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Abstract 

Background Marburg virus disease is an acute haemorrhagic fever caused by Marburg virus. Marburg virus 
is zoonotic, maintained in nature in Egyptian fruit bats, with occasional spillover infections into humans and nonhu-
man primates. Although rare, sporadic cases and outbreaks occur in Africa, usually associated with exposure to bats 
in mines or caves, and sometimes with secondary human-to-human transmission. Outbreaks outside of Africa have 
also occurred due to importation of infected monkeys. Although all previous Marburg virus disease outbreaks have 
been brought under control without vaccination, there is nevertheless the potential for large outbreaks when imple-
mentation of public health measures is not possible or breaks down. Vaccines could thus be an important additional 
tool, and development of several candidate vaccines is under way.

Methods We developed a branching process model of Marburg virus transmission and investigated the potential 
effects of several prophylactic and reactive vaccination strategies in settings driven primarily by multiple spillo-
ver events as well as human-to-human transmission. Linelist data from the 15 outbreaks up until 2022, as well 
as an Approximate Bayesian Computational framework, were used to inform the model parameters.

Results Our results show a low basic reproduction number which varied across outbreaks, from 0.5 [95% CI 0.05–1.8] 
to 1.2 [95% CI 1.0–1.9] but a high case fatality ratio. Of six vaccination strategies explored, the two prophylactic strate-
gies (mass and targeted vaccination of high-risk groups), as well as a combination of ring and targeted vaccination, 
were generally most effective, with a probability of potential outbreaks being terminated within 1 year of 0.90 (95% 
CI 0.90–0.91), 0.89 (95% CI 0.88–0.90), and 0.88 (95% CI 0.87–0.89) compared with 0.68 (0.67–0.69) for no vaccination, 
especially if the outbreak is driven by zoonotic spillovers and the vaccination campaign initiated as soon as possible 
after onset of the first case.

Conclusions Our study shows that various vaccination strategies can be effective in helping to control outbreaks 
of MVD, with the best approach varying with the particular epidemiologic circumstances of each outbreak.
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Background
Marburg virus disease (MVD) is an acute haemorrhagic 
fever caused by Marburg virus (genus Marburg mar-
burgvirus, family Filoviridae), affecting humans and 
nonhuman primates [1–4]. Marburg virus is zoonotic, 
maintained in nature in Egyptian fruit bats (Rousettus 
aegyptiacus), which are found across Africa [5]. Although 
rare, sporadic cases and outbreaks occur, usually associ-
ated with exposure in mines or caves inhabited by colo-
nies of these bats [5–13]. Secondary human-to-human 
transmission may occur through direct exposure to 
blood, body fluids or contaminated surfaces.

There have been 15 recognised MVD outbreaks up 
until 2022, beginning in 1967 when infected green 
monkeys from Uganda were imported to Germany and 
Yugoslavia for harvesting of their tissues for vaccine 
production [3, 14] (Additional file  1: Table  S1). Exclud-
ing laboratory infections, the exposures of all index cases 
of outbreaks since then have occurred in Africa [5–13], 
with some outbreaks driven by recurring virus spillover 
from animals to humans and others primarily by human-
to-human transmission. Figure 1 and Table S1 (in Addi-
tional file  1) show the MVD case numbers observed 
during each of the first fifteen outbreaks.

No licensed vaccine for MVD currently exists, although 
several are under development [4]. All previous out-
breaks were controlled when transmission chains ended 
either naturally or through the introduction of public 
health and infection control measures [7, 15]. Neverthe-
less, the outbreak that occurred in Angola in 2004–2005, 
which registered 374 cases and 329 deaths (case fatality 
of 88 percent), illustrates the serious and explosive poten-
tial of Marburg virus. Furthermore, even in the smaller 
outbreaks, the high case fatality ratio could potentially be 
mitigated by vaccination [4].

The aims of this study were to estimate key epidemio-
logical parameters of MVD, such as the reproduction 
number and serial interval, by collating data from the 
first 15 human outbreaks and subsequently use this infor-
mation to parameterise a model that is used to assess 
the impact of different vaccination strategies to control 
outbreaks.

Methods
Data
We used linelist data from all except one of the first 15 
outbreaks to estimate the serial interval of MVD. The one 
exception was the Angola outbreak that occurred during 
2004–2005; here, because no linelist was available, we 
used case numbers reported periodically by the World 
Health Organization (in [16], for instance).

From the linelist data, we identified discernible infec-
tor-infectee pairs, obtained the difference between the 

dates of infection of each pair and fit appropriate distri-
butions to these differences. We also used the linelist data 
to obtain the number of zoonotic introductions seen in 
each outbreak and, together with knowledge of the out-
break duration, estimated the rate of introductions.

We note that there are yet to be any confirmed cases 
of asymptomatic human MVD [16]. Moreover, the sub-
sequent analysis assumes that there are no unobserved 
cases.

Rate of zoonotic introductions
Several MVD outbreaks were driven primarily by 
zoonotic introductions, while others were largely caused 
by human-to-human transmission (Fig.  1). Thus, we 
estimated rates of introductions for two scenarios: one 
typical of a spillover-driven outbreak and one involving 
a single spillover but subsequently driven by human-to-
human transmission. These two scenarios were typi-
fied by the outbreaks in the Democratic Republic of 
the Congo (DRC) [6] and Angola [17], respectively. We 
divided the number of spillover cases in each of these 
outbreaks by the outbreak duration to estimate a typical 
rate of introductions for each scenario.

The DRC outbreak spanned 2 years, with the first case 
being identified in October 1998 and the last in Septem-
ber 2000 [6]. This was an outbreak that was dominated 
by contact with bats [6]. Indeed, it was reported that only 
27% of infected miners from this outbreak had contact 
with another infected individual [6], from which we infer 
that 73% of all infected miners were likely to be spillover 
cases. To estimate the rate of introductions, we divided 
the number of spillover cases by the outbreak duration 
[2 years]. This then constitutes an assumed typical rate of 
introductions during spillover-driven outbreaks.

Other outbreaks, such as the one that occurred in 
Angola [17], likely involved a single spillover event sub-
sequently driven by human-to-human transmission. 
To obtain a typical rate of introductions for these, we 
divided the number of spillover cases by the duration of 
the Angola outbreak, during which it is believed that only 
one introduction occurred [17].

