent years, accreditation bodies have been giving more
credit to such study designs, as evidenced by the validation
of Covid-19 vaccines by the FDA [6].

Nevertheless, unlike RCTs, observational studies are
prone to confounding. When estimating the causal effect
of a treatment, estimates from unadjusted analyses are
biased if risk factors differ between groups. Several causal
inference methods have been proposed to account for
observed confounding, and they are split into two cate-
gories: those modeling the confounders-outcome relation-
ships (eg, g-computation), and those modeling the
confounders-treatment relationships (eg, propensity score
methods) [7]. The latter has the advantage of mimicking
RCTs, by recovering balance between groups on observed
covariates using multiple balancing scores and allows re-
searchers to define population based on conterfactuals [8].
Inverse-probability-of-treatment weighting (IPTW), in
which patients are reweighted according to the inverse of
their propensity of receiving the treatment actually
received, creates a pseudo-population in which covariate
distributions are similar between treatment groups. Because
of its similarity with the philosophy of RCTs, IPTW is
widely used for comparative effectiveness research [9].
However, IPTW is mostly implemented to estimate the
causal effect of binary treatments [10], although researchers
may be interested in the evaluation of several treatments (or
several categories of treatment). This is the case when several
treatments exist for the same indication, or when researchers
want to compare the effect of two treatments and their combi-
nation [11e13]. IPTW estimators have been proposed in this
context [14]. A review presented a methodological description
of causal inference for multiple treatments [15] and suggested
how to apply these methods, but it is unclear how often and
how well they are used in practice. In particular, models for
categorical outcomes are not always used for the estimation
of the weights, but instead a series of models for binary out-
comes are used. In addition, several types of modeling strate-
gies can be used to estimate the weights, including parametric
and nonparametric approaches, but it is unclear which ap-
proaches are commonly implemented.

Therefore, we conducted a systematic review of the med-
ical literature to describe current practice in the use of IPTW
for a multicategory treatment, and the quality of reporting of
these studies. Based on the findings, we propose recommen-
dations that we hope may contribute to a better transparency
in the use and reporting of IPTW in this setting.
2. IPTW and causal inference on observational data

Unlike traditional statistics, estimating associations be-
tween exposures and outcomes, causal inference refers to
specific hypotheses, study designs and statistical methods
to draw causal conclusions from the data [16]. A specific
framework, based on the concept of potential outcomes,
has been developed to propose a causal language allowing
the mathematical representation of causal questions. The
potential outcome is what would have happened had the pa-
tient received a particular treatment [17]. Patients have as
many potential outcomes as there are treatment categories.
In this framework, the main issue is that only the effect of
one treatment on a given patient can be observed, and other
potential outcomes must be estimated from the data.

Within this framework, the causal effect can be identi-
fied from the data under the assumptions of consistency,
no interference, positivity, and conditional exchangeability.
Under consistency, the outcome of an individual under their
observed exposure is the same as their potential outcome
had they received their observed intervention via the hypo-
thetical intervention [5,18]. The no interference assumption
states that the treatment received by an individual has no in-
fluence on the potential outcomes of the other individuals.
The positivity assumption states that, given their own char-
acteristics, every individual has a nonzero probability of
receiving any exposure categories [19]. Finally, the condi-
tional exchangeability states that, given the measured vari-
ables, the exposure and potential outcomes are
independent. The validity of these assumptions is required
to be able to identify the causal effect from the data, but
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the additional assumption of a correct specification of the
analysis model(s) is needed to ensure the validity of the
causal effect estimate. These assumptions, together with
the assumed causal relationships between confounding fac-
tors, treatments and outcomes are at the heart of the
reasoning necessary for the application of causal inference
methods, and their plausibility should always be discussed
when reporting results.

