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Fully‑automated, CT‑only GTV 
contouring for palliative head 
and neck radiotherapy
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Planning for palliative radiotherapy is performed without the advantage of MR or PET imaging in 
many clinics. Here, we investigated CT‑only GTV delineation for palliative treatment of head and neck 
cancer. Two multi‑institutional datasets of palliative‑intent treatment plans were retrospectively 
acquired: a set of 102 non‑contrast‑enhanced CTs and a set of 96 contrast‑enhanced CTs. The nnU‑
Net auto‑segmentation network was chosen for its strength in medical image segmentation, and five 
approaches separately trained: (1) heuristic‑cropped, non‑contrast images with a single GTV channel, 
(2) cropping around a manually‑placed point in the tumor center for non‑contrast images with a 
single GTV channel, (3) contrast‑enhanced images with a single GTV channel, (4) contrast‑enhanced 
images with separate primary and nodal GTV channels, and (5) contrast‑enhanced images along with 
synthetic MR images with separate primary and nodal GTV channels. Median Dice similarity coefficient 
ranged from 0.6 to 0.7, surface Dice from 0.30 to 0.56, and 95th Hausdorff distance from 14.7 to 
19.7 mm across the five approaches. Only surface Dice exhibited statistically‑significant difference 
across these five approaches using a two‑tailed Wilcoxon Rank‑Sum test (p ≤ 0.05). Our CT‑only results 
met or exceeded published values for head and neck GTV autocontouring using multi‑modality 
images. However, significant edits would be necessary before clinical use in palliative radiotherapy.

Head and neck (HN) cancer is disease that affects the entire world, the seventh most common cancer, and is 
projected to increase in incidence rate  worldwide1. In low- and middle-income countries (LMICs), patients of all 
cancer types, including HN cancer, tend to present with late-stage or metastatic disease which is often incurable. 
Moreover, between 50 and 90% are not even able to receive beneficial radiotherapy due to lack of  access2–4. In 
particular, high-quality radiotherapy has been shown to be essential for local control or durable palliation for 
HN cancers, yet LMICs consistently struggle to provide it to a majority of  patients5,6.

Radiotherapy planning comprises a series of complex tasks including normal structure contouring, delin-
eating the gross tumor and expanded volumes as the therapy targets, beam set-up, and iterative optimizations. 
These time-consuming are major challenges to access in LMICs in addition to concurrent staffing challenges. 
Target delineation is often the single most time-consuming task for physicians and treatment  staff7. Rapid, 
automated delineation of the target could relieve clinical pressures, improve efficiency, and enable radiotherapy 
to be offered to more patients.

Advances in deep convolutional neural networks have been successfully applied to a wide variety of HN 
radiotherapy tasks, such as automatic delineation of the normal structures, organs at risk, and clinical target 
 volumes8–15. However, applying these advances into delineation of the gross tumor volume in HN cancer has 
been more difficult for deep learning algorithms for multiple  reasons16–18. Anatomical heterogeneities, dental 
artifact, and the substantial distortions to normal structures by locally advanced HN tumors limit the number 
of reliable anatomical landmarks. In addition, the overall poor contrast of soft tissue in the HN region makes 
accurately delineating the GTV difficult without additional image guidance such as magnetic resonance imaging 
(MR) or positron emission tomography (PET). However, the resource constraints of LMICs mean that CT may 
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be the only available scanning modality. Thus, the true tumor boundaries and extent may be obscured for any 
CT-based automated approach.

Given the challenges noted above, the current work evaluates multiple, CT-based approaches to automating 
GTV segmentation for palliative HN radiotherapy. Choice of imaging modality and palliative therapy intent were 
selected to better reflect the realities of an LMIC setting. All approaches are evaluated separately and compared 
to assess the feasibility of fully-automated GTV contouring for HN palliative radiotherapy planning.

Methods
In this work, five approaches were developed to automatically contour the GTV for palliative HN radiotherapy 
cases, using both a contrast-enhanced and a non-contrast-enhanced CT dataset. The nnU-Net architecture 
was selected as the autocontouring model for all five approaches, and performance evaluated by overlap and 
distance  metrics19. This retrospective study was approved by The University of Texas MD Anderson Cancer 
Center Institutional Review Board, with a waiver for informed consent (PA16-0379). All relevant guidelines 
and regulations were followed.

