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Comparative diagnostic accuracy studies
with an imperfect reference standard – a
comparison of correction methods
Chinyereugo M. Umemneku Chikere1*, Kevin J. Wilson2, A. Joy Allen3 and Luke Vale1

Abstract

Background: Staquet et al. and Brenner both developed correction methods to estimate the sensitivity and
specificity of a binary-response index test when the reference standard is imperfect and its sensitivity and specificity
are known. However, to our knowledge, no study has compared the statistical properties of these methods, despite
their long application in diagnostic accuracy studies.

Aim: To compare the correction methods developed by Staquet et al. and Brenner.

Methods: Simulations techniques were employed to compare the methods under assumptions that the new test and
the reference standard are conditionally independent or dependent given the true disease status of an individual. Three
clinical datasets were analysed to understand the impact of using each method to inform clinical decision-making.

Results: Under the assumption of conditional independence, the Staquet et al. correction method outperforms the
Brenner correction method irrespective of the prevalence of disease and whether the performance of the reference
standard is better or worse than the index test. However, when the prevalence of the disease is high (> 0.9) or low (< 0.1),
the Staquet et al. correction method can produce illogical results (i.e. results outside [0,1]). Under the assumption of
conditional dependence; both methods failed to estimate the sensitivity and specificity of the index test especially when
the covariance terms between the index test and the reference standard is not close to zero.

Conclusion: When the new test and the imperfect reference standard are conditionally independent, and the
sensitivity and specificity of the imperfect reference standard are known, the Staquet et al. correction method
outperforms the Brenner method. However, where the prevalence of the target condition is very high or low or the
two tests are conditionally dependent, other statistical methods such as latent class approaches should be considered.
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Background
The diagnostic accuracy measures (sensitivity and
specificity) of a new test are traditionally estimated
through comparison with the best available reference
standard. The reference standard is often assumed to
be a “gold standard”, that is, “error free”. However,
no test is perfect and ignoring this imperfection can
result in either over or underestimating the accuracy
of a new test (the index test) [1].
Following the reviews by Rutjes et al. [2] and Chikere

et al. [3], three statistical methods (Gart and Buck [4],
Staquet et al. [5], and Brenner [6]) were identified as
being appropriate to evaluate the sensitivity and speci-
ficity of a binary response index test when the sensitiv-
ity and specificity of the imperfect reference standard
are known and the index test and reference standard
are conditionally independent. The estimates of the
sensitivity and specificity of the imperfect reference
standard can be obtained from previous validation
studies, experimental or field studies. The three statis-
tical methods are referred to as “correction methods”,
because they aim to correct the estimated sensitivity
and specificity of the index test using the available in-
formation (sensitivity and specificity) of the imperfect
reference standard via algebraic functions. In addition,
these correction methods do not require probabilistic
modelling like latent class models [7, 8]. Both the
correction methods and latent class models assume
that the true disease status of the participants are
unknown (latent). However, the latent class models are
“probabilistic” approaches that estimate the accuracy
measures of the index test and / or the reference
standard via a statistical model. In addition, the Bayes-
ian latent class models [9] incorporate other sources of
information about the parameters of interest aside the

from observation to make inference about the parame-
ters of interest.
It is possible that there are certain scenarios where

one correction method is more appropriate or may out-
perform the other. Hence, we decided to explore these
correction methods to provide recommendations to test
evaluators. To our knowledge, no study has directly
compared these correction methods.

Methods
Notation
Let IT and RS denote index test and reference standard
respectively. The results from both tests are considered to
be binary (diseased and non-diseased). The results from
the participants are often classified into a two-by-two
contingency table (Table 1), which displays the number of
participants with each combination of the test results.
Notation used in this paper is reported in Table 2.
The classical estimates of the sensitivity and specificity

of the index test, assuming that the reference standard is
a gold standard, are:

SnIT ¼ a
e

SpIT ¼ d
f

Prr ¼ e
N

ð1Þ

Correction methods
The correction methods identified from the systematic
reviews [2, 3] were the Gart and Buck [4] correction
method, the Staquet et al. [5] correction method and the
Brenner [6] correction method.