Since there have been only 15 recorded outbreaks from 
1967 up until 2021, the total number of introductions 
across this time period must have been very low, even 
accounting for undetected outbreaks. To reflect this, we 
performed a sensitivity analysis where we lowered both 
the spillover- and transmission-driven rates of introduc-
tions, described above, by one and then two orders of 
magnitude.

Time from first case to interventions
For each outbreak, we estimated the date on which inter-
ventions were put in place [3, 6–12, 18–22]. During 
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Fig. 1 Incidence plots of Marburg virus disease outbreaks involving three or more confirmed or probable cases. Cases are plotted by onset date, 
except for the outbreak in Angola, which shows the day of reporting. Dashed lines represent the day on which interventions were put in place. 
Light blue bars indicate probable spillover infections to humans from animals and dark blue bars cases of human-to-human transmission. Spillover 
cases were usually explicitly reported in the literature, apart from the outbreak in DRC. For this outbreak, we assumed that miners who had been 
in contact with cases were secondary cases and those who were not were assumed to be infected from the reservoir. The other seven known 
outbreaks had fewer than 3 recorded cases
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earlier outbreaks, when little was known about MVD, 
this was either when the disease was acknowledged as 
being dangerous and highly transmissible (namely dur-
ing the 1967 European outbreaks), or the date at which 
patients who showed symptoms consistent with other 
viral haemorrhagic fevers were identified and treated 
accordingly. This then prompted changes in clinical, 
laboratory and infection prevention and control prac-
tices [14], for instance through application of case isola-
tion and barrier nursing [18]. Barrier nursing involves 
placing the individual in a separate area and healthcare 
workers taking extra precautions, ranging from wearing 
personal protective equipment, including head covering 
and eye protection, to disinfecting all objects in the area 
and showering immediately after going off-duty.

For later outbreaks, we used the day on which response 
teams were deployed to the region of the outbreak as 
the intervention date (while recognising that local con-
trol efforts were often already underway). We calculated 
the median time delay between onset of the first case 
and the beginning of interventions across all outbreaks. 
This median was used in forward simulations as the time 
between disease onset of the first case to the date when 
interventions were implemented. However, interven-
tion during several outbreaks, including those in Angola 
(2004–2005) [19, 23], DRC (1998–2000) [6] and Uganda 
(2012) [20] took place several weeks after the median. 
Hence, as a sensitivity analysis, we also took the 75th 
percentile of this delay to intervention and modelled this 
scenario.

Factors affecting outbreak size
The number of cases in each MVD outbreak is presumed 
to be dependent on several factors, including the num-
ber of zoonotic introductions, delay from first case to 
intervention and calendar year in which the outbreak 
occurred. The impact of armed conflict was also noted 
as a possible factor for the two largest MVD outbreaks—
DRC and Angola [6, 18, 24]—though we note that con-
flict in both these regions had officially ended shortly 
before the outbreaks occurred.

We used a negative binomial generalised linear model 
(GLM) to test if the total number of secondary cases 
(i.e. excluding zoonotic introductions) was linked with 
these four potential covariates (initial model). We also 
investigated a reduced model which omitted the covari-
ables that were not significantly associated with the total 
number of secondary cases (p>0.05). A negative binomial 
distribution for the response variable was preferred to a 
Poisson because of the high over-dispersion that may be 
associated with this variable—as is in the case of Ebolavi-
rus [25]. Note that such dispersion was not observed in 

daily case incidence within individual outbreaks, which 
we later on modelled using a Poisson branching process.

Branching process model
We used a branching process to model MVD transmis-
sion over time. New infections generated at any time, t, 
are governed by the force of infection λt, which is deter-
mined by previous case incidence ys (s = 1, …, t−1), the 
serial interval distribution (denoted by w, its probability 
mass function), and the reproduction numbers Rs as:

There are multiple ways to estimate the reproduction 
number from case data [26–28]. Here, we are interested 
in the case reproduction number [26], estimated using 
Eq. 1, rather than the instantaneous reproduction num-
ber [27], since this is a retrospective analysis. Moreover, 
we have information on serial intervals, through dates 
of symptom onset, but not dates of infection and so the 
former is also more appropriate [28]. Though the case 
reproduction number gives estimates that are shifted 
forward in time [28], in contrast to the instantaneous 
number, the analysis we have conducted is retrospective, 
rather than in real time.

We assume that higher-risk groups are at higher risk of 
exposure, either to the reservoir, as in the case of min-
ers, or to cases by means of being a healthcare worker, 
but not higher risk of transmission to others. Hence, 
assuming the same average reproduction number for all 
individuals, new secondary cases at time t are then drawn 
from a Poisson distribution so that:

Equation (1) shows that the reproduction number Rs 
is allowed to vary over time. This is used to distinguish, 
in any given outbreak, two phases: the first during which 
transmission is maximum (Rs = R0, the basic reproduc-
tion number), and the second during which intervention 
reduces transmission by a factor E, the intervention effi-
cacy, so that:

Intervention is defined, in this context, as the imple-
mentation of measures such as case isolation, contact 
tracing and barrier nursing. We assume that depletion 
of the susceptible population is negligibly low, given the 
low number of cases compared to the population of each 
affected community.

In our model, the reduction in the reproduction num-
ber from R0 to Rs assumed to occur instantaneously after 

(1)�t =

s=1,..., t−1

Rs ys w(t − s)

(2)yt ∼ Poisson(�t)

(3)Rs = R0(1− E)
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the date after which interventions are implemented (see 
subsection above).

The model also incorporates a constant rate of intro-
ductions, γ, in which newly introduced cases (presumed 
spillover events) are also Poisson distributed. Hence, the 
number of new cases at time t , Yt , is the sum of the pri-
mary and secondary cases:

Parameter estimation
We used an Approximate Bayesian Computational (ABC) 
framework for estimating the basic reproduction num-
ber, R0, and E for each outbreak separately. To do this, we 
first determined the delay to implementation of interven-
tions, the duration of the outbreak and rate of introduc-
tions for each particular outbreak. The priors used were 
as follows: R0 ∈ U(0,3) and E ∈ U(0,1). The summary sta-
tistic used was the absolute difference between the total 
number of cases observed in a simulation and the actual 
number reported during the outbreak. Parameter values 
were retained as part of the posterior sample if this differ-
ence was within 10% of the actual value:
|nsimulated − noutbreak | < 0.1noutbreak.
Five thousand posterior samples were retained in this 

way per outbreak.
For estimates of the serial interval, 26 infector-infectee 

pairs were determined from literature on previous MVD 
outbreaks. These infector-infectee pairs were deter-
mined by local epidemiologists in the field at the time 
investigating the outbreaks. Most of these were house-
hold transmission pairs: for instance, miners infecting a 
family member in the DRC outbreak [6]. Occasionally, 
however, the pair involved nosocomial transmission, as 
happened in the outbreak in Kenya [12]. Dates of onset 
for each pair, specified by epidemiologists, were used to 
estimate the serial interval by fitting four distributions 
(gamma, negative binomial, Poisson and logistic) to the 
time period between the dates of onset for these infec-
tor-infectee pairs using the fitdistrplus package in R. The 
Akaike Information Criterion (AIC) was used to deter-
mine the best-fit model.