IPTW is a weighting propensity score-based method [18].
Regarding Rosenbaum and Rubin’s definition, the propen-
sity score is ‘‘the conditional probability of assignment to
a particular treatment given a vector of observed covariates’’
[8]. Thus, the propensity score is the probability, given the
individuals’ characteristics, to receive a specific treatment.
When the treatment is binary, the probability of receiving
the control treatment (or no treatment) is 1-propensity score.
When the treatment has multiple categories, each individual
has a propensity score for each treatment category
[15,20,21]. The ATE can then be estimated using the IPTW
estimator, in which individuals are weighted by the inverse
of the probability of the treatment they actually received.
Other methods, such as gradient boosting could be used
[22]. However, the weights can be modified to target other
estimands, such as the average treatment effect on the
treated (ATT) or the average treatment effect in the overlap-
ping population (ATO [23]). The balancing ability of the
weights can be checked by comparing covariate distributions
between treatment groups, using, for instance, standardized
mean differences. IPTW estimates are unbiased if a good
balance is achieved between groups, but residual imbalance
can be addressed with augmented inverse-probability-of-
treatment weighting (AIPTW) [24,25]. AIPTW combines
multivariable regression and IPTW in a way that only one
of the two models needs to be correctly specified to obtain
unbiased estimates of the causal effect. Checking for the
absence of extreme weights is also key to ensure the validity
of the estimation. Weight truncation or trimming [26] is
sometimes used to limit the contribution of large weights
to the analysis [19], but this may lead to the estimation of
an effect which does not coincide with the targeted esti-
mand. Another important consideration when using IPTW
estimators is variance estimation which must account for
two aspects of the estimation. The uncertainty in propensity
score estimation and the intraindividual correlation intro-
duced via weighting should be captured in the outcome
model to avoid misestimating the variance. Estimators based
on the delta method [27] and nonparametric bootstrap have
been proposed.

In summary, for the validity of IPTW and AIPW esti-
mates we must ensure that: (i) the identification assump-
tions for causal inference are plausible, (ii) the estimator
targets the correct estimands, (iii) the propensity score
model is correctly specified, and (iv) appropriate variance
estimators are used. It is, therefore, very important for these
elements to be reported when publishing the findings of a
study analyzed using IPTW.
Methods using IPTW for more than two treatment cate-
gories face additional technical challenges. Because of data
scarcity or strong indication bias, the plausibility of the posi-
tivity assumption may be less likely when the number of treat-
ment categories increases. With multiple treatment categories,
it is necessary to question the choice of treatment reference
for the estimand. Therefore, our systematic review focused
on this setting, where a correct implementation and a clear re-
porting are required to ensure validity and reproducibility.
3. Methods

3.1. Inclusion and exclusion criteria

We performed literature searches on PubMed, Web of
Science and Embase from January 01, 2011 to June 27,
2021, for peer-reviewed articles published in English. The
systematic review included all publications in medical
research involving human participants using an IPTW esti-
mator with multiple treatment categories for the primary
analysis. The review was limited to applied research and
did not focus on methodological papers. The study is regis-
tered on PROSPERO (CRD42022352669).

There was no restriction in terms of research area, study
design, type of intervention or outcome. Exclusion criteria
were: nonmedical research, methodological studies (eg, simu-
lation study, reviews.), nonoriginal research articles (eg, let-
ters), articles using IPTW for subgroup or sensitivity analyses.

3.2. Search strategy

The search strategy screened articles whose abstracts, ti-
tle or keywords contained the followings: inverse probabil-
ity weight, inverse probability of treatment weight,
augmented inverse propensity weight, as well as the associ-
ated acronyms (IPW, IPTW, AIPW, AIPTW, AIPWE). The
generic term ‘‘propensity score’’ was not considered to
improve the specificity of the algorithm, as previously done
[9]. We also conducted a reverse search for articles citing
McCaffrey et al. (2013) [14], Yoshida et al. (2018) [28],
or Li and Li (2019) [29]. The search strategy is given in
Appendix 1. The abstracts were then manually and inde-
pendently screened for eligibility by FB and SB.

3.3. Extracted information

The extracted information was divided into nine fields:
1) description of the studies, 2) estimand and measure of
association, 3) assumptions, 4) covariate selection, 5) pro-
pensity score estimation, 6) covariate balance, 7) analysis
model, 8) software and statistical packages, and 9) good
research practice (Table 1).

3.4. Data extraction procedure

A standardized, prepiloted form was used to extract data
from the included studies and tested on 10 randomly

https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=352669


Table 1. Presentation of extracted information

Fields Extracted information

Description of the included
studies

Area of research

Study registration number

Study design

Wording used to refer to IPTW

Justification of the method

Presence and appropriateness of
sample size calculation

Type of analysis model

Sample size in each treatment
groups

Number of treatment groups

Nature of the comparator

Nature of the outcome

Estimand and measure of
association

Estimand (ATE, ATT, ATO)

Measure of association (HR, OR,
RR, Other)

Assumptions Mention of assumptions

Mention of use of STROBE checklist

Covariate selection Presence of DAG

Variable include in weight model

Method used for variable selection

Method used for missing values

Propensity score estimation Model used for propensity scores

Type of weight

Summary of weights

Weight stabilization

Weight trimming or truncation

Assessing covariate balance Covariate balance

Methods used for assessing balance

Analysis model Method used (IPTW, AIPTW)

Variance estimation method

Software and statistical
packages

Name of software and packages
used

Good research practice Protocol

Open data

Open code
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selected studies. The full text of the eligible studies identi-
fied after screening was retrieved and the data was extracted
by FB and SB. Any disagreement over the eligibility or ex-
tracted items was resolved through discussion with CL if an
agreement could not be reached.
4. Results

4.1. Screening and inclusion

The search yielded a total of 5299 articles (after the
removal of duplicates), which were screened based on
abstracts. From these, 303 were identified for full-text
screening and 106 articles fulfilled the inclusion criteria
and were included (complete list given in Appendix 2).
The selection process is summarized in Figure 1.