Gart and Buck [4] correction method
The pair of estimators proposed by Gart and Buck [4] to
estimate the sensitivity and specificity of the IT are:

Table 1 2 by 2 contingency table of the index test and imperfect reference standard

Umemneku Chikere et al. BMC Medical Research Methodology           (2021) 21:67 Page 2 of 12



SnGBcor ¼
SpRS � Prr � SnIT þ ð1 − SpRSÞð1 − PrrÞ � SpIT − ð1 − SpRSÞðSpRS − P̂ JÞ

P̂ J

ð2Þ

SpGBcor ¼
SnRS � ð1 − PrrÞ � SpIT þ ð1 − SnRSÞ � Prr � SnIT − ð1 − SnRSÞð1 − SpRS þ P̂ JÞ

Jð1 − P̂Þ
ð3Þ

Staquet et al. [5] correction method
Staquet et al. [5] proposed two pairs of estimators to
estimate the sensitivity and specificity of the IT under
two scenarios. The first pair of estimators (to estimate
the sensitivity and specificity of the IT) is proposed for
when the IT and RS are conditionally independent and
the sensitivity and specificity of the RS are known. A
second pair of estimators (to estimate the sensitivities of
the IT and RS) is proposed when the specificities of the
IT and RS are perfect (100%). In this paper, we focus on
the first pair of estimators. This pair of estimators is
employed to estimate the sensitivity and specificity of
the IT given that the IT and the RS are conditionally in-
dependent and the sensitivity and specificity of the RS
are known. These estimators are:

Snsqcor ¼
gSpRS − b

NðSpRS − 1Þ þ e
; SpsqCor ¼

hSnRS − c
NSnRS − e

; P̂ ¼ NðSpRS − 1Þ þ e
NðSnRS þ SpRS − 1Þ

ð4Þ
The Staquet et al. [5] correction method is equivalent

to the Gart and Buck [4] correction method (see
Additional file 1).

Brenner [6] correction method
Brenner [6] proposed two pairs of estimators to estimate
the sensitivity and specificity of the IT. The first pair of
estimators assumes that the IT and the RS are condi-
tionally independent and the second pair of estimators
assumes that the IT and RS are conditionally dependent
(positively correlated) given the true disease status of the
individuals. In both pairs of estimators, the sensitivity

and specificity of RS are assumed known. However, in
this paper, we focus on the first pair of estimators, where
the IT and RS are assumed to be conditionally inde-
pendent. The first pair of estimators is expressed as:

SnB1cor ¼
Prr � SnRS � SnIT þ 1 − Prrð Þ 1 − SpRSð Þ 1 − SpITð Þ

Prr � SnRS þ 1 − Prrð Þ 1 − SpRSð Þ
ð5Þ

SpB1cor ¼
Prr � 1 − SnRSð Þ 1 − SnITð Þ þ 1 − Prrð Þ � SpRS � SpIT

Prr � 1 − SnRSð Þ þ 1 − Prrð Þ � SpRS

ð6Þ
The two estimators (5) & (6) can be re-written as (7) &

(8) respectively (see Additional file 1)

