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Projecting the future incidence and burden
of dengue in Southeast Asia

Felipe J. Colón-González 1,2,3,4,5 , Rory Gibb1,2, Kamran Khan6,7,
Alexander Watts7,8, Rachel Lowe 1,2,3,9,10,11 & Oliver J. Brady 1,2,11

The recent global expansion of dengue has been facilitated by changes in
urbanisation, mobility, and climate. In this work, we project future changes in
dengue incidence and case burden to 2099 under the latest climate change
scenarios. We fit a statistical model to province-level monthly dengue case
counts from eight countries across Southeast Asia, one of the worst affected
regions. We project that dengue incidence will peak this century before
declining to lower levels with large variations between and within countries.
Ourfindings reveal that northernThailand andCambodiawill show the biggest
decreases and equatorial areas will show the biggest increases. The impact of
climate change will be counterbalanced by income growth, with population
growth having the biggest influence on increasing burden. These findings can
be used for formulatingmitigation and adaptation interventions to reduce the
immediate growing impact of dengue virus in the region.

Dengue is one of themost importantmosquito-borne emerging global
threats. Since 1995 the number of countries reporting dengue has
trebled and an estimated 100–400 million infections now occur
annually across more than 120 countries1. The burden in affected
countries is also increasing with countries in the Americas, Southeast
Asia, and the Western Pacific reporting the majority of global cases2.
The recent spread has been attributed to a variety of factors, including
increased urbanisation, increased human movement, and an increas-
ingly favourable climate1,3. Public health policy-makers at international,
national and local levels need robust estimates of how dengue risk
might change in the long-term to plan effective control andmitigation
strategies.

Climate constrains the outer limits of the spatial range, as well as
the timing and magnitude of the dengue transmission season through
its effects on mosquitoes and virus dynamics4. Multiple physiological
traits ofmosquitoes (particularly adult female longevity, fecundity and
biting rate) and the virus (extrinsic incubation period) are modulated

by temperature with higher temperatures leading to higher transmis-
sion, although extremely high temperatures adversely affect survival
of adult mosquitoes5,6. Precipitation modulates the creation of
breeding sites7, though droughts may also lead to the creation of
breeding sites by increasing water storage behaviours8. Several pre-
vious studies have fitted models to dengue data based solely on tem-
perature and precipitation, then used these to suggest that projected
future increases in these variables will lead to geographic expansion,
longer transmission seasons, and more intense transmission5,9–11

Global urbanisation trends and increasing human mobility are
often suggested as drivers of dengue expansion12,13, but rarely quanti-
tatively analysed. Urbanisation and increases in human population
density create new habitat for dengue’s primary mosquito vector,
Aedes aegypti, which preferentially lays eggs in artificial water holding
containers in close proximity to humans that form the primary food
source for adult females1. Human movement at local to regional levels
facilitates dengue spread and can re-seed areas where seasonal
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dynamics cause local extinction14,15. At an international level, human
movement can spread different dengue serotypes that can increase
the risk of re-infection and severe disease16. Few studies have con-
sidered the effects of future changes inurbanisationondengue17,18, and
none have projected how future changes in human movement could
affect transmission.

One further factor to consider is socioeconomic development.
Higher income levels and educational standards, usually measured
through the proxy of socioeconomic status, could reduce dengue risk
through improved infrastructure to reduce breeding sites, more
intensive mosquito control practices, and better uptake and adher-
ence tomosquito preventative practices19,20. The example of long-term
suppression of dengue infection incidence in Singapore relative to its
regional neighbours is frequently cited as the possible role economic
development could play in limiting dengue expansion21.

The majority of previous dengue projection studies have used
dengue presence/absence data or mechanistic models parameterised
using theoretical knowledge or laboratory experiments10,17. Such
approaches are useful for defining the geographic and seasonal limits
of transmission but often poorly predict dynamics in endemic
countries22 where incidence is constrainedby factors suchas immunity
and demographics23. This has led somestudies to suggest that changes
in future dengue burdenwill be driven primarily by population growth
in endemic areas rather than environmentally driven changes in
risk17,22.