We then modified the model to include the effects of 
vaccination on transmission. Vaccination reduces the 
reproduction number associated with each case by the 
vaccine efficacy (VE) corresponding to that case, on top 
of any reduction due to intervention efficacy I. Six vac-
cination schemes were simulated:

(1) Prophylactic targeted vaccination of high-risk 
groups. This scheme involves the vaccination of 
healthcare workers, as well as individuals who 
reside near or work in mines or caves. From a 

(4)Yt ∼ Poisson(γ )+ Poisson(�t)

search of linelist data [3, 6–14, 17, 18, 20, 21, 23], we 
estimate that, across all MVD outbreaks, approxi-
mately 6% of cases were healthcare workers and 
12% were individuals living near or working in 
mines or caves (though this excludes the outbreak 
in Angola due to lack of data).

(2) Prophylactic mass vaccination. The second scheme 
was prophylactic mass vaccination of the entire 
community prior to the outbreak

(3) Ring vaccination. This is the first of the reactive vac-
cination strategies that we simulated. A proportion 
of contacts are vaccinated after the date of interven-
tion. This proportion depends on how extensively 
case reporting is carried out, as well as on vaccina-
tion coverage

(4) Reactive targeted vaccination. This scheme entails 
vaccination of the same high-risk groups as in the 
prophylactic targeted vaccination, but done reac-
tively after an MVD outbreak has begun. In our 
model, vaccination is simulated only after the date 
of intervention

(5) Reactive mass vaccination. This is mass vaccination 
simulated only after intervention has begun

(6) A combination of ring and reactive targeted vaccina-
tion schemes

For all vaccination schemes, we assumed that no 
waning of immunity occurred after vaccination. The 
vaccination parameters in our model were:

Maximum Vaccine Efficacy (VEmax):

VEmax of a vesicular stomatitis virus (VSV)-based 
vaccine expressing the MARV glycoprotein (VSV-
MARV) was found to be 100% in nonhuman primates 
(NHPs) [2]. As this is unlikely to be observed in the 
field, we adjusted downward to a VEmax of 90% in the 
base case.

Time from vaccination to maximum vaccine efficacy:

We assumed that the time from vaccination, when effi-
cacy is 0%, to maximum efficacy was 7 days. This was the 
time period observed during Phase I trials on NHPs of 
the MVD vaccine [2]. In our model, we represented the 
increasing vaccination efficacy over time through a logis-
tic curve (Additional file 1: Figure S1).

Vaccination against transmission
We have assumed that a potential MVD vaccine 
reduces onward transmission and, therefore, disease 
(though not disease in the cases themselves). However, 
we also relax this assumption by conducting a sensitiv-
ity analysis where the vaccine prevents disease but not 
transmission.
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Vaccine coverage
The level of coverage that is likely to be achieved in an 
outbreak setting is difficult to estimate. In two reviews of 
oral cholera vaccine, uptake coverages ranged between 
61 and 100% for at least 1 dose and 46 and 92% for two 
dose coverage in outbreak settings. Hence in this analy-
sis, in the base-case, we assume that targeted and ring 
vaccination coverages would be 70%, at the lower end of 
the one-dose coverage, since MVD vaccines currently in 
the pipeline are injectable, rather than oral (as is the case 
with oral cholera vaccines).

Given logistical difficulties and possible vaccine short-
ages [29], we would expect a lower rate of coverage 
(assumed to be 50%) in the case of a mass vaccination 
strategy—both reactive and prophylactic. We increased 
or decreased these coverages by 20% in the sensitivity 
analyses.

Conditional timing between vaccination and infectious 
contact
The time between vaccination and effective contact with 
an infectious person or animal is not independent in a 
reactive programme. This is because contacts of cases 
(in the case of ring vaccination) or the wider community 
(mass vaccination) are vaccinated in response to a case. 
Thus, many people will be vaccinated around the time 
that they are infected, lowering vaccine efficacy. We have 
taken this into account by assuming that, amongst indi-
viduals who become infected, the average delay between 
vaccination and infectious contact was normally distrib-
uted with a mean of 20 days (s.d. 5 days) for prophylactic 
and 9 days (s.d. 4 days) for reactive strategies. These nor-
mal distributions (truncated at zero days) were chosen so 
that vaccination efficacy varied during reactive vaccina-
tion, with most of the efficacy values lying on the slope of 
the logistic curve fit of vaccine efficacy (see next section), 
while for prophylactic vaccination, over 99% of values 
were within 0.5% of the maximum vaccine efficacy.

Data from a previous ring vaccination trial for an Ebola 
virus disease vaccine in Guinea showed an average delay 
from vaccination to subsequent infection (given the indi-
viduals had indeed been infected) in the rings of 5.7 days 
(s.d. 5.0 days) [30]. We also examined this delay distribu-
tion as a sensitivity analysis.

Logistic curve fit of vaccine efficacy
We modelled the vaccine efficacy from vaccination to 
infectious contact using a logistic curve of the form:

VE(t) =
VEmax

1+ exp

(
tmid−t
scale

)

where t is the number of days after vaccination, VEmax 
is the maximum vaccine efficacy, tmid is the day when 
VE reaches its inflection point and scale is the scaling 
parameter on the x-axis (Figure S1 in Additional file 1). A 
nonlinear least squares approach (specifically, the Leven-
berg-Marquardt algorithm) was used to fit this curve so 
that VE increases from 0 to within 0.5% of the maximum 
VE , denoted VEmax, in 12 days (see [2]) and subsequently 
tends towards this maximum.