SnB1cor ¼
aSnRS þ b 1 − SpRSð Þ
eSnRS þ f 1 − SpRSð Þ ð7Þ

SpB1cor ¼
c 1 − SnRSð Þ þ dSpRS
e 1 − SnRSð Þ þ fSpRS

ð8Þ

Simulation study
The correction methods were compared using simula-
tion techniques and analysis of clinical datasets. Since
the Staquet et al. [5] approach is equivalent to the Gart
and Buck [4] correction method (see Additional file 1),
only the Staquet et al. [5] approach was compared to the
Brenner correction method. The simulation was con-
ducted following the guidelines by Morris et al. [10]
which include Planning for the simulation, Coding and
execution, Analysis and Reporting the simulation study
appropriately (PCAR), and using R-Studio statistical
software [11]. In the simulation, the Staquet et al. [5]
and Brenner [6] approaches were compared with the
classical method [12]. The classical method assumes that
the reference standard is a gold standard (Eq. (1)). The
estimates obtained from the classical method will be
called unadjusted estimates of sensitivity and specificity.
The performance measures in the simulation are the

basic statistical properties used to ascertain a good esti-
mator. These properties are unbiasedness, mean square
error (MSE) and consistency. Further notes on these
properties are presented in Additional file 1.
The fixed effects [1, 13] modelling approach was

employed to simulate the different datasets using the
multinomial distribution (“rmulti” function in R [14]).
This approach models the pairwise conditional depend-
ence (or correlation) between two tests among the dis-
eased and non-diseased groups using covariance terms
which are fixed across participants [15]. In the simula-
tion process, the sensitivity and specificity of the IT and
RS are known, and the prevalence of the target condition
is known. The template showing how the cell

Table 2 Table of Notation

Notation Meaning

SnIT Sensitivity of the index test

SpIT Specificity of the index test

SnRS Sensitivity of the reference standard

SpRS Specificity of the reference standard

Sncor Corrected sensitivity of index test

Spcor Corrected specificity of index test

P̂ Estimated population prevalence

J Youden’s index, SnRS + SpRS − 1

Prr Sample prevalence
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probabilities were calculated using the prevalence, sensi-
tivity and specificity of the IT and RS, and covariance
terms is reported in Additional file 1 – Table S1.
The simulation study was carried out under two

assumptions given that the RS is imperfect. Firstly,
the IT and RS were assumed to be conditionally
independent and secondly, the tests were assumed to
be conditionally dependent. Theoretically, when the
RS is error-free (perfect), the classical and correction
methods estimate the sensitivity and specificity of the
IT accurately. This is shown algebraically in Add-
itional file 1.
Under the assumption that the RS and IT are

conditionally independent, multiple (200) random
samples of different sample sizes from 50 to 1000
were simulated using the multinomial distribution
under three scenarios, which are:

� Scenario one: The RS is assumed to be better than
the IT. This implies that the sensitivity and
specificity of the RS are higher than the sensitivity
and specificity of the IT.

� Scenario two: The IT is assumed to be better than
the RS. This implies that the sensitivity and
specificity of the IT are higher than the sensitivity
and specificity of the RS.

� Scenario three: The sensitivity and specificity of RS
and IT are assumed to be the same.

Scenario one
The sensitivity and specificity of the RS are assumed to
be 0.9 and the sensitivity and specificity of index test are
0.8 and 0.7 respectively. The prevalence is assumed to be
0.3. The unadjusted and corrected estimates are pre-
sented in Fig. 1.

Scenario two
The sensitivity and specificity of the index test are 0.9
and the sensitivity and specificity of the reference stand-
ard are 0.8 and 0.7 respectively. The prevalence is 0.3.
The unadjusted and corrected estimates are presented in
Fig. 2.

Scenario three
The sensitivity and specificity of the index and reference
tests are all 0.9, and the prevalence of the target condi-
tion is 0.3. The unadjusted and corrected estimates are
presented in Fig. 3.
The yellow dashed lines on the plots of the mean

sensitivities and mean specificities in Fig. 1 – Fig. 5 are
the simulated true values of the sensitivity and specificity
of the IT. The choice of parameters for the sensitivities
and specificities of the IT and RS, and prevalence of the
target condition were informed by clinical case studies
identified from the review previously conducted by
Chikere et al. [3].