Datasets
To match varying clinical practices, two datasets were used in this multi-institutional study, a non-contrast-
enhanced simulation CT dataset and a contrast-enhanced simulation CT dataset. Prior to training, both datasets 
were randomly split 80% training and 20% final test sets on a patient-by-patient basis. Initial evaluation of the 
splits showed no substantial difference in population characteristics; furthermore, no changes were made to the 
random splits to avoid introducing unconscious bias. The training and test sets were resized to the median voxel 
spacings of their corresponding non-contrast-enhanced or contrast-enhanced training dataset by the nnU-Net 
pre-processing pipeline.

The first, non-contrast dataset contained 102 palliative treatment plans with a broad range of treatment sites 
in the head and neck region. The primary tumor was contoured alone in 79 of these; the remaining 23 included 
up to 3 additional contoured nodal masses. Tumor size varied widely, with median volume measured at 107 (σ 
177)  cm3. Median patient age was 71 years, and 64% of patients were reported as male. The three most commonly-
reported treatment sites were neck, thyroid, and oral cavity at 33%, 9%, and 7%, respectively. Most (n = 94) scans 
in the non-contrast cohort were acquired on a Philips (Amsterdam, Netherlands) CT system, with the remaining 
8 divided among GE (Boston, Massachusetts) and Siemens (Munich, Germany) scanners. All scans were acquired 
helically and kVp set to 120 (n = 87) or 140 (n = 15). Slice thickness was set to 3.0 mm for most scans (n = 80), 
with 21 scans using 2.5 mm and the remaining scan at 2.0 mm. Exposure inner quartile range was 262.5–473.8 
mAs, with a single scan above 500 mAs exposure.

The second dataset contained 96 palliative treatment plans with contrast-enhanced simulation CTs from a 
second institution. There was more variation in tumor contoured: 39 only had a primary tumor, 36 contained 
both primary and nodal contours, 5 had only nodal contours, 11 contained a unified primary and nodal contour 
that did not differentiate between the two, and the remaining 5 had primary, nodal, and unified contours. These 
tumors were smaller than the non-contrast dataset, with median volume 55 (σ 87)  cm3. Other information such 
as subsite was not available due to anonymization as required by the data-transfer agreement. All simulation scans 
were acquired on a GE CT system on helical mode with 120 kVp and 2.5 mm slice thickness. Exposure inner 
quartile range was 52–68 mAs with 87 mAs maximum. Patient age and sex were anonymized and unreported.

Segmentation approaches
The nnU-Net (“no new U-Net”) architecture, which is based upon the popular U-Net convolutional neural net 
framework and offers a robust, self-configuring data processing and training framework, was chosen as the 
autocontouring model for this work based upon its strong performance in the medical imaging  domain19,20. The 
network schematics, which are based upon the U-Net architecture, are provided in the original paper. The latest 
published version of nnU-Net at time of this study (version 1.6.6) was selected, and model defaults were not 
changed for the current work (batch size 2, LeakyReLU activations, and SGD optimizer with ‘poly’ learning rate 
 decay21 
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 over a total of 1000 epochs). A total of five approaches were designed (Table 1). For each of 
the five approaches, models were trained for 1000 epochs with a five-fold cross-validation scheme, and best-
performing models automatically identified and ensembled for the final GTV autocontouring of the test sets.

Table 1.  Summary of image modality and GTV classifications for each approach. “Additional Cropping” 
denotes if the inputs were cropped before the nnU-Net preprocessing stage. Note that 11 patients in the 
contrast-enhanced set did not contain separate primary and nodal contours, and so were excluded from 
approaches 4 and 5.

Approach Image modality Additional cropping (dimensions) GTV Dataset size train (test)