Here, we aim to predict the effect of multiple global change
phenomena on future dengue incidence and burden over the period
2020–2099 across Southeast Asia, one of the worst affected regions
globally. These results can be used by policy-makers to set appropriate
goals for dengue mitigation and identify where investment in new
control tools may be needed to build resilience to dengue in the
region24. Our projections account for changes in climate, population
density, human mobility, and gross domestic product (a proxy for
socioeconomic development) to reflect the effects of factors known to
be relevant for dengue dynamics, and for which data were available for
the historical and future periods. The main contributions of these
study are twofold. First, our results derive from a model formulated
using long-term dengue cases reported at a fine spatial scale across
eight countries in Southeast Asia. This provides more robust results
than proxy measures of transmission, such as vectorial capacity. Sec-
ond, our study projects changes in dengue incidence based on dif-
ferent future scenarios of themost important determinants of dengue
risk (i.e. climate, urbanisation, socioeconomic development, and
human mobility) all of which have been important in shaping the
expansion of dengue in previous years.

Results
We specified a Generalised Additive Mixed Model with a conditional
negative binomial distribution for counts of dengue cases reported at
the province level across eight countries in Southeast Asia over the
period January 2000–December 2017. Six determinants of dengue risk
(air temperature, number of consecutive dry days, human population
density, humanmobility, air travel volume, and GDP) were included in
the model as explanatory variables. The number of consecutive dry
days (CDD) permonthwas used as a proxy forwater availability for the
creation of breeding sites. Within-country human mobility was
approximated using a radiation model.

A blocked cross-validation algorithm was used to investigate the
predictive ability of the model using data for the reference (historical)
period 2000–2017 (n = 216 months). The mean absolute error (MAE)
was used as a measure of predictive ability because it is a natural and
unambiguous measure of average skill magnitude25. The selected
model had a median cross-validated MAE of 37.5 cases per month
across all locations and time steps. This value should be interpreted
relative to a total of 5,284,064 dengue cases across all locations over

the study period, and a monthly mean of 114 (range 0–11,212) dengue
cases across the region.Wenote that theMAEwas larger in regions and
months of the year with a higher number of dengue cases, and was
typically lower than the mean number of monthly dengue cases
(see Supplementary Information). Analysing the cross-validated MAE
as a proportion of the observed cases, the median ratio remained
below one for 89% of the years in the series. Mean cross-validated in-
sample and out-of-sample Spearman’s rank correlationwere estimated
at 0.82 and 0.78, respectively, with some between-block variation that
was larger in the out-of-sample predictions (Supplementary
Information).

We present projections of dengue burden and incidence for the
period 2020–2099 (n = 960months) based on themost recent Shared
Socioeconomic Pathways (SSPs)26 developed for the Coupled Model
Intercomparison Project Phase 6 (CMIP6)27. The period 2020-2099was
selected to allow for predictions on complete decadal periods. An
ensemble of all available general circulation models, GCM (GFDL-
ESM4, IPSL-CM6A-LR,MPI-ESM1-2-HR,MRI-ESM2-0, andUKESM1-0-LL)
bias-corrected for the third simulation round of the Inter-Sectoral
ImpactModel Intercomparison Project28 was selected to exploremulti-
model uncertainty. Briefly, GCMs are numerical models representing
physical processes to depict the climate using a three dimensional
(ocean, cryosphere, and land surface) grid over the world. We con-
sidered three different SSPs namely, SSP126, SSP370, and SSP585 to
represent a wide range of socioeconomic trends and radiative forcings
(Table 1). SSPs are named according to their broad socioeconomic
trends and their end-of-century radiative forcing relative to pre-
industrial conditions (Table 1). A total of 15 GCM-SSP combinations
were used for the projections. We compare our projections to the
reference period 2000–2017. We note that the distribution of pro-
jected variables is close to the distribution of the observed covariates
used for model fitting (Supplementary Information).

Estimated determinants of dengue risk
We simulated 1000 samples from the posterior distribution of dengue
cases to allow for the estimation of uncertainty in our predictions.
Consistent with previous research4,5,20,29–31, we find that increases in
temperature, CDD, population density, and international travel
increase dengue risk up to a particular value, beyond which risk
decreases or plateaus (Fig. 1).We alsofinda strongprotective effects of
several variables likely to change in the future, such as increasing GDP
and, to a lesser extent, greater within-country human mobility19. We
also find that areas with very high population densities (>1500 people/
km2) are associated with a decrease in dengue risk.

Long-term regional trends
While the projected future of dengue differs by SSP scenario, there is a
consensus that both dengue burden and incidencewill rise in the short
to medium term, peak sometime this century then begin to decline,
likely below historic levels before the end of the century (Fig. 2). We
predict a maximum of 69.5 (52.9–76.1) annual cases per 100,000
people or 580,000 (441,000–635,000) annual cases by 2080 under
scenario SSP370. Early peaks of up to 59.8 (54.3–63.2) annual cases per
100,000 people or 399,000 (361,000–415,000) annual cases are
projected mid century, followed by declines below current-day inci-
dence and burden sometime between 2050 and 2075. The most sub-
stantial declines are estimated in the two most extreme SSPs (SSP126
and SSP585) likely for different primary reasons. In SSP126, predicted
reductions to 48.2 (46.5–50.0) annual cases per 100,000 or 240,000
(231,000–249,000) annual cases by 2099 are due to more moderate
increases in global-mean temperature (reaching 1.7 °C above pre-
industrial levels by the end of the century), but more substantial
increases in global economic growth5,32. In scenario SSP585, predicted
reductions to a minimum of 27.6 (8.3–39.4) annual cases per 100,000
people or about 135,000 (41,000–193,000) annual cases aredue to the
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increasing protective effect of strong economic growth, but also
considerably hotter global-mean temperatures (reaching 4.9 °C above
preindustrial levels) that will become increasingly unfavourable for
mosquito survival in some areas5,32.

Geographic heterogeneity
While, in the long term, dengue incidence is expected to decline across
the region, this trend masks substantial geographic heterogeneity in
the direction and magnitude of expected change. Relative to the
reference period 2000–2017 (Fig. 3a), the multi-GCM multi-scenario
ensemble mean of the predictions suggests increases in dengue inci-
dence across large areas of central Vietnam, Laos, Malaysia, Singapore,
Indonesia and the southern half of the Philippines (Fig. 3b) both by
2050 (the average conditions for 2040–2069) and 2080 (the average
conditions for 2070–2099). Conversely, we project decreases in inci-
dence across large areas of Cambodia, Thailand, southernVietnamand
the northern half of the Philippines over the same periods. Most
models agree with the direction of the mean predicted change
(Fig. 3c), across most of the region except for parts of the Philippines
and central Vietnam, particularly at later time points.

These changes will result in a shift in how the burden of dengue
is distributed between its constituent countries Fig. 4a). Vietnam is
projected to shift from having the second highest burden in the
region (23% of all cases) in 2000–2017 to having the fourth (15% of all
cases) by 2080 as a growing proportion of the burden will occur in
Malaysia (21%) and the Philippines (20%). Projected declines in bur-
den in Thailand (from 12%of the burden in 2000–2017 to 5%by 2080)
and proportionally stable trends in other countries are predicted to
lead to an increasingly polarised distribution of burden across the
region with 93% of cases in Indonesia, Philippines, Malaysia and
Vietnam and only 7% percent in all other countries combined by
2080. These changes are underscored by the emerging importance
of high (but not very high) population density areas (301–1500
people/km2, Fig. 4b) where dengue burden will rise from 35 to 49% of
all cases. This trend is driven by (1) projected decreases in incidence
in very high density cities due to concentration of economic devel-
opment that is expected to improve control capabilities and infra-
structure to reducemosquito breeding habitat20; and (2) increases in
theproportionof people living in high but not very highdensity areas
such as city suburbs as rural to urban migration accelerates (Sup-
plementary Information).

Contribution of different factors to future changes in incidence
and burden
Climate, GDP, within country human mobility and population are all
projected to undergo substantial change over the next 80 years, but at
different levels and with different consequences for dengue risk
(Fig. 5). To try to understand the relative contribution of each of these
global change phenomena, we conduct a sensitivity analysis of our
model predictions where each single variable was held at historical
monthly mean values, but all other variables were subject to their
projected future changes. This analysis gives insights into howdengue
risk would change if future changes in individual dengue risk factors
could be prevented or mitigated against.

Our results reveal that future projected changes in population,
GDP and climate are likely to play the largest role in future dengue
burden (Fig. 5). If climate were to stay at historical levels, but all other
factors change as projected, approximately 45,000 fewer cases a year
would occur by 2080 compared to our baseline scenario where all
variables change as projected. Conversely, if the projected increases in
GDP do not occur, approximately 42,000 more cases may occur per
year, highlighting the near equal contribution of sustaining economic
growth and combating climate change to limiting dengue burden in
the region. However, the most influential factor for future growth in
dengue burden will be population growth which ensures that even ifTa
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dengue incidence rates remain stable or decrease, the number of cases
may still be expected to rise (contrasting Fig. 2a and Fig. 2b). If the
number of people living in South East Asia remained at historic levels
around 58,000 fewer cases would occur per year compared to a sce-
nario where population increases as expected. This importance of
population growth would further increase if, as projected, increases in
population also result in unfavourable changes in population den-
sity (Fig. 5).

When we disaggregated these results by country, we observed
similar patterns in Indonesia, Laos, Malaysia, and the Philippines par-
ticularly by mid century with substantial between-country hetero-
geneity (Supplementary Information). A protective effect of climate
was observed in Cambodia, Thailand, and Vietnam, particularly
towards the end of the century.

Discussion
Accounting for the combined effects of climatic, demographic and
socio-economic factors is crucial for a better understanding of the
potential effects of climate change on future dengue risk.We used one
of the best possible data sets of epidemiological, climatic, and non-
climatic data currently available to systematically derive projections of
dengue burden and dengue incidence to provide valuable information
for long-termdecision-making andplanning. Our findings indicate that
both dengue burden and dengue incidence will peak sometime this
century in Southeast Asia, before declining to historical levels or below
depending on the prevailing climatic and socioeconomic conditions.
These effects will vary considerably between countries and across
varying levels of population density, in agreement with previous
research5,9,17,18.

Fig. 1 | Partial dependency plots of the final model covariates. Partial depen-
dency plots of a air temperature, b continuous dry days, c gross domestic product,
d number of air passengers, e within-country human mobility, and f population

density as estimated by the final model. Solid lines and points indicate the mean
partial effect. Shaded areas and error bars indicate the 95% confidence interval of
the partial effects. Source data are provided as a Source data file.

Fig. 2 | Influence of shared socioeconomic pathway (SSP) scenario on the long-
term regional trends of future dengue burden and future dengue incidence in
Southeast Asia.Multi-model ensemble mean of the predicted long-term trends in
a annual dengue cases and b crude annual dengue incidence per 100,000 people
averaged across Southeast Asia by SSP scenario (n = five general circulationmodels

examined over the period January 2020 to December 2099). Solid curves indicate
the multi-model ensemble mean. Shaded areas indicate the spread of the general
circulation model-specific posterior means. Source data are provided as a Source
data file.
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Research examining climate change impacts on future dengue
risk often neglects the effects of social, environmental, and economic
factors that determine the level of risk in observed past and present
dengue case count trends5,9,11. Evidence of a link between economic
factors and dengue risk has been growing since the initial observation
of substantially differing levels of dengue virus exposure either side of
the US–Mexico border. In this case, economic factors were attributed

as a route cause of this difference through changes use of air con-
ditioning and sealed housing and differential human movement
behaviours that reduce exposure to mosquito bites. Some larger-scale
ecological observational studies fromdengue-endemic areas have also
identified associations between increased dengue risk and lower
socioeconomic characteristics that are not explained by other envir-
onmental factors19,33–35. Combined, these studies suggest a closer focus
on indicators more closely related to dengue risk (e.g. provision of
reliable piped water and refuse collection) than general proxies of
economic development and future dengue projection work should
focus on how to translate generic projections of GDP into specific
infrastructure and housing changes to improve our understanding of
how future increases in dengue risk can be mitigated. The need to
understand links between aggregate economicmeasures, such asGDP,
willingness to pay and implementation of dengue-specific interven-
tions will only become more important as new vaccines and novel
vector control tools are now beginning to be used at scale24,36–38.

The finding that very high density cities are projected to confer
the lowest risk was also unexpected and has considerable implications
for future projected risk in highly urbanised areas such as South East
Asia. Over the past few decades as mobility has increased at the rural-
urban fringe, the differences in dengue exposure between rural and
urban areas has decreased15,39. It is also difficult to distinguish whether
dengue is associated with the process of urbanisation (i.e. land use
change and the disruption it brings) or urban land per se. The asso-
ciation between dengue and construction sites might explain why we
project relatively mature very high density city cores to confer lower
dengue risk thanmore actively changing highdensity areas outside the
city core40. More work is needed on analysis of long term (10+ years)
high resolution dengue combinedwith data on infrastructure and land
use to understand how dengue risk changes during the rural-to-urban
transition.

This is one of the first studies to quantitatively compare how
future dengue risk will change in response to major global changes in
climate, economic development, urbanisation, and human mobility.
Our empiricalmodelling approach allowedus todirectly project future
changes in dengue incidence and burden as opposed to indirect
measures such as vectorial capacity, climate suitability, epidemic
potential, or reproduction number5,10,17. Our findings provide a more
detailed understanding of how mitigation actions against future rises
in dengue risk could be planned. In particular, limiting global-mean
temperature below 2 °C above preindustrial levels, greater focus on
control and urban planning in high density suburban areas combined
with strong economic growth may result in important public health
benefits for the region. While large increases in global-mean tem-
perature might also reduce dengue transmission in the region, this
should not be interpreted as a benefit since non-optimal temperatures
could lead to other pervasive effects of climate change such as the
invasion of warmer-adapted disease vectors41, heat-related excess
mortality42, and loss of labour productivity43.

Our projections of dengue risk should not be interpreted as
forecasts of what will happen in the future but as scenarios of what
might happen based on a set of pre-specified assumptions. In all of

Fig. 3 | Spatial heterogeneity patterns of the observed data and the model
predictions. a Mean annual crude dengue incidence rate per 100,000 over the
period 2000–2017 (equal intervals in the logarithmic scale; n = 216 months).
b Predicted change in the mean annual crude dengue incidence rate over the
periods 2050 and 2080 (n = five general circulation models examined over
360 months respectively). Green colours indicate a decrease and purple colours
indicate an increase in incidence. c Between-model agreement in the direction of
the predicted change in future dengue incidence. Blue colours indicate a decrease
in incidence and purple colours indicate an increase. Source data are provided as a
Source data file.
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these scenarios, we assume interventions remain at current levels to
isolate the effects of various global changephenomenaondengue risk.
This approach avoids making strict assumptions about the effective-
ness and scale of implementation of emerging dengue vaccines and
vector control tools that are yet to be proven effective at operational
scales (e.g., Wolbachia population replacement programmes24), and
indicates our results can be used for separate modelling exercises that
focus on the question of quantifying what level of adoption of novel
tools are required tomitigate future increases in dengue transmission.

There are several limitations of this study. The dengue data used
here does not account for changes in surveillance, and so improve-
ments over time could accentuate increases in reported cases. This
situation may lead to biases in our estimations of dengue incidence in
the future. Population immunity has also been shown to play a strong
role in limiting the upper bounds of dengue incidence and shaping
regional and seasonal dynamics but was not explicitly included in our
model23. The clinical presentation of dengue is age-dependent, and the
age distribution of the population will continue to change over the

next century. Previous research simulating age-specific case counts
demonstrated that age shifts in reported severe dengue cases in
Thailand between 1981 and 2017 could be attributed to the shifting age
demography of the population44. Whilst it would be important to
consider the age structure of the population in our study, currently
available epidemiological data from cohort does not provide infor-
mation to undertake an age-stratification of cases of clinically diag-
nosed dengue in the region.

Our study does not account for the effects of COVID-19 restric-
tions on dengue risk which appear to have reduced dengue risk in the
region, albeit for an unknown duration45. With national and interna-
tional travel rebounding fast in the region, any protective effect of
human mobility restrictions might be limited to a short period and
might be undone due to higher population susceptibility leading to
above average incidence over the next few years. Our statisticalmodel
does not incorporate potential interactions between variables or
complex non-linearities whichmight result in different levels of future
dengue risk being estimated. More advanced modelling approaches

Fig. 5 | Sensitivity analysis of the final model predictions. Projected changes in
mean annual dengue cases (thousands) relative to a model where all variables
change in the future, under the assumption that one group of predictors (popu-
lation, climate, human mobility, population density, and gross domestic product

(GDP)) remains constant at their historical monthly mean values. The ver-
tical dashed lines indicate the mean annual number of dengue cases relative to a
model where all variables change in the future (n = 5 general circulation models
examined over 360 months). Source data are provided as a Source data file.

Fig. 4 | Shifts in the distribution of the burden and incidence of dengue across
Southeast Asia. Shifts in how the mean annual number of dengue cases is pro-
jected to be distributed across a constituent countries and b population density
levels (across the whole region) by time period. c Shifts in how dengue the mean
annual dengue incidence incidence rate per 100,000 people for Southeast Asia is

projected to be distributed across different population density levels by time
period (n = 5 general circulation models examined over 216 months for the period
2010, and over 360 months for the periods 2050 and 2080). Source data are
provided as a Source data file.
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could be implemented in future studies to represent these relation-
ships more effectively. Our projections of dengue risk are determined
by our selection of GCMs and climate change scenarios. While there is
considerable between-GCM agreement in our estimates, we predict
large between-scenario differences. One of the major challenges for
decisionmakers acting on these projections will be to understand how
to act in the face of these differing scenarios which are reflective of
real-world uncertainties in how climate policy and socioeconomic
development might drive future environmental change. Despite these
limitations, our study provides actionable information for policy-
makers and public health professionals to mitigate the immediate
threats of increasing dengue burden in the region.

Methods
Epidemiological dengue data
Monthly dengue cases for the period January 2000 to December 2017
at the province (i.e. administrative level 1) level were obtained from
epidemiological surveillance bulletins, Ministries of Health web pages,
and web pages of other research groups (Supplementary Information)
for Cambodia, Indonesia, Laos, Malaysia, the Philippines, Singapore,
Thailand, and Vietnam. The definition of a dengue case comprised of
an unspecified mixture of suspected and laboratory confirmed cases.
Epidemiological data for Cambodia and Vietnam for the period
2011–2017 were obtained at the national and annual levels and so they
were linearly downscaled at the province and monthly levels by
keeping the monthly fractional share of each province’s dengue cases
relative to the period 2000–2010 constant46. Missing observations
(n = 7361) were omitted from the model fitting restricting the analysis
to the set of fully-observed observations. Data for the period January
2018–December 2019 were unavailable at the time of data acquisition.

Population data. Global gridded annual population counts on a
0.5 × 0.5degree latitude-longitude gridwere obtained from the ISI-MIP
data base (https://esg.pik-potsdam.de/projects/isimip/) for historical
(2000–2015) and future (2015–2099) periods47. Future projections
were obtained for three SSPs (i.e. SSP126, SSP370, and SSP585). To
align the historical population data with our time period of historical
dengue data, population counts for the period 2005–2017 were line-
arly interpolated using the approx function in R. Because some his-
torical population estimates were significantly different to those
published by the United Nations (UN), we calibrated our country-level
population estimates to match UN estimates for the year 200548.
Population density (people/km2) was computed for all periods and all
SSPs by dividing population counts for each administrative unit by
their surface area using the raster R package49. Population density
estimates were used to define administrative units as low density (i.e.
≤100 people/km2), moderate density (i.e. 101–300 people/km2), high
density (i.e., 301–1500 people/km2), and very high density areas
(i.e., >1501 people/km2)18,50.

Gross Domestic Product (GDP) data. Historical and future GDP esti-
mates were obtained from a previous modelling study that mapped
GDP (based on purchasing power parity in 2005 US dollars) to a
resolution of 30 arc-seconds based on a variety of remotely sensed
socioeconomic covariates51. Historical GDP estimates were only avail-
able for the year 2005 and future estimates available at 10-year inter-
vals for the period 2020–2100. Province-specific annual estimates for
the period 2000–2017 were calculated by multiplying the estimated
GDP for the year 2005 by the relative annual increase in GDP between
2000 and 2017 from the World Bank52.

Human mobility data. We generated province-specific annual esti-
mates of within-country mobility flux using two general movement
models, a naive (unparameterised) gravity model53 and the radiation
model54. The gravitymodel assumes that the potential gravity flux (Gij)

between two locations i and j is influenced only by the populations of
the source and destination locations and the intervening distance,
such that

Gij =
pipj

dij
ð1Þ

wherepi is the population of the source location, pj is the population of
the destination, and dij is the great circle distance between the cen-
troids of the source and destination provinces. The radiation model
includes an additional constraint to account for the competing
attractiveness of other destinations within the same distance radius54,
such that potential radiation flux (Rij) between two locations is pre-
dicted by:

Rij =Ti

pipj

ðpi + sijÞðpi +pj + sijÞ ð2Þ

where Ti is the number of inhabitants that start their journey from
location i (assumed to be all inhabitants, i.e. Ti = pi54); and sij is the total
population within the circle of radius dij centred at location i excluding
the source and destination populations.

Within each country we generated annual matrices of pairwise
predicted mobility fluxes between all pairs of provinces (2000–2017,
and 2018–2099 for each SSP scenario) using gravity and radiation
models. These were summarised as annual province-specific mean
within-country gravity and radiation flux (i.e. mean predicted flux
between the focal province and all other provinces in the samecountry
and year). We restricted mobility calculations to within-country fluxes
only due to the difficulty of accounting for the geographically variable
impacts of international borders on human movement.

Air passenger volume data. Air passenger volume data for flights
within and between countries wereobtained from the International Air
Transport Association (IATA) at the province level and atmonthly time
steps for January 2010–December 2017. Data were obtained for pro-
vinces with an airport. Data for the period 2000–2009were calculated
multiplying the number of passengers for the year 2010 by the
country-specific increase in passengers relative to 2010 as estimated
by the World Bank55. Future air passenger volumes for the period
2020–2099 were calculated by multiplying national air passenger
volumes in 2017 by the annual Asia-Pacific region-wide mean annual
growth rate as estimated by IATA56. Future air passenger volumes were
assumed to correspond to themiddle of the road SSP2. SSP-specific air
passenger volumes were calculated multiplying the expected volume
for SSP2 by the difference in population between SSP2 and each of the
other SSPs.

The annual estimates of air passenger volumeswerecalculated for
individual airports (i.e. specific point locations) to produce province-
level annual estimates of air passenger volumes. We geographically
disaggregated annual passengers fromeachairport to the surrounding
provinces. We used a gravity model approach, that assumes that the
proportion of passengers travelling from any airport a to destination
province j is proportional to the population of j divided by the inter-
vening distance (i.e. more nearby andmore populated centres receive
the greatest numbers of passengers). This was calculated and summed
across all airports within each country, such that:

Fj =
X
α

ωj,aAa ð3Þ

where Fj is the total number of passengers arriving at location j in a
given year from across all airports, Aa is the total passengers at airport
a, andωj,a is a vector of gravity weights that describe the proportion of
passengers that travel from airport a to location j. The weights were
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calculated as:

ωj,a =

pj

daj

� �

P pj

daj

� � ð4Þ

where pj is the population of destination j and daj is the population-
weighted mean distance between airport a and all 1-km2 grid cells
within destination province j, which is constant across the time series
and calculated using WorldPop population rasters for 201557. As with
the mobility models, we assumed no movement of passengers across
international borders.

Historical climate data
Historical climate data were obtained from the Copernicus Climate
Data Store (https://cds.climate.copernicus.eu/). Hourly near-surface
air temperature (K), hourly rainfall flux (kg/m2/s), near surface specific
humidity (dimensionless), and near surface wind speed (m/s) were
retrieved from the bias-corrected near-surface meteorological vari-
ables (WFDE5) derived from the fifth generation of the European
Centre for Medium-Range Weather Forecasts atmospheric reanalyses
(ERA5) at a 0.5 × 0.5 degree latitude-longitude grid for the period
January 1999 to December 2017. Data were aggregated at monthly
steps using the Climate Data Operators (CDO) software58. Spatial
aggregation at the province level was conducted in R version 4.1 using
the raster R package49. The number of tropical nights and the num-
ber of summer days in a month were calculated using the eca_tr and
eca_csu functions in CDO58. The number of wet and dry days in a
month were calculated using the eca_cwd and eca_cdd functions
in CDO58.

Future climate data. Bias-corrected global daily mean surface tem-
perature (K), and total precipitation (kg/m2/s) datawere retrieved from
the ISI-MIP data base (https://esg.pik-potsdam.de/projects/isimip/) on
a 0.5 × 0.5 degree latitude-longitude grid for the only five general cir-
culation models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-
ESM2-0, UKESM1-0-LL) available across three Tier-1 CMIP6 scenarios59

(arranged by their end of the century radiative forcing level: SSP126,
SSP370, SSP585). Data were retrieved for the period 2020-2099 at
monthly time steps. Data for the period 2018–2019 were not retrieved
to include complete decades. Theprocessed epidemiological, climatic,
socioeconomic, and demographic data are available at the Centre for
Open Science (https://osf.io/85xwq/).

Statistical model. The number of dengue cases Yi,t for administrative
unit i = 1,⋯ , I = 246 at month t = 1,⋯ , T = 216 was modelled using a
generalised additive mixed model (GAMM) with a negative binomial
distribution. The general algebraic definition of the model9,18 is given
by:

logðμi,tÞ=α + logðPi,a½t�Þ+
XK

k = 1

f ðXi,t,kÞ+
XL�1

l = 1

βlUi,a½t� + γGi,d½t�

+ δ logðMi,a½t�Þ+ ϵ logðTi,a½t�Þ+ ζ i,a½t� + ηm½t� + νi + ui,

ð5Þ

whereαdenotes the intercept; logðPi,a½t�Þ indicates the logarithmof the
population in administrative unit i at year a[t], included as an offset; X
is a matrix of k = 1,⋯ ,K = 3 piecewise functions of climate variables
(air temperature, and number of dry days) defined as linear regression
splines f; U is a categorical variable of different population density
levels (l) for administrative unit i at year a[t] with regression coeffi-
cients β; G denotes the GDP for each administrative unit and decade
d[t] with regression coefficient γ; log(Mi,a[t]) indicates the natural
logarithm of human mobility with coefficient δ; and log(Ti,a[t])

indicates the natural logarithm of air passenger volume with coeffi-
cient ϵ. Constrains to the linear regression splines were based on
exploratory analyses using cubic regression splines. We preferred lin-
ear splines over cubic splines because the latter are built from basis
functions defined from the training data and our projections of cli-
matic and non-climatic variables extend beyond that range making
cubic splines inappropriate for prediction. Delayed effects of climate
were accounted for by incorporating a three-month moving average
centred at a lag of one month. Annual anomalies were accounted for
using unstructured random effects for each year (ζi, a[t]). Seasonal
trends are accounted for using cubic regression splines η for each
calendar month m[t]60. Unknown confounding factors and spatial
dependencies were incorporated using spatially structured (νi) and
unstructured (ui) random effects for each administrative unit i.
Spatially structured random effects were specified using a Gaussian
Markov Random Field smooth, which represents the spatial depen-
dence structure of areas that share a boundary60. Models were fitted in
R version 4.1 using the mgcv package60.

Model evaluation
Blocked cross-validation61 was used to evaluate the predictive ability of
the model. We divided the data set into K = 216 training and testing
sets. Each test set comprised of blocks of n = 24 contiguous observa-
tions. The natural order of the observations was kept within each
block. The predictive ability of the model was evaluated using the
mean absolute error (MAE) for each block. In-sample and out-of-
sample Spearman’s rank correlation coefficients were also calculated
for each block. In a sensitivity analysis, we fitted models using the six
predictors in isolation, as well as all their possible combinations (n = 64
models) using a blocked cross-validation algorithm (see ‘Methods’)9,62.

Data availability
Data sets generated and/or analysed during the current study are
available within the paper, the provided link or are appended as
Supplementary Data. Source data are provided with this paper. The
processed epidemiological, climatic, socioeconomic and demo-
graphic data are available at the Centre for Open Science OSF data
repository (https://osf.io/85xwq/, https://doi.org/10.17605/OSF.
IO/85XWQ).

Code availability
The code for the statistical model is available for download from
GitHub https://github.com/FelipeJColon/Projecting_dengue_SEA or
from the Centre for Open Science OSF data repository https://osf.io/
85xwq/, https://doi.org/10.17605/OSF.IO/85XWQ.
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