Fig. 1 The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of the index test when
the reference standard is imperfect and better than the index test
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Fig. 2 The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of the index test when
the reference standard is imperfect and worse than the index test

Fig. 3 The mean, standard error, mean square error and bias of the unadjusted and corrected sensitivity and specificity of the index test when
the reference standard is imperfect and has same diagnostic accuracy measures as the index test
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Based on the three scenarios simulated, the estimates
obtained from the Staquet et al. [5] method are accurate
irrespective of which test is better or worse than the
other. However, when the accuracy measures of the
index test are better than the sensitivity and specificity
of the reference standard (Fig. 2), a relatively large sam-
ple size (n > 200) would be recommended; as using small
sample sizes produced mean sensitivities that were
slightly above the simulated true value (0.9). Practically,
information about the index test is usually unknown, so
using relatively a large sample size in diagnostic accuracy
study is typical. The unadjusted and Brenner corrected
sensitivities are consistently lower than the simulated
true value and the bias is consistently greater than 0.1.
The unadjusted specificities are typically slightly below
the simulated true values, and the bias is typically rela-
tively small, below 0.05, except the bias from scenario
two (Fig. 2), which is larger than 0.05 but below 0.1. The
Brenner corrected specificities are consistently below the
simulated true values and the bias is consistently above
0.1, except in scenario one (Fig. 1), in which is below
0.05. Further scenarios explored include cases where the
sensitivity (or specificity) of the index test was better
than the sensitivity (or specificity) of the RS. The results
of these simulations are reported in Additional file 1.
With the simulated scenarios explored, (given that the
IT and RS are conditionally independent), the Staquet
et al. [5] correction method outperforms the Brenner
correction method. There could be other possible scenar-
ios where the sensitivity (or specificity) of the IT and RS,
and prevalence is not equivalent to the values explored in
this paper. These scenarios can be explored using the R-
Code written by the Authors. The R-Code employed to
generate and analyse the simulated and clinical datasets is
presented in the appendix (Additional file 2).

In the three scenarios above, the simulation process
only looked at a single prevalence (p = 0.3). Further
analyses were carried out to explore the correction
methods under varying prevalences ranging from 0 to
1 (in increments of 0.01) using scenario one, where
the RS is better than the IT. The unadjusted and
corrected sensitivity and specificity of the IT are
presented in Fig. 4. Only scenario one was explored
further because, in each scenario above, the Staquet
et al. [5] correction method outperforms the Brenner
correction and classical methods.
From Fig. 4 the unadjusted and Brenner corrected

sensitivities tend towards the simulated true value as the
prevalence tends to one. The Brenner corrected and
unadjusted specificities tend to the simulated truth as
the prevalence tends to zero. The Staquet et al. [5]
sensitivity and specificity of the IT are approximately
unbiased and equivalent to the simulated true value
irrespective of the prevalence indicating a constant sen-
sitivity and specificity across populations with different
prevalences. However, when the prevalence is very low
(< 0.1) or very high (> 0.9), there is the possibility of
obtaining illogical estimated sensitivity or specificity via
the Staquet et al. [5] approach. Illogical results imply
that the estimated sensitivity or specificity is greater than
one or less than zero. In the simulated datasets gener-
ated to produce Fig. 4, when the prevalence was 0.01
and 0.02 the estimated mean sensitivities were 5.38 ×
1012 and 4.33 × 1012 respectively. These values are
illogical and excluded from the plot. In addition, in the
simulated datasets employed to plot Fig. 3, when the
sample size is 50 and 80, the mean estimated sensitivities
were − 2.04 × 10 [13] and − 1.94 × 10 [13], these values
were also excluded from the plot. The simulated datasets
are reproducible using the R-Code reported in

Fig. 4 Unadjusted and corrected sensitivity and specificity of the index test under varying prevalence
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Additional file 2. Further exploration of illogical esti-
mates obtained via the Staquet et al. [5] correction
method are discussed in Additional file 3.
Under the assumption that the IT and RS are condi-

tionally dependent, the covariance terms among the
disease and non-disease groups are non-zero and they
are varied to represent a selection of the diverse possible
scenarios. A possible scenario is a case where the IT and
the RS are positively correlated. In such case, the covari-
ance terms among the diseased and non-diseased groups
are positive. With the sensitivity and specificity of IT as
0.8 and the sensitivity and specificity of RS as 0.9, a sce-
nario explored is where the covariance term among the
diseased and non-diseased group is 0.05. The choice of
covariance terms is constrained inequality constraint
employed in generating the simulated datasets using the
fixed effects modelling approach [1, 13]. The unadjusted
and corrected estimates are presented in Fig. 5.
Further scenarios were explored and are reported in

Additional file 4. Under the assumption of conditional
dependence between IT and RS, all the correction
methods performed poorly in the scenarios explored
(see Additional file 4). This is expected, as the ap-
proaches were not developed to estimate the accuracy
measures of the index test when the index test and
the reference standard are conditionally dependent.
However, when the covariance term between the
disease groups is relatively small (close to zero), the
Staquet et al. [5] correction method outperforms the
Brenner correction method. In addition, when the IT
and RS are conditionally dependent, the estimated
sensitivity and specificity of the index test obtained
via the Staquet et al. [5] correction method are not
constant across different populations with varying

prevalences, compared to the estimates obtained when
the IT and RS are conditionally independent.

Analysis of three clinical datasets
Three clinical datasets from two published articles
(Mathews et al. [16] and Matos et al. [17]) were analysed
to understand the impact of the choice of method in
clinical decision making, and to support the findings
from the simulation studies. The 95% confidence inter-
vals of the estimates obtained were calculated using the
Wilson score interval approach [18].

Analysis of the clinical dataset from Mathews et al. [16]
(case-study one)
The extracted clinical dataset from Mathews et al. [16]
(Table 3) aims to estimate the sensitivity and specificity
of high resolution anoscopy (HRA) cytology in dis-
criminating HIV patients into high grade squamous
intraepithelial lesion (HSIL) and atypical squamous
cells cannot rule out high grade (ASC-H) or not.
The punch biopsy was employed as the RS but it is

known to be imperfect. According to Mathews et al.
[16], the sensitivity and specificity of punch biopsy were
extracted from Byrom et al. [19] and are 0.74 and 0.91
respectively. The study employed the Staquet et al. [5]
approach to correct for the sensitivity and specificity of
HRA cytology given that the accuracy measures of
punch biopsy are known and assuming the tests (IT and
RS) are conditionally independent. The dataset (Table 3)
was reanalysed using the Brenner correction method.
The estimated prevalence is 0.27 and the corrected and
unadjusted sensitivity and specificity estimates of HRA
cytology are presented in Table 4.

Fig. 5 The mean unadjusted and corrected sensitivity and specificity of the index test when the reference standard is imperfect and the index
test and reference standard are positively correlated

Umemneku Chikere et al. BMC Medical Research Methodology           (2021) 21:67 Page 7 of 12



From Table 4, the estimated sensitivity and specifi-
city of HRA cytology obtained via the Staquet et al.
[5] approach are higher than the estimates obtained
via the classical and Brenner correction methods. In
addition, no illogical estimates were obtained via the
Staquet et al. [5] approach. Furthermore, the confi-
dence intervals from the Brenner and Staquet et al.
[5] correction methods do not overlap. In this clinical
application, correcting the sensitivity and specificity of
HRA cytology using the Brenner approach would
underestimate the sensitivity of HRA cytology; thus,
discouraging its use to rule out the diagnosis of HSIL
as the sensitivity would appear poor (0.5). However,
correcting the diagnostic accuracy measures of HRA
cytology using the Staquet et al. [5] approach encour-
ages the use of HRA cytology in clinical practice to
rule in the diagnosis of HSIL as it has a specificity
that is close to one.