1 Non-contrast CT Yes (96 × 256 × 256) Combined primary and nodal 82 (20)

2 Non-contrast CT Yes (48 × 128 × 128) Combined primary and nodal 82 (20)

3 Contrast-enhanced CT No Combined primary and nodal 77 (19)

4 Contrast-enhanced CT No Separate primary and nodal 68 (17)

5 Contrast-enhanced CT + Synthetic MR No Separate primary and nodal 68 (17)
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Synthetic Magnetic Resonance (sMR) images (Approach 5) were generated by a pre-trained, in-house devel-
oped Comp-GAN22. To improve the structural consistency between the sMR and input CT images, a structure-
consistency loss was introduced in the cycleGAN  model22,23. Specifically, the modality independent neighborhood 
descriptor (MIND) was adopted as the structure-consistency loss to penalize the difference between synthetic 
and input  images24. To develop the proposed cycleGAN model, MR and CT images of 79 patients with HN cancer 
who received external photon beam radiation treatment at The University of Texas MD Anderson Cancer Center 
were retrospectively collected, completely independent of the datasets used in this study. The MR images were 
acquired using a 1.5 T MR system (Magnetom Aera, Siemens Healthineers), and the post-contrast T1-weighted 
MR imaging protocol included a 3D gradient dual-echo Dixon sequence. Since the cycleGAN model is based on 
the principle of cycle-consistency and does not require perfect alignment of MR-CT images for model training, 
CT images were only rigidly registered to MR images for each patient using a commercial software Velocity AI 
v.3.0.1 (Varian Medical System, Atlanta, GA). All the MR and CT images were resampled to have the same voxel 
size of 1.1719 × 1.1719 × 1.0  mm3. Then, the 2D patches with the size of 256 × 256 were extracted from MR and 
CT images to train our cycleGAN model. This trained network was then provided with the contrast-enhanced 
dataset to generate the sMR images used in Approach 5.

Evaluation metrics
Performance was assessed using three metrics, Dice similarity coefficient (DSC), 95th Hausdorff distance (HD95), 
and surface Dice similarity coefficient (SDSC) with a 2 mm  tolerance11. DSC indicates the volumetric overlap 
between the model predicted GTV and the physician-delineated GTV and ranges from 0 (no overlap) to 1 (per-
fect agreement). Hausdorff distance is the single greatest distance between any point in one structure and the 
closest point in another structure—in this case, it serves to estimate distance to agreement between the model 
predicted GTV and that of the physician, and smaller values are better. To reduce sensitivity to outliers, the 95th 
percentile was selected to better reflect agreement between predicted and ground-truth contours. SDSC indicates 
the ratio of the overlapping surfaces of the model predicted GTV and the physician delineated GTVs to the total 
surface area. SDSC has been shown to be a good indicator of clinical  acceptability25,26.

In many cases and particularly for nodal GTVs, targets were either not contoured by physicians or missed by 
the autocontouring model. If both the ground truth and predicted contours of a particular structure (primary 
or nodal GTV) did not exist, metric calculations were ignored for that structure. If the ground truth delineation 
existed but there was no predicted structure, or if there was no ground truth delineation of a structure but a 
prediction of that structure was made, DSC was manually set to 0 and HD95 was ignored. This approach avoided 
penalizing results when structures didn’t exist for both ground truth and predictions, while still accounting for 
failures when either non-existent tumor involvement was predicted, or more commonly, existing tumor was not 
identified by the model.

Finally, comparison between the five approaches was performed with a two-sided Wilcoxon Rank-Sum 
 test27. This was done to identify if any approach was able to statistically improve performance. Following values 
observed in the literature, differences in model performance was considered significant if p ≤ 0.05 . Correlation 
between total tumor size and model performance was assessed with a two-sided Spearman rank-order correla-
tion  coefficient28 with correlation considered significant at p ≤ 0.05.

Results
Overall, model performance highlighted the complexities of autocontouring within the HN region. Median DSC 
ranged from 0.6 to 0.7 across all five approaches, HD95 from 15 to 20 mm, and SDSC from 0.30 to 0.56 (Fig. 1 
and Table 2). Median predicted volumes ranged from 69.12 to 79.59 cc for the non-contrast CT images, and 
from 22.77 to 57.63 cc for the contrast-enhanced CT images (Table 2). For the non-contrast CT images, model 
performance improved when a center point of the tumor was first manually identified and then the image cropped 
about it (Approach 2). Median DSC improved by almost 7%, median SDSC improved by 5%, and median HD95 
decreased by over 2 mm. However, the improvements were not statistically significant (Table 3).

For the models training on contrast-enhanced CT excluding the sMR images, the single GTV chan-
nel (Approach 3) had best median DSC and SDSC. Introducing separate primary and nodal GTV channels 
(Approach 4) worsened median overall DSC by about 6% and median overall SDSC by 3%, although median 
overall HD95 performance improved by 0.72 mm. Adding sMR (Approach 5) worsened median DSC, median 
SDSC, and median HD95 in all cases except median HD95 for nodal contours, where an improvement of 
1.16 mm was noted. None of these changes were statistically significant (Table 3).

