Addressing Gaps in Data and Methods in Measles Burden Estimation

AN Sbarra ; (2024) Addressing Gaps in Data and Methods in Measles Burden Estimation. PhD thesis, London School of Hygiene & Tropical Medicine. DOI: 10.17037/PUBS.04672233
Copy

Vaccination against measles has been available for decades, although still a substantial number of global cases and deaths persist. Strategies to reach measles elimination goals require a more comprehensive understanding of the patterns of immunity and burden across locations, time, and age in local contexts throughout the world, particularly in low- and middle-income countries (LMICs). These challenges, in part, can be addressed via a thorough examination of all available data on measles immunity, cases, and deaths and synthesizing these data streams through the development of novel mathematical and statistical models. The overall aims of this thesis are to (A) improve upon and better understand the data available for modellers interested in estimating measles susceptibility, incidence, or mortality in LMICs, and (B) develop improved methodology for generating more robust estimates using these data, including by dimensions of age, space, and time. To accomplish these aims, this thesis first identified all data on measles seroprevalence and characterized bias within each primary study. Next, this thesis explored subnational measles case notifications in Ethiopia and tested multiple methodologic strategies for fitting dynamic transmission models with these data while accounting for various case ascertainment rates. Then, to aid in developing more robust models of measles mortality, this thesis outlined activities following an expert consultation to establish a conceptual framework of population-level factors related to measles case fatality and a literature review of evidence of an 4 association between related indicators and case fatality. Finally, to quantify the heterogeneity in measles case fatality temporally, in different locations and across the lifespan, this thesis estimated country-, year-, and age-specific case-fatality via a meta-regression model using all available literature and identified indicators as covariates. Altogether, this thesis addressed gaps across challenges related to measles burden estimation.


picture_as_pdf
2024_EPH_PhD_Sbarra_A.pdf
subject
Accepted Version
Available under Creative Commons: Attribution-NonCommercial-No Derivative Works 4.0

View Download

Atom BibTeX OpenURL ContextObject in Span Multiline CSV OpenURL ContextObject Dublin Core Dublin Core MPEG-21 DIDL Data Cite XML EndNote HTML Citation JSON MARC (ASCII) MARC (ISO 2709) METS MODS RDF+N3 RDF+N-Triples RDF+XML RIOXX2 XML Reference Manager Refer Simple Metadata ASCII Citation EP3 XML
Export

Downloads