Analysis of two clinical datasets from Matos et al. [17]
dataset – (case-study two)
The extracted datasets from Matos et al. [17] reported in
Table 5 and Table 6 are from Examiner 1 and the aim is
to estimate the sensitivity and specificity of fluorescence –
based devices (Fluorescence camera – FC and DIAG
NOdent – a pen type laser fluorescence abbreviated as
LFpen) used in detecting occlusal caries lesions in primary
teeth. The study used the Brenner [6] correction method
to estimate the sensitivities and specificities under the
assumption that the sensitivity and specificity of the RS
(visual inspection) are known and that the fluorescence
devices are conditionally independent of the RS. The two
different target conditions are non-cavitated caries lesions
(NC) and dentine caries lesions (D3).

Table 5 reports the classification of the results from
the index tests (FC and LFpen) and reference standard
when the target condition is NC and Table 6 reports the
classification of the results from the index tests (FC and
LFpen) and reference standard when the target condi-
tion is D3.
Matos et al. [17] obtained the diagnostic accuracy of

the reference standards from previous studies [20–24].
For the NC detection, the sensitivity and specificity of
the RS were 0.796 and 0.799 respectively. For the D3,
the sensitivity and specificity of the RS were 0.786 and
0.995 respectively. In addition, the teeth were assumed
to be independent.
The unadjusted and corrected sensitivities and speci-

ficities of the LFpen and FC in discriminating between
teeth with NC (Table 5) are presented in Table 7.
The sample prevalence for NC (0.92) and the

estimated prevalence via the Staquet et al. [5] approach
is 1.2 (which is illogical). An illogical prevalence is
explored in Additional file 3; it was observed that when
the sensitivity of the reference standard is less than the
sample prevalence, illogical prevalence is likely to be ob-
tained. The estimated sensitivities for LFpen (≅ 0.7) and
FC (0.44 or 0.45) are consistent across all methods
(Table 7), and the confidence intervals from the cor-
rected and unadjusted sensitivities overlap. The specific-
ities of LFpen and FC differ across the methods, with
the Staquet et al. [5] corrected specificities (LFpen is
0.04, and FC is 0.36) being the lowest of all. At so a high
prevalence and in particular when the estimated preva-
lence is illogical (1.2), the estimated specificity via the
Staquet et al. [5] should be treated with scepticism.
The second dataset from Matos et al. [17] (Table 6) was

analysed; the estimated prevalence is 0.06 and the sample
prevalence is 0.052. The unadjusted and corrected sensi-
tivity and specificity of the LFpen and FC in discriminat-
ing between teeth D3 are presented in Table 8.
From Table 8, the estimated and sample prevalence of

D3 are very low (< 0.1), hence the specificities of LFpen
and FC (≅ 0.9) are consistent across all methods and are
estimated accurately, and the confidence intervals from
the corrected and unadjusted specificities overlap.
However, the sensitivities differ, with Staquet et al. [5]
providing illogical estimates (estimates greater than 1).
Given the illogical results, the 95% confidence intervals
cannot be estimated. Obtaining illogical estimates for

Table 3 Results of HRA cytology and punch biopsy in
classifying patients into high grade and non-high grade
squamous intraepithelial lesion

Biopsy ≥AIN2 Biopsy <AIN2 Total

Cytology HSIL or ASC-H 40 22 62

Cytology < HSIL 22 177 199

62 199 261

HSIL High grade squamous intraepithelial lesion, ASC-H Atypical squamous
cells cannot rule out high grade, AIN Anal intraepithelial neoplasia

Table 4 Unadjusted and corrected sensitivities and specificities of HRA cytology

Accuracy
measures

Methods

Unadjusted (95% CI) Brenner (95% CI) Staquet et al (95% CI)

Sensitivity 0.65 (0.52, 0.75) 0.50(0.38, 0.62) 0.89 (0.79, 0.95)

Specificity 0.89 (0.84, 0.93) 0.85 (0.79, 0.89) 0.96 (0.92, 0.98)

CI Confidence interval
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the sensitivity of FC and LFpen via the Staquet et al. [5]
approach are in line with the observations from the
simulation study.

Discussion
Simulation study
Firstly, when the RS is perfect (SnRS = SpRS = 1), the esti-
mates obtained from all the correction methods and the
classical method are the same (this is expressed algebra-
ically in Additional file 1). Secondly, when the RS is im-
perfect and the RS is conditionally independent of the
IT, the Staquet et al. [5] correction method outperforms
the Brenner correction method irrespective of which test
is better. In addition, the estimates obtained via the Sta-
quet et al. [5] correction method uphold the assumption
of constant sensitivity and specificity across populations
with different prevalence. This implies that the disease
prevalence in the population does not affect the esti-
mates obtained via the Staquet et al. [5] method unlike
the classical and the Brenner correction methods. At a
low prevalence, the estimated sensitivity from the clas-
sical and Brenner methods are often underestimated and
at high prevalence the estimated specificity from the
classical and Brenner correction method are typically
underestimated. Thus, when there is a high prevalence,
the sensitivity is more likely to be accurately estimated
by all methods and at low prevalence, the specificity is
likely to be accurately estimated by all methods. This is
consistent with findings reported by other researchers
that in a high prevalence population the sensitivity of
the index test is often likely to be estimated accurately
and in a low prevalence population the specificity is

likely to be estimated accurately [1, 25]. Furthermore,
not correcting for the imperfection of the IT using the
classical method yield estimates that are closer to the
simulated truth than correcting for the imperfection of
the IT using the Brenner correction method. Thus, the
classical method performs better than the Brenner cor-
rection method. Furthermore, when the IT and RS are
conditionally dependent, both the Staquet et al. [5] and
Brenner correction methods perform poorly.

Analysis of the clinical datasets
The clinical datasets explored had varying prevalences,
which aid in the exploration of the methods in clinical
applications. The Mathews et al. [16] dataset had a sam-
ple prevalence of 0.23, and the two datasets from Matos
et al. [17] had very low (0.052) and very high (approxi-
mately 0.92) sample prevalences. Using clinical datasets
with varying prevalences supported the findings from
the simulation study.
The analysis of the clinical datasets alongside the simula-

tion study have shown that the prevalence of the target
condition can cause illogical estimates for the sensitivity
and specificity of the IT via the Staquet et al. [5] approach.
However, there could be alternative rationale that could be
considered if this occurs, for example that the two tests (IT
and RS) are mathematically conditionally dependent, even
though the IT and RS do not use the same biological
component. However, we cannot conclude that obtaining
an illogical estimate via the Staquet et al. [5] approach is a
sufficient condition to establish that the IT and RS are
conditionally dependent given the true disease status. The
information in Additional file 3 – Table S2 shows that

Table 5 Results of the visual inspection (reference standard) and fluorescence - based devices (LFpen and FC) in discriminating
teeth with non-cavitated lesions

Reference standard
(NC – Examiner 1)

Reference standard
(NC – Examiner 1)

Index test Positive Negative Index test Positive Negative

LFpen positive 241 6 FC positive 156 3

LFpen negative 110 26 FC positive 195 29

351 32 351 32

Table 6 Results of the visual inspection (reference standard) and fluorescence - based devices (LFpen and FC) in discriminating
teeth with Dentine lesions

Reference standard
(D3 – Examiner 1)

Reference standard
(D3 - Examiner 1)

Index test Positive Negative Index test Positive Negative

LFpen positive 20 45 FC positive 21 38

LFpen negative 1 341 FC positive 0 348

21 386 21 386
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illogical estimates can be obtained via the Staquet et al. [5]
approach when the tests are conditionally independent.
In scenarios where the estimates obtained via the

Staquet et al. [5] approach are illogical, the traditional
latent class model [7, 26–29] could be employed and the
known sensitivity and specificity of the RS would be
used as the priors (deterministic or probabilistic) in the
model to estimate the accuracy measures of the IT. The
latent class model has the advantage over the Staquet
et al. [5] approach in that it does not produce illogical
estimates. In addition, if the tests are conditionally
dependent a Bayesian latent class model [15] could be
considered.
One of the limitations of this study is that the

traditional latent class model is not explored, as it is
a probabilistic modelling approach and is not the
focus of this work. In addition, the coverage prob-
ability of confidence intervals was not explored be-
cause it is a property of the procedure producing the
confidence interval and not the estimators them-
selves, and as such is outside the scope of this study.
Furthermore, there could be other scenarios (pos-
sible combinations of sensitivities and specificities of
RS and IT, and prevalence) not explored in this
paper; however, the R-Code (Additional file 2) writ-
ten by the Authors would aid researchers who wish
to explore more. A further area of research is to ex-
plore the Staquet et al. [5] approach to understand if

there is a way it can indicate conditional dependence
between two tests. Furthermore, as observed from
the analysis of the clinical datasets (Table 5, Table 7
and Additional file 3), an illogical value was obtained
for the estimated prevalence, which could have impacted
the estimated specificities of the index tests. Thus, the Sta-
quet et al. [5] approach could be further explored to ascer-
tain other conditions that can make the Staquet et al. [5]
approach produce illogical estimates, as well as possible
implications where multiple conditions are satisfied
simultaneously.

Conclusions
From the simulation study (using the scenarios ex-
plored in this paper) and the analysis of the clinical
datasets, the Staquet et al. [5] correction method out-
performs the Brenner correction method. However,
when the prevalence of the target condition is very
high (> 0.9) or low (< 0.1), or the tests employed in
the diagnostic accuracy study are correlated (condi-
tionally dependent) other statistical methods should
be considered such as the latent class model (frequen-
tist or Bayesian) to avoid obtaining illogical or in-
accurate estimates. Furthermore, using poor estimates
of the accuracy measures for the reference standard
would affect the estimated corrected sensitivity and
specificity of the index test.

Table 7 Unadjusted and corrected sensitivities and specificities of LFpen and FC in detection of NC

Methods

Accuracy measures Unadjusted (95% CI) Brenner (95% CI) Staquet et al (95% CI)

Non-cavitated caries lesion (NC) – LFpen

Sensitivity 0.69 (0.64, 0.73) 0.68 (0.63, 0.73) 0.70 (0.65, 0.75)

Specificity 0.81 (0.65, 0.91) 0.44 (0.28, 0.61) 0.04 (0.01, 0.17)

Non-cavitated caries lesion (NC) – FC

Sensitivity 0.44 (0.39, 0.50) 0.44 (0.39, 0.49) 0.45 (0.40, 0.50)

Specificity 0.91 (0.76, 0.97) 0.65 (0.48, 0.79) 0.36 (0.22, 0.53)

CI Confidence interval, LFpen Laser florescence pen, FC Fluorescence camera

Table 8 Unadjusted and corrected sensitivities and specificities of LFpen and FC in detecting D3

Methods

Accuracy measures Unadjusted (95% CI) Brenner (95% CI) Staquet et al (95% CI)

Dentine caries lesion (D3) – LFpen

Sensitivity 0.95 (0.77, 0.99) 0.86 (0.66, 0.95) 1.04 (NaN)

Specificity 0.88 (0.85, 0.91) 0.87 (0.83, 0.90) 0.90 (0.87, 0.93)

Dentine caries lesion (D3) – FC

Sensitivity 1.00 (0.85, 1.00) 0.91 (0.72, 0.98) 1.09 (NaN)

Specificity 0.90 (0.87, 0.93) 0.89 (0.86, 0.92) 0.92 (0.89, 0.94)

CI Confidence interval, LFpen Laser florescence pen, FC Fluorescence camera, NaN Not available or cannot be estimated
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