Across all modalities, contrast-enhanced CT and single GTV channel (Approach 3) had the best median DSC 
and median SDSC. Contrast-enhanced CT and separate GTV channels improved median HD95 (Approach 4), 
although this did not correspond to improved DSC. Only the SDSC metric demonstrated statistically signifi-
cant change between the non-contrast results and the contrast-enhanced results (Table 3). Within the test set, 
physician-contoured tumor volume was weakly correlated to performance as follows: positively with increased 
DSC (p = 0.002), negatively with increased SDSC (p = 0.036), and positively with increased HD95 (p = 0.012).

An example of predictions made on cases in the test sets is provided in Fig. 2. It may be observed that the 
approaches struggled particularly with contouring nodal involvement, regardless of separate primary and nodal 
GTV channels being provided during training.

Discussion
In this study, we used the nnU-Net auto-contouring architecture and 2 separate CT-based HN palliative radio-
therapy datasets to create an auto-segmentation tool for HN GTV. We found that while state-of-the-art deep-
learning autocontouring models were capable of automatically segmenting the GTVs, they were unable to do so 
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Figure 1.  Results of the 5 individual autocontouring methods on the test datasets. Approaches 1 and 2 were the 
fully-automated and semi-automated nnU-Net models, respectively, trained on the non-contrast CT dataset. 
Approach 3 was the nnU-Net trained on the contrast-enhanced CT dataset with primary and nodal GTVs in 
the same channel. Approach 4 was the nnU-Net trained on the contrast-enhanced CT dataset with separate 
primary and nodal GTV channels, and Approach 5 was the nnU-Net trained on the synthetic MR and contrast-
enhanced CT with separate primary and nodal GTV channels. DSC: Dice similarity coefficient, HD95: 95th 
Hausdorff distance, SDSC: surface Dice similarity coefficient with 2 mm tolerance.

Table 2.  Model performance on the test datasets across all five approaches. Median values for each metric 
and standard deviation in parentheses are reported.  DSC Dice similarity coefficient, HD95 95th Hausdorff 
distance, SDSC surface Dice similarity coefficient with 2 mm tolerance, sd standard deviation.

Approach

DSC (sd) HD95 (sd) [mm] SDSC (sd) Volume (sd) [cc]

Combined Primary Nodal Combined Primary Nodal Combined Primary Nodal Combined Primary Nodal

1 0.595 
(0.281)

19.72 
(32.52) 0.30 (0.17) 69.12 

(266.86)

2 0.663 
(0.187)

17.71 
(14.19) 0.35 (0.18) 79.59 

(158.31)

3 0.704 
(0.276)

15.45 
(19.58) 0.56 (0.25) 57.63 

(68.28)

4 0.639 
(0.186)

0.701 
(0.195)

0.067 
(0.361)

14.73 
(13.33)

10.74 
(11.56)

29.22 
(38.92) 0.53 (0.18) 0.50 (0.18) 0.13 (0.34) 29.38 

(60.00)
18.44 
(59.46) 0.00 (5.90)

5 0.628 
(0.228)

0.654 
(0.255)

0.046 
(0.368)

18.16 
(16.94)

14.25 
(15.96)

28.06 
(50.08) 0.49 (0.20) 0.46 (0.22) 0.10 (0.35) 22.77 

(37.16)
19.39 
(36.53) 0.00 (6.17)
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consistently, as indicated by our top median DSC of 0.7. In particular, models struggled to successfully delineate 
nodal involvement (Figs. 1 and 2).

Multiple approaches were taken to potentially improve the model performance. The HN region is anatomically 
complex even in the absence of tumors, which are often heterogeneous and displace or invade nearby structures. 
It is reasonable to expect that a reduction in non-tumor anatomy presented to the model could improve per-
formance, which was accomplished through cropping the image around the approximate center of the tumor 
(Approach 2). This was found to have the single-greatest percent improvement in median DSC, though not to 
statistical significance (Table 3).

The particularly-poor soft-tissue contrast of CT without contrast-enhancing agent can lead to obscured 
tumor boundaries, particularly for subsites such as base of tongue. We addressed this through two methods: the 
use of a second, contrast-enhanced CT dataset (Approaches 3, 4, and 5), and through generating sMR images 
which improved soft-tissue contrast (Approach 5). While sMR has been observed in the literature to improve 
soft-tissue autocontouring in the HN  region29, we observed poorer performance for sMR in this study (though 
not to statistical significance).

The tumors themselves have different geometrical features; in particular, primary tumors tend to be larger and 
located more centrally than nodal tumors. We hypothesized that training the models on contours that did not dif-
ferentiate between primary and nodal contours could lead to poorer generalizability; thus, training with separate 
contours was explored (approached 4 and 5). When only contrast-enhanced CT images were used (Approach 4), 
this led to the single-greatest improvement in median HD95, though again not to statistical significance (Table 3).

The difference in acquisition parameters, particularly the reduced mAs of the contrast-enhanced dataset, bears 
consideration. This was investigated by Huang et al. who found that deep learning autocontouring algorithms are 
generally robust to changes in  mAs30. This agrees with our results, where both DSC and HD95 were not statisti-
cally changed across non-contrast and contrast-enhanced datasets, although SDSC was.

Evaluation of other autocontouring algorithms
Although the original authors show highly competitive results across multiple medical imaging datasets, nnU-
Net is not the only deep learning framework capable of auto-segmentation; indeed, its performance is possibly 
attributable to its consistent data processing stages rather than any feature of the neural network itself, and it 
intentionally eschews novelty in favor of  consistency19. Therefore, other customized networks were developed 
and evaluated early in this project: an attention-gated 3D U-Net, an cascading attention gated 3D U-Net, and 
a V-Net31–40. These models were all written in-house following descriptions in the literature and customized as 
appropriate, and all were trained on the non-contrast CT dataset only. Improvements over nnU-Net were not 
observed, therefore these experiments are described here as-is and only nnU-Net selected for further evaluation.

Related Work
To the best of our knowledge, this is the first work to investigate such a wide range of approaches for automated 
palliative HN GTV segmentation directly from CT-only images, likely due to the innate difficulty of contouring 
such an anatomically complex region without support of other imaging modalities. However, there has been 
some success noted in related approaches using advanced imaging modalities.

Table 3.  It may be observed that no approach yielded results with statistically significant changes in 
performance on the test datasets (p > 0.05 for all) for DSC, HD95, and most SDSC metrics. When possible, 
comparison between primary and nodal GTVs was performed as well as between combined GTVs. 
Approaches 1 and 2 were the fully-automated and semi-automated nnU-Net models, respectively, trained on 
the non-contrast CT dataset. Approach 3 was the nnU-Net trained on the contrast-enhanced CT dataset with 
primary and nodal GTVs in the same channel. Approach 4 was the nnU-Net trained on the contrast-enhanced 
CT dataset with separate primary and nodal GTV channels, and Approach 5 was the nnU-Net trained on the 
synthetic MR and contrast-enhanced CT with separate primary and nodal GTV channels.  DSC Dice similarity 
coefficient, HD95 95th Hausdorff distance, SDSC surface Dice similarity coefficient with 2 mm tolerance.

Approach (GTV Structure) p (DSC) p (HD95) p (SDSC)

1 versus 2 (Combined) 0.0762 0.1989 0.0665

1 versus 3 (Combined) 0.0869 0.1364 0.0024

1 versus 4 (Combined) 0.1771 0.063 0.0001

1 versus 5 (Combined) 0.6151 0.3083 0.0039

2 versus 3 (Combined) 0.8449 0.6598 0.0449

2 versus 4 (Combined) 0.3971 0.3543 0.0059

2 versus 5 (Combined) 0.1009 0.8038 0.1248

3 versus 4 (Combined) 0.4375 0.7393 0.9874

3 versus 5 (Combined) 0.1243 0.5962 0.4011

4 versus 5 (Combined) 0.3798 0.2641 0.3263

4 versus 5 (Primary) 0.2935 0.0838 0.3263

4 versus 5 (Nodal) 1 0.7488 0.9164
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Figure 2.  Ground truth and predicted contours on sample cases. Approaches 1 and 2 were the fully-automated 
and semi-automated nnU-Net models, respectively, trained on the non-contrast CT dataset. Approach 3 was 
the nnU-Net trained on the contrast-enhanced CT dataset with primary and nodal GTVs in the same channel. 
Approach 4 was the nnU-Net trained on the contrast-enhanced CT dataset with separate primary and nodal 
GTV channels, and approach 5 was the nnU-Net trained on the synthetic MR and contrast-enhanced CT 
with separate primary and nodal GTV channels. Rows 1 and 2 show the same cases from the non-contrast CT 
dataset, and rows 3–6 show the same cases from the contrast-enhanced CT dataset. It may be observed that 
nodal contours were particularly challenging for all approaches (column 3). Note that “Primary” is a surrogate 
for both primary and nodal GTV contours in the first three rows, where no distinction between primary and 
nodal contours was made during model training or contour prediction. Note that rows 5 and 6, in green boxes, 
show examples of both the CT and the synthetic MR used in approach 5.
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In a study that highlighted the importance of multiple imaging modalities, Guo et al. used a state-of-the-art 
3D U-Net, as well as their custom model, which they called "Dense Net," and found that using PET data along 
with CT greatly improved segmentation results for both  networks17,31. When trained with only CT data, the 
median DSC was only 0.32 for Dense Net and unreported for 3D U-Net. However, training and predicting with 
combined PET/CT data greatly increased the median DSC to 0.71 (3D U-Net) and 0.73 (Dense Net). It is worth 
noting that, while direct comparison is not possible, the current work achieved median DSC of 0.70 with only 
CT images that rivals the results of the multi-modality PET/CT approach described above.

Both automated and semi-automated approaches were explored for segmenting primary oropharyngeal squa-
mous cell carcinoma tumors from MR  images41. A 3D U-Net was used in both instances. The median DSC for 
the fully-automated technique was 0.55. Much better results were found from a semi-automated approach in 
which the tumors were first manually located within a bounding box before the automated segmentation; this 
yielded a median DSC of 0.74. However, this semi-automated step trades accuracy for the additional time com-
mitment of manually creating a bounding box around the entire tumor volume. Also, MR images have superior 
soft-tissue contrast compared to the CT images used in the current work.

For CT-only segmentation, Mei et al. developed a custom 2.5D U-Net-like architecture as part of a challenge 
for the MICCAI 2019 annual conference. This model added attention modules and project and excite  blocks18, 
and was trained on CT images from nasopharyngeal cancer patients (which often are better defined on CT than 
many of the tumors in the current work), with the use of contrast enhancement not reported. Overall, they 
achieved a median DSC of 0.65, compared to the median DSC of 0.70 in the current work.

These results underscore the difficulty of GTV autosegmentation in the HN region. Although other fully-
automated clinical target delineation algorithms routinely achieve high DSC scores and perform well in clinical 
acceptability tests, robust fully-automated GTV segmentation remains  elusive14. At present, higher-performing 
GTV delineation (DSC > 0.7) has been conducted with either orthogonal imaging modalities such as PET and 
MR, or manual intervention such as drawing bounding boxes. In addition, most approaches are limited in scope 
and restricted to only a particular tumor stage and/or a specific HN cancer. As such, they are not directly com-
parable to an approach for GTV delineation in late-stage, palliative HN cancers. Therefore, it may be concluded 
that current deep learning algorithms are not capable of the fully-automated GTV delineation needed to aid 
LMICs in palliative HN treatment planning.

Physician variability
Finally, significant intra- and inter-observer variability in GTV delineation for HN cancer has been observed even 
among experienced treatment staff and with orthogonal imaging  modalities42–44. A recent study comparing HN 
GTV delineations on MR of 26 experienced radiation oncologists showed mean DSC as low as 0.67 and 0.60 for 
primary and nodal targets,  respectively45. Direct comparison with human performance is difficult as physicians 
typically have the advantage of multiple imaging modalities such as MR. However, it is worth highlighting that 
our results for primary GTV are competitive with human performance despite being CT-only. There may even 
be examples where structures identified as tumor by our models were not contoured by the physicians, although 
we do not have the longitudinal data to further investigate these palliative plans. Future research should consider 
the impact of these noisy datasets on autocontouring model generalizability.

Conclusion
Automated GTV segmentation of palliative HN tumors using only CT could lead to significant time savings 
in resource-limited settings, but most research has focused instead on multi-modality images or small, well-
contained tumors that are not applicable to LMICs. Therefore, the current work evaluated five approaches to GTV 
autocontouring that required only CT scans. Overall, results were not sufficiently robust for clinical implementa-
tion, with median DSC ≤ 0.7 for all approaches. However, the results of this CT-only HN GTV autocontouring 
work are competitive with values reported in the literature using more information-rich, multi-modality imaging 
techniques and less challenging datasets; thus, our approaches show promise for future research.

Data availability
The non-contrast-enhanced data can be made available upon reasonable request to Laurence Court (lecourt@
mdanderson.org). The contrast-enhanced data is subject to a data transfer agreement and unavailable for sharing.
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