Forward simulations
We subsequently performed forward simulations to show 
the effects of these different vaccination schemes on 
potential outbreaks under both the low and high intro-
duction rates estimated previously. For each forward 
simulation, we selected at random one set of parameters 
from the posterior distribution of one randomly selected 
MVD outbreak. We ran 10,000 simulations per vaccina-
tion scheme in this manner. The maximum number of 
cases for each outbreak was restricted to 5000.

We compared the distributions of simulated case num-
bers after implementing the six vaccination strategies 
described above with the no-vaccination scheme. We 
also estimated the proportion of terminated outbreaks 
predicted under each scheme. An outbreak was consid-
ered to be terminated if the force of infection (see Eq. 2) 
was less than 0.05 after 365 days. Such a rate would be 
equivalent to less than one new infection per 20 days, 
which is at the upper limit of the incubation period for 
MVD [1]. This would correspond to an outbreak that has 
effectively ended after 1 year.

Results
Epidemiological parameters
The estimated rate of zoonotic introductions was 0.06 
and 0.003 per day during the DRC and Angola outbreaks, 
respectively. Across all outbreaks, the median delay 
between onset of the first MVD case and beginning of 
interventions was 21 days.

A gamma distribution was found to best fit the MVD 
serial intervals, according to the AIC (Additional file  1: 
Table  S2). The fitted gamma distribution of the serial 
intervals had a mean of 9.2 days and standard deviation 
of 4.4 days (Additional file  1: Figure S2). The median 
value of R0 was 0.8 [95% CI 0·08–1·8], while the median 
value of Rs , the post-intervention reproduction num-
ber, was 0.3 [95% CI 0·01–1·3], from Eq. 3. These values 
should, however, be interpreted with caution due to the 
heterogeneity of the reproduction number across all 
MVD outbreaks.

Instead, it is more informative to inspect the distribu-
tions of R0 and the post-intervention reproduction num-
ber for each previous outbreak: these are shown in Fig. 2. 
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The value of R0 for each individual outbreak ranged from 
0.5 [95% CI 0.05–1.8] to 1.2 [95% CI 1.0–1.9], while the 
post-intervention reproduction number ranged from 
0.2 [95% CI 0.006–0.7] to 0.6 [95% CI 0.03–1.5]. For 
the majority of outbreaks, the median value of R0 was 
less than 1, indicating there was little person-to-person 
transmission even before interventions. Consequently, 
the intervention efficacy is difficult to estimate during 
these outbreaks. There were, however, two outbreaks 
where R0 was likely to have been greater than 1: namely 
the Angolan outbreak in 2004–2005 and Ugandan out-
break in 2012, where R0 was estimated to be 1.2 (95% CI 
1.0–1.9) and 1.1 (95% CI 0.7–1.9) respectively. For these 
outbreaks, our estimates of the intervention efficacy were 
skewed towards higher values (Fig. 2). These parameters 
are summarised in Table 1.

Factors influencing outbreak size
The negative binomial regression suggested that, of all 
factors that we investigated, there was evidence (p<0.001) 
that the length of delay to interventions influenced the 
number of secondary cases, but no evidence (p>0.05) 
that the other factors modelled did so (Table 1). Specifi-
cally, an increase of one day to this delay resulted in the 
log number of secondary cases increasing by a factor of 
1.03 (the incidence rate ratio) (Table  1). The coefficient 
associated with the delay to intervention was very simi-
lar under the reduced model, which had this delay until 
interventions as its lone covariate (Table 2).

Simulations of vaccination strategies
The proportion of terminated outbreaks in the absence of 
any vaccination strategy was 0.92 (95% CI 0.91–0.93) and 
0.68 (CI 0.67–0.69) when the rate of introductions was 
low and high, respectively. Most vaccination strategies 
resulted in an increase in this proportion; in particular 
the combined ring and targeted strategy, with values of 
0.99 (CI 0.99–0.99) and 0.88 (CI 0.87–0.89), the prophy-
lactic mass strategy, with values of 0.99 (CI 0.99–0.99) 
and 0.90 (CI 0.90–0.91), for low and high rates of intro-
ductions, respectively, and prophylactic targeted, with 
values of 0.98 (CI 0.97–0.99) and 0.89 (CI 0.88–0.90), for 

low and high rates of introductions, respectively (Table 3 
and Fig. 3a).

The median number of cases in the absence of any vac-
cination strategy was 3 (95% CI 3–3) and 36 (CI 35–37) 
for low and high rates of introductions, respectively. 
Under the low rate of introductions scenario, there was 
a small decrease in this median to 2 cases for the pro-
phylactic mass vaccination strategy, and to 1 case for 
the prophylactic targeted strategies, while there was 
also a small decrease observed for all reactive vaccina-
tion strategies when simulating a high rate of introduc-
tions, with the exception of the ring vaccination scheme. 
Under this higher rate of introductions, a larger reduc-
tion in the median number of cases under the prophy-
lactic mass and targeted strategies was observed (17 and 
11 cases, respectively) (Table 4 and Fig. 3b). We note that 
the boluses around the 5000 cases mark in Fig.  3b rep-
resent outbreaks that are both ongoing after 1 year (i.e. 
had a force of infection greater than 0.05 per day after 
365 days) and had accumulated over 5000 cases (the 
maximum number of cases to which we had capped each 
simulated outbreak).

Sensitivity analyses
Varying the vaccination parameters had the following 
effects:

Reducing the conditional timing between vaccination 
and infectious contact to 5.73 days (s.d. 5.03 days) did 
not result in meaningful differences from baseline values 
in either the proportion of terminated outbreaks or the 
median number of cases across all simulated outbreaks 
(Tables 3 and 4).

Reducing vaccination coverage to 20% less than base-
line values led to higher median number of cases than 
baseline, as well as a decrease in the proportion of ter-
minated outbreaks across all vaccination schemes, apart 
from the ring (Tables  3 and 4). However, this was only 
apparent if the rate of introductions was high. With 
increased coverage (20% greater than baseline values), 
all vaccination strategies performed better than baseline 
in terms of increasing the proportion of terminated out-
breaks, though no change in the median number of cases 
was observed (Tables 3 and 4).

Fig. 2 A Posterior distribution of the basic reproduction number and intervention efficacy combined. B Marginal posterior distribution of the basic 
reproduction number. C Marginal posterior distribution of the intervention efficacy for each outbreak, in chronological order. Dashed lines indicate 
95% confidence intervals. Purple/blue regions in plot A represent low density pairs of intervention efficacy and R0 values (i.e. pairs with relatively 
few values found in the posterior distribution), while yellow regions represent high density pairs (i.e. pairs with relatively many values found 
in the posterior distribution)

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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When the date of intervention was increased to 90 
days after onset of the first case, we observed a decrease 
in proportion of terminated outbreaks for reactive 
vaccination strategies at the higher introduction rate 
(Table  3). For instance, whereas 99% of outbreaks on 

average were terminated under a combined ring and 
reactive targeted vaccination scheme when interven-
tions occurred after 21 days, this decreased to 82% with 
a delay of 90 days. This also translates to an increase 
in the median number of cases for these reactive 

Table 1 Epidemiological parameters associated with Marburg virus and Ebola virus diseases

a  Inferred from data
b  Simulated values
c  Assumed values, from Phase I trials of an MVD vaccine
d  Ebola virus disease outbreak in West Africa, beginning in 2013

Parameter Marburg virus disease Ebola virus disease

Case fatality ratio 53.8% [95% CI 26.5–80%]
[31]

65.0% [95% CI (54.0–76.0%)]
(All Outbreaks)
[31]

Serial Interval (Gamma distribution) Mean: 9.2 days
Standard Deviation: 4.4  daysa

Mean: 11.6 days
Standard Deviation: 6.3  daysd [32]

Incubation period (range of central values, (range)) 5–10 (2–21) days (15,31) 5.3–12.7 (1–21)  daysd

[1, 4]

Basic reproduction number 1.2 [95% CI 1.0–1.9]
(Angola, 2004–2005)
0.76 [95% CI 0.57–0.98]
(DRC, 1998–2000)
1.1 [95% CI 0.66–1.9]
(Uganda, 2012)
Median estimates range from 0.51 
to 1.2, depending on  outbreakb

1.71 [95% CI 1.44, 2.01]
(Guinea)
1.83 [95% CI 1.72, 1.94]
(Liberia)
2.02 [95% CI 1.79, 2.26]
(Sierra Leone)d [32]

Maximum vaccine efficacy 100% (on Nonhuman Primates)c [2] 100% [30]

Days between vaccination and maximum efficacy 7 (on Nonhuman Primates)c [2] 10 [30]

Conditional timing between vaccination and infective contact 7 (on Nonhuman Primates)c [2] Mean: 5.73 days
Standard deviation: 5.03 days [30]

Delay between onset of first case and implementation of interventions 21 days (median over all outbreaks)c ~ 90  daysd

Table 2 Values of coefficients for the negative binomial regression (with a natural log link), for a model with the following covariates: 
number of zoonotic introductions, delay to interventions, calendar year of outbreak and whether armed conflict occurred shortly 
before

Covariates Estimated value Standard error Lower CI (2.5%) Upper CI (97.5%) p-value

Model intercept 41 44 −46 130 0.36

Number of introductions −0.036 0.033 −0.10 0.029 0.27

Delay to interventions 0.028 0.0080 0.012 0.043 <0.001

Calendar year of outbreak −0.020 0.022 −0.064 0.023 0.36

Armed conflict 1.3 1.5 −1.7 4.3 0.41

Table 3 Values of coefficients for the negative binomial regression (with a natural log link), for a reduced regression model with the 
delay to interventions as the lone covariate. The null and residual deviances are 8 and 72, respectively and so the pseudo-R2 value is 
0.89

Covariates Estimated value Standard error Lower CI (2.5%) Upper CI (97.5%) p-value

Model intercept 0.24 0.40 −0.60 1.1 0.55

Delay to interventions 0.030 0.0036 0.022 0.038 <0.001



Page 10 of 16Qian et al. BMC Medicine          (2023) 21:439 

vaccination approaches. Again taking the combined 
ring and reactive approach, we observed a small but 
significant increase from 31 (baseline) to 41 cases.

When we model a vaccine that prevents disease but 
not transmission, the proportion of terminated outbreaks 
remains the same as the scenario with no vaccination: 92 
and 68% when the rate of introductions is low and high, 
respectively, for all vaccination scenarios (Table  3). The 

median number of cases remains low—between 1 and 3 
cases—as is the case when vaccination blocks transmis-
sion (Table 4). However, at the high rate of introductions, 
the median case numbers between the transmission- 
and disease-preventing vaccines differs slightly. We see 
that there are fewer cases in both prophylactic scenarios 
when the vaccine is transmission-preventing (mass: 17 vs 
20, targeted: 11 vs 21), but more in all reactive scenarios 

Fig. 3 a Proportion of outbreaks terminated after 1 year, predicted under different vaccination strategies, when the rate of zoonotic introductions 
is low (red bars) and high (black bars). The error bars represent the upper and lower bounds of the 95% confidence intervals for each vaccination 
strategy. b Median number of cases per outbreak predicted under different vaccination strategies, when the rate of zoonotic introductions is low 
(panel A) and high (panel B). The dashed lines represent the upper and lower bounds of the 95% confidence intervals in the absence of vaccination 
(“no vaccine”)
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(mass: 32 vs 22, targeted: 32 vs 20, ring: 35 vs 28, ring/
targeted: 31 vs 14).

Reducing the rate of introductions by one and two 
orders of magnitude led to an increase in the proportion 
of controlled outbreaks and a decrease in the median 
number of cases from baseline values (Tables  3 and 4). 
The higher introductions scenario was particularly sen-
sitive to this change; in simulations without vaccination, 
the proportion of controlled outbreaks increased from 
68% at baseline to 93% if the rate was reduced by two 
orders of magnitude, while the median number of cases 
per simulated outbreak decreased from 38 to 2.

Discussion
We combined and analysed data from each of the known 
MVD outbreaks to characterise key epidemiological 
parameters and assess the potential impact of a range 

of vaccination strategies. We found that the reproduc-
tion number of MVD in human populations is often low 
but very variable, consistent with the small and mostly 
self-limited nature of most outbreaks. Across all out-
breaks, our estimates of R0 are lower than that calculated 
by Ajelli and Merler [33] (1.59; 95% CI 1.53–1.66). This 
is largely because their estimates were based on data 
from the peak of the Angola outbreak alone—the largest 
recorded outbreak—whereas ours include all of the avail-
able data up to 2021. Our estimated serial interval (9.2 
days with a standard deviation of 4.4 days) is compara-
ble to the generation time estimated by Ajelli and Merler 
(9 days with a standard deviation of 5.4 days) from non-
human primates [33] and shorter than that of the Ebola 
Virus disease (Zaire species)—see Table 5.

Although our estimates of the reproduction number 
after interventions are generally low, this is no guarantee 

Table 4 Proportion of terminated outbreaks for different vaccination schemes. The numbers in parentheses indicate the 95% CIs of 
this proportion, from bootstrapped sampling

Scheme No vaccination Prophylactic 
mass

Prophylactic 
targeted

Reactive mass Reactive 
targeted

Ring Ring and 
reactive 
targeted

Baseline (Low/
High rate of 
introductions)

0.92 (0.91–0.93) 0.99 (0.99–0.99) 0.98 (0.97–0.98) 0.97 (0.97–0.98) 0.93 (0.92–0.94) 0.98 (0.98–0.98) 0.99 (0.98–0.99)

0.68 (0.67–0.69) 0.90 (0.90–0.91) 0.89 (0.88–0.90) 0.82 (0.81–0.83) 0.79 (0.78–0.81) 0.76 (0.75–0.77) 0.88 (0.87–0.89)

Reduced time 
from reactive 
vaccination to 
infective contact 
(Low/High rate 
of introductions)

0.92 (0.91–0.93) 0.99 (0.98–0.99) 0.98 (0.97–0.98) 0.96 (0.95–0.97) 0.93 (0.92–0.93) 0.94 ( 0.93–0.94) 0.97 (0.97–0.98)

0.68 (0.67–0.69) 0.90 (0.90–0.91) 0.89 (0.88–0.90) 0.77 (0.76–0.78) 0.76 (0.75–0.76) 0.74 (0.73–0.75) 0.81 (0.81–0.82)

Lower vaccina-
tion coverage 
(Low/High rate 
of introductions)

0.92 (0.91–0.93) 0.97 (0.97–0.98) 0.96 (0.95–0.96) 0.95 (0.95–0.96) 0.94 (0.93–0.94) 0.96 (0.95–0.96) 0.97 (0.97–0.98)

0.68 (0.67–0.69) 0.82 (0.81–0.83) 0.84 (0.83–0.85) 0.77 (0.76–0.78) 0.75 (0.73–0.76) 0.75 (0.74–0.76) 0.81 (0.80–0.82)

Higher vaccina-
tion coverage 
(Low/High rate 
of introductions)

0.92 (0.91–0.93) 1.00 (1.00–1.00) 0.99 (0.97–1.00) 0.99 (0.98–0.99) 0.93 (0.93–0.94) 0.98 (0.98–0.98) 1.00 (1.00–1.00)

0.68 (0.67–0.69) 0.97 (0.97–0.98) 0.95 (0.95–0.96) 0.89 (0.88–0.90) 0.82 (0.81–0.83) 0.76 (0.75–0.77) 0.93 (0.93–0.94)

Later date of 
intervention 
(Low/High rate 
of introductions)

0.88 (0.86–0.88) 0.99 (0.99–0.99) 0.96 (0.95–0.96) 0.91 (0.90–0.92) 0.88 (0.87–0.89) 0.91 (0.90–0.92) 0.92 (0.91–0.92)

0.64 (0.63–0.65) 0.91 (0.90–0.91) 0.87 (0.86–0.88) 0.78 (0.77–0.79) 0.75 (0.74–0.76) 0.71 (0.70–0.73) 0.82 (0.81–0.83)

Vaccine protects 
against disease 
only (Low/High 
rate of introduc-
tions)

0.92 (0.91–0.93) 0.92 (0.91–0.93) 0.92 (0.91–0.93) 0.92 (0.91–0.93) 0.92 (0.91–0.93) 0.92 (0.91–0.93) 0.92 (0.91–0.93)

0.68 (0.67–0.69) 0.68 (0.67–0.69) 0.68 (0.67–0.69) 0.68 (0.67–0.69) 0.68 (0.67–0.69) 0.68 (0.67–0.69) 0.68 (0.67–0.69)

Reduced intro-
duction rate 
(by 1 order of 
magnitude)

0.93 (0.93–0.94) 1.00 (0.99–1.00) 0.98 (0.98–0.99) 0.98 (0.98–0.99) 0.94 (0.93–0.95) 0.99 (0.99–0.99) 0.99 (0.99–0.99)

0.88 (0.87–0.89) 0.98 (0.98–0.99) 0.96 (0.96–0.97) 0.96 (0.96–0.97) 0.92 (0.92–0.93)) 0.96 (0.96–0.97) 0.98 (0.97–0.98)

Reduced intro-
duction rate 
(by 2 orders of 
magnitude)

0.93 (0.93–0.94) 1.00 (0.99–1.00) 0.98 (0.98–0.99) 0.98 (0.98–0.99) 0.94 (0.93–0.95) 0.99 (0.99–0.99) 0.99 (0.99–0.99)

0.93 (0.93–0.94) 1.00 (0.99–1.00) 0.98 (0.98–0.99) 0.98 (0.97–0.98) 0.94 (0.93–0.94) 0.99 (0.99–0.99) 0.99 (0.99–0.99)
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that all future outbreaks will be limited in size. Large 
future outbreaks of MVD cannot be ruled out. As the 
Angolan outbreak showed, for instance, a large outbreak 
can arise from a very limited number of introductions. 
Our data suggest that the time to detection of outbreaks 
is the main driver for outbreak size. Larger outbreaks are 
more likely given a long delay before implementation of 
interventions and/or difficulty or reluctance to adhere to 
these interventions. This is indeed what occurred dur-
ing the two largest outbreaks (DRC in 1998–2000 and 
Angola in 2004–2005): in DRC, miners working illegally 
in a small town were continually exposed to infected 
bats, with transmission going undetected for months, 
while the Angolan outbreak occurred in a densely popu-
lated city, thus increasing person-to-person transmis-
sion. Moreover, there was a lack of trust in the authorities 
and so interventions such as isolation of cases took time 
to be properly implemented [23]. This last point hints 
at the many social, epidemiological and environmental 

factors that may likely influence outbreak size. The two 
aforementioned outbreaks also occurred in populations 
that had recently been affected by civil war [19, 23, 34], 
which likely resulted in fragile health systems unable to 
prevent or rapidly control outbreaks.