4.2. Description of the included studies

Multicategory treatments were observed in 17 different
medical fields, but three medical specialties accounted for
half of included studies: 35 studies (47.3%) were either in
cardiology (32 studies: 30.2%), 9 in nephrology (8.5%)
and 7 in Gastroenterology (6.6%). Almost all the included
articles (103, 97.2%) were cohort studies.

A variety of wording was used to refer to the method
applied. IPTW and weighted regression were the two most
common wording encountered (n 5 73 (68.9%) of and
n 5 15 studies (14.2%), respectively). The majority of
studies (n 5 100 (94.3%)) justified the use of IPTW, the
main reason being confounding adjustment.

The number of treatment groups ranged between 3 and 9
with a majority of studies comparing three groups (n 5 59,
56.7%). Forty-Four articles (41.5%) had between 4 and 6
groups, and 1 (1%) article included 9 groups.

The total sample sizes ranged from 65 to 12,700,000
with a median of 161,583 participants. The minimum total
sample size ranged from 12 to 638,905 with a median of
480. A summary of the results is presented in Figure 2
and Table 2.

4.3. Estimand and measure of association

In two-thirds of the articles (71 (67%)), the estimand
was not clearly stated and had to be determined from the
calculation of the weights, when this was available. The
majority of the studies (90 (85%)) focused on estimating
the ATE, (5 (4.7%)) focused on estimating the ATT and 1
(0.9%) article estimated the ATO. It was impossible to
identify the estimand in 10 (9.4%) articles.

For the measure of association, 58 studies (54.7%) re-
ported hazard ratios, 22 (20.8%) reported odds ratios, 8
(7.6%) reported risk ratios, 7 (6.6%) reported difference
and 9 (8.5%) articles used other measures. It was impos-
sible to determine the measure of association in 2 (1.9%)
articles.

4.4. Assumptions

Only sixteen articles (15.1%) explicitly mentioned the
assumptions underlying the validity of IPTW and discussed
their context-specific plausibility.

4.5. Covariate selection and handling of missing data

The variables included in the weight model were
mentioned in 91 (85.9%) articles. The method used for var-
iable selection was specified in 28 (26.4%) of the articles:
14 (50%) used evidence from the literature, 11 (40.3%)



Figure 1. Flow chart of the systematic review process. MSM: Marginal structural model, IPTW: inverse probability of treatment weight.
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articles used automated selection and 3 (10.7%) used a
DAG to inform the selection. In most articles (70 (66%)),
the way missing covariate data was handled was not
reported. In the articles which did report this, 16 (40%)
used a complete case analysis, 8 (20%) used multiple impu-
tation and 12 (30%) used other ad hoc methods.



Figure 2. Summary of the main results Results are presented in per-
centage. In green: points related to the introduction section, in blue:
points related to the methods section and in red: points related to the
results.
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4.6. Propensity score estimation

A majority of the studies (51 (48.1%)) used multinomial
regression to estimate the weights, followed by Generalized
Boosted Models (GBMs) (48 (45.3%)), and one (0.9%)
used covariate balancing propensity score. The remaining
6 studies (5.7%) did not specify the method. One hundred
and one (95.3%) of the articles did not present any sum-
mary or graphical representation of the weights, 4 (3.8%)
articles presented a histogram of the weights and 1
(0.9%) another representation. Among the included articles,
23 (21.7%) articles explicitly stated whether or not they sta-
bilized weights. Among these articles, 16 used (69.6%) sta-
bilized weights. Trimming or weight truncation were
mentioned in 24 (22.6%) articles. Of these 24 articles, only
18 studies actually did perform trimming or truncation and
the other 6 studies just mentioned trimming or weight trun-
cation without applying it. One potential explanation for
not applying weight or trimming in these 6 papers is that
the largest weights were below 10.

4.7. Assessing covariate balance

Among the reviewed articles, 26 (24.5%) did not
mention whether the covariate balance after weighting
was investigated. The most frequent method for estimating
equilibrium was the standardized mean difference (ie, 60
articles, 56.6%), 4 (3.8%) the Kolmogorov-Smirnov dis-
tance, 12 (11.3%) used P values, 3 (2.8%) used graphs
and 1 (0.9%) reported the population standard bias.

4.8. Analysis model

IPTW was implemented in 83 (78.3%) articles and
AIPTW in 23 (21.7%). These estimators were applied to
a wide range of outcomes: time-to-event 64 (60.4%), binary
20 (18.9%), continuous 10 (9.4%), count 6 (5.6%), categor-
ical 5 (4.7%) and ordinal 1 (0.9%). The weighted outcome
models used to estimate the causal effect of the treatments
were diverse and depended mainly on the type of outcomes.
The results are summarized in Table 3 and in Figure 2.
Methods for variance estimation were reported in 18
(17%) studies, 13 (72.2%) studies used a robust estimator,
4 (22.2%) used nonparametric bootstrap and 1 used uncor-
rected variance.

4.9. Software and statistical packages

The three main software packages were: R 39 (37.1%),
SAS 35 (33.3%) and STATA 18 (17.1%). Four (3.8%) of
the articles used a combination of R, SAS and STATA
and in 4 (3.8%) of the articles the statistical software was
not clearly identified. Among the articles using a program-
ming language other than R, 7 (6.6%) used R as secondary
programming software for the "TWANG" package to esti-
mate the weights using GBMs.

4.10. Good research practice

Only 8 (7.6%) studies had previously registered a proto-
col. Only 4 (3.8%) study reported that the code was avail-
able and 3 (2.8%) proposed an access to all or part of the
data. Finally, 9 studies (8.5%) referred to the STROBE
statement.
5. Discussion

This systematic review aimed to collect detailed infor-
mation from published observational studies to assess
how IPTW methods with a multicategory treatment are
applied in medical research. As we focused the review on
practical implementation in applied studies, we excluded
methodological papers. From 5660 screened articles, only
106 (3.4%) focused on a multicategory treatment and the
reasons for choosing IPTW over other approaches were
rarely given. Moreover, the plausibility assumptions under-
pinning the validity of IPTW were discussed in very few
studies. Overall, the quality of the reporting was poor, with
key elements missing, thus compromising the interpret-
ability and generalizability of the results.

In the majority of the studies, the estimand was not re-
ported. This is a concern as the estimand determines the
way results are interpreted. In addition, estimation of the
ATT relies on less stringent assumptions.

The implementation and reporting were also often inad-
equate. Indeed, one of the most striking results from this re-
view is the low frequency of studies reporting the
assumptions for the identification of causal effects, and
their plausibility, which is however crucial to make causal
claims. This result was already observed in a previous study
focusing on binary treatments [9]. Interestingly, a few
studies discussed the plausibility of modeling assumptions



Table 2. Summary of the main results

Elements of IPW method N (%)

Estimand ATE 90 (85.0%)

ATT 5 (4.7%)

ATO 1 (0.9%)

Unknown 10 (9.4%)

Estimand definition Guessed from the weights 71 (67%)

Explicitly written 25 (23.6%)

Not reported 10 (9.4%)

Measure of association HR 58 (54.7%)

OR 22 (20.8%)

RR 8 (7.6%)

Other 9 (8.5%)

Unknown 2 (1.9%)

Assumptions Mention of assumptions
(yes)

16 (15.1%)

Mention of STROBE (yes) 9 (8.5%)

Covariate selection Variables included in the weight model 91 (85.9%)

Method used for variable selection From the literature 14 (13.2%)

Automated selection 11 (11.4%)

From the DAG 3 (2.8%)

Not specified 78 (73.6%)

Method used for missing values Complete-case 16 (15.1%)

Multiple imputation 8 (7.6%)

Adjustment 1 (0.9%)

Group mean 1 (0.9%)

Other 9 (8.5%)

Unknown 70 (66%)

Summary of weights Histograms 4 (3.8%)

Other 1 (0.9%)

Unknown 101 (95.2%)

Weight stabilization Yes 16 (15.1%)

No 7 (6.6%)

Unknown 83 (78.3%)

Model used for propensity scores Multinomial 51 (48.1%)

GBM 48 (45.3%)

Other 1 (0.9%)

Unclear 6 (5.7%)

Methods used for assessing balance Standardized mean difference 60 (56.6%)

KS 4 (3.8%)

Graph 3 (2.8%)

P values 12 (11.3%)

Other 1 (0.9%)

Unknown 26 (24.5%)

Analysis model IPTW 83 (78.3%)

AIPTW 23 (21.7%)

Variance estimation method Robust 13 (12.3%)

Bootstrap 4 (3.8%)

Uncorrected 1 (0.9%)

Unknown 88 (83%)
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Table 3. Type of outcome reported and outcome models

Outcome type Outcome model N (%)

Continuous Linear 9 (8.5%)

Binary Negative binomial 1 (0.9%)

Logistic 18 (17%)

Time-to-event Cox 63 (59.4%)

Linear 1 (0.9%)

Categorical Multinomial 5 (4.7%)

Count Poisson 6 (5.7%)

Ordinal Multinomial 1 (0.9%)

Figure 3. Guideline for causal inference approaches This guideline
proposes a list of the main points to follow regarding the introduction
(green windows), methods (blue windows), results (red windows) and
discussion (red windows) sections to report a study based on weighted
approaches in general and using multilevel treatment in particular.
IPTW: inverse probability of treatment weight, ATE: Average treatment
effect, ATT: Average treatment effects on the treated, ATO: average
treatment effect in the overlapping population, DAG: directed acyclic
graph, PS: propensity score.
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(eg, proportionality of hazards), but failed to report the as-
sumptions for causal inference.

This could be explained by a lack of practical guidelines
for the reporting of these studies. Although these assump-
tions are not empirically verifiable, the plausibility of the
assumption of no interference can be determined based
on the knowledge of the clinical setting. The plausibility
of the consistency assumption may be ensured with a pre-
cise definition of the exposure of interest. While the
assumption of conditional exchangeability is often ques-
tionable in observational studies, the elaboration of a
DAG from expert knowledge followed by an application
of d-separation rules may dramatically reduce the risk of
confounding. Finally, the plausibility of the positivity
assumption can be explored from the distribution of the
propensity score and the absence of extreme weights [24],
although the absence of extreme weights does not guar-
antee that the positivity assumption holds."

Empirical positivity may be a challenge when estimating
causal effects for more than two treatment groups as indi-
cation guidelines may be more specific when multiple treat-
ments are available for the same condition and the sample
size may be smaller in each group increasing the chance of
violation of the positivity assumption in the sample. In this
systematic review, one study analyzed up to 9 groups, and
did not investigate violations of the positivity assumption.

The propensity score model was most often a multino-
mial regression model. This can probably be explained by
the fact that this method is a direct extension of the logistic
regression model used in IPTW for binary treatments, is
simple to implement in standard statistical software, and
relatively inexpensive in terms of computational power.
GBMs, a machine learning method based on regression
trees, are featured prominently in this literature review.
Although these methods are more computationally expen-
sive, there is an easy-to-use implementation in the
"TWANG" package [30] with a tutorial for causal effect
estimation in the case of multicategory treatments [14].
An advantage of GBMs is that they are nonparametric
and therefore do not require the specification of a functional
form. Furthermore, in the TWANG implementation, the
stopping rule for the GBM algorithm is based on a balance
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metrics for the covariates, thus maximizing the balance
across treatment groups. However, the method to compute
the weights was not always reported, which compromises
the transparency and reproducibility of the results.

The validity of propensity score methods depends on the
ability of the scores to balance treatment groups with
respect to the covariates [24]. In our review, balance was
assessed in most studies, but a few used P values, that
are not recommended because they strongly depend on
the sample size. Balance should be assessed before and af-
ter weighting for instance by presenting standardized mean
differences for each covariate and for each pair of treat-
ments or by presenting the mean or maximum standardized
mean difference per variable across all treatment compari-
sons. However, there is currently no consensus on the way
to assess balance for multiple treatments and further work
is needed to provide practical guidelines.

In terms of analysis model, the type of model was gener-
ally well reported, but not the variance estimator. This is
very important because the estimated variance must ac-
count for (i) the correlation introduced via weighting (ii)
the uncertainty around the propensity score estimates. In
practice, many authors used sandwich estimators for (i)
but issue (ii) is often overlooked, despite available estima-
tors [27] including for multicategory treatments [29] and
the validity of nonparametric bootstrap.

Guidelines for the application of IPTW for binary treat-
ments exist [9,31], and we would like to propose steps for
their reporting in the case of multicategory treatments.
These recommendations are summarized in Figure 3.
6. Conclusion

Causal inference approaches using IPTW are largely
applied in medical research but multicategory treatment re-
mains scarcely used. This systematic review highlighted the
suboptimal reporting quality of studies in this context, in
particular for assumptions and model building. The applica-
tion of practical guidelines, as proposed here, is needed to
help researchers improve the presentation of their results to
ensure a better understanding of their methods and the
reproducibility of their results.
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