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Abstract

Antimicrobial resistance (AMR) continues to threaten public healthcare worldwide. Drug-resistant
tuberculosis (DR-TB) is a major example of AMR, with resistance developing to multiple drugs, im-
peding treatment. Resistance in Mycobacterium tuberculosis (the bacterium causing human TB) is
primarily mediated via mutations causing a single amino acid change at a specific position in a given
protein, termed single amino acid variation (SAV). This thesis focusses on using computational meth-
ods to investigate the molecular consequences of SAVs on resistance development in the six main M.
tuberculosis gene-drug targets: alr-cycloserine (DCS), embB-ethambutol (EMB), gidB-streptomycin
(STR), katG-isoniazid (INH), pncA-pyrazinamide (PZA), and rpoB-rifampicin (RFP).

Mutation data was sourced from a genome-wide association study of over 35,000 clinical isolates. An
analysis pipeline extracted over 4000 SAVs across all targets and calculated minor allele frequency, odds
ratio and lineage contributions. Protein structure modelling and docking were performed to obtain
the gene-drug complex in the absence of an experimentally determined structure. Multiple in silico
estimators of mutational effects on protomer stability, molecular affinities, evolutionary conservation,
and residue-level properties were calculated.

Initial analysis explored interrelationships between estimators for gene-targets. Visualisation tools,
built to interactively inspect these relationships, aided the interpretation. Lineage effects on resistance
were examined to understand the influence of epistasis. Together, these were used to build a supervised
machine learning (ML) classification pipeline using multiple classifiers to predict resistance. ML
models were built for individual and combined gene-drug targets, with the latter showing supervised
ML classification could be used in a gene-agnostic manner to predict resistance.

Model performance was assessed using the Matthews Correlation Coefficient (MCC), with performance
generally improving upon feature selection for most models. For individual gene-drug targets, ML
prediction for predicting PZA resistance performed the best, with an MCC score of 0.52 achieved using
the Multilayer Perceptron (MLP) classifier. This was followed by an MCC of 0.49 for RFP resistance
prediction using the XGBoost model. EMB and INH resistance predictions followed equally with MCC
scores of 0.42 using XGBoost for EMB, and both Linear Discriminant Analysis and Ridge classifiers
for INH. For the combined model, PZA prediction was the highest with an MCC of 0.46 based on the
Extra Tree classifier, followed by RFP prediction of 0.39 MCC using MLP. EMB resistance prediction
was 0.34 MCC using the Random Forest classifier, and finally an MCC of 0.31 with Stochastic Descent
for INH resistance prediction. INH resistance prediction was the lowest compared with other targets
both in the individual and combined ML approaches, while DCS and STR resistance prediction results
were inconclusive.

Exploiting a combined genomic and structural approach to understand mutational effects of resistance
to anticipate resistance in a gene-agnostic manner would benefit clinical decision making and drug
stewardship efforts. Future work could extend these methods to develop epistasis-informed ML models
and apply transfer and unsupervised learning to other gene-targets in M. tuberculosis. The methods
and pipelines developed can also be applied to other AMR pathogens.
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1.1 Antimicrobial resistance

Antimicrobial resistance (AMR) is the ability of microorganisms including bacteria, viruses, fungi and

parasites, to overcome the effects of drugs used to treat diseases caused by them. Drugs directed to-

wards specific microbes such as antibiotics for bacteria, antivirals for viruses, antifungals for fungi, and

anti-parasitics for parasites are collectively termed antimicrobials. AMR is an expected consequence

of the Darwinian principle of survival of the fittest, where some microbes accumulate changes over

successive generations to adapt and survive in the face of the pressure exerted by the drug. While a

natural phenomenon, the widespread use, overuse, and misuse of antimicrobials in humans, animals

and plant sectors has accelerated the emergence of drug resistant pathogens.1 Infections caused by

resistant pathogens have an adverse effect on human health, leading to prolonged hospital stays, poor

disease outcome, less effective treatments, and potentially untreatable diseases.

1.1.1 Burden

The societal and economic consequences from AMR associated morbidity and mortality is predicted to

be a staggering 100 trillion USD per year by 2050.2 In February 2022 a comprehensive systematic review

published in the Lancet medical journal by the Antimicrobial Resistance Collaborators3 estimated a

figure of 1.27 million deaths globally in 2019 attributable to bacterial AMR alone. This is far in

excess of the 700,000 estimated global annual deaths reported by the 2016 O’Neill report and makes

the predicted 10 million deaths from bacterial AMR by 2050,2 far more imminent. The 2022 AMR

review is an extensive study from 471 million isolates spanning 204 countries, which estimated this

burden accounting for two alternative scenarios, highlighting 4.95 million preventable deaths in 2019

if all drug resistant infections were replaced by no infection (associated with resistance), and 1.27

million preventable deaths if all drug resistant infections were replaced by drug susceptible infections

(attributable to resistance).3 Nearly all major pathogenic diseases are affected by either prevailing or

emerging resistance, with AMR being one of the foremost public health priorities.1

In 2019, the top six bacterial pathogens responsible for nearly a million deaths were Escherichia

coli followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acine-

tobacter baumannii, and Pseudomonas aeruginosa.3 Extending this to the top six drug-pathogen

combinations, Methicillin-resistant Staphylococcus aureus was responsible for over 100,000 deaths

alone followed by multidrug resistant M. tuberculosis, third-generation cephalosporin-resistant Es-

cherichia coli, carbapenem-resistant Acinetobacter baumannii, fluoroquinolone-resistant Escherichia

coli, carbapenem-resistant Klebsiella pneumoniae, and third-generation cephalosporin-resistant Kleb-
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siella pneumoniae3 (Figure 1). Uptake of antiretroviral therapy (ART) to treat Human Immunodefi-

ciency Virus (HIV) has been considered a huge success with 26 million people receiving ART at the end

of June 2020.4 However, emergence of drug-resistant HIV has compromised most antiretroviral drugs,

including newer ones, which are now at risk of becoming unusable due to resistance development. More

than 10 developing countries had existing drug-resistant HIV.1 Similarly, the globally emerging drug-

resistant yeast (unicellular fungi), Candida auris, with known outbreaks in healthcare settings, has

already been reported to have widespread resistance to fluconazole, amphotericin B and voriconazole,

with emerging resistance to caspofungin.1 Additionally, malaria is a life-threatening disease, with 241

million cases and 627,000 deaths reported worldwide in 2020.5 Resistance to artemisin-based combi-

nation therapy (ACT), the principal first-line treatment for Plasmodium falciparum (one of the main

species that causes malaria) has been confirmed in the Greater Mekong Region from studies conducted

between 2001 and 2019 (Figure 1).1

In recognition of this multi-faceted and multi-sectorial problem, the 2020 World Antimicrobial Aware-

ness Week (held every year from 18th to 24th November since 2015) was renamed to reflect its expanded

scope from antibiotics to antimicrobials. This highlights the broad reach of AMR and the need to

address it from a One Health perspective.9 To put it succinctly, AMR is present and rapidly spreading

in every country and affects everyone.

1.1.2 Drivers

The disease burden of AMR has been accelerated by the overuse and misuse of antimicrobials in hu-

man health, animal husbandry, and agricultural industries. Poor diagnostic and prescribing practices

(antibiotics for viral infections),10,11 and patient non-compliance to treatment further contribute to

this problem. Furthermore, inadequate infection prevention and control measures, especially in re-

source limited settings with poor sanitation and access to clean water further aggravate the spread

and emergence of drug-resistance. This burden is further compounded by a lack of market incentives

for antimicrobial drug development due to high costs with poor commercial returns.2

The biological drivers of AMR for pathogens can be intrinsic and acquired. While intrinsic mechanisms

are comprised mainly of natural barriers present in microbes such as the lipid rich, hydrophobic cell

wall of Mycobacterium making it naturally resistant to a wide array of antibiotics,12 the presence of an

additional outer membrane in Gram negative bacteria making these naturally resistant to antibiotics

like vancomycin targeting cell wall synthesis,13 the co-evolution of environmental microbes in the

presence of a wide variety of variable compounds also contributes to this route of resistance.14 Acquired

drug resistance, however, is predominantly driven by genetic mutations: missense point mutations or
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Figure 1: Global Antimicrobial Resistance (AMR) burden
A) Global number of deaths by pathogen in 2019 highlighting Escherichia coli as the leading pathogen linked
to deaths, with inset showing global deaths by pathogen-drug combination attributed to AMR, highlighting
Methicillin resistant Staphylococcus aureus linked to over 100,000 deaths. Figure adapted from the 2021 Lancet
review on bacterial AMR,3 B) Estimated impact of HIV drug resistance on AIDS deaths, new HIV infections
and Antiretroviral therapy in sub-Saharan Africa highlighting pre-treatment HIV drug resistance of more than
10%. Figure adapted from the WHO HIV Drug Resistance report 2021,6 C) Number of clinical cases of Candida
auris in 2018 in the United States highlighting the steep increase in that year, as well as growing resistance to
one or more antifungals. Figure adapted from the 2019 CDC fact sheet on Drug-Resistant Candida species7 and,
D) Treatment failure in Plasmodium falciparum malaria due to artemisin-based combination therapy between
2010-2020 in the Greater Mekong region. Figure generated from the WHO Malaria threat map.8

non-synonymous single nucleotide variations (nsSNVs), insertions/deletions (INDELs), and frameshift

mutations. The two different routes of AMR are elaborated in the review published as part of this

project in 2020 (included below in full). Please note that SNVs may be referred to as single nucleotide

polymorphisms (SNPs), though these terms are strictly speaking not interchangeable. SNP is a type

of substitution mutation/variation that must be present in at least 1% of the population to qualify,

while a SNV a variation in a single nucleotide without any limitations of frequency.

1.1.3 Computational approaches in studying AMR

The increased use of rapid molecular and genetic testing methods in clinical care is facilitated by com-

putational approaches utilising the wealth of data generated using large scale sequencing technologies.15–20

In the context of drug resistance, whole genome sequencing followed by Genome Wide Association

Studies (GWAS) help identify mutations associated with resistance, in specific gene loci or pan-genome.

This contributes directly towards understanding the emergence, development, and spread of AMR.

As such, they have become important decision support tools in medicine and public health, where

they help bridge gaps in existing knowledge and inform future clinical research.20–23 Additionally, the

abundance of data has opened avenues for novel applications of artificial intelligence and machine

learning (AI/ML) methods to combat AMR.24–28

Mutations play a fundamental role in evolution and in creating the diversity we see around us. The

most common in bacteria, and of particular interest are nsSNVs, resulting in a single amino acid

variation (SAV) in the encoded protein sequence. These in turn lead to changes in the protein’s

three-dimensional structure (3D), influencing local conformational changes and associated interac-

tions.

1.1.3.1 3D structure to understand AMR

Protein structure modelling enables investigation of the biophysical effects of polymorphisms. Bio-

physical effects include changes in: protein stability, molecular binding affinity of ligands, and protein-
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protein interactions upon mutation. Considerable advancement has been made in its application

through the use of molecular dynamics simulations29 and structure-based ML approaches to under-

stand and predict resistance.25,30 Protein structure is stabilised by physical interactions. The impact of

SAVs inevitably alter this stability.31 The impact of protein stability has been studied by site directed

mutagenesis followed by thermodynamic measurements and structure determination.31,32 Predicting

the stability impact of SAVs computationally has numerous advantages over conducting mutagenesis

experiments. Scaling up computational capacity is rapid, affordable, and does not take up valuable

lab time. Computational investigations are also repeatable and allow alteration of multiple vari-

ables.

Using thermodynamic modelling, mutational effects can be assessed through quantitative measure-

ments, reflecting changes made to the thermal stability of a two-state protein. These measurements

calculate the difference in Gibbs free energy between the concentration of the unfolded (Gu) and the

concentration of the folded (Gf) states, where ∆G=Gu-Gf, as per the equation:

∆G = −RTln
[folded]

[unfolded]

Where ∆G is change in Gibbs free energy, R is the gas constant (1.987 cal K-1 mol-1, T is the temper-

ature in Kelvin, and [folded] and [unfolded] refer to concentrations of the two forms of protein.

A higher concentration of the protein in the folded form relates to a more stable protein, i.e. a more

negative ∆G, as thermodynamically a negative ∆G indicates release of energy by a system to achieve

a more stable state. The impact of mutations on protein stability is then calculated as a free energy

difference: ∆∆G=∆Gw-∆Gm, where ∆Gw and ∆Gm refer to the free energy change (∆G) between

the unfolded and folded states of the wild-type and mutant proteins respectively. In this manner, a

negative ∆∆G indicates that the mutation has destabilising effect, while conversely, a positive ∆∆G

indicates a stabilising effect (Figure 2).33 There is currently no consensus in the literature regarding

the calculation of ∆∆G, as either ∆Gw-∆Gm or ∆Gm-∆Gw may be used leading to computational

tools varying in their approaches for classifying mutational impact. However, many computational

tools appear to prefer the use of a negative ∆∆G to indicate a destabilising mutational effect, and as

such, in my thesis, I have followed this convention.

Attempts have also been made to predict the impact on affinity of protein-protein, protein-ligand and

protein-nucleic acid interactions.34–38 Ready availability and access to thermodynamic databases for

proteins, mutants and interactions like ProTherm and ProNIT,39 SKEMPI,40 and Platinum41 have
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Figure 2: Stability change upon mutation in terms of Gibbs free energy (∆G)
Figure adapted from Quan, et. al..33

been critical in such analyses.

ML combined with structure-based methods has proven powerful in predicting disease related mutations,42

novel resistance mutations,25 and predicting stability changes from sequence or structure descriptors.43,44

1.1.3.2 Combining 3D structure and genomics to understand AMR

Combining genomic analyses with the biophysical effects of mutations can help reveal the molecular

basis and consequences of resistance development. In the review paper, published as part of this

project45 (available in full at the end of this chapter) the application of such a mechanistic under-

standing of drug resistance to limit the impact of AMR is described. The paper also provides a

review of available computational tools to investigate the effects of SAVs on protein structure and

function.

As highlighted earlier, mutations leading to drug resistance can occur both outside (e.g. post-

translational modifications, regulatory elements, etc.) and in the protein coding region of a pathogen

genome. The latter, as a major route to resistance is the focus of this project. A prominent ex-

ample where SAV driven resistance development is particularly extensive is Mycobacterium tubercu-

losis (M. tuberculosis) due to the absence of horizontal gene transfer (HGT). M. tuberculosis is the

causative agent of human tuberculosis (TB) disease which continues to remain a global concern due

to widespread resistance development. The availability of genomics data related to clinical isolates,

together with computational tools and 3D protein structures used to investigate mutational impact,

motivated a combined genomics, protein structure and ML driven approach to improve understanding
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of resistance development in M. tuberculosis.

1.2 Tuberculosis

Tuberculosis (TB) is an ancient, communicable respiratory disease caused by the bacterium M. tuber-

culosis. TB most frequently affects the lungs (pulmonary TB), but it can also spread to other parts

of the body such as lymph nodes and brain. The TB causing bacteria can remain dormant in humans

for weeks to years before becoming active and causing infection. Only a small proportion of those

infected with TB develop an active disease during their lifetime, though the risk is greatly increased

for those living with HIV, diabetes, and other risk factors like under nutrition, smoking, and alcohol

consumption. TB is a global disease and occurs in all age groups, though the majority of those infected

are adult males.46 TB was the leading cause of death from a single infectious agent ranking above HIV

up until the COVID-19 pandemic. Worldwide there were approximately 10 million incident TB cases

in 2020 with 1.5 million deaths from TB including 214,000 people co-infected with HIV (Figures 3A

and 3B).46 The burden of TB is disproportionately high in low- and middle-income countries which

account for 98% of all reported TB cases (Figure 3C). Despite an 11% decline in global TB incidence

between 2015-2020, and TB being a preventable and curable disease, TB treatment is suffering from

widespread drug resistance.46

1.2.1 Diagnosis

TB diagnosis can be a time consuming and challenging process as M. tuberculosis is an extremely

slow growing bacteria doubling roughly once per day compared with every 20 minutes in the case of

Escherichia coli. While smear microscopy and microbiological culture remain the reference standard

for TB diagnosis, rapid molecular testing endorsed initially in 2010 by the WHO has become the

recommended initial diagnostic test in people with suspected TB. These genetic diagnostic tests have

considerable time advantage and higher sensitivity and specificity proving crucial in the early detection

of the disease and drug resistance.

1.2.2 Treatment

As with its diagnosis, TB treatment is difficult with long treatment regimens resulting in problems

with patient treatment compliance. Without treatment TB mortality remains high, 70% of people

with sputum smear positive, and 20% of those with culture positive smear negative pulmonary TB

died from TB within 10 years of diagnosis.47 Anti-TB drugs are classified into several groups. Treat-

ment regimens comprise of standardised fixed dose therapy with a combination of antibiotics from
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different drug groups for several months. The broad classification of anti-TB treatment is: First-line

drugs isoniazid, rifampicin, ethambutol and pyrazinamide; second-line drugs streptomycin, kanamycin,

amikacin, cycloserine, and capreomycin; orals and/or injectables; and further add on drugs like fluro-

quinolones. Patients with drug-susceptible TB currently undergo a regimen of four first-line drugs for

at least 6 months.46 Classification of anti-TB drugs is being continually evaluated and revised to reflect

priority management of drug resistant cases. While the original guidelines for this date back to the

199648 with subsequent revisions, the fundamentals describing therapeutic regimens to manage drug

resistant cases was published in the 2006 and 2008 guidelines.49 Up until 2011, the WHO recognised

classification of anti-TB drugs was from group 1-5 in a step-down manner based on class, potency,

efficacy and clinical experience.50 The 2016 WHO guidelines however listed drugs in groups A-D in a

hierarchical manner51 with group 1 drugs from the 2011 classification losing priority and being assigned

to group D1 with further re-classifications being proposed in light of growing evidence.52,53 Further-

more, a more up-to-date classification is provided in the most recent WHO consolidated guidelines54

(Table 1A).
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A

B

C

Figure 3: TB incidence, mortality and high burden countries in 2020
A) Estimated TB incidence, B) Estimated global trends in overall TB mortality including those with and
without HIV, and C) Top eight ranked countries with at least 100,000 incident TB cases. Figure adapted from
the Global Tuberculosis report 2021.46
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A: 2011 WHO TB drugs
classification

Group Medicine

Group 1

First-Line oral anti-TB
drugs

Isoniazid
Rifampicin
Ethambutol

Pyrazinamide
Group 2

Injectable anti-TB drugs

(injectable or parenteral
agents)

Streptomycin
Kanamycin 
Amikacin

Capreomycin

Group 3

Fluoroquinolones

Levofloxacin
Moxifloxacin
Gatifloxacin
Ofloxacin

Group 4

Oral bacteriostatic
second-line anti-TB

drugs

Ethionamide/prothionamide
Cycloserine/terizidone

p-Aminosalicylic acid

Group 5

Anti-TB drugs with
limited data on efficacy
and long term safety in
the treatment of drug-

resistant TB

Linezolid
Clofazimine

Amoxicillin/clavulanate
Imipenem/cilastatin

Meropenem
High-dose isoniazid

Thioacetazone

Clarithromycin

B: 2016 WHO TB drugs
classification for MDR-TB

Group Classification Medicine

A Fluoroquinolones
Levofloxacin
Moxifloxacin
Gatifloxacin

B Second-line
injectable agents

Amikacin
Capreomycin
Kanamycin

Streptomycin

C Other core second-
line agents

Ethionamide or
prothionamide
Cycloserine or 

terizidone
Linezolid

Clofazimine

D Add-on agents

D1
Pyrazinamide
Ethambutol

High-dose isoniazid

D2
Bedaquiline
Delamanid

D3

Para-Amino-
salicylic acid

Imipenem/cila-
statin

Meropenem
Amoxicillin/
clavulanate

C: 2019 WHO TB drugs
classification for MDR-TB

Group Medicine Step

A

Levofloxacin or
Moxifloxacin

Include all three
medicines (unless
they cannot be

used)
Bedaquiline
Linezolid

B

Clofazimine Add one or both
medicines (unless
they cannot be

used)
Cycloserine or terizidone

C

Ethambutol

Add to complete a
four-to-five drug
regimen when
medicines from
groups A and B
cannot be used

Delamanid
Pyrazinamide

Imipenem/cilastatin or
meropenem

Amikacin or streptomycin
Ethionamide or
prothionamide

Para-Aminosalicylic acid
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Table 1: Summary and comparison of WHO TB drug classification from 2011, 2016 and 2019
Anti-TB drug classification from (A) 2011,50 (B) 2016,51 and (C) 2019,54 highlighting the shift in treatment
focus from managing all cases of TB to managing drug resistant TB cases. Tables adapted from WHO references.
MDR-TB refers to multidrug resistant TB, defined as resistance to both isoniazid and rifampicin.