According to our mechanistic model, other fac-
tors being equal, higher introduction rates would be 
expected to result in a larger outbreak. However, this 
effect is rather small (compare result with high and low 
introduction rates), the timing of interventions being 
much more important (as is seen in the regression 
model). Furthermore, the MVD outbreaks have been 
highly heterogeneous (see Fig. 1), occurring over a very 
wide geographical area and over time, so it is impos-
sible to argue that these outbreaks are otherwise equal. 
Finally, chance also plays a large role in determining 
the number of cases. In our mathematical model we 
can reduce this effect by undertaking a large number 
of simulations. However, we only have a handful of 

Table 5 Median number of MVD cases per outbreak predicted during different vaccination schemes. The numbers in parentheses 
indicate the 95% CIs of this median, from bootstrapped sampling

Scheme No vaccination Prophylactic mass Prophylactic 
targeted

Reactive mass Reactive targeted Ring Ring and 
reactive 
targeted

Baseline (Low/High 
rate of introduc-
tions)

3 (3–3) 2 (2–2) 1 (1–1) 3 (3–3) 3 (3–3) 3 (3–3) 3 (3–3)

36 (35–37) 17 (16–17) 11 (11–12) 32 (32–33) 32 (31–32) 35 (34–35) 31 (30–31)

Reduced time from 
reactive vaccination 
to infective contact 
(Low/High rate of 
introductions)

3 (3–3) 2 (2–2) 1 (1–1) 3 (3–3) 3 (3–4) 3 (3–3) 3 (3–3)

36 (35–37) 17 (16–17) 11 (11–12) 33 (32–33) 33 (33–34) 36 (36–37) 32 (32–33)

Lower Vaccination 
coverage (Low/
High rate of intro-
ductions)

3 (3–3) 3 (3–3) 2 (2–2) 3 (3–3) 3 (3–3) 3 (3–3) 3 (3–3)

35 (33–38) 30 (28–31) 18 (17–18) 34 (33–34) 34 (33–34) 35 (35–36) 33 (32–33)

Higher Vaccination 
coverage (Low/
High rate of intro-
ductions)

3 (3–3) 2 (2–2) 1 (1–1) 3 (3–3) 3 (3–3) 3 (3–3) 3 (3–3)

36 (35–37) 16 (16–17) 11 (11–11) 32 (31–33) 32 (31–32) 34 (34–35) 30 (29–30)

Later date of inter-
vention (Low/High 
rate of introduc-
tions)

3 (3–4) 2 (2–3) 1 (1–1) 3 (3–3) 3 (3–3) 3 (3–3) 3 (3–3)

52 (50–55) 18 (17–18) 12 (12–12) 44 (42–46 ) 43 (41–44) 47 (46–49) 41 (40–43)

Vaccine protects 
against disease 
only (Low/High rate 
of introductions)

3 (3–3) 2 (2–2) 2 (2–2) 3 (2–3) 1 (1–2) 3 (3–3) 2 (2–2)

36 (35–37) 20 (20–21) 21 (21–22) 22 (22–23) 20 (20–21) 30 (30–31) 14 (14–15)

Reduced introduc-
tion rate (by 1 order 
of magnitude)

2 (2–2) 1 (1–1) 1 (1–1) 2 (2–2) 2 (2–2) 2 (2–2) 2 (2–2)

6 (6–6) 3 (3–3) 2 (2–2) 5 (5–5) 5 (5–5) 5 (5–6) 5 (4–5)

Reduced introduc-
tion rate (by 2 
orders of magni-
tude)

2 (2–2) 1 (1–1) 1 (1–1) 2 (2–2) 2 (2–2) 2 (2–2) 2 (2–2)

2 (2–2) 1 (1–1) 1 (1–1) 2 (2–2) 2 (2–2) 2 (2–2) 2 (2–2)
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real-world outbreaks to analyse and so the ability to 
pick up relatively small signals amongst this stochastic 
noise is difficult.

To help understand what role vaccines might play in 
controlling future outbreaks, we developed a simple 
branching process model and parameterised it from our 
analyses of the epidemiology. As expected, vaccination 
generally increased the probability of outbreaks being 
terminated compared to no vaccination. Over the range 
of strategies and parameter values considered, generally 
similar effects were achieved, though at baseline, the pro-
phylactic strategies as well as the combination of ring and 
targeted vaccination approaches were the best-perform-
ing. Exceptions included reactive targeted vaccination 
when the rate of spillover introductions is low. Vaccina-
tion could also be expected to reduce the median out-
break size, though this reduction is often relatively small 
since the median number of cases for the no vaccination 
scheme is already low (3 when the rate of introduction is 
low, 36 when high). Hence, the aim of vaccinating against 
MVD would be to prevent these large outbreaks from 
occurring.

The two prophylactic vaccination strategies, as well as 
a combined ring and targeted vaccination, were gener-
ally the most effective options, since they result in a high 
probability of termination and a low median outbreak 
size. However, in the case of the latter, if there are few 
introductions, the added effect of targeted vaccination 
over ring vaccination alone is negligible. Nevertheless, 
if a reactive scheme is indeed required, the combined 
approach might still be preferred since the rate of spillo-
ver introductions might be difficult to assess in real time 
without comprehensive sequence data.

We included a sensitivity analysis where we modelled 
a vaccine that works by only protecting against disease, 
rather than preventing transmission. Since very lit-
tle transmission occurs in the absence of a vaccine, we 
found that this made a small difference to the median 
number of cases. The proportion of terminated out-
breaks decreased to that of the no vaccination scenario. 
Higher rates of introductions also meant that a disease-
preventing vaccine led to fewer cases than a vaccine that 
prevented transmission. The median number of cases 
post-intervention in the absence of vaccination was 31. 
Moreover, 21 of these cases were zoonotic introductions 
while the other 10 occurred through secondary transmis-
sion (the median post-intervention reproduction num-
ber was only 0.3, resulting in few secondary infections). 
A disease-preventing vaccine would work on all these 31 
cases, but a transmission-preventing vaccine would only 
prevent the 10 secondary cases.

At baseline, we have estimated the low and high spill-
over rates according to the rates observed during two 

outbreaks assumed to be representative of a commu-
nity and spillover-driven epidemic, respectively. How-
ever, in a sensitivity analysis, we also reduced these rates 
by one and then two orders of magnitude. This reflects 
the fact that the introduction rate can also be estimated 
across time—from 1967, when the first outbreaks were 
recorded—up until now. We found that the proportion of 
controlled outbreaks increased and the median number 
of cases decreased, especially under the scenario involv-
ing the higher rate of introductions (Tables 3 and 4). This 
is because at these much lower spillover rates, the out-
breaks become predominantly community-driven.

Quantifying the number of hypothetical vaccine doses 
that may have been required to help control the previ-
ous outbreaks of MVD is difficult as the target popula-
tion is unclear for most of these outbreaks. However, it 
is possible to obtain a rough idea of this for a few of the 
outbreaks. The DRC outbreak of 1998–2000 only affected 
two towns with a combined population of approximately 
85,000 [21]. Had a vaccine been available the number of 
vaccine courses required for a targeted strategy would 
be 24,000, assuming 40% of the population were miners 
(i.e. 80% of males) and a 70% coverage rate. A mass vac-
cination strategy with 50% coverage, on the other hand, 
would require 43,000 vaccines. This outbreak does, how-
ever, constitute an extreme case where a large proportion 
of the population were considered high-risk individuals 
and thus candidates for receiving a vaccine under a tar-
geted vaccination scheme. In comparison, the outbreak 
in Uganda, 2012, spanned 3 of the country’s districts 
and was instigated by only a single known zoonotic case. 
Although it is not known what fraction of the population 
was high risk, applying the fraction of miners and health-
care workers in the country as a whole to these districts 
gives a possible indication (i.e. 5600 high risk individu-
als amongst a total population of 730,000) [20]. Hence, 
3900 vaccines would have been required under a targeted 
vaccination scheme with 70% coverage and 370,000 vac-
cines (two orders of magnitude greater) would have been 
required under a mass vaccination scheme with 50% 
coverage.

Although efforts are ongoing to develop MVD vaccines 
[4], the results of our study suggest that it may be difficult 
to carry out Phase 3 trials, since we predict that few cases 
will be observed in a typical outbreak, and these may well 
be rapidly controlled by other interventions. To counter 
this problem, the World Health Organization (WHO) has 
developed a Core Protocol approach that is designed to 
allow trial results to be combined across multiple out-
breaks to accrue sufficient data and statistical power to 
assess vaccine efficacy [29, 35]. There has also been a 
recent paper from WHO on a core protocol for esti-
mating Marburg virus vaccine efficacy [35]. The paper 
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proposed that the efficacy of a potential vaccine may be 
estimated after a Phase 3 trial involving 150 MVD cases 
across multiple outbreaks at 90% power, with a 30% null 
and no rejection occurring after interim analyses. Simu-
lations of our model under several plausible scenarios 
may be helpful for estimating the number of outbreaks 
required to reach these 150 cases.

A major limitation of our study is the lack of data due to 
the infrequency of MVD outbreaks, with most being rela-
tively small, and in many cases, scant availability of epi-
demiologic data. This paucity of data and heterogeneity 
across and within outbreaks leads to wider credible inter-
vals associated with R0 and E . This heterogeneity can be 
seen in Fig. 1 and Table S1 from Additional file 1. There 
were many smaller outbreaks (7 with fewer than 3 cases) 
and, for these in particular, the low transmissibility before 
interventions may have already limited their size. Since 
90% of our estimates of the post-intervention reproduc-
tion number were below 1, and all except 2 recorded 
MVD outbreaks have ended only weeks after interven-
tions, it is likely that non-pharmaceutical interventions 
have been capable of reducing the reproduction number 
below 1. However, the wide credible intervals imply that 
we cannot be certain. If indeed the reproduction num-
ber had remained above 1 even after interventions, there 
would be a good case for better public health interven-
tions, including the use of vaccination programmes.

Since the model does not take unobserved cases into 
account, it is possible that our estimates of the reproduc-
tion number are underestimates. However, shortly after 
the 2019 outbreak in Uganda, a seroprevalence study was 
conducted on individuals living close to caves inhabited 
by bats; only 1 of 433 high-risk individuals was found to 
have antibodies against MVD [36]. Another study con-
ducted after the DRC outbreak found that 2 out of 121 
household contacts of known MVD cases were seroposi-
tive, both of whom reported becoming ill after contact 
[24]. Moreover, most cases appear to result in severe ill-
ness and symptoms [16]. This suggests that there likely 
may not be a large number of unrecognised MVD cases, 
even in high-risk communities.

A lack of data on the time when different interven-
tions were implemented (other than the very first day 
of the intervention response) also meant that we chose 
to model the intervention efficacy as a constant, rather 
than time-varying function. Another limitation is 
that, while we estimated and used a constant rate of 
zoonotic introductions, in reality, the rate often varies 
as a function of time. For example, the outbreak in the 
DRC appears to have been driven by seasonal introduc-
tions into miners [6]. However, due to a lack of data on 
zoonotic introductions into specific persons, we opted 

for model simplicity and chose a constant rate for each 
outbreak.

We chose to use a simple branching process model 
that does not include, for instance, depletion of the sus-
ceptible population. Depletion of susceptibles may well 
be an important consideration, especially under a mass 
vaccination strategy. Nor did we account for any possi-
ble waning of immunity post-vaccination. At present, 
there is a lack of data on the vaccines currently under 
development—we have informed this part of our analy-
sis by making broad and simplistic assumptions. Several 
vaccines are currently in the pipeline [4] and vaccine 
parameters of our model will be updated when more 
information on potential vaccines become available.

Conclusions
Our study shows that various vaccination strategies can 
be effective in helping to control outbreaks of MVD, with 
the best approach varying with the particular epidemio-
logic circumstances of each outbreak. Of course, many 
logistical and economic factors must be considered. Fur-
ther studies on the economic factors involved in vacci-
nating against MVD will be required but are beyond the 
scope of this study. Given the rarity and generally small 
size of MVD outbreaks, prophylactic mass vaccination of 
large populations is unlikely to be feasible or warranted. 
However, as has been proposed for vaccination for Ebola 
virus, vaccination for relatively infrequent but dangerous 
emerging infectious diseases might be incorporated into 
comprehensive vaccination for numerous diseases, serv-
ing as a driver of broader health systems strengthening 
[37]. The rationale for this approach would be further 
strengthened by development of pan-filovirus vaccines, 
for which research is underway [38], especially if protec-
tion is long-lasting.
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