1.2.3 Drug Resistant TB

Treatment for drug resistant TB (DR-TB) is challenging for patients due to long treatment times, and

the economy, due to costs and lost productivity. Treatment for DR-TB is expensive, typically costing

more than 1000 USD per person.46 Patients also suffer greater side effects compared with the first line

treatments used for drug susceptible TB. DR-TB takes several forms: Pre-MDR, MDR, Pre-XDR and

XDR TB.

Multidrug-resistant tuberculosis (MDR-TB) is defined as resistance to two first line anti-TB drugs:

isoniazid and rifampicin, where pre-MDR TB refers to resistance to isoniazid or rifampicin, the latter

being referred to as rifampicin resistance TB (RR-TB). Both MDR and RR TB require treatment with

second line drugs. Although MDR-TB can be treated with second-line drugs, these options are often

limited and require prolonged treatment times (up to 2 years) with associated health and economic

effects. In some cases, extended resistance to additional drugs referred to as extensively drug resistant

TB (XDR-TB) can lead to more severe forms of the disease, further exacerbating the situation. The

definition of XDR-TB up until 2021 was MDR/RR-TB strains that were further resistant to second-

line-injectables (amikacin, capreomycin or kanamycin) and any fluoroquinolones (such as levofloxacin

or moxifloxacin), while pre XDR-TB was defined as the MDR/RR-TB strains which were resistant to

second-line-injectables or fluoroquinolones55 (Table 1B).

The revised 2021 definition of XDR-TB is MDR/RR-TB strains with resistance to any fluoroquinolones

and at least one additional Group A drug (Group A drugs are the most potent group of drugs in the

ranking of second-line medicines in TB treatment), while pre-XDR TB refers to MDR/RR-TB strains

that are resistant to any fluoroquinolone. These revised definitions reflect the severity of disease

progression with resistance to additional medicines, thus further limiting available treatment options

(Table 1C). Since the data for this project predates the revised definition of XDR-TB, the old

definition of XDR-TB is used in this project.

Globally in 2020, roughly 70% of people with confirmed pulmonary TB were tested for RR-TB. A total

of 157,903 cases of DR-TB were reported, with 132,222 cases of MDR/RR-TB, and 25,681 cases of

pre-XDR- or XDR-TB.46 In 2019 there were an estimated 465,000 incident cases of RR-TB worldwide,

with 78% resulting in an estimated 182,000 deaths.56 An online dashboard showing TB profile data

globally and by region is available at: https://worldhealthorg.shinyapps.io/tb_profiles
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In 2020, WHO recommended a new shorter (9-11 months) and fully-oral regimen for treating MDR-

TB in an effort to improve patient compliance. This is only suitable with exclusion of prior resistance

to fluoroquinolones. By the end of 2020, 65 countries were using the shorter MDR-TB treatment

recommendation, and 109 countries were using bedaquiline in order to treat MDR-TB (Figures 4A

and 4B).

The estimates in 2020 for TB were based on new methods due a sharp decline of 18% with TB in the

preceding year. This was solely due to the COVID-19 pandemic and its effects on access and delivery

of TB treatment.46

1.2.4 Drivers of TB resistance and evolution

The M. tuberculosis bacterium is part of the larger Mycobacterium tuberculosis complex, consisting

of genetically related Mycobacterium species responsible for causing human and animal tuberculosis

disease. The bacterium is an intracellular pathogen, unique in its lipid rich cell wall consisting of

mycolic acid and glycolipids that play fundamental roles in its virulence.58 The M. tuberculosis genome

is remarkably conserved with no horizontal gene transfer (HGT) as observed in other organisms.59,60

The size of the genome (H37Rv strain) is 4.4 Mb, with a high (65%) main lineages spread globally, L1:

Indo-Oceanic, L2: East Asian, L3: East-Africa-Indian, and L4: Euro-American.22 The lineages are

further classified into ancient (L1, L56), modern (L24), and intermediate (L7) strains, with evidence

of L2 being particularly mobile due to its recent spread to Europe and Africa from Asia.22 As well as

being globally diverse, M. tuberculosis lineages also differ in their virulence, tendency to acquire drug

resistance, and biological fitness.61–63

TB treatment, though effective, has suffered due to HIV co-infection, immigration, and drug resistance

leading to disease re-emergence.64–67 DR-TB directly threatens disease control and outcome since

diagnosis of DR-TB is difficult. Microbiological culture, which takes several weeks to grow remains

the gold standard for confirmatory TB diagnosis, making treatment empirical (due to the need to

start treatment based on clinical experience, best practice and clinical guidelines before confirmatory

results). This adds potential for misdiagnosis, delays, and sub optimal treatment, which all contribute

to DR TB.16,68

Resistance development in M. tuberculosis is an interplay of intrinsic and extrinsic factors. While

epigenetic changes and post transcriptional modifications (PTMs) drive the phenotypic route to re-

sistance in M. tuberculosis,69,70 the genetic route to resistance is chiefly acquired via accumulation of

mutations in the absence of HGT.
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A

B

Figure 4: WHO Drug Resistant TB treatment coverage for Multi-Drug Resistant TB
(MDR)/Extensively Drug Resistant (XDR) TB in 2020. A) countries that used all-oral shorter MDR-TB
treatment regimens, and B) Countries which used bedaquiline for the treatment of MDR/XDR-TB. Figure
adapted from the digital publication section of the Global Tuberculosis report 2021.57

Extrinsic factors are commonly social: patient non-compliance owing to long treatment regimens,

drug toxicity effects, as well as lack of, and access to, new therapies.64,66 The intrinsic aspect of

resistance manifests in various forms like reduction in cell wall permeability, loss of porins, and the

type and number of active efflux pumps.61,71,72 Intrinsic routes can be innate mechanisms in the

organism, driven with or without the genetic route. For example, the low permeability of the lipid

rich cell wall in M. tuberculosis acts as an innate natural barrier to many antibiotics,73 while specific

enzymes are involved in altering cell wall permeability for certain antibiotics.74,75 Expression of a
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second class of transpeptidases forming non-classical linkages between peptides in the M. tuberculosis

cell wall confer resistance to β-lactam antibiotics such as amoxicillin and carbapenems.76,77 The loss

of porins in mycobacteria have shown to confer resistance to hydrophilic antibiotics which use these

channels to permeate the outer membrane due to the limited permeability offered by their lipid rich

membrane. Mutational changes affecting efflux pump activity alter their ability to transport antibiotics

out of the cell, and as such have been responsible for the emergence of resistance78–80 particularly

to isoniazid, ethambutol and streptomycin.61 Methylation of drug targets is yet another route for

intrinsic resistance, and has been observed in macrolide resistance,81 resistance to capreomycin and

viomycin.82

The intrinsic route, however, is largely driven genetically through mutations such as nsSNVs (leading

to SAVs) and INDELs accumulating in the genes coding for drug targets, drug activating enzymes,

or including efflux pump activities. Resistance-associated point mutations, specifically SAVs, have

been described for all first-line drugs, and for several second-line and newer drugs (fluoroquinolones,

bedaquiline).83–86

While resistance mutations may bear a fitness cost to the bacterium, putative compensatory mutations

allow resistance mutations to become fixed in a population. A classic example of this was demonstrated

by whole genome sequence analysis which revealed that mutations in the rpoA and rpoC gene in

rifampin resistant isolates were acting in a compensatory manner to mitigate the fitness loss induced

by mutations in the rpoB gene in these isolates.71,87,88

While resistance development in M. tuberculosis has largely been a single step process of acquiring

chromosomal mutations, there is now evidence supporting a stepwise accumulation and fixation of

mutations in M. tuberculosis.86,89,90 To this effect, the order in which multiple interacting mutations

get fixed in a population, leading to a gradual increase in resistance, becomes an important contributing

factor towards understanding resistance development. The phenomenon of interaction between genes

that influences a phenotype is defined as epistasis, where the effect of a gene mutation depends on

the presence or absence of other mutations in one or more genes. This implies that the effect of a

mutation then becomes dependent on the genetic background in which it appears,91 where epistatic

mutations result in a different outcome (e.g. resistance) when occurring independently or together.

Indeed, there are known conserved patterns like the katG S315T mutation for isoniazid resistance,

commonly preceding rifampicin resistance irrespective of lineage, geography and time.92 Epistasis

can be positive or negative and can be linked to fitness where positive epistasis would indicate a

smaller fitness cost due to multiple interacting genes or mutations.93 Both forms have been observed
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in M. tuberculosis between resistance-linked and compensatory mutations.62,94 As such, epistasis can

determine evolutionary trajectories for resistance acquisition.

There are also sub-populations of M. tuberculosis that can become phenotypically tolerant to anti-

TB drugs without acquiring genetic mutations, termed persisters.95 These are antibiotic tolerant cells

that exhibits arrested growth and low metabolic activity in order to increase drug tolerance, thereby

contributing to resistance. Mechanisms of M. tuberculosis persistence are not fully understood, with

several factors including metabolic traits and physiological states being linked to M. tuberculosis

persistence.96,97

1.3 Project structure

The overall aim of the project is to investigate the mutational impact on protein structures of six

genes in M. tuberculosis, relating these to the genomics measures including lineage, and using this

interdisciplinary approach to develop a gene-agnostic ML-driven resistance prediction tool. The six

structural genes analysed in the project are listed below:

1. alr-cycloserine (DCS)

2. embB-ethambutol (EMB)

3. gidB-streptomycin (STR)

4. katG-isoniazid (INH)

5. pncA-pyrazinamide (PZA)

6. rpoB-rifampicin (RFP)

The thesis is divided into 12 chapters, with chapters 3-8 exploring each of the six genes individually

with chapter 9 summarising these findings. An overview of the chapters is provided below:

Chapter 1: Introduction includes the review paper published as part of this thesis in October
2020.

Tunstall T, Portelli S, Phelan J, Clark TG, Ascher DB, Furnham N. Combining structure and
genomics to understand antimicrobial resistance. Comput Struct Biotechnol J. 2020 Oct 29;18:3377-
3394. doi: 10.1016/j.csbj.2020.10.017. PMID: 33294134; PMCID: PMC7683289.

Chapter 2: Methods detailing the dataset used and the in silico framework developed.

Chapter 3: Explores the structural and genomic consequences of mutations in the M. tuberculosis
gene-drug target: pncA-PZA. This is a published manuscript from July 2021.

Tunstall T, Phelan J, Eccleston C, Clark TG, Furnham N. Structural and Genomic Insights Into
Pyrazinamide Resistance in Mycobacterium tuberculosis Underlie Differences Between Ancient and
Modern Lineages. Front Mol Biosci. 2021 Jul 23;8:619403. doi: 10.3389/fmolb.2021.619403. PMID:
34422898; PMCID: PMC8372558.
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Chapter 4: Details the structural and genomic relationship for M. tuberculosis gene-drug target:
embB-EMB.

Chapter 5: Details the structural and genomic relationship for M. tuberculosis gene-drug target:
gidB-STR.

Chapter 6-8: Covers three M. tuberculosis gene-drug targets: alr-DCS, katG-INH, and rpoB-RFP
which updates using our genomic data and analysis tools to what has been previously reported on,
with additional genomic and lineage interactions.

Chapter 9: Integrated summary of all six gene-drug targets, which details and discusses the notable
findings from chapters 3-8.

Chapter 10: Focusses on mutations that display differing drug susceptibility profiles to assess their
relevance in understanding resistance development in M. tuberculosis.

Chapter 11: Describes machine learning to anticipate resistance in a gene-target, and using a gene-
agnostic approach.

Chapter 12: Discussion, Conclusion and Future work.
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a b s t r a c t

Antimicrobials against bacterial, viral and parasitic pathogens have transformed human and animal
health. Nevertheless, their widespread use (and misuse) has led to the emergence of antimicrobial resis-
tance (AMR) which poses a potentially catastrophic threat to public health and animal husbandry. There
are several routes, both intrinsic and acquired, by which AMR can develop. One major route is through
non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions. Large scale genomic stud-
ies using high-throughput sequencing data have provided powerful new ways to rapidly detect and
respond to such genetic mutations linked to AMR. However, these studies are limited in their mechanistic
insight. Computational tools can rapidly and inexpensively evaluate the effect of mutations on protein
function and evolution. Subsequent insights can then inform experimental studies, and direct existing
or new computational methods. Here we review a range of sequence and structure-based computational
tools, focussing on tools successfully used to investigate mutational effect on drug targets in clinically
important pathogens, particularly Mycobacterium tuberculosis. Combining genomic results with the bio-
physical effects of mutations can help reveal the molecular basis and consequences of resistance devel-
opment. Furthermore, we summarise how the application of such a mechanistic understanding of drug
resistance can be applied to limit the impact of AMR.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

1.1. Antimicrobial resistance (AMR)

Drugs against bacterial, viral and parasitic pathogens have truly
revolutionised modern medicine, transforming human health and
saving millions of lives. This transformation, however, is under
threat due to emerging and widespread resistance to these drugs
[1]. This threat is termed antimicrobial resistance (AMR), and is a
natural and expected consequence of the Darwinian principle of
‘‘survival of the fittest”. Almost all antimicrobial drugs have seen
resistance arise within 5–10 years of their introduction [2]. The
consequences of AMR pose a catastrophic public health threat,
responsible for over 700,000 annual deaths [3], prolonged hospital
stays, poor disease outcome, less effective treatments, and poten-
tially untreatable diseases. Considering antibiotic resistance alone,
the toll is predicted to rise above 10 million deaths per year by
2050 if left unchecked. The associated global economic burden is
estimated at 100 trillion USD [3].

The disease burden of AMR has been accelerated by the overuse
and misuse of antimicrobials in health, animal and agricultural
industries. This burden is further compounded by a lack of market
incentives for antimicrobial drug development [3]. Nearly all major
infectious diseases are affected by either prevailing or emerging
resistance. For example, it is estimated that people with MRSA
(Methicillin-Resistant Staphylococcus aureus) are 64% more likely
to die than people with a non-resistant form of the infection [1].
Similarly, resistance to artemisinin-based combination therapy,
the first-line treatment for malaria caused by Plasmodium falci-
parum (P. falciparum), has been confirmed in 5 countries in the
Greater Mekong Region in 2016 [1]. Likewise, in 2010, an esti-
mated 7–15% patients starting antiretroviral therapy (ART) in
developing countries had drug-resistant HIV, with up to 40% resis-
tance observed in patients re-starting treatment [1].

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb),
is a major global health problem, with increasing drug resistance
making disease control difficult [4]. In 2017, 558,000 cases of
rifampicin resistant TB were reported, among which 82% had addi-
tional resistance to isoniazid, leading to multidrug-resistant TB
(MDR-TB). Among these MDR cases, ~9% cases were further resis-
tant to one fluoroquinolone and one injectable 2nd line drug, lead-
ing to extensively drug resistant TB (XDR-TB) [5,6].

Resistance is attributed to multiple factors including selective
pressure on Mtb from repeated exposure to the same antibiotic, a
lack of access to new therapies, and patient non-compliance due
to long treatment regimens and drug toxicity effects [7,8]. Both
phenotypic and genotypic routes are involved in the development
of Mtb resistance. While epigenetic changes and post transcrip-
tional modifications drive the phenotypic route to resistance
[9,10], the genetic route is chiefly acquired via accumulation of
mutations in the absence of horizontal gene transfer. Resistance-

associated point mutations have been described across all anti-
TB drugs, including newer ones (fluoroquinolones, bedaquiline)
[11,12].

1.2. Drivers of AMR

The drivers of AMR can be both intrinsic or acquired. Intrinsic
resistance refers to the innate mechanisms present within
microbes to combat the action of drugs, and is considered to be
independent of previous drug exposure. Intrinsic mechanisms
include:

(i) the presence of an additional impermeable outer membrane
in Gram negative bacteria making them naturally resistant
to antibiotics that target cell wall synthesis such as van-
comycin [13].

(ii) the presence of enzymes that either prevent drug binding
within an organism, or destroy the drug. An example of
the former is the low affinity binding by Gram positive bac-
teria of penicillin-binding proteins (PBPs) required for the
synthesis of peptidoglycan in the cell wall, thus making
them naturally resistant to the b-lactam antibiotic aztre-
onam. An example of the latter is the production of b-
lactamase by Gram negative bacteria which destroy b-
lactam antibiotics before they can reach their PBP targets
[14].

(iii) the presence of multi-drug efflux pumps, which are complex
bacterial molecular machines capable of removing drugs and
toxic compounds out of the cell. For example, efflux medi-
ated drug resistance in tetracycline is mediated by the Tet
efflux pumps which use proton exchange as its energy
source to expel the antibiotic [15].

(iv) the lack of enzymes or metabolic pathways in aerobic bacte-
ria to chemically reduce the drug metronidazole to its active
form [13].

(v) the co-evolution of microbes with their surroundings con-
taining a variety of toxic and benign molecules and com-
pounds, which is commonly observed in environmental
microbes. For example, the soil bacteria actinomycetes har-
bours an intrinsic ‘resistome’ to the many antibiotics it pro-
duces [16,17].

(vi) the phenomenon of bacterial persistence, notably observed
in asymptomatic and chronic infections such as typhoid
and TB. Persisters are a sub population of antibiotic tolerant
cells that exhibit lowmetabolic activity and arrested growth,
contributing to increased drug tolerance and resistance [18].

Acquired drug resistance is typically driven by genetic variation
including point mutations (missense mutations or non-
synonymous single nucleotide polymorphisms; nsSNPs) and inser-
tions/deletions (INDELs) such as frameshift mutations. Such muta-
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tions can alter drug activation, binding affinity and permeability,
efflux pump activity, and biofilm formation [19]. Furthermore, a
common and prominent mechanism called horizontal gene trans-
fer (HGT) or lateral gene transfer (LGT) has been a significant cause
of widespread drug resistance. HGT/LGT is found almost exclu-
sively in bacteria where resistance conferring genes are transferred
between bacterial species [20,21].

Despite the two distinct routes of resistance, intrinsic mecha-
nisms may be driven by adaptive/acquired routes. For example
the efficacy of drug efflux pumps in Mtb are modulated by SNP
mutations [22,23]. The drivers of AMR and the various mechanisms
beyond point mutations (which forms the focus of this review)
have been extensively reviewed elsewhere: antibiotic resistance
[13,14], antifungal resistance [24–26], antiviral resistance [27,28]
and antiparasitic drug resistance [29–31].

1.3. Point mutations linked to AMR

A major route to AMR is driven by point mutations. For exam-
ple, in Mtb, mutations in several genes have been associated with
resistance to rifampicin (rpoB), isoniazid (katG, inhA and ahpC),
streptomycin (gidB, rrs and rpsL), pyrazinamide (pncA), ethambutol
(embB) and fluroquinolone (gyrA and gyrB). More generally, muta-
tions within gyrA confer low level fluroquinolone resistance in
Gram negative bacteria, while additional mutations in parC and
gyrB are responsible for high level resistance [32]. Ribosomal
mutations affecting ribosome assembly are particularly problem-
atic since these lead to large scale transcriptomic and proteomic
changes. In Mycobacterium smegmatis, such mutations have led to
downregulation of KatG catalase (activating enzyme for the drug
isoniazid) and upregulation of the transcription factor WhiB7
involved in innate antibiotic resistance. Further, the fitness cost
of these mutations is alleviated in a multi-drug environment which
promotes the evolution of high-level, target-based resistance [33].

Antiviral resistance is mainly an adaptive process, chiefly driven
by mutations [27]. In the case of antiretrovirals used in HIV treat-
ment, the primary mechanism of resistance to most Nucleoside
Reverse Transcriptase Inhibitors (NRTI) is through accumulation
of mutations near the drug binding site [34]. In Hepatitis B virus,
multiple missense point mutations have been linked to several
drugs, along with cross resistance observed between drugs [35].
Point mutations in the preS/S region are associated with vaccine
failure, immune escape, occult HBV infection and the occurrence
of hepatocellular carcinoma (HCC). Similarly, nsSNPS in the preC/
C region are related to HBeAg negativity, immune escape, and per-
sistent hepatitis, while those in the X region are implicated in pro-
moting HCC [36]. Likewise, antifungal resistance in Aspergillus
fumigatus is also primarily driven by mutations in the azole target
cyp51A gene [37], while resistance to artemisinin in P. falciparum
malaria is driven by multiple mutations in the Kelch 13 (K13) pro-
peller protein.

1.4. Genomics to identify point mutations linked to AMR

High throughput genomic platforms methods of next genera-
tion sequencing (NGS) technologies such as whole genome
sequencing (WGS) and genotyping arrays have enabled large scale
investigations of AMR for identifying resistance determining
genetic variants such as SNPs, INDELs, copy number variation,
and frameshift mutations [38–43]. The role of genetic variants, in
particular SNPs, have been implicated in drug resistance by several
studies [44–47]. Building on human complex disease applications
[48–50], genome-wide association studies (GWASs) have been
applied to reveal genotype - AMR phenotype associations, at a
locus or variant level. Furthermore, GWAS regression models allow
the estimation of mutation or genotype effect sizes (e.g. odds

ratios). Examples of GWAS analysis in the context of AMR include
for Burkholderia multivorans [51], Mtb [11,52,53], severe malaria
[50] and fungal pathogens [54].

Bioinformatic approaches exploiting output from WGS tech-
nologies and GWAS analyses have enabled AMR prediction and
surveillance. Leveraging this wealth of information has enabled
novel applications of artificial intelligence and machine learning
(AI/ML) in the pan-genome identification of resistance genes, path-
ways, mechanisms [55–58], as well as resistance prediction [59–
61]. Bioinformatic approaches have also been used to identify
novel drug targets like Inositol-3-phosphate synthase (I3PS) in
Mtb, opening up new avenues in TB drug discovery [62].

Despite the immense utility provided by genomic analysis,
these methods lack the mechanistic underpinning required to
develop robust prediction tools [63] necessitating follow-up func-
tional studies [64]. In order to strengthen genomic analysis, it is
important to supplement genomic associations with functional
consequences of mutations on drug targets. One of the ways to
achieve this is via biophysical assessment of mutations on drug-
target structure and their interactions.

1.5. Biophysical consequences of point mutations on protein structure

The biophysical consequences of protein mutations are mainly
studied by assessing thermodynamic stability, which is often used
as a proxy for function [65]. This relationship has been clearly
demonstrated in the evolution of influenza nucleoprotein which
appears to be constrained to avoid low-stability sequences [66].
The synergy between the fields of protein biophysics and protein
evolution helps contextualise and rationalise concepts of thermo-
dynamic stability, mutational robustness, evolvability and epista-
sis in resistance development [67–69]. Missense mutations
resulting in a change in the amino acid may disrupt downstream
function by altering protein stability and its associated interactions
[70]. For example, three missense point mutations within the Mtb
gidB gene lead to gidB mutants with lower thermodynamic stabil-
ity and higher flexibility, considered to be a major driving factor in
the emergence of high-level streptomycin resistance [71]. Equally,
structural insights into the stability-function relationship have
highlighted the rationale for such a trade-off in the development
of antibiotic resistance [72].

1.6. Using structure to understand impact of point mutations linked to
AMR

Structural consequences of point mutations can provide func-
tional insights for resistance phenotypes. For example, point muta-
tions in the Penicillin-Binding Proteins confer resistance to b-
lactam antibiotics by making the active site amenable to hydroly-
sis, or reducing binding affinity for the antibiotic [73]. Structure
guided design demonstrated the potential of boronate-based PBP
inhibitors to overcome b-lactam resistance in Gram positive organ-
isms [74]. Similarly, missense mutations in the Mtb gidB gene (tar-
get for the antibiotic streptomycin) are responsible for drug
resistance through distortion of the binding pocket affecting SAM
(co-factor) binding [71]. Likewise, mutations inMtb pncA gene (tar-
get for the pro-drug pyrazinamide) are responsible for the loss of
enzyme activity [75]. The underlying mechanism of mutations in
the gidB gene conferring low and high-level streptomycin resis-
tance in Mtb were found to be associated with distortion in the
active site morphology by proximal and distal residues affecting
the overall structure [76]. Further, the prominent mutation
H275Y within the neuraminidase enzyme of the H1N1 pandemic
strain renders the drug oseltamivir ineffective due to distortion
in the binding pose of the drug within the active site [77]. Struc-
tural analysis of C580Y and R539T mutations in the K13 propeller
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gene (associated with artemisinin resistance) in P. falciparum
malaria revealed local conformational disruption in the mutant
and two solvent-exposed patches at conserved sites affecting pro-
tein–protein interactions [78].

Structural insights can aid in the absence of phenotypic data
[79] as well as provide a physical basis to a more comprehensive
understanding of mutational impact on the underlying biological
mechanisms. Therefore, computational tools measuring the bio-
physical effects of resistance linked mutations can aid mechanistic
understanding and inform functional studies. Understanding
mutational consequences with respect to global (drug-target struc-
ture) and local (protein–ligand, protein–protein and protein-
nucleic acid) stability effects [80] can be further extended to pre-
dict drug resistance for novel mutations [81,82].

Here, we review several of the principal computational tools
and methods currently available for measuring mutational conse-
quences, focusing on those tools which have been used to analyse
variation within a pathogen genome and their application in the
context of AMR. It is not meant to be an exhaustive list, with other
tools available centred on important questions like assessing can-
cer variations and other human mutations. As such, these go
beyond the scope of this review and have been extensively
reviewed elsewhere [83–85].

2. Computational tools measuring the effect of mutations

While no general pre-emptive predictor for AMR has been
developed, we and others have shown that computational tools
for understanding the underlying molecular mechanisms of muta-
tions can be used to identify likely resistant variants [79–82,86–
95]. This insight has even been used to guide medicinal chemistry
design of inhibitors less prone to resistance [96–99].

Different tools can be used to describe the effect of mutation on
protein function, which may provide an explanation for the AMR
phenotype. Some are primarily based on conservation or substitu-
tion matrices, and do not require a protein structure as input
(Sequence-based methods). Others consider the local environment
of the variant within the protein structure in their calculation
(Structure-based methods). In the presence of a known AMR-
related phenotype, these tools are useful as they provide mecha-
nistic insight which may explain how resistance is brought about
at the protein level. Therefore, when analysing specific proteins,
it can be beneficial to use different methodologies, as different
strategies may give complementary information. Summaries of
the types of methods are given below and represent some of the
principal tools currently available. Table 1 summarises the main
features of some of the currently available tools for analysing
effects of pathogen mutations.

2.1. Sequence-based methods

As these methods rely solely on the gene or protein sequence,
they are often useful in the absence of a known protein structure
or when homology modelling is not possible. The predictions from
these tools are generally based on sequence alignments, predicted
secondary structures and subsequent conservational trends. Most
methods determine a score with cut-offs leading to functional clas-
sification of mutations into deleterious or neutral. This functional
classification is not always applicable to AMR mutations, as vari-
ants may be ‘deleterious’ to protein conservation, but gain-of-
function through survival in the presence of drug. For example,
when analysing rifampicin resistant Mtb mutations we found that
they tended to cluster within more conserved regions of the rpoB
gene [80] (Portelli and Ascher, personal communication). Similar
analysis carried out on pyrazinamide [82] and bedaquiline [81],

revealed that known resistant Mtb mutations were more likely to
lead to deleterious effects compared to susceptible variants in
the same gene [100]. However, when measuring mutational toler-
ance [101], strong evidence of positive selection for resistant muta-
tions was observed. Therefore, the utility of these tools in
understanding AMR mechanisms lies in the actual scores, where
a comparison of different scores across variants, accounting for
their genetic position can uncover important underlying mecha-
nisms and trends related to evolutionary conservation. We have
previously shown that this sequence information is also comple-
mentary to structural information, particularly within the context
of machine learning [102]. Several of the major methods which are
applicable across pathogens and human genomes are:

a. SIFT
The SIFT (Sorting Intolerant From Tolerant) can be used to anal-

yse missense mutations and INDELs. The SIFT scoring method com-
bines sequence alignment with a position-specific scoring matrix
(PSSM), which accounts for the likelihood of an amino acid to occur
within a specific position. The amino acid chemical properties are
also incorporated to determine a scaled probability of the mutation
(SIFT score), on which the output (tolerated or deleterious) is based
[100]. SIFT has been used to build the Variant Effect Predictor (VEP)
tool developed as part of the Ensembl 2018 project [103].

b. PROVEAN
PROVEAN (Protein Variant Effect Analyzer) is able to account for

(multiple) missense mutations and INDELs. It uses the BLOSUM62
substitution matrix as an amino acid probability matrix and com-
bines this with differences in sequence similarity between wild-
type and mutant sequences. The sequence context in which varia-
tion occurs is also considered, to represent environmental sur-
roundings and effects. A numerical score is generated for each
variant, which enables the functional classification into deleterious
or neutral [104]. PROVEAN scores have provided the evolutionary
basis for the recently deployed web-based tool SUSPECT-PZA [82]
which predicts pyrazinamide (PZA) resistance mutations in the
Mtb pncA gene.

c. SNAP2
SNAP2 (Screening for Non-Acceptable Polymorphisms v.2) char-

acterises the effect of all possible missense mutations as either
neutral or deleterious. It is a machine learning-based predictor
trained on neural networks. It also accounts for amino acid posi-
tion probabilities using position-specific independent counts,
based on the BLOSUM62matrix. This predictor considers other fea-
tures such as protein fold (Pfam, PROSITE) and functional annota-
tions (SWISS-PROT) during training, and as such is the tool that
spans the most comprehensive feature space [105]. As well as
forming part of the SUSPECT-PZA tool [82], SNAP2 scores have pro-
vided the evolutionary basis for a similar tool called SUSPECT-BDQ
[81]. This tool predicts the effect of missense mutations on the
anti-TB drug bedaquiline, reserved to treat MDR and XDR TB.

d. ConSurf
ConSurf estimates an evolutionary rate score for every position

across the sequence, unlike the tools above which base functional
classification on score thresholds. In the context of drug resistance,
it can help identify sites which are likely to lead to resistance if
mutated. The ConSurf score is based on a multiple sequence align-
ment, which generates probabilistic evolutionary models and phy-
logenetic links. Through this score, more conserved sites (having
slower evolutionary rates), which have important functional and
structural consequences are identified [106]. Consurf has been
used to estimate and visualise conserved regions within SARS-
CoV-2 [107], the SARS-CoV nsp12 polymerase domain [108], and
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Table1
Sequence and structure-based tools that predict effect of pathogen missense mutations. The table is an up-to date list of currently available tools (as on 3rd August 2020). The type of method for each tool is specified using the following
code; S: sequence-based, St: structure-based, SA: sequence alignment, SS: sequence and structure, (St): structure if available. Other abbreviations used: MSA (Multiple Sequence alignment), EC (Evolutionary Conservation), NN (Neural
Network), SVM (Support Vector Machine), ML (Machine learning), NMA (Normal Mode Analysis), DG: Gibbs free energy in Kcal/mol, DDG: Change in Gibbs free energy in Kcal/mol, wt: wild-type, mt: mutant, Kwt: affinity of the wild-
type protein-ligand complex, Kmt: affinity of the mutant complex, RSA: Relative Solvent Accessibility (%).

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

SIFT: Sorting Intolerant
From Tolerant
REF: [100]

S EC http://sift-dna.org
Download: Yes

Calculates a normalised probability of
substitution score from multiple alignments
based on sequence homology using PSI-BLAST.
Removes close homologous sequences to
prevent over prediction of ‘‘tolerated”
substitutions.
Mutational effect on protein function is
classified as damaging (<=0.05) or tolerated
(>0.05).

Fasta sequence
or aligned
sequences
SNP list

Per-SNP:
1) SIFT score
2) Binary mutation
classification
3) Median sequence
conservation

Predictions for submitted SNPs, as well as all
possible SNPs (but without a score).
Positions are weighted equally within an
alignment. Alignments may be user defined.
Sequence conservation score provides a
useful estimate of whether the alignment
contains sufficient variation to support
classification.

PROVEAN: Protein
Variation Effect
Analyzer
REF: [104]

S EC http://provean.jcvi.
org/seq_submit.php
Download: Yes

Related sequences are collected with BLAST
(using CD-HIT) and clustered based on 75%
global sequence identity. The top 30 clusters of
closely related sequences form the supporting
sequence set, used to generate the prediction.
Delta alignment scores are computed for each
supporting sequence and averaged within and
across clusters to generate the final PROVEAN
score.
Predicted mutation effects are classified as
either deleterious or neutral based on a
predefined threshold (-2.5).
Available as:
PROVEAN Protein
PROVEAN Protein Batch*
PROVEAN Genome Variants*
*Human and Mouse only

Fasta sequence
Mutation list
(SNPs and
INDELs)

Per-mutation:
1) PROVEAN score
2) Binary mutation
classification

Predictions for submitted mutations only.
Predict effects for both SNPs and INDELs, but
not frameshift mutations.
Batch processing of multiple organisms.
The classification threshold is fixed in the
online version.
Stand-alone package only available for
PROVEAN Protein.

SNAP2:
Screening for Non-
Acceptable
Polymorphisms, v2
REF: [105]

S NN https://www.rostlab.
org/services/SNAP/
Download: Yes

Combines evolutionary information with an
expanded list of original SNAP features (amino
acid properties) including features such as AA
index, predicted binding residues and
disordered regions, residue annotations from
Pfam and PROSITE, etc.
Mutations are classified as either neutral or
effect based on predicted scores, between (-100
to 100) respectively.
The prediction algorithm is based on a NN
consisting of a feed-forward multi-layer
perceptron. 10-fold cross-validation is used to
create 10 models, each providing a single score
for each output class (neutral/effect). The final
score is calculated as the difference between
the average scores for each output class.

Fasta sequence For all possible substitutions:
1) Heatmap representing the
predicted effect
2) Multi column table with
Predicted Effect, Score and
Accuracy.

Predictions for all possible substitutions.
Prediction scores are accompanied by an
‘‘accuracy metric” to aid interpretation.
Uses predicted structural features.
Heatmap generated for visualisation of the
predictions.
Additional method (SNAP2noali) predicts
functional effects without alignments.
Automatic selection of best method (SNAP2
by default, and SNAP2noali for orphans) with
notification to users.

ConSurf
REF: [106]

S(St) EC https://consurf.tau.ac.
il/
Download: No

Estimates evolutionary conservation rate of
amino/nucleic acid positions based on the
phylogenetic relations between homologous
sequences.
Homologous sequences are searched using CSI-
BLAST, PSI-BLAST or BLAST, with closely related
sequences removed using CD-HIT with multiple
sequence alignments (MSA) generated by
MAFFT by default.

Amino acid/
nucleotide
sequence
Structure (if
available)
MSA (if
available)
Advanced
options:

Detailed output containing
conservation scores, MSA and
BLAST results.
Estimates mapped onto
sequence and structure.

Analysis at amino acid and nucleotide levels.
Improved HMMER algorithm to search for
homologous proteins. Results are
accompanied by confidence intervals.
Robust statistical approach to differentiate
between apparent conservation (short
evolutionary time) and genuine conservation
(purifying selection).
‘ConSeq’ mode used in the absence of a

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

MSA is used to construct phylogenetic
relationships using the neighbour joining
method. Position specific evolutionary rates are
calculated using the empirical Bayesian or
Maximum Likelihood methods.
Scores graded 1 (variable) to 9 (conserved) for
visualisation.

- homologue
database
- MSA
methods
- Phylogenetic
tree
- structural
data
- calculation
method
- evolutionary
substitution
model
Optional: user
defined MSA
and
phylogenetic
tree.

structure. Site-specific predictions of the
buried/exposed status of each position.

MAPP: Multivariate
Analysis of Protein
Polymorphism
REF: [110]

SA EC Download only:
http://mendel.
stanford.edu/
SidowLab/downloads/
MAPP/index.html

Combines MSA with 6 physicochemical
properties for amino acids.
Calculates a MAPP impact score for each
position within the MSA.
Sequences in the MSA are weighted to account
for phylogenetic correlation.
Physicochemical property scores for each
column along with their mean and variances
are calculated. The deviation of each property is
calculated for every possible variant and
converted to a single score.

Fasta format
MSA
Phylogenetic
tree

Multicolumn table giving the
physico-chemical
characteristics of each
position, MAPP impact score,
and a listing of ‘‘good” and
‘‘bad” amino acids.

Predictions for every possible substitution,
and median MAPP scores calculated for each
position.
Constructs a physiochemical profile rather
than an amino acid profile.
Demonstrates value of using only
orthologous protein in creating a
conservation profile.
Scores are continuous and interpreted in a
relative manner with higher MAPP scores
indicating more conserved areas.
Can be optimised for individual genes
including MAPP impact score threshold for
classification.
Requires user defined MSA and phylogenetic
tree.

PANTHER-PSEP: Protein
ANalysis Through
Evolutionary
Relationships-
Position Specific
Evolutionary
Preservation
REF: [149]

S EC http://
www.pantherdb.
org/tools/
csnpScoreForm.jsp
Download: Yes

Uses Hidden Markov Model (HMM) to align
sequence to protein families and subfamilies in
its database to calculate the evolutionary
preservation metric.
Uses variation over each alignment position to
estimate the likelihood of a coding SNP to cause
a functional impact on the protein.
Score represents the time (in millions of years
[my]) a given amino acid has been preserved in
the lineage, directly corresponding to the
likelihood of a functional impact. Score
classified into: Probably damaging, Possibly
damaging, Probably benign.

Fasta sequence
SNP list
Other
parameters:
Organism

Per-SNP:
1) Preservation Time:
PANTHER PSEP score
2) Message: Classification of
the PSEP score

Positions are weighted equally at all
positions within an alignment.
Profiles are subfamily specific if they
substantially differ from entire family.
User defined alignments are not possible
since scores are derived from HMMs
(PANTHER protein library) together with an
ontology of protein function (PANTHER/X – a
simplified form of GO) to make predictions.

FoldX suite
REF: [113]

St Empirical
force field

Download only:
http://foldxsuite.crg.
eu/

Empirical force-field used for calculating
mutational effects of stability, folding, and
dynamics on proteins and nucleic acids
DG (free energy of unfolding) is calculated
using a combination of empirical terms.
Empirical data (derived from protein
engineering experiments) is used for weighting
energy terms for stability calculations.

PDB file
SNP list
(including
chain ID)

Multiple output files where
requested.
Main output is present in ‘Dif_’’
files, containing DG of wt and
mt residues along with DDG of
mutation.
Output also contains changes
in the associated energy terms.

Command line interface.
Creates mutant structure models.
Can be used to analyse protein–protein and
protein-DNA interactions.
Calculates actual stabilities of wt and mt
structures, as well as change in stability upon
mutation (DDG). Easily integrated into
custom workflows.
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

Foldx BuildModel command calculates stability
changes upon mutation based on a full atomic
description of the protein structure.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

Optimised energy function for faster
calculations.
Requires registration to download.

PoPMuSic (v2.1):
Prediction Of
Proteins MUtations
StabIlity Changes
REF: [115]

St Physics-
based and
NN

https://soft.
dezyme.com/
Download: No

Stability change upon mutation calculated
using a linear combination of statistical energy
potentials, accounting for variation in volume
of the mutant residue.
Predictive models include an optimised set of
52 parameters, whose values are estimated and
optimised using a neural network. DDG of
point mutation is calculated by a linear
combination of 16 terms: 13 statistical
potentials, 2 terms for volume of wt and mut
residues, and 1 independent term.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising
Additional ‘‘optimality” score is assigned for
each position in the protein sequence. It
indicates poorly optimised positions with
potential functional consequences.

Only accepts
currently
available
entries in the
PDB
SNP list in
three input
modes:
1) Systematic:
all possible
point
mutations
2) Manual:
single
mutation
3) File: SNP list

Multi-column table containing
secondary structure, solvent
accessibility (%) and predicted
DDG of mutations.

Optimised to rapidly calculate stability
changes of all possible mutations in mid-size
proteins.
Graphical output of sequence optimality
scores.
No option to upload user-defined PDB files.
Requires registration to download.

I-Mutant (2.0)
REF: [116]

S(St) SVM http://gpcr2.biocomp.
unibo.it/cgi/
predictors/I-Mutant3.
0/I-Mutant3.0.cgi
Download: No

Predicts stability effect of a point mutation, as a
classification or regression task. The
classification task predicts the direction of
change, while the regression estimator predicts
the DDG. Can be applied to both sequence and
structure.
RI value (Reliability Index) is computed from
the output of the SVM model.
Binary classification DDG:
DDG < 0: Decrease Stability
DDG > 0: Increase Stability
Ternary Classification DDG:
Large Decrease of Stability: DDG < -0.5
Large Increase of Stability: DDG > 0.5
Neutral Stability: 0.5<=DDG<=0.5

Fasta sequence
or PDB
code/file
Chain ID
Single SNP
Temperature
PH

Prediction
request:
Binary/
Ternary
classification

Table containing:
1) RSA (%) of mt residue
2) RI (Reliability Index)
3) Predicted DDG
3) Classification of DDG

Predicts both the direction and the estimate
of stability.
Experimental conditions of pH and
Temperature (Celsius) are considered in the
stability calculations.
Analyses a single mutation at a time only.
Output on the web server is better than
output requested via email.
Use of two different SVM models can lead to
discordance between the DDG sign and
classification, but is stated to occur only in
cases of low RI value.

STRUM: STRucture-
based prediction of
protein stability
changes Upon
single-point
Mutation
REF: [117]

S(St) ML https://zhanglab.
ccmb.med.umich.
edu/STRUM/
Download: Yes

Calculates DDG of mutation using gradient
boosting regression algorithm trained on 120
features divided into three groups (sequence,
threading and structure).
Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta sequence
or PDB file
SNP list in two
modes:
1) Single or
multiple SNPs

2) Systematic:
All possible
SNPs for user
defined amino
acid segments.

Results available via e-mail
only.

Multi-column table containing
DDG for SNPs.

Combines sequence profiles and 3D features
3D Structure modelling of query protein
sequence by iterative threading assembly
refinement simulations
Computationally expensive with relatively
long runtime.

MAESTRO:
Multi AgEnt
STability pRedictiOn

St Multi
agent: ML
methods
and

https://pbwww.che.
sbg.ac.at/maestro/
web

Multi-agent method where 3 ML methods i.e
Artificial NN, SVM and Multiple Linear
Regression. are combined to generate a
consensus prediction.

PDB code/file

Input mode:
1) Specific

Input modes 1 & 2
DDG predictions and
confidence intervals.

Ability to analyse mutations independently
or in combination

DDG predictions are accompanied by

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

REF: [150] statistical
scoring
functions

Download: Yes Each agent (ML method) uses 9 input values
divided into two categories: SSF functions and
protein properties (size, mutational
environment, etc.).

Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

mutations

2) Sensitivity
profile: all
possible
mutations

3) Scan for
destabilising
mutations

4) Stability of
Disulphide
bonds

Graphical display.
confidence intervals.

High throughput scanning for all possible
point mutations.
Specific mode for prediction of stabilising
disulphide bonds.

mCSM suite:
mutational Cut-Off
Scanning Matrix

REF: [122]

St Graph-
based and
ML

Protein Stability (PS),

Protein-Protein (PP),

Protein-DNA

(P-NA)

http://biosig.unimelb.
edu.au/mcsm/

Download: No

Uses graph-based methods to calculate atomic
pairwise distance surrounding the wt amino
acid. Mutational impact is captured based on a
change in the atomic pharmocophore count
resulting from the point mutation. Together,
this forms the mCSM-signature, and is used to
train predictive models for analysing
mutational impact on structure stability.
Predicted DDG < 0 relates to destabilising, and
DDG > 0 relates to stabilising mutational
effects.

Ternary Classification of Destabilising effect:
Mild: �1 < DDG < 0
Moderate: �2 < DDG < -1
High: DDG < -2

Ternary Classification of Stabilising effect:
Mild: 0 < DDG < 1
Moderate: 1 < DDG < 2
High: DDG > 2

PDB code/file

SNP list

Chain ID

Input modes:
1) Single
mutation

2) Mutation
list

3) Systematic:
all possible
mutation for a
single residue

Input mode 1:
1) Predicted DDG

2) Classification of mutational
stability change

Input modes (2) & (3):
Multi-column table with
predicted DDG and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation
for input mode 1.

Works at an atomic level.

Demonstrates correlation between atomic-
distance pattern of the wild-type residue
environment and mutational impact.

Calculates overall stability of protein and
interactions.

mCSM-lig: mutational
Cut-Off Scanning
Matrix on ligand
affinity

REF: [88]

St Graph-
based and
ML

Protein-ligand affinity
(mCSM-lig):

http://biosig.unimelb.
edu.au/mcsm_lig/
prediction
Download: No

Based on the mCSM graph-based signatures (as
above) with the addition of small-molecule
chemical features and ligand
physicochemical properties to capture
mutational changes.

Predictive models trained on a representative
set of protein–ligand complexes.

Mutational impact on affinity is calculated as
the log (ln) affinity fold change as below:
ln(Kwt) - ln(Kmt) = ln (fold-change)

Classification of ln (fold-change):
ln (fold-change) < 0: Destabilising
ln (fold-change) > 0: Stabilising

PDB code/file

Single SNP

Chain ID

3-letter ligand
ID

wt-affinity
(nano Molar
(nM))

Log affinity fold change

Distance to ligand (Angstroms)

DUET stability change
(Kcal/mol)

Binary classification of affinity
and stability changes.

Predicts both the direction and the estimate
of stability.
Returns both DUET and ligand affinity
changes, along with ligand distance to site.

Measures both global and local stability
effects.
Analyses single mutation at a time.

Returns a change in affinity value.

Less reliable results for sites > 10 Å from
ligand.

Rosetta Flex_ddG

REF: [151]

St All-atom
energy
function

Download only:
https://www.
rosettacommons.
org/software/license-

Based on a mixed physics and knowledge-based
approach. Uses all-atom energy function,
parameterized from small molecule and X-ray
crystal structure.

Customized
PDB file

Ligand

Each run outputs db3 file
containing the changes in the
main components of the
energy function, DG wt, DG

For a reliable prediction, at least 35 runs per
mutation are required, with each run taking
between 2 and 4 h.
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

and-download
The Flex_ddG protocol models changes in the
DDG upon mutation at a protein–protein or
protein–ligand interface using the ‘backrub’
algorithm. This algorithm is used to sample
conformational space and produce an ensemble
of wt and mt models to estimate the interface
DDG values.

Ternary Classification of DDG:
Destabilising: DDG >=1
Neutral: �1 < DDG < 1
Stabilising: DDG<= �1

parameter file

Customized
XML protocol
file

Mutation list

Chain ID

mt, and the DDG upon
mutation.

Access to HPC may be required for large
number of mutations.

Protocols are written in XML format.

Requires license to download.

INPS-MD

Impact of Non-
synonymous
mutations on
Protein Stability-
Multi Dimension

REF: [141]

S/St SVM
regression

https://inpsmd.
biocomp.unibo.it/
inpsSuite

Download: No

Calculates DDG of mutation on sequence and
structure.

The sequence-based predictions are derived
from seven descriptors to account for
evolutionary information (INPS), while two
additional structural features (RSA and energy
difference between wt and mt structures) are
included for the structure-based predictions
(INPS-3D).

SVM regression is used to map the sequence
descriptors to the DDG values.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta
sequence/PDB
file

SNP list

Chain ID
(INPS-3D only)

Per SNP in list:

Predicted DDG

Predicts both the direction and the estimate
of stability.
Can operate on both sequence (INPS) and
structure (INPS-3D)

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

DeepDDG/
iDeepDDG

REF: [142]

St NN/
Ensemble
method

http://protein.org.cn/
ddg.html

Download: No

Calculates DDG of mutation using NN trained
on nine categories of sequence and structural
features.

Operates independently as ‘DeepDDG’, and in
an integrated manner as ‘iDeepDDG’. In the
latter, predictions from three methods: mCSM,
SDM and DUET are fed into the concatenation
layer of the NN to generate the consensus
prediction.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

PDB code/file

Network
model:
-DeepDDG
-iDeepDDG

SNP list in two
modes:

1) Single or
multiple SNPs

2) All possible
mutations

Per SNP/all possible SNPs:

Predicted DDG

Predicts both the direction and the estimate
of stability.

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

Runs in independent or integrated modes.

‘DeepDDG’ allows high throughput scanning
for all possible point mutations with
relatively fast computation time.

For running ‘iDeepDDG’, user must provide
predictions for each mutation from the
mCSM DUET server.

DUET
REF: [102]

St Ensemble
method:
SVM

http://biosig.unimelb.
edu.au/duet/

Download: No

Predicts stability effects upon mutation on
proteins.

Combines predictions from two
complementary methods: mCSM and Site
Directed Mutator (SDM) in an optimised
predictor to generate the DUET prediction.

PDB code/file

SNP list

Chain ID

Input mode1:
Single

Input mode 1:
1) Predicted DDG from mCSM,
SDM and DUET.

Input mode 2:
Multi-column table with
predicted DDG from mCSM,
SDM, DUET and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation for input
mode 1.

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

The optimised predictor is generated using SVM
trained with Sequential Minimal Optimisation.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

mutation
Input mode 2:
Systematic: all
possible
mutation for a
single residue

ELASPIC: Ensemble
Learning Approach
for Stability
Prediction of
Interface and Core
mutations

REF: [124]

(St) Ensemble
method: ML

http://elaspic.kimlab.
org/

Download: No

Predicts stability effects upon mutation in both,
domain cores and domain-domain interfaces.

Combination of semi-empirical energy terms,
sequence conservation, and a wide variety of
molecular details with a Stochastic Gradient
Boosting of Decision Trees (SGB-DT) algorithm.

Uses a combination of sequence, molecular and
energy features including prediction scores
from other tools.

Uniprot
Protein ID or
PDB structure

SNP list

Multi-column table, with the
main output being DG of wt
and mt structures, and DDG of
mutation.

Results are downloadable.

FoldX generated mutant
structures in pdb format

Jmol applet showing
superimposed wt mt
structures.

Can be run as a single or multiple mutations
and Protein-protein interactions

Option to filter results based on additional
criteria.

Non-human proteins may take longer to run.

An interactive connectivity network showing
the affected protein–protein interaction
mutations.

DynaMut

REF: [118]

St Ensemble
method:
NMA

http://biosig.unimelb.
edu.au/dynamut/

Download: No

Predicts stability effects based on protein
dynamics resulting from vibrational entropy
changes.

Integrates mCSM signatures and normal model
analysis. Combines mutational effect from 3
structure-based prediction tools to generate a
consensus prediction.

Classification of DDG:

DDG < 0 Destabilising
DDG > 0: Stabilising

PDB code/file

Single SNP/
SNP list

Chain ID

NMA based predictions

Other structure-based
predictions included.

Accounts for protein molecular motion and
flexibility.

Easy and detailed visualisation of results
including interatomic interactions,
deformation and fluctuation analysis.

Returns a change in stability.

Computationally expensive with relatively
long runtime.
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Table1
Sequence and structure-based tools that predict effect of pathogen missense mutations. The table is an up-to date list of currently available tools (as on 3rd August 2020). The type of method for each tool is specified using the following
code; S: sequence-based, St: structure-based, SA: sequence alignment, SS: sequence and structure, (St): structure if available. Other abbreviations used: MSA (Multiple Sequence alignment), EC (Evolutionary Conservation), NN (Neural
Network), SVM (Support Vector Machine), ML (Machine learning), NMA (Normal Mode Analysis), DG: Gibbs free energy in Kcal/mol, DDG: Change in Gibbs free energy in Kcal/mol, wt: wild-type, mt: mutant, Kwt: affinity of the wild-
type protein-ligand complex, Kmt: affinity of the mutant complex, RSA: Relative Solvent Accessibility (%).

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

SIFT: Sorting Intolerant
From Tolerant
REF: [100]

S EC http://sift-dna.org
Download: Yes

Calculates a normalised probability of
substitution score from multiple alignments
based on sequence homology using PSI-BLAST.
Removes close homologous sequences to
prevent over prediction of ‘‘tolerated”
substitutions.
Mutational effect on protein function is
classified as damaging (<=0.05) or tolerated
(>0.05).

Fasta sequence
or aligned
sequences
SNP list

Per-SNP:
1) SIFT score
2) Binary mutation
classification
3) Median sequence
conservation

Predictions for submitted SNPs, as well as all
possible SNPs (but without a score).
Positions are weighted equally within an
alignment. Alignments may be user defined.
Sequence conservation score provides a
useful estimate of whether the alignment
contains sufficient variation to support
classification.

PROVEAN: Protein
Variation Effect
Analyzer
REF: [104]

S EC http://provean.jcvi.
org/seq_submit.php
Download: Yes

Related sequences are collected with BLAST
(using CD-HIT) and clustered based on 75%
global sequence identity. The top 30 clusters of
closely related sequences form the supporting
sequence set, used to generate the prediction.
Delta alignment scores are computed for each
supporting sequence and averaged within and
across clusters to generate the final PROVEAN
score.
Predicted mutation effects are classified as
either deleterious or neutral based on a
predefined threshold (-2.5).
Available as:
PROVEAN Protein
PROVEAN Protein Batch*
PROVEAN Genome Variants*
*Human and Mouse only

Fasta sequence
Mutation list
(SNPs and
INDELs)

Per-mutation:
1) PROVEAN score
2) Binary mutation
classification

Predictions for submitted mutations only.
Predict effects for both SNPs and INDELs, but
not frameshift mutations.
Batch processing of multiple organisms.
The classification threshold is fixed in the
online version.
Stand-alone package only available for
PROVEAN Protein.

SNAP2:
Screening for Non-
Acceptable
Polymorphisms, v2
REF: [105]

S NN https://www.rostlab.
org/services/SNAP/
Download: Yes

Combines evolutionary information with an
expanded list of original SNAP features (amino
acid properties) including features such as AA
index, predicted binding residues and
disordered regions, residue annotations from
Pfam and PROSITE, etc.
Mutations are classified as either neutral or
effect based on predicted scores, between (-100
to 100) respectively.
The prediction algorithm is based on a NN
consisting of a feed-forward multi-layer
perceptron. 10-fold cross-validation is used to
create 10 models, each providing a single score
for each output class (neutral/effect). The final
score is calculated as the difference between
the average scores for each output class.

Fasta sequence For all possible substitutions:
1) Heatmap representing the
predicted effect
2) Multi column table with
Predicted Effect, Score and
Accuracy.

Predictions for all possible substitutions.
Prediction scores are accompanied by an
‘‘accuracy metric” to aid interpretation.
Uses predicted structural features.
Heatmap generated for visualisation of the
predictions.
Additional method (SNAP2noali) predicts
functional effects without alignments.
Automatic selection of best method (SNAP2
by default, and SNAP2noali for orphans) with
notification to users.

ConSurf
REF: [106]

S(St) EC https://consurf.tau.ac.
il/
Download: No

Estimates evolutionary conservation rate of
amino/nucleic acid positions based on the
phylogenetic relations between homologous
sequences.
Homologous sequences are searched using CSI-
BLAST, PSI-BLAST or BLAST, with closely related
sequences removed using CD-HIT with multiple
sequence alignments (MSA) generated by
MAFFT by default.

Amino acid/
nucleotide
sequence
Structure (if
available)
MSA (if
available)
Advanced
options:

Detailed output containing
conservation scores, MSA and
BLAST results.
Estimates mapped onto
sequence and structure.

Analysis at amino acid and nucleotide levels.
Improved HMMER algorithm to search for
homologous proteins. Results are
accompanied by confidence intervals.
Robust statistical approach to differentiate
between apparent conservation (short
evolutionary time) and genuine conservation
(purifying selection).
‘ConSeq’ mode used in the absence of a

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

MSA is used to construct phylogenetic
relationships using the neighbour joining
method. Position specific evolutionary rates are
calculated using the empirical Bayesian or
Maximum Likelihood methods.
Scores graded 1 (variable) to 9 (conserved) for
visualisation.

- homologue
database
- MSA
methods
- Phylogenetic
tree
- structural
data
- calculation
method
- evolutionary
substitution
model
Optional: user
defined MSA
and
phylogenetic
tree.

structure. Site-specific predictions of the
buried/exposed status of each position.

MAPP: Multivariate
Analysis of Protein
Polymorphism
REF: [110]

SA EC Download only:
http://mendel.
stanford.edu/
SidowLab/downloads/
MAPP/index.html

Combines MSA with 6 physicochemical
properties for amino acids.
Calculates a MAPP impact score for each
position within the MSA.
Sequences in the MSA are weighted to account
for phylogenetic correlation.
Physicochemical property scores for each
column along with their mean and variances
are calculated. The deviation of each property is
calculated for every possible variant and
converted to a single score.

Fasta format
MSA
Phylogenetic
tree

Multicolumn table giving the
physico-chemical
characteristics of each
position, MAPP impact score,
and a listing of ‘‘good” and
‘‘bad” amino acids.

Predictions for every possible substitution,
and median MAPP scores calculated for each
position.
Constructs a physiochemical profile rather
than an amino acid profile.
Demonstrates value of using only
orthologous protein in creating a
conservation profile.
Scores are continuous and interpreted in a
relative manner with higher MAPP scores
indicating more conserved areas.
Can be optimised for individual genes
including MAPP impact score threshold for
classification.
Requires user defined MSA and phylogenetic
tree.

PANTHER-PSEP: Protein
ANalysis Through
Evolutionary
Relationships-
Position Specific
Evolutionary
Preservation
REF: [149]

S EC http://
www.pantherdb.
org/tools/
csnpScoreForm.jsp
Download: Yes

Uses Hidden Markov Model (HMM) to align
sequence to protein families and subfamilies in
its database to calculate the evolutionary
preservation metric.
Uses variation over each alignment position to
estimate the likelihood of a coding SNP to cause
a functional impact on the protein.
Score represents the time (in millions of years
[my]) a given amino acid has been preserved in
the lineage, directly corresponding to the
likelihood of a functional impact. Score
classified into: Probably damaging, Possibly
damaging, Probably benign.

Fasta sequence
SNP list
Other
parameters:
Organism

Per-SNP:
1) Preservation Time:
PANTHER PSEP score
2) Message: Classification of
the PSEP score

Positions are weighted equally at all
positions within an alignment.
Profiles are subfamily specific if they
substantially differ from entire family.
User defined alignments are not possible
since scores are derived from HMMs
(PANTHER protein library) together with an
ontology of protein function (PANTHER/X – a
simplified form of GO) to make predictions.

FoldX suite
REF: [113]

St Empirical
force field

Download only:
http://foldxsuite.crg.
eu/

Empirical force-field used for calculating
mutational effects of stability, folding, and
dynamics on proteins and nucleic acids
DG (free energy of unfolding) is calculated
using a combination of empirical terms.
Empirical data (derived from protein
engineering experiments) is used for weighting
energy terms for stability calculations.

PDB file
SNP list
(including
chain ID)

Multiple output files where
requested.
Main output is present in ‘Dif_’’
files, containing DG of wt and
mt residues along with DDG of
mutation.
Output also contains changes
in the associated energy terms.

Command line interface.
Creates mutant structure models.
Can be used to analyse protein–protein and
protein-DNA interactions.
Calculates actual stabilities of wt and mt
structures, as well as change in stability upon
mutation (DDG). Easily integrated into
custom workflows.
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

Foldx BuildModel command calculates stability
changes upon mutation based on a full atomic
description of the protein structure.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

Optimised energy function for faster
calculations.
Requires registration to download.

PoPMuSic (v2.1):
Prediction Of
Proteins MUtations
StabIlity Changes
REF: [115]

St Physics-
based and
NN

https://soft.
dezyme.com/
Download: No

Stability change upon mutation calculated
using a linear combination of statistical energy
potentials, accounting for variation in volume
of the mutant residue.
Predictive models include an optimised set of
52 parameters, whose values are estimated and
optimised using a neural network. DDG of
point mutation is calculated by a linear
combination of 16 terms: 13 statistical
potentials, 2 terms for volume of wt and mut
residues, and 1 independent term.
Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising
Additional ‘‘optimality” score is assigned for
each position in the protein sequence. It
indicates poorly optimised positions with
potential functional consequences.

Only accepts
currently
available
entries in the
PDB
SNP list in
three input
modes:
1) Systematic:
all possible
point
mutations
2) Manual:
single
mutation
3) File: SNP list

Multi-column table containing
secondary structure, solvent
accessibility (%) and predicted
DDG of mutations.

Optimised to rapidly calculate stability
changes of all possible mutations in mid-size
proteins.
Graphical output of sequence optimality
scores.
No option to upload user-defined PDB files.
Requires registration to download.

I-Mutant (2.0)
REF: [116]

S(St) SVM http://gpcr2.biocomp.
unibo.it/cgi/
predictors/I-Mutant3.
0/I-Mutant3.0.cgi
Download: No

Predicts stability effect of a point mutation, as a
classification or regression task. The
classification task predicts the direction of
change, while the regression estimator predicts
the DDG. Can be applied to both sequence and
structure.
RI value (Reliability Index) is computed from
the output of the SVM model.
Binary classification DDG:
DDG < 0: Decrease Stability
DDG > 0: Increase Stability
Ternary Classification DDG:
Large Decrease of Stability: DDG < -0.5
Large Increase of Stability: DDG > 0.5
Neutral Stability: 0.5<=DDG<=0.5

Fasta sequence
or PDB
code/file
Chain ID
Single SNP
Temperature
PH

Prediction
request:
Binary/
Ternary
classification

Table containing:
1) RSA (%) of mt residue
2) RI (Reliability Index)
3) Predicted DDG
3) Classification of DDG

Predicts both the direction and the estimate
of stability.
Experimental conditions of pH and
Temperature (Celsius) are considered in the
stability calculations.
Analyses a single mutation at a time only.
Output on the web server is better than
output requested via email.
Use of two different SVM models can lead to
discordance between the DDG sign and
classification, but is stated to occur only in
cases of low RI value.

STRUM: STRucture-
based prediction of
protein stability
changes Upon
single-point
Mutation
REF: [117]

S(St) ML https://zhanglab.
ccmb.med.umich.
edu/STRUM/
Download: Yes

Calculates DDG of mutation using gradient
boosting regression algorithm trained on 120
features divided into three groups (sequence,
threading and structure).
Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta sequence
or PDB file
SNP list in two
modes:
1) Single or
multiple SNPs

2) Systematic:
All possible
SNPs for user
defined amino
acid segments.

Results available via e-mail
only.

Multi-column table containing
DDG for SNPs.

Combines sequence profiles and 3D features
3D Structure modelling of query protein
sequence by iterative threading assembly
refinement simulations
Computationally expensive with relatively
long runtime.

MAESTRO:
Multi AgEnt
STability pRedictiOn

St Multi
agent: ML
methods
and

https://pbwww.che.
sbg.ac.at/maestro/
web

Multi-agent method where 3 ML methods i.e
Artificial NN, SVM and Multiple Linear
Regression. are combined to generate a
consensus prediction.

PDB code/file

Input mode:
1) Specific

Input modes 1 & 2
DDG predictions and
confidence intervals.

Ability to analyse mutations independently
or in combination

DDG predictions are accompanied by

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

REF: [150] statistical
scoring
functions

Download: Yes Each agent (ML method) uses 9 input values
divided into two categories: SSF functions and
protein properties (size, mutational
environment, etc.).

Classification of DDG:
DDG > 0: Destabilising
DDG < 0: Stabilising

mutations

2) Sensitivity
profile: all
possible
mutations

3) Scan for
destabilising
mutations

4) Stability of
Disulphide
bonds

Graphical display.
confidence intervals.

High throughput scanning for all possible
point mutations.
Specific mode for prediction of stabilising
disulphide bonds.

mCSM suite:
mutational Cut-Off
Scanning Matrix

REF: [122]

St Graph-
based and
ML

Protein Stability (PS),

Protein-Protein (PP),

Protein-DNA

(P-NA)

http://biosig.unimelb.
edu.au/mcsm/

Download: No

Uses graph-based methods to calculate atomic
pairwise distance surrounding the wt amino
acid. Mutational impact is captured based on a
change in the atomic pharmocophore count
resulting from the point mutation. Together,
this forms the mCSM-signature, and is used to
train predictive models for analysing
mutational impact on structure stability.
Predicted DDG < 0 relates to destabilising, and
DDG > 0 relates to stabilising mutational
effects.

Ternary Classification of Destabilising effect:
Mild: �1 < DDG < 0
Moderate: �2 < DDG < -1
High: DDG < -2

Ternary Classification of Stabilising effect:
Mild: 0 < DDG < 1
Moderate: 1 < DDG < 2
High: DDG > 2

PDB code/file

SNP list

Chain ID

Input modes:
1) Single
mutation

2) Mutation
list

3) Systematic:
all possible
mutation for a
single residue

Input mode 1:
1) Predicted DDG

2) Classification of mutational
stability change

Input modes (2) & (3):
Multi-column table with
predicted DDG and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation
for input mode 1.

Works at an atomic level.

Demonstrates correlation between atomic-
distance pattern of the wild-type residue
environment and mutational impact.

Calculates overall stability of protein and
interactions.

mCSM-lig: mutational
Cut-Off Scanning
Matrix on ligand
affinity

REF: [88]

St Graph-
based and
ML

Protein-ligand affinity
(mCSM-lig):

http://biosig.unimelb.
edu.au/mcsm_lig/
prediction
Download: No

Based on the mCSM graph-based signatures (as
above) with the addition of small-molecule
chemical features and ligand
physicochemical properties to capture
mutational changes.

Predictive models trained on a representative
set of protein–ligand complexes.

Mutational impact on affinity is calculated as
the log (ln) affinity fold change as below:
ln(Kwt) - ln(Kmt) = ln (fold-change)

Classification of ln (fold-change):
ln (fold-change) < 0: Destabilising
ln (fold-change) > 0: Stabilising

PDB code/file

Single SNP

Chain ID

3-letter ligand
ID

wt-affinity
(nano Molar
(nM))

Log affinity fold change

Distance to ligand (Angstroms)

DUET stability change
(Kcal/mol)

Binary classification of affinity
and stability changes.

Predicts both the direction and the estimate
of stability.
Returns both DUET and ligand affinity
changes, along with ligand distance to site.

Measures both global and local stability
effects.
Analyses single mutation at a time.

Returns a change in affinity value.

Less reliable results for sites > 10 Å from
ligand.

Rosetta Flex_ddG

REF: [151]

St All-atom
energy
function

Download only:
https://www.
rosettacommons.
org/software/license-

Based on a mixed physics and knowledge-based
approach. Uses all-atom energy function,
parameterized from small molecule and X-ray
crystal structure.

Customized
PDB file

Ligand

Each run outputs db3 file
containing the changes in the
main components of the
energy function, DG wt, DG

For a reliable prediction, at least 35 runs per
mutation are required, with each run taking
between 2 and 4 h.

T.Tunstall,S.Portelli,J.Phelan
et

al.
Com

putational
and

Structural
Biotechnology

Journal
18

(2020)
3377–

3394

3384

49

49



Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

and-download
The Flex_ddG protocol models changes in the
DDG upon mutation at a protein–protein or
protein–ligand interface using the ‘backrub’
algorithm. This algorithm is used to sample
conformational space and produce an ensemble
of wt and mt models to estimate the interface
DDG values.

Ternary Classification of DDG:
Destabilising: DDG >=1
Neutral: �1 < DDG < 1
Stabilising: DDG<= �1

parameter file

Customized
XML protocol
file

Mutation list

Chain ID

mt, and the DDG upon
mutation.

Access to HPC may be required for large
number of mutations.

Protocols are written in XML format.

Requires license to download.

INPS-MD

Impact of Non-
synonymous
mutations on
Protein Stability-
Multi Dimension

REF: [141]

S/St SVM
regression

https://inpsmd.
biocomp.unibo.it/
inpsSuite

Download: No

Calculates DDG of mutation on sequence and
structure.

The sequence-based predictions are derived
from seven descriptors to account for
evolutionary information (INPS), while two
additional structural features (RSA and energy
difference between wt and mt structures) are
included for the structure-based predictions
(INPS-3D).

SVM regression is used to map the sequence
descriptors to the DDG values.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

Fasta
sequence/PDB
file

SNP list

Chain ID
(INPS-3D only)

Per SNP in list:

Predicted DDG

Predicts both the direction and the estimate
of stability.
Can operate on both sequence (INPS) and
structure (INPS-3D)

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

DeepDDG/
iDeepDDG

REF: [142]

St NN/
Ensemble
method

http://protein.org.cn/
ddg.html

Download: No

Calculates DDG of mutation using NN trained
on nine categories of sequence and structural
features.

Operates independently as ‘DeepDDG’, and in
an integrated manner as ‘iDeepDDG’. In the
latter, predictions from three methods: mCSM,
SDM and DUET are fed into the concatenation
layer of the NN to generate the consensus
prediction.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

PDB code/file

Network
model:
-DeepDDG
-iDeepDDG

SNP list in two
modes:

1) Single or
multiple SNPs

2) All possible
mutations

Per SNP/all possible SNPs:

Predicted DDG

Predicts both the direction and the estimate
of stability.

Accounts for anti-symmetric property of
variation i.e DDG (A->B) = - DDG (B->A).

Runs in independent or integrated modes.

‘DeepDDG’ allows high throughput scanning
for all possible point mutations with
relatively fast computation time.

For running ‘iDeepDDG’, user must provide
predictions for each mutation from the
mCSM DUET server.

DUET
REF: [102]

St Ensemble
method:
SVM

http://biosig.unimelb.
edu.au/duet/

Download: No

Predicts stability effects upon mutation on
proteins.

Combines predictions from two
complementary methods: mCSM and Site
Directed Mutator (SDM) in an optimised
predictor to generate the DUET prediction.

PDB code/file

SNP list

Chain ID

Input mode1:
Single

Input mode 1:
1) Predicted DDG from mCSM,
SDM and DUET.

Input mode 2:
Multi-column table with
predicted DDG from mCSM,
SDM, DUET and RSA.

Predicts both the direction and the estimate
of stability.
Mutant structure is not
required.

webGL structural visualisation for input
mode 1.

(continued on next page)
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Table1 (continued)

Name of tool Type Operating
Principle

Availability Summary User input Output User Notes

The optimised predictor is generated using SVM
trained with Sequential Minimal Optimisation.

Classification of DDG:
DDG < 0: Destabilising
DDG > 0: Stabilising

mutation
Input mode 2:
Systematic: all
possible
mutation for a
single residue

ELASPIC: Ensemble
Learning Approach
for Stability
Prediction of
Interface and Core
mutations

REF: [124]

(St) Ensemble
method: ML

http://elaspic.kimlab.
org/

Download: No

Predicts stability effects upon mutation in both,
domain cores and domain-domain interfaces.

Combination of semi-empirical energy terms,
sequence conservation, and a wide variety of
molecular details with a Stochastic Gradient
Boosting of Decision Trees (SGB-DT) algorithm.

Uses a combination of sequence, molecular and
energy features including prediction scores
from other tools.

Uniprot
Protein ID or
PDB structure

SNP list

Multi-column table, with the
main output being DG of wt
and mt structures, and DDG of
mutation.

Results are downloadable.

FoldX generated mutant
structures in pdb format

Jmol applet showing
superimposed wt mt
structures.

Can be run as a single or multiple mutations
and Protein-protein interactions

Option to filter results based on additional
criteria.

Non-human proteins may take longer to run.

An interactive connectivity network showing
the affected protein–protein interaction
mutations.

DynaMut

REF: [118]

St Ensemble
method:
NMA

http://biosig.unimelb.
edu.au/dynamut/

Download: No

Predicts stability effects based on protein
dynamics resulting from vibrational entropy
changes.

Integrates mCSM signatures and normal model
analysis. Combines mutational effect from 3
structure-based prediction tools to generate a
consensus prediction.

Classification of DDG:

DDG < 0 Destabilising
DDG > 0: Stabilising

PDB code/file

Single SNP/
SNP list

Chain ID

NMA based predictions

Other structure-based
predictions included.

Accounts for protein molecular motion and
flexibility.

Easy and detailed visualisation of results
including interatomic interactions,
deformation and fluctuation analysis.

Returns a change in stability.

Computationally expensive with relatively
long runtime.
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the S2 subunit in MERS-CoV isolates [109] to aid antiviral
strategies.

e. Mapp
MAPP (Multivariate Analysis of Protein Polymorphism) predicts

the functional impact of all possible missense mutations. It combi-
nes evolutionary conservation and physicochemical information. It
uses data from multiple sequence alignments from orthologs to
estimate a mean for each of the six physicochemical properties
(hydropathy, polarity, charge, volume, and free energy in alpha
helices and beta strands) for each position. A single composite
value for each physicochemical value is generated based on the
deviation from the mean for all twenty amino acids. High MAPP
scores indicate highly conserved sites, which in the context of drug
resistance can indicate resistance promoting sites [110]. MAPP has
been used to develop the ProPhylER [111] tool, used for proteome
wide investigation of mutational impact on eukaryotic protein.

2.2. Structure-based methods

When analysing missense mutations, structure-based methods
can offer a 3-dimensional explanation of molecular consequences
of mutations, which may not be evident from sequence analysis
alone [86,89]. These methods include the analysis of the protein
structural and functional consequences of mutations, including
those on protein folding, stability, dynamics, and alterations to
interactions with normal ligands. Protein structure information
can be incorporated through rule-based or machine learning based
approaches (see Table 1). As acquired resistance can develop
through missense mutations, analysing their effects can inform
on underlying mechanisms of resistance. In previous analyses,
we observed that known resistance mutations arising in the
drug-target tend to significantly reduce functional affinities, such
as nucleic acid affinity [80–82,93–95]. Resistance mutations in
drug activators are associated with large decreases in protein sta-
bility or activity [79,80], and those in drug exporters tend to
increase protein flexibility to promote drug export [91]. To run
these predictors, a crystal structure of the protein or a homology
model is required. A summary of the principle methods and appli-
cations are described below:

2.2.1. Measures of protein stability
The introduction of resistance-causing missense mutations to a

protein structure rarely comes at a negligible cost to protein stabil-
ity, whether decreasing local stability and affecting protein folding,
or increasing local stability and compromising wild-type protein
dynamics [112]. Therefore, quantifying the effect of missense
mutations on stability presents a good starting point in under-
standing the basic variant protein changes. Computational tools
predicting thermodynamic stability of a protein do so by estimat-
ing the Gibbs free energy (DG Kcal/mol). The subsequent impact of
a point mutation on protein stability is then estimated as a change
in the Gibbs free energy (DDG Kcal/mol) between wild-type and
mutant proteins, or vice versa. Additionally, these tools provide
both the extent (the actual value of DDG) as well as the direction
(destabilising/stabilising) of the resulting mutational effect. Differ-
ent in silico protein stability predictors are available, of which we
highlight a few, based on the methodologies considered in their
approximations. Further details for these (and additional) methods
can be found in Table 1.

a. FoldX is an empirical-based predictor which provides infor-
mation on how a single point mutation alters the stability of
a protein. It constructs structure models of the protein with
the mutation and estimates the stability (DG) associated

with the mutant protein. Estimation of stability is based on
intramolecular interactions such as van der Waals’ forces,
solvation energies, interactions with water, hydrogen bonds,
electrostatic effects and main and side chain entropies.
Mutational impact is calculated through a weighted summa-
tion of all the intramolecular interactions, and estimated as a
change in stability (DDG) between mutant and wild-type
structures. In this way, DG for each mutant protein, DDG
upon mutation, and the contribution of each intramolecular
interaction, are made available to the user. The extent of the
mutational impact (the value of DDG) as well as the direc-
tion of change (DDG < 0: stabilising, DDG > 0: destabilising)
are captured by the predictions [113,114].

b. PoPMuSic (v2.1) is a statistical method which uses
knowledge-based potentials to predict mutational impact
on the stability of a protein. It returns the predicted DDG
of a single point mutation of a protein and is able to system-
atically analyse this for all possible point mutations for a
given protein. Additionally, an ‘optimality’ score for each
amino acid in the sequence with respect to stability is
returned. The optimality score identifies sites of structural
weakness i.e. clusters of residues that are considered non-
optimal from an evolutionary perspective. Therefore, muta-
tions with desired stability properties (DDG < 0: stabilising,
DDG > 0: destabilising) and poorly optimised positions can
be identified. These sites can relate to the protein’s function,
and be used for rational protein design and other experi-
mental studies. In PoPMuSic, a protein is represented as a
statistical potential based on individual residue properties
such as sequence position, conformation, solvent accessibil-
ity, or a combination of inter-residue distances. The optimal-
ity score is computed from the sum of the predicted DDG of
all stabilising mutations at a given position in the sequence.
Since the majority of the mutations have a destabilising
effect, this score is expected to be close to zero for most posi-
tions in the sequence, with high negative values indicating
sites with strongly stabilising mutations and/or several sta-
bilising mutations with mild effect [115].

c. I-Mutant (v2.0) is an ML based predictor which computes
mutational stability changes using support vector machines.
It provides an estimate of the DDG upon a single point
mutation based on protein structure (or sequence). The
resulting DDG highlights the extent as well as the direction
of impact (DDG < 0: destabilising, DDG > 0: stabilising) on
the protomer. The predictions consider the mutated residue
environment as a 9 Å region (structure) and a 19-residue
window (sequence) surrounding the mutation. This environ-
ment is combined with experimental pH and temperature
conditions, enabling the user to define different pH and tem-
perature conditions on a case-by-case basis to better encom-
pass protein biological conditions [116].

d. STRUM is an ML based predictor and returns an estimate of
the DDG of a single point mutation on 3D models based on
wild-type sequences. It can be used to analyse single muta-
tions or all possible mutations within a specified region of
the protein. Similar to methods above, both the magnitude
of change as well as the direction (DDG < 0: destabilising,
DDG > 0: stabilising) are encapsulated in the predictions.
The 3D models are generated using iterative threading
assembly and combined physics- and knowledge-based
energy functions. Predictors are trained based on 3 groups
of features: sequence, threading, and I-TASSER structure. A
total of 120 features are trained through Gradient Boosted
Regression Trees (GBRT) to overcome overfitting effects
[117].
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2.2.2. Measures of global and local stability within a single framework
The mCSM (mutation Cut-off Scanning Matrix) suite of compu-

tational tools accounts for the changes in protein stability dynam-
ics [118], and interactions with other proteins [119], ligands [88]
and nucleic acids [120] upon introduction of missense mutation.
It estimates change in stability (DDG) and change in binding affin-
ity of the ligand. Measuring the impact of missense mutations
beyond protein stability, by looking at functional affinities, is cru-
cial to characterise the mechanisms of AMR-associated mutations.
This is because affinities to ligands, nucleic acids and other pro-
teins are highly dependent on specific interaction sites, irrespec-
tive of protein stability changes. Functionally, protein affinity
changes to its ligand is especially important in AMR, as it enables
the identification of mutations directly affecting ligand binding.
The extent of this importance, however, relates to the drug mode
of action, meaning that other functional affinities should also be
considered to identify mechanisms beyond direct ligand binding.
The mCSM suite of tools quantify these stability and functional
measurements using graph-based signatures [121], which sum-
marise the global environment of the protein as a series of nodes
for each atom, and represents the local environment at the muta-
tion site as edges on the graph between the nodes at similar dis-
tances from the mutation. A pharmacophore count is appended
to these signatures to account for any physicochemical changes
imparted by the missense mutations [122] (Fig. 1). Through this
graph-based network, the impact of a missense mutation over
the whole protein can be calculated. All methods within the mCSM
suite are based on ML approaches in quantifying missense muta-
tional changes, and are freely available via their respective web
servers.

Ensemble methods like DUET [102] generate a consensus pre-
diction based on two different tools, while the meta-predictor tool
by Broom, et al. [123] combines predictions from eleven available
tools. Similarly, the ELASPIC method [124] combines semi-
empirical energy terms, sequence conservation, and several molec-
ular features to predict mutational effect on stability and affinity.
Likewise, DynaMut [118] combines graph-based structural predic-
tions with Normal Mode Analysis to account for protein dynamics
and molecular motion to assess mutational impact. Consensus
approaches have the advantage of improved accuracy over individ-
ual tools, but are tightly coupled and sensitive to their availability.

2.2.3. Insights from molecular dynamics simulation experiments
Despite not providing direct thermodynamic measures of muta-

tions, molecular dynamics (MD) remains an invaluable technique
for analysing mutational effects on protein conformational move-
ment, especially considering that other techniques run on static
protein structures. In the context of AMR, MD simulations enable
comparison between wild-type and mutant protein trajectories.
Visualising these differences can highlight co-occurring mutations
and sites with local protein rigidification. Different MD techniques
may be used, depending on computational cost and the level of
throughput required.

An all-atom MD method has been adopted to study co-
occurring missense mutations V82F/I84V (known to confer resis-
tance to target inhibitors) within HIV-1 protease [125]. This analy-
sis enabled the characterisation of an equilibrium shift imparted by
these mutations from a closed to a semi-open conformation as a
possible cause of drug resistance [125]. More recently, the effect
of G140S mutation on HIV-1C Integrase (IN) protein provided
insight into dolutegravir resistance. Decreased stability of IN and
higher flexibility around the 140 loop region in the mutant system
reduced drug affinity [126]. Similarly, MD simulations also exam-
ined artemisinin resistance in malaria. Mutation R539T and
C580Y in the P. falciparum K13 region revealed local structural
destabilisation of the Kelch-repeat propeller (KREP) domain but

not the overlapping shallow pocket [78]. In fungal and bacterial
enzymes, MD investigation of the interaction of triazole drugs with
their target, CYP51, has highlighted the potential to design inhibi-
tors with greater ortholog specificity. While protein-fluconazole
interactions were strongly mediated by ligand-HEME interactions
in fungal enzymes, the same was mediated by polar interactions
in the bacterial counterpart (CYP51 Mtb) [127]. Stereochemical
changes, rather than electrostatic effects, of ten point mutations
in Mtb katG led to isoniazid (INH) resistance by restricting access
of the drug to its catalytic site [128]. Likewise, conserved motions
and unbinding events of 82 point mutations in Mtb pncA, linked to
PZA resistance, were also discerned through MD simulations. Cou-
pled expansions and contractions of the pncA lid and the side flap
were observed in the unbinding of PZA in some mutants, while
destabilisation of the ‘‘hinge” or nearby residues facilitated lid
opening and PZA release from the active site [129].

MD studies have also shed light on AMR mutations in biological
pathways. For example, mutations Y59H, M84I and E160D within
the RamR homodimerization domain on ramA promoter were
shown to affect structure stability and binding affinity. These
mutations led to dysregulation of the multidrug efflux pump
RND, and consequent drug resistance in Salmonella enterica [130].
Another example, where extensive modifications modelled by
MD simulations of six missense mutations in Thymidylate syn-
thase A (ThyA), a key enzyme in the Mtb folate pathway, provided
a deeper understanding of Para-aminosalicylic acid resistance
[131]. Likewise, investigation of inhA-INH resistance in Mtb
revealed a ligand ‘‘locking” mechanism together with increased
vibrational coupling between inhA cofactor binding site residues,
responsible for the inhibitory function of the wild-type complex.
This insight provided an explanation of how the resistant mutation
S94A circumvents these subtle changes in global structural dynam-
ics, with downstream effects in the fatty acid synthase pathway
[132]. All-atomMD simulations have also been used to understand
the mechanism of anti-microbial peptides within biofilms, which
can potentially serve as alternative therapies in the presence of
AMR [133].

Although, an all-atom MD approach offers detailed analysis of
specific mutations, it is often computationally expensive making
it impractical for large mutational datasets. In such cases, an
approximated MD technique, known as normal mode analysis
(NMA) can be adopted. NMA uses harmonic motion to summarise
protein dynamics arising from vibrational entropy changes. This
approach is the basis for DynaMut [118] (part of the mCSM-suite
of computational tools described above) which predicts missense
mutational impact on proteins while accounting for their molecu-
lar motions.

3. Applications of the computational tools for characterising
drug resistance in TB and other infectious diseases

The tools described above for measuring the effects of muta-
tions within a gene have been used to provide a molecular under-
standing of how variants can affect pathogen drug resistance in
Mtb [80,92] and P. vivax [134]. In all cases, the different tools have
provided complementary information to describe mutational
effects under selective pressure as a balance of fitness costs across
different protein properties.

To demonstrate the utility of this approach, we explore in more
detail Mtb variants in two genes katG (resistance to isoniazid) and
rpoB (resistance to rifampicin), which have been associated with
drug resistance from GWAS analyses [11,45]. Most katG mutations
conferred resistance through a disruption of protein stability [80].
Functionally, it is thought that Mtb renders the non-essential KatG
unstable to impede the activation for prodrug isoniazid, thereby
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conferring resistance. When considering rifampicin resistant muta-
tions within gene rpoB, we found that most mutations disrupt pro-
tein–protein interactions, leading to a loss in nucleic acid affinity.
Structurally, the effects of these mutations within RpoB, the b-
subunit of RNA polymerase, are compensated for by mutations
within RpoC, which is the b0 subunit, thereby restoring normal
functioning of the RNA polymerase, with an added resistance prop-
erty [135–137].

Within this analysis, two distinct classes of mutations were
observed: (i) those having high allele frequency within GWAS,
but which hadmild overall effects on protein stability and affinities
to ligands, other proteins and nucleic acids, and (ii) those having
lower allele frequency but more drastic effects on protein proper-
ties. Theoretically, it is thought that a high mutational incidence of
class (i) mutations is a result of lower likelihood of evolutionary
purging when compared to class (ii) mutations, which is based
on the structural and functional effects imparted at the protein
level. Mutations from each class were also seen to co-occur as hap-
lotypes, where they are thought to compensate for each other in
terms of protein fitness [80].

Using 571 missense SNPs in katG across 19265 Mtb isolates, we
tested for an association between mutation odds ratio and allele
frequencies with the biophysical effect on protein stability
(Fig. 2). This analysis suggests a higher proportion of destabilising
mutations (~84%, n = 480 vs ~55.5%, n = 105) with only a small pro-
portion of mutations lying within 10 Å of the active site (~10%,
n = 57 vs ~15%, n = 28) highlighting the importance of allosteric
mutations in INH drug resistance. There is a weak negative corre-
lation between protein stability and odds ratio (q = �0.15,
P < 0.001), and between protein stability and allele frequency
(q = 0.31, P < 0.001) (Fig. 3a). Analysis of biophysical effects (desta-
bilising vs stabilising) of katG mutations by Mtb lineage revealed
statistically significant differences (Fig. 3b, Kolmogorov-Smirnov
P � 1.3e-08).

This type of analysis can be implemented on proteins encoded
on plasmids (a common vector of resistance), where this approach
has been used to explain the evolution of carbapenem resistance in
Acinetobacter baumannii [91].

4. Computational structural tools predicting drug resistance

A limitation of current genomic sequencing-based resistance
diagnostic approaches is that they require pre-existing knowledge
about the phenotypic consequences of a variant. This means we
often cannot detect it until it has been established within the pop-
ulation. By contrast, we have shown that using these tools we can
pre-emptively identify likely drug resistant mutations in the
absence of previous genomic data. These insights are of particular
relevance for new drugs without extensive clinical data, and drugs
which lack approved diagnostic tests. We have therefore used this
approach to explore resistance against the TB drugs BDQ [81] and
PZA [82]. The use of our PZA predictive model within the clinic was
the first successful translational application of structural guided
resistance detection. This revealed the power of combining struc-
tural interpretation within existing diagnostic sequencing frame-
works [93]. Additionally, other ML based approaches have also
been used in predicting drug resistance in Mtb [56,138].

5. Designing better antibacterial drugs

It has been suggested that a way to minimise the development
of resistance is by making compounds that interact similarly to a
natural ligand [139]. The rationale being that this would lead to
any resistance hot-spot having a higher fitness cost associated with
it. This led to one of the first successful structure-guided drug dis-
covery projects on neuraminidase inhibitors. Computational tools
aid molecular characterisation of novel genomic variants, which
provide opportunities to pre-empt likely resistant mutations.
Anticipating these variants before they arise in a population can
inform the drug discovery pipeline, especially in developing com-
pounds less prone to resistance emergence. Such an approach
has already been used as part of the drug development efforts
against the TB drug target IMPDH [99]. The mutation predicted
was the only resistant variant detected in subsequent in vitro resis-
tant assays. Further, compounds designed to avoid this hot-spot
were less prone to develop resistance [96–98]. This type of analysis
complements the development of new tools that integrate geno-

Fig. 1. A summary of mutational Cut-off Scanning Matrix (mCSM) method and its application in measuring mutational effects on protein stability (mCSM DUET), protein–
protein interaction (mCSM-PPI, mCSM-PPI2), protein-nucleic acid (mCSM-NA) and protein–ligand affinity (mCSM-lig).
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mic and structural data such as the Target-Pathogen online
resource [140], which prioritises candidate drug targets in ten clin-
ically important and diverse pathogens. This approach underscores
the importance of structural data in guiding the drug-discovery
process [140].

6. Summary and outlook

Large scale genomic studies have enabled identification of
mutational associations with a resistance phenotype, useful for
surveying the presence and spread of resistance to a wide range
of antimicrobials. However, understanding the functional effects
of putative mutations is crucial. Computational tools accounting
for anti-symmetric properties of variation i.e. DDG (A->B) = -
DDG (B->A) [118,141,142] are able to achieve improved prediction
performance complementing experimental studies [85].

Genomic and structural analysis of resistance can infer muta-
tional effects with therapeutic consequences before they become
fixed in a pathogen population. This has implications for both
infection surveillance and in the development of next generation
drugs. The latter is of particular relevance to fragment-based drug
discovery (FBDD) [143,144]. For the past 20 years, this has been a
powerful route to new therapeutics, for example, in the develop-
ment of vemurafenib for late-stage melanoma [145], and is
increasingly being applied in the search for new antimicrobial
drugs [146–148]. FBDD uses a library of low molecular weight,
low affinity binding molecules (fragments) to probe a target pro-
tein. This approach helps to identify areas that are receptive to
binding. Biophysical and structural biology techniques are used
to determine which fragment binds, and how. The target can then
be used to guide an expansion of the fragment to a higher molec-
ular weight and higher affinity binding molecule. An important

Fig. 2. Structure of katG in complex with the drug isoniazid (INH) coloured by 378 mutational positions linked to 571 SNPs. Areas marked in pink are associated with one or
more mutations. HEM is denoted in red, INH is denoted as spheres. Parts a) and b) denote the structure in two different orientations, rotated by 180�. Figure rendered using
UCSF Chimera, Version 1.13.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Relationship between the impact of katG mutations on Protein stability (DUET) with Odds Ratio (OR), Allele Frequency (AF) and Mtb lineages. a) Pairwise correlations
between DUET protein stability and GWASmeasures of OR and AF of 566 mutations (total number of mutations with associated OR). The upper panel in both plots include the
pairwise Spearman correlation values (denoted by q) along with their statistical significance (***P < 0.001). b) Lineage distribution of samples with katG mutations showing
Mtb lineages 1–4 according to DUET protein stability ranging from red (-1, most destabilising) to blue (+1, most stabilising). The number of samples within each lineage are:
Lineage 1 (n = 2448), Lineage 2 (n = 6813), Lineage 3 (n = 5020) and Lineage 4 (n = 2739). The number of samples contribute to the 566 katGmutations. Figure generated using
R statistical software, version 3.6.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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step in this process is elaborating fragments that bind, to generate
compounds that can be taken through to clinical testing. This is the
stage at which crucial decisions are made about the regions of the
drug target to exploit. However, pathogen tolerance is seldom con-
sidered, with direct consequences on drug effectiveness or efficacy.
Current methods of analysing the effects of mutations either oper-
ate at the gene level (identifying known markers of resistance) or
focus on a specific effect of the mutation (protein stability) without
directly relating it to a resistance phenotype. Combining genomic
results with structural analysis permits consideration of muta-
tional impact on a potential drug binding region, providing
informed decisions regarding drug efficacy. This has the potential
to help the design of better antimicrobial drugs.
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Chapter 2

Methods
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2.1 Mutation Dataset

The dataset of mutations containing nsSNVs from a genome wide association study (GWAS) of 35,944

M. tuberculosis isolates described recently1 was used to extract the SAVs. These globally diverse,

clinical isolates are comprised of the seven main lineages (1, 5, and 6: ancient; 2, 3, and 4: modern;

7: intermediate). Additional metadata relating to these isolates included: drug susceptibility testing

(DST) across the eight first-and second line anti-TB drugs, and their link with drug resistance as per

the TB-Profiler mutation database.2 Mutations in this thesis refer to those associated with single amino

acid variation (SAV), and as such the terms mutations, SAVs, or SAV mutations will be used inter-

changeably throughout. Only such mutations which occurred in the protein coding region of the six TB

gene-drug targets were considered in this project. These were alr-cycloserine (DCS), embB-ethambutol

(EMB), gidB-streptomycin (STR), katG-isoniazid (INH), pncA-pyrazinamide (PZA), rpoB-rifampicin

(RFP).

These six targets were chosen based on the availability of SAV mutations from the GWAS dataset,

3D protein structure, coverage of both first and second line drugs including diversity of target types

(i.e direct and indirect drug targets). Genes alr, embB, and rpoB encode proteins that are considered

essential as their respective drugs directly bind to them, while genes gidB, katG, and pncA are indirect

targets for their respective drugs. INH and PZA which bind to KatG and PncA respectively are

prodrugs which need to be converted into their active form to exert their antibacterial action. GidB

is an ancillary protein encoding a S-adenosyl methionine (SAM)-dependent 7-methylguanosine (m7G)

methyltransferase enzyme required for the methylation of position G527 in the 16S rRNA required for

STR binding.3

All SAVs related to these gene-drug targets were extracted using custom Python scripts. The missing

values for DST data (designated as 0: Sensitive, 1: Resistant) for each gene-drug target were imputed

using a knowledge-based approach: Firstly, for each SAV where DST data was missing, the corre-

sponding TB-Profiler annotation reflecting its link to drug resistance was considered. Thereafter, the

mode value of DST for the given SAV across its samples was taken to be the consensus DST value for

that SAV. Where a given SAV had a non-unique mode, a DST value corresponding to resistance was

prioritised over sensitive. In this manner an aggregate or consensus estimate of DST was obtained to

classify each SAV as resistant or sensitive.

Nearly 80% of the clinical isolates (n=28,217/35,944) exhibited SAVs in one or more of the six gene

targets attributable to drug resistance. Subsequent downstream analyses performed in the individual
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chapters further attempted to determine the proportion of SAVs associated with resistance to the

candidate drug.

2.2 Gene-target sequences

Sequences for all six gene-targets as per the M. tuberculosis (H37Rv) reference genome were ob-

tained from the Mycobrowser database.4 The respective gene loci for these targets are: alr :Rv3423c,

embB:Rv3795, gidB:Rv3919c, katG:Rv1908c, pncA:Rv2043c, rpoB:Rv0667.

2.3 Structural modelling

The target-drug complex is preferentially sourced from the organism of interest i.e. M. tuberculosis

in this project, from the RCSB Protein Data Bank database (PDB)5 of experimentally determined

macromolecular structures. In the absence of an available experimentally determined structure, ho-

mology modelling was conducted to reconstruct the biological unit of the protein under investigation.

For the experimentally determined structures that lacked the interacting ligand/drug and the modelled

structures, the small molecules were docked to generate a model of the protein-ligand complex.

2.3.1 Molecular docking

In the absence of a protein-drug complex in M. tuberculosis for PncA-PZA and GidB-SRY, molecular

docking was performed to facilitate analysis by computational tools estimating mutational impact

on ligand affinity. Docking is a computational modelling technique commonly used to predict pos-

sible ligand poses/orientation in bound conformations with a target. The bound conformations are

associated with their respective predicted binding affinity values. Binding affinity (strength of the

ligand interaction with its target) is based on one of several scoring functions, which rank the poses

in increasing order of predicted binding affinity.

The software AutoDock Vina version 1.1.26 an open source molecular modelling platform, was used

to perform the molecular docking of PncA-PZA and GidB-AMP-SAM (described below). The scoring

function in AutoDock Vina consists of a conformation-dependent and a conformation-independent

component. The conformation-dependent scoring function considers the sum of all the atom pairs

which can move relative to each other. Optimisation is performed via the Iterated Local Search global

optimiser, which considers position, orientation, and torsion scoring values to generate minima for

use during refinement. Binding free energy is calculated using a semi-empirical force field, combining

experimental and knowledge-based information. The binding affinity returned by AutoDock Vina is in
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Kcal/mol. However in order to use the mCSM-lig tool, binding affinity must be provided in nanomolar

(nM). Therefore, the conversion of binding affinity (depicted as K in Equation 1) from Kcal/mol to

nM was performed using the equation:

lnK = −∆G/RT

K = e−∆G/RT (1)

Equation 1: Calculation of the dissociation constant (K) associated with binding affinity, where ∆G is

the binding free energy, R is the gas constant, 1.987 cal K-1 mol-1, and T is the absolute temperature,

298 K. Adapted from Morris, et. al. 1998.7

The 3D structure of the ligand was sourced from the PDB, and protonation was carried out using UCSF

Chimera version 1.14.8 Identification of rotatable bonds for ligands were carried out in AutoDock Tools

version 4.2,9 where protonation of the ligand is specifically required by AutoDock Vina.6 Similarly,

the removal of explicit solvent, structure minimisation, and other steps per the standard protocol of

AutoDock Tools9 were carried out accordingly. The overall docking workflow is shown in Figure 1.

The parameters of the configuration file required by AutoDock Vina are explained in Table 1.

PatchDock: PatchDock10,11 was used for docking RNA with M. tuberculosis GidB (See section 2.3.2.3).

It is available as a web service and was run with default settings. PatchDock is an algorithm based

on shape complementarity criteria, and uses the principles of object recognition and image segmenta-

tion.

The docking poses were visualised according to the occupation of the search space and diversity of

pose conformations in UCSF Chimera version 1.14,8 PyMol version 2.4.012 further analysed using the

Protein Ligand Interaction Profiler (PLIP)13 and Arpeggio.14

2.3.2 Target-Drug complexes

2.3.2.1 Existing crystallographic complexes

EmbB-EMB complex: The M. tuberculosis EmbB binds to the anti-TB drug ethambutol (EMB).

The cryo-EM structure of EmbB-EMB bound complex was obtained from PDB-ID 7BVF.15

RpoB RNAP β subunit-RFP complex: The M. tuberculosis RpoB RNA polymerase (RNAP) β sub-

unit binds to the anti-TB drug rifampicin, also known as rifampin (RFP). The crystal structure of M.

tuberculosis RpoB RNAP β subunit bound with RFP was obtained from PDB-ID 5UHC.16
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Figure 1: General docking workflow applied in the project
The 3D structure of the protein (gene) and ligand (drug) complex was obtained from the Protein Data Bank
(PDB), preferentially one from M. tuberculosis. In the absence of a bound complex, the individual structures
were also obtained from PDB, again, preferentially from M. tuberculosis. Homology modelling was performed
where the 3D structure was not available for M. tuberculosis. Following this, molecular docking for protein-ligand
was performed using AutoDock Vina as per the standard protocol summarised in the workflow. For Protein-
RNA docking, PatchDock was used with Advanced options to guide docking. The final pose was selected based
on molecular interactions identified using the PLIP web server.

Parameters Definition Default value

receptor Name of file containing protein structure
with solvent removed none

ligand Name of the file containing the protonated
ligand structure none

out Output file containing the different poses none

center_x/y/z & size_x/y/z
Search space coordinates used by
AutoDock Vina to guide the docking
of the ligand

none

energy_range
The maximum energy range accepted for
the resultant poses, i.e. automatically ex-
cluding extreme poses

3kcal/mol

exhaustiveness
The number of optimisations run to find
the best possible poses in the given search
space

8 runs

num_nodes The maximum number of poses generated 9 poses
Table 1: Description of the parameters required by AutoDock Vina

2.3.2.2 Docked complexes: other sources

Alr-DCS and KatG-INH: The protein structures of Alr, and KatG were available as crystallo-

graphic structures in their apo form with PDB-IDs 1XFC17 and 1SJ218 respectively. While Alr binds

to the anti-TB drug cycloserine (DCS), KatG binds to the anti-TB drug isoniazid (INH). The docked

target-drug complexes were sourced from collaborators for consistency, and are described elsewhere.19

Briefly, the ligand structure for DCS (covalently bound to pyridoxal 5-phosphate (PLP), DCS-PLP

was obtained from holo-homologue structure with PDB-ID 4LUT,20 while that of INH was obtained

similarly from PDB-ID 5SYJ21 to guide docking of the ligands onto their respective crystal structures.

The best binding pose was chosen based on RMSD comparison with the homologue-bound ligands

and Arpeggio,14 and analysis of the active site interactions.19

72



2.3.2.3 Docked complexes: Molecular docking

GidB-STR complex: The target for anti-TB drug streptomycin (STR) is GidB or Gid, and was

formerly known as Ribosomal RNA small subunit methyltransferase G (RsmG). In the absence of a

crystal structure of GidB in M. tuberculosis until recently (PDB-ID 7CFE, but is yet to be published),

the structural modelling was carried out in several stages. Firstly, the structure of M. tuberculosis GidB

was obtained from the web-accessible M. tuberculosis structural and functional proteome database

Chopin,22 and its sequence compared with the one from Mycobrowser’s database.4 A minor discrepancy

between the two sequences was noted, where ‘F100’ in Mycobrowser was reflected as ‘S100’ in the

Chopin database. This was resolved by remodelling the GidB structure using Modeller version 9.2523

with the sequence from Chopin as the template, and the one from Mycobrowser as the target. The best

model was chosen based on the lowest DOPE score and intra-model hydrogen bond interaction. The

modelled GidB structure was superimposed on the 7CFE crystal structure with Root Mean Square

Deviation (RMSD) of 1.7Å over 1174 atoms using PyMol.12 Considering the biological importance of all

interacting ligands, Adenosine monophosphate (AMP), S-Adenosyl Methionine (SAM), 5nt RNA, and

the drug STR on GidB, molecular docking was carried out through the following three stages:

1. AMP docking: Homology modelling identified PDB-ID 3G8924 as one of the template structures

with bound ligands AMP and SAM. 3G89 is a crystal structure of T. thermophilus RsmG in complex

with AMP and Adomet (also known as SAM) at a 1.5Å resolution. The authors proposed that the

AMP binding site could be a potential RNA-binding site. Therefore, AMP was docked first on the M.

tuberculosis GidB structure created using Modeller following the docking protocol described above.

As the biological unit of M. tuberculosis GidB is a monomer, AMP was docked on chain A of M.

tuberculosis GidB. The AMP binding residues for the homologue structure were identified using the

PLIP web server, followed by sequence and structure alignment using T-coffee Expresso25 to identify

the equivalent residues: R213 and G214 in M. tuberculosis GidB corresponding to R245 and H246 in

the 3G89 crystal structure respectively. UCSF Chimera8 was used to add hydrogens to AMP and to

minimise the M. tuberculosis GidB structure in preparation for docking using AutoDock Vina. The

binding poses were visualised and inspected in UCSF Chimera, and the top pose (referring to the

orientation of the docked molecule) was chosen to form the Gid and AMP model, based on H-bond

formation between residues R213 and W123 (Figures 2 and 3). The model was then saved as a single

complex.
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A B

Figure 2: Ligand torsion and configuration file for Adenosine monophosphate (AMP) docking
A) Ball and stick representation of AMP with rotatable bonds as identified by AutoDock Tools before docking
in AutoDock Vina. The balls are coloured by atom type (grey: carbon, blue: nitrogen, red: oxygen), while
the sticks are coloured according to rotatable bonds identified: Green sticks denote rotatable bonds, while red
sticks denote un-rotatable bonds. Figure generated using AutoDock Tools version 4.2. B) Snapshot of the
configuration file used by AutoDock Vina version 1.1.2 for docking AMP on M. tuberculosis GidB.

A B

Figure 3: Comparison of Adenosine monophosphate (AMP) poses between M. tuberculosis and
T. thermophilus GidB protein (PDB-ID: 3G89)
A) M. tuberculosis GidB with AMP docked, forming hydrogen bond with residues R213 and W123, B) Crystal
structure of T. thermophilus GidB with AMP bound, forming salt bridge with residue R245 shown in orange,
and pi-pi stacking with residue H246 appearing in green. The molecular interactions were generated using the
PLIP web server, and figures rendered using UCSF Chimera version 1.14 and PyMol version 2.4.0.
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2. SAM docking: Docking of SAM on the GidB-AMP complex was similarly guided using PLIP and

the T-coffee Expresso alignment to identify equivalent binding/interacting residues for M. tuberculosis

GidB to 3G89 (the equivalences are: G69:G88, S70:T89, G71:G90, L91:D111, E92:A112, P93:T113,

R96:K116, R118:R138, A119:A139, E120:E140, R137:R158), adding hydrogen to the ligand and sub-

sequently minimising the GidB-AMP complex to prepare for docking. The best pose was chosen based

on an alignment of the SAM molecule of the homologue structure model along with the molecular

interaction of SAM with residues in M. tuberculosis GidB. In this manner, the final GidB-AMP-SAM

complex was obtained (Figures 4 and 5).

75



A B

Figure 4: Ligand torsion and configuration file for S-Adenosyl Methionine (SAM) docking
A) Ball-and-stick representation of SAM with rotatable bonds as identified by AutoDock Tools before docking
in AutoDock Vina. The balls are coloured by atom type (grey: carbon, blue: nitrogen, red: oxygen, yellow:
sulphur), while the sticks are coloured according to rotatable bonds identified: Green sticks represent rotatable
bonds, while red sticks denote un-rotatable bonds. Figure generated using AutoDock Tools version 4.2. B)
Snapshot of the configuration file used by AutoDock Vina version 1.1.2 for docking SAM on M. tuberculosis
GidB.

A B

Figure 5: Comparison of S-Adenosyl Methionine (SAM) poses between M. tuberculosis and T.
thermophilus GidB protein (PDB-ID: 3G89)
A) M. tuberculosis GidB with SAM docked, forming hydrogen bond with residues E92, R118, A119, E120, V139,
S220, and T223 shown in blue. Green indicates pi-pi stacking with residue W148, and hydrophobic interaction
with residue A138 indicated in black. B) Crystal structure 3G89 of T. thermophilus GidB with SAM bound,
forming hydrogen bonds with G88, G90, A112, T113, K116, R138, A139, E140 and R158 indicated in blue.
The orange dashed line indicates salt bridge interaction with residue R158. The molecular interactions were
generated using the PLIP web server, and figures rendered using PyMol version 2.4.0.
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3. RNA and STR docking: There is limited information available on the binding site and in-

teractions of RNA and STR in M. tuberculosis, with no existing GidB structure in M. tuberculosis.

However, there exists, a crystal structure of the T. thermophilus 30S ribosomal subunit with strepto-

mycin bound (PDB-ID: 4DR3). Docking of RNA is a challenging task due to its size, charged nature

and a lack of docking tools capable of docking such large (>10nt) fragments. Two iterations of RNA

docking were carried out initially: a 45nt RNA fragment, and a 10nt RNA fragment (containing the

methylation site residue G527). Docking was attempted using two different software tools: HDock and

PatchDock. The results were inconclusive mainly due to the size of the fragment. Therefore a smaller

fragment of 5nt (G526-G530) was extracted for docking. The RNA fragment was left rigid for the

docking procedure. PatchDock returned the most promising results on inspection of the docked RNA

fragment in relation to SAM, STR, and electrostatic interactions, where the latter was important to

ensure that RNA was docked within a positively charged pocket (Figure 6).

A B

Figure 6: A 5 nucleotide RNA bound to streptomycin docked onto M. tuberculosis GidB complex
A) 5 nucleotide (nt) RNA fragment consisting of residues G526-G530 was extracted from PDB-ID 4DR3, a
crystal structure of 30S ribosomal subunit from T. thermophilus with streptomycin (STR) bound. The 5nt
fragment in shown in red-orange, with G527 residue marked in red forming hydrogen bond with STR indicated
in blue. B) The 5nt RNA-bound STR docked onto M. tuberculosis GidB protein with co-factor S-Adenosyl
Methionine (SAM) depicted in green. The structure is coloured according to electrostatics, where blue denotes
positively charged surfaces, and red denotes negatively charged surfaces. This highlights that the RNA fragment
with STR bound was docked inside a positive pocket on M. tuberculosis GidB. The hydrogen bond between
G527 and SRY is indicated in blue. RNA docking was performed using PatchDock. Figures were generated
using UCSF Chimera version 1.14.

PncA-PZA complex: Generated using the AutoDock Vina.6 Molecular docking was guided by

the active site residues described for PncA (PDB-ID: 3PL1).26 The general protocol for docking by

AutoDock Vina was followed as described in the Molecular Docking section above. The rotatable

bonds and configuration file used for PncA-PZA docking are shown in Figure 7.

77



A B

Figure 7: Ligand torsion and configuration file for pyrazinamide (PZA)
A) Ball and stick representation of PZA with rotatable bonds as identified by AutoDock Tools before docking
in AutoDock Vina. The balls are coloured by atom type (grey: carbon, blue: nitrogen, red: oxygen), while the
sticks are coloured according to rotatable bonds identified. Green sticks represent rotatable bonds, red sticks
denote un-rotatable bonds, and magenta sticks indicate non-rotatable bonds. Figure generated using AutoDock
Tools version 4.2. B) Snapshot of the configuration file used by AutoDock Vina version 1.1.2 for docking PZA
on pyrazinamidase (PDB-ID: 3PL1).

A summary of the 3D structural data used in the project appears in Table 2.

2.3.3 Active site residue identification for docked complexes

Three software tools, LigPlus version 2.2.4 (downloaded),27 the PLIP,13 and Arpeggio14 web servers

were used to curate all possible interacting residues with the ligands and co-factors in the final docked

complex. All such residues were considered “active site residues” for the purposes of investigating the

molecular consequences of SAV mutations.

2.3.4 Mutational site classification

Mutational sites on the six structural genes were regarded as hotspots when the site presented with

multiple (defined as 2 or more) SAVs, while sites with exactly 2 SAVs were considered ‘budding’

resistant hotspots.

2.4 In silico Predictors

Multiple computational tools were used to investigate the structural effects of SAVs on the gene/tar-

get and gene/target-drug complex. These structural biophysical effects were related to changes in
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Gene-Drug
Structure
PDB-ID

Biological
unit

Docking No of chains Comment

alr-cycloserine (DCS) 1XFC Homo-dimer Yes
A,B

mutations: Chain A
DCS docked on chain A*

embB-ethambutol (EMB) 7BVF Hetero-3-mer No
A,B,P

mutations: Chain B
EMB bound in chain B

gidB-streptomycin (STR)
Chopin+Modeller

(7CFE, now available)
Monomer Yes

Chain A
mutations: Chain A

AMP+SAM docking: AutoDock Vina
RNA docking: PatchDock

katG-isoniazid (INH) 1SJ2 Homo-dimer Yes
A,B

mutations: Chain A
INH docked on chain A*

pncA-pyrazinamide (PZA) 3PL1 Monomer Yes
Chain A

mutations: Chain A
PZA docking: AutoDock Vina

rpoB-rifampicin (RFP) 5UHC Hetero-6-mer No
A,B

mutations: Chain C
RFP bound in chain C

Table 2: 3D Structural Data
Available 3D structures from the Protein Data Bank and a summary of molecular modelling performed. * 3D
structure provided by collaborators.

stability, estimated through a change in Gibbs Free energy (∆∆G Kcal/mol) between the wild-type

and mutant-type residues, while changes in molecular binding affinities were estimated as log fold

change for ligand affinity. Where applicable, changes in binding affinity for nucleic acid (NA) and

protein-protein interactions (estimated as ∆∆G Kcal/mol) were also included. Additionally, changes

in physicochemical and evolutionary properties between wild-type and mutant-residues were also in-

cluded.

A detailed description of computational tools, and their application in AMR is described in the review

article published as part of this project.28 The review article is included in full at the end of Chapter 1

(Introduction) as it forms part of the thesis. A summary description of the computational tools used

in this project (adapted from the published paper) appears below:

2.4.1 Sequence based tools

ConSurf,29 SNAP2,30 and PROVEAN31 were used to incorporate evolutionary conservation changes

when assessing mutational effects.

ConSurf: The score is based on a multiple sequence alignment which generates probabilistic evo-

lutionary models and phylogenetic links. Through this score, more conserved sites (having slower

evolutionary rates), that have important functional and structural consequences, can be identified.29

Scores are graded 1 (variable) to 9 (conserved) for visualisation.

SNAP2: SNAP2 (Screening for Non-Acceptable Polymorphisms v.2:) characterises the effect of all

possible missense mutations as either neutral or deleterious. It accounts for amino acid position prob-

abilities using position-specific independent counts, based on the BLOSUM62 matrix. This predictor
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considers other features such as protein fold (Pfam, PROSITE) and functional annotations (SWISS-

PROT), and as such is the tool that spans the most comprehensive feature space.30 Mutations are

classified as either neutral or effect based on predicted scores.

PROVEAN: PROVEAN (Protein Variant Effect Analyser) uses the BLOSUM62 substitution ma-

trix as an amino acid probability matrix and combines this with differences in sequence similarity

between wild-type and mutant sequences. The sequence context in which variation occurs is also con-

sidered, and a numerical score is generated for each variant, which enables the functional classification

into deleterious or neutral based on a predefined threshold.31

2.4.2 Structure based tools

Protomer stability

These tools measure the mutational impact as a change in stability (∆∆G in Kcal/mol) of the protein

structure. Both the extent of the mutational impact (the value of ∆∆G) as well as the direction of

change (∆∆G classification as stabilising or destabilising) are returned for the predictions.

mCSM-DUET: Combines predictions from two complementary approaches i.e. Site Director Mu-

tator (SDM)32 and mCSM.33 The latter refers to the mutation Cut-off Scanning Matrix (mCSM)

method which uses graph-based methods to calculate atomic pairwise distance surrounding the wild-

type amino acid. Mutational impact is captured based on a change in the atomic pharmacophore count

resulting from SAV mutations. Together, this forms the mCSM signature, and is used to train pre-

dictive models for analysing mutational impact on structure stability, where ∆∆G<0: Destabilising,

and ∆∆G>0: Stabilising.34

DeepDDG: DeepDDG calculates ΔΔG of mutation using a neural network trained on nine cat-

egories of sequence and structural features. It operates independently as ‘DeepDDG’, and in an

integrated manner as ‘iDeepDDG’ where predictions from three methods: mCSM, SDM and DUET

can be fed into the concatenation layer of the neural network to generate a consensus prediction.

Classification of mutational impact is ∆∆G<0: Destabilising, and ∆∆G>0: Stabilising.35

DynaMut2: DynaMut predicts stability effects based on protein dynamics resulting from vibra-

tional entropy changes. It integrates mCSM signatures and normal mode analysis, and thus combines

mutational effect from three structure-based prediction tools to generate a consensus prediction. Mu-

tational impact is classified based on ∆∆G<0: Destabilising, and ∆∆G>0: Stabilising.36
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FoldX: FoldX is an empirical-based predictor which provides information on how a SAV mutation

alters the stability of a protein. Estimation of stability is based on intramolecular interactions such as

van der Waals’ forces, solvation energies, interactions with water, hydrogen bonds, electrostatic effects

and main and side chain entropies. Mutational impact is calculated through a weighted summation

of all the intramolecular interactions, and estimated as a change in stability (∆∆G) between mutant

and wild-type structures. Mutational impact is classified as ∆∆G<0: Stabilising, and ∆∆G>0:

Destabilising.37 Of note, the classification score used by FoldX is inverted compared with other tools

used in this project, where negativeΔΔG denotes a stabilising effect in FoldX, the same is destabilising

according to other tools. Similarly, where a positive ΔΔG indicates a destabilising effect in FoldX,

the same is stabilising according to other tools.

Average protomer stability: The predicted estimates from all four tools described above were

averaged to obtain a consensus estimate of changes in protomer stability. The sign associated with

FoldX estimates was reversed before calculating the average to account for the different classification

criteria mentioned above.

Binding affinity

These tools are based on graph-based methods of the mCSM suite of tools described above, with

properties of small molecules, nucleic acid, protein-protein interactions included to account for affin-

ity changes upon mutation. Both the extent of the mutational impact (change in binding affinity)

as well as the direction of change (classification as stabilising or destabilising) are returned for the

predictions.

mCSM-lig and mmCSM-lig: These tools use the mCSM graph-based structural signature to

estimate the ligand affinity change upon mutation. Along with changes in protein stability, small-

molecule chemical features and ligand physicochemical properties are considered to capture mutational

changes. Mutational impact is given by the log (ln) affinity fold change between wild type and mutant

complexes, where ln(fold-change)<0: Destabilising, ln(fold-change)>0: Stabilising.38 Furthermore,

mmCSM-lig (personal communication, unpublished), which is built upon mCSM-lig to include multiple

SAVs was also run for all gene-targets.

Average ligand affinity: The predicted estimates from both mCSM- and mmCSM-lig were aver-

aged to obtain a consensus estimate of changes in ligand/drug binding affinity.
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mCSM-NA: This estimates a change in the binding affinity of nucleic-acid (NA) upon muta-

tion. The mCSM-graph based structure signature is then extended to include atomic pharmacophore

changes for nucleotides (sub-classed into phosphate, sugar and base atom groups) along with residue

distance to NA, and the effect of reverse mutation. The predicted affinity change is given by ΔΔG

in Kcal/mol, along with the classification corresponding to ∆∆G<0: Destabilising, and ∆∆G>0:

Stabilising.39 In this project, the NA affinity changes refers to nucleic acid (RNA/DNA) binding

affinity changes.

mCSM-PPI2: Mutational effect on protein-protein interaction (PPI) interface is estimated using

a combination of structural, evolutionary, PPI network metrics, and energetic terms. Similarly based

on the mCSM graph-based structure signature, inter-residue interaction network properties and the

effect of the reverse mutation are included. The predicted complex-affinity change is given by ΔΔG

in Kcal/mol, along with the classification corresponding to ∆∆G<0: Destabilising, and ∆∆G>0:

Stabilising.40

For all affinity estimates, in line with the respective computational tool’s threshold criteria, only

mutations within 10Å of the ligand, nucleic acid, and protein-protein interface were considered.

2.4.3 Residue level properties

Residue-level properties for the wild-type structure were analysed for all SAVs. Accessible (ASA)

and Relative Surface Area (RSA), residue depth (RD), and hydrophobicity values according to the

Kyte-Doolittle (KD) scale were obtained. The DSSP program41,42 was used to extract the ASA and

RSA values, while RD values were calculated using the depth server according to the seminal paper.43

The hydrophobicity KD values were fetched from the expasy server.44 The computational tools used,

and their current availability are listed in Appendix Table 2.A.1.

2.4.4 Prominent mutational effects

When investigating the underlying predominant mutational impact at a given site, effects were priori-

tised in order of interacting partner size, progressing from mCSM/mmCSM-lig, mCSM-NA, mCSM-

PPI2, followed by protomer stability changes. This approach allows molecular interactions to be

adequately accounted for, irrespective of interacting partner size and helps identify the most promi-

nent effect at a given site.
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2.5 Data Analysis

2.5.0.1 In silico framework

A semi-automated framework using a combination of shell, Python and R programming languages

was developed for this project. The framework consists of a set of pipelines: data extraction of SAVs,

obtaining results from computational predictors, and integrating these for statistical and machine

learning analyses. The overall methodology workflow is depicted in Figure 8.

2.5.0.2 Minor Allele Frequency, Odds Ratio and Lineage calculations

Across the M. tuberculosis isolates tested for drug susceptibility for each gene-drug target, association

analysis to estimate the risk of resistance for SAV was performed. For each SAV in each gene, minor

allele frequency (MAF) and odds ratio (OR) were calculated in relation to all samples tested for their

respective DST. Each drug had a corresponding DST column for each clinical isolate, provided as part

of the dataset. The DST values were classified as 0: Sensitive, 1: Resistant. The MAF was calculated

based on this as the average occurrence of a given SAV, and OR as the measure of association of

a given SAV with its corresponding drug resistance. For each SAV in a given gene, its frequency

with respect to the corresponding DST based on the entire dataset was extracted in the form of a

contingency table. Since a given mutation can occur in more than one sample (as expected), and

displays different DST sensitivity due to belonging to different isolates, the contingency table classifies

the mutational frequency with respect to the binary DST sensitivity as rows and columns. Fisher’s

exact test was then used to calculate the OR and P-values based upon this table. Lineage information

was summarised according to the distinct number of lineages, as well as the total number of different

lineages per mutation, as well their respective proportional contribution.

2.5.0.3 Normalisation

Results from all computational predictors were normalised between -1 and 1 for comparison and vi-

sualisation. For all binding affinity analyses, data was filtered according to distance from interacting

site (ligand, nucleic acid, and protein-protein interface) where only residues within 10Å were consid-

ered.
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Figure 8: General workflow adopted for the in silico framework

84



2.5.0.4 Statistical analysis

Data was analysed using non-parametric statistical tests. Features distinguishing ‘Sensitive’ and ‘Re-

sistant’ mutations were assessed using the unpaired Wilcoxon test. For assessing mutation proportions

across lineages, Fisher’s exact test was used. Correlations were assessed using the Spearman’s rank

coefficient (rho, ρ). Correlation thresholds used to assess associations were: ρ<0.1: no association,

0.1≤ρ<0.3: weak association, 0.3≤ρ<0.6: moderate association, ρ≥0.6: strong association. The

Kolmogorov-Smirnov (KS) test was used to compare distributions. Statistical significance thresholds

used were: .P<0.10, ∗P<0.05, ∗∗P<0.01, ∗∗∗P<0.001, ∗∗∗∗P<0.0001). All statistical analyses were

carried out using the R statistical software version 4.0.4.45

2.5.0.5 Visualisation

All plots were generated using R statistical software version 4.0.4.45 Protein and ligand structures were

generated using UCSF Chimera version 1.14,8 PyMol version 2.4.0,12 and AutoDock Tool version 4.2.9

An interactive dashboard was also built during this project using Rshiny version 4.0.446 as an effective

tool to inspect and visualise the interrelationship between structural and genomic data. The dashboard

is available at https://thesis.tunstall.in.

2.6 Web-based visualisation tool development

As an offshoot of the plot generation using R, a web-based visualisation tool was developed using

Rshiny. The dashboard is hosted on a commercial public cloud server. Initial development on my

own desktop made this quite simple due to the fact that I had taken a functional approach when

writing my R code. When deployed on the public cloud service, however, performance issues presented

themselves. Through a combination of approaches including code refactoring, web server caching, use

of the Feather file format rather than flat files such as CSV or JSON, load times were reduced to

the point where the tools are usable. While special-purpose hosting solutions for Rshiny apps exist

(e.g. https://shinyapps.io), there are sufficient differences that made it impractical to adapt what

had been written already. While tools such as Rshiny make initial development very easy, knowledge

of modern web technologies is essential to use them effectively. Version control systems such as Git

proved invaluable in the overall development process.
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2.A Computational tools and web URLs

Name of tool URL
ConSurf https://consurf.tau.ac.il/

PROVEAN http://provean.jcvi.org/seq_submit.php

SNAP2 https://rostlab.org/services/snap/

AAindex https://www.genome.jp/aaindex/

FoldX https://foldxsuite.crg.eu/products#foldx

DeepDDG http://protein.org.cn/ddg.html

Dynamut2 http://biosig.unimelb.edu.au/dynamut2/
mCSM-lig (Also returns
DUET scores) http://biosig.unimelb.edu.au/mcsm_lig/

mCSM-NA http://biosig.unimelb.edu.au/mcsm_na/

mCSM-PPI2 http://biosig.unimelb.edu.au/mcsm_ppi2/

DSSP https://swift.cmbi.umcn.nl/gv/dssp/

Hydrophobicity https://web.expasy.org/protscale/

Residue Depth http://cospi.iiserpune.ac.in/depth/

Arpeggio http://structure.bioc.cam.ac.uk/arpeggio/

PLIP https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index

LigPlot https://www.ebi.ac.uk/thornton-srv/software/LigPlus/

PatchDock https://bioinfo3d.cs.tau.ac.il/PatchDock/

AutoDock Vina https://vina.scripps.edu/

AutoDock Tools https://autodocksuite.scripps.edu/adt/

Table 2.A.1: List of computational tools used and their online availability as of 18 Jul 2022.
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Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a
public health burden, with missense point mutations in the underlying Mycobacterium
tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era
along with advances in computational and structural biology provide opportunities
to understand the interrelationships between the genetic basis and the structural
consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide
(PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The
mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates
computational approaches to investigate the genetic and structural basis for PZA
resistance development. We analysed 424 missense point mutations linked to PZA
resistance derived from ∼35K M. tuberculosis clinical isolates sourced globally, which
comprised the four main M. tuberculosis lineages (Lineage 1–4). Mutations were
annotated to reflect their association with PZA resistance. Genomic measures (minor
allele frequency and odds ratio), structural features (surface area, residue depth
and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of
point mutations on pncA protein stability and ligand affinity were assessed. Missense
point mutations within pncA were distributed throughout the gene, with the majority
(>80%) of mutations with a destabilising effect on protomer stability and on ligand
affinity. Active site residues involved in PZA binding were associated with multiple
point mutations highlighting mutational diversity due to selection pressures at these
functionally important sites. There were weak associations between genomic measures
and biophysical effect of mutations. However, mutations associated with PZA resistance
showed statistically significant differences between structural features (surface area and
residue depth), but not hydrophobicity score for mutational sites. Most interestingly
M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile
for mutations associated with PZA resistance, compared to modern lineages.

Keywords: Mycobacterium tuberculosis, pncA, nsSNPs, non-synonymous Single Nucleotide Polymorphisms,
biophysical effects, thermodynamic stability, mCSM, FoldX
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INTRODUCTION

Tuberculosis (TB), is a highly infectious and contagious air-borne
disease caused by the bacterium Mycobacterium tuberculosis.
Despite its ancient origins and the efforts to develop disease
control and prevention measures, the disease continues to
cause a global public health burden, with increased drug
resistance making control difficult. In 2019, WHO reported
around 10 million global cases of TB of which 1.4 million
result in death (World Health Organization [WHO], 2020).
In 2019, 465,000 cases of rifampicin resistant TB (RR-TB),
among which 78% cases of multidrug-resistant TB (MDR-
TB, defined as having additional resistance to isoniazid) were
reported. Among these RR/MDR cases, ∼6% cases were further
resistant to one fluoroquinolone and one injectable second
line drug, leading to extensively drug resistant TB (XDR-TB)
(World Health Organization [WHO], 2020).

The size of the M. tuberculosis genome (reference H37Rv
strain) is 4.4 Mb, with a high (65%) GC content. The
M. tuberculosis genome is clonal, and consists of seven main
lineages, which vary by their geographical spread (L1: Indo-
Oceanic, L2: East Asian, L3: East-Africa-Indian, and L4: Euro-
American) (Phelan et al., 2016). The lineages are further classified
into ancient (L1, L5–6), modern (L2–4), and intermediate (L7)
strains, with L2 being particularly mobile as evidenced by its
recent spread to Europe and Africa from Asia (Phelan et al.,
2016). The M. tuberculosis lineages appear as distinct clades
on phylogenetic trees (Coll et al., 2014) and govern disease
transmission and dynamics with phenotypic consequences
on clinical severity and drug resistance (Ford et al., 2013;
Reiling et al., 2013), including recent reports of lineage-specific
associations with the latter (Oppong et al., 2019). Drug resistance
in M. tuberculosis is almost exclusively due to mutations
[including non-synonymous Single Nucleotide Polymorphisms
(nsSNPs), insertions and deletions (INDELs)] in genes coding
for drug-targets or drug-converting enzymes. Changes in efflux
pump regulation may also have an impact on the emergence
of resistance (Al-Saeedi and Al-Hajoj, 2017) and putative
compensatory mechanisms have been described to overcome
fitness impairment that arises during the accumulation of
resistance conferring mutations (de Vos et al., 2013). Resistance-
associated point mutations have been described for all first-line
drugs, including rifampicin, isoniazid and pyrazinamide, as well
as for several second-line and newer drugs (fluoroquinolones,
bedaquiline) (Somoskovi et al., 2001; Boonaiam et al., 2010;
Segala et al., 2012), but knowledge is still incomplete.

Pyrazinamide (PZA) is a crucial antibiotic used in WHO
recommended combination therapies in the front-line treatment
of TB. It is a pro-drug which is activated by the amidase
activity of the enzyme pyrazinamidase/nicotinamidase (PZase;
MtPncA) encoded by the pncA gene, converting PZA to its active
form of pyrazinoic acid (POA). Despite its indispensable status
in TB treatment, PZA’s exact mode of action remains poorly
understood. Other genes (rpsA and panD) have been implicated
in PZA resistance (Dookie et al., 2018) with a recent study
suggesting that PZA exerts its antibacterial activity by acting as
a target degrader of panD, blocking the synthesis of coenzyme A
(targeted by POA) (Gopal et al., 2020). Despite this, mutations

in the pncA gene remain the most common mechanism of PZA
resistance (Khan et al., 2019).

Advances in whole genome sequencing (WGS) is assisting
the profiling of M. tuberculosis for drug resistance, lineage
determination and virulence, and presence in a transmission
cluster (Phelan et al., 2019a), thereby informing clinical
management and control policies. This is reflected in the
WHO recommendation for use of rapid molecular testing
for detecting TB and drug resistant TB (World Health
Organization [WHO], 2020). The use of WGS can uncover new
resistance mutations through genome-wide association studies
(GWAS) and convergent evolution analysis (Phelan et al., 2016;
Coll et al., 2018).

Furthermore, using protein structure, the biophysical effects of
point polymorphisms can be investigated allowing a mechanistic
understanding of resistance development (Phelan et al., 2016;
Kavvas et al., 2018; Portelli et al., 2018). This approach can
highlight important functional resistance mutations before they
take hold in a population, corroborate drug susceptibility test
results, as well as provide insights in highly polymorphic
candidate loci (e.g., pncA) where many of the putative mutations
have low frequency. It has been observed that sites with multiple
mutations (>2) are linked to drug resistance (Comas et al.,
2011), but such resistance hotspots may not necessarily lie close
to the drug binding site. To this effect, sites with 2 mutations
are considered as “emerging” or “budding” resistance hotspots
(Portelli et al., 2018).

One assessment of the impact of missense mutations is to
measure the change in a protein structure’s as well as drug-
target complex’s physical interactions that contribute to its overall
stability. Computational approaches (e.g., the mCSM suite; Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues et al.,
2019) have been developed to predict the effects of missense
point mutations on overall protein structure stability, as well
as the binding affinity/stability of ligand, protein-protein, and
protein-nucleic acid interactions within a single framework,
based on either an experimentally resolved structure or derived
model. Here we apply such approaches to the effects of missense
point mutations in the pncA gene. In addition, we also analyse
biophysical structural features including surface area, residue
depth and hydrophobicity for residues and sites associated with
missense point mutations.

A crystal structure for pncA from M. tuberculosis has
been determined as a monomeric enzyme of 186 amino acids
(19.6 kDa) (Petrella et al., 2011). The structure comprises a 6-
stranded parallel beta sheets, with helices on either side forming
a single α/β domain with a metal cofactor (iron, Fe2+) binding
site formed of D49, H51, H57, and H71. The substrate binding
cavity in MtPncA is small, approximately 10 Å deep and 7 Å
wide. It consists of highly conserved residues F13 and W68
that are essential in substrate binding with Y103 and H137
limiting access to this cavity (Petrella et al., 2011). The catalytic
triad consisting of C138, D8, K96 is indicative of a cysteine-
based catalytic mechanism (Petrella et al., 2011). Leveraging
this crystal structure, we developed an in silico framework
to assess the biophysical impact of pncA mutations and their
resistance risk as determined by GWAS. In this study, we attempt
to understand PZA resistance by exploring the relationship
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between the genomic features and the biophysical consequences
of stability and affinity of nsSNPs, and how this is reflected in
differences between M. tuberculosis lineages.

MATERIALS AND METHODS

SNP Dataset
The dataset consists of 35,944 M. tuberculosis isolates, which
has been described recently (Napier et al., 2020). In brief, it
encompasses all the main lineages (1, 5, and 6, ancient; 2, 3,
and 4, modern; 7 intermediate), and drug susceptibility testing
across 8 first-and second-line anti-TB drugs. Across these isolates,
mutations in the pncA coding region with non-synonymous
amino acid changes (nsSNPs) were extracted. These nsSNPs were
further annotated for their link with drug resistance as defined by
their presence in the TB-Profiler mutation database (Phelan et al.,
2019b). Initial analysis aimed at understanding the structure and
characterising the active site, followed by in silico predictions to
quantify the enthalpic and entropic effects of GWAS-identified
nsSNPs on the pncA protein structure. Subsequently, additional
metadata relating to the clinical isolates were studied in relation
to the structural effects of mutations. The general methodology
workflow followed in this analysis is similar to the one described
previously (Portelli et al., 2018).

Drug and Target: Structural Data
In the absence of a drug (PZA) and target (pncA) complex,
respective individual structures were obtained from RSCB PDB
database (Berman et al., 2000). The crystal structure of pncA in
M. tuberculosis is available as PDB entry 3PL1 (Petrella et al.,
2011), while the structure of PZA was extracted from PDB entry
3R55 (Singh et al., 2011). The molecular motion of pncA was
analysed by Normal Mode Analysis using the DynaMut tool
(Rodrigues et al., 2018) (Supplementary Figure 1).

Protein-Ligand Docking: Autodock Vina
The pncA-PZA complex was generated using the software
AutoDock Vina, version 1.1.2 (Trott and Olson, 2009). Autodock
Vina is an open-source, freely available molecular modelling
platform to perform protein-ligand docking. Docking was carried
out with default settings and guided by the positioning of
the ligand within the active site as descried by Petrella et al.
(2011). The complex was generated to facilitate downstream
analyses by mCSM-lig (Pires et al., 2016) Autodock Vina returns
bound conformations with their respective predicted binding
affinity values. The prediction of binding affinity (strength of
the ligand interaction with its target) is based on one of several
scoring functions, which rank the poses in increasing order
of predicted binding affinity. Binding free energy is calculated
using a semi-empirical force field, combining experimental and
knowledge-based information. The docking poses were visualised
and inspected in UCSF Chimera 1.13 (Pettersen et al., 2004)
according to the occupation of search space and diversity of pose
conformations (Supplementary Figure 2). The top two binding
poses were closely matched with the conformations generated
by Karmakar et al. (2018) and Petrella et al. (2011), respectively
(Supplementary Figure 3). The best pose was chosen considering

the ligand orientation generated by molecular docking performed
by Karmakar et al. (2018) and comparing interaction of both
poses with active site residues through an Arpeggio (Jubb et al.,
2017) analysis (Supplementary Figure 4).

Ligand extraction and protonation were carried out using
UCSF Chimera, version 1.11 (Pettersen et al., 2004) while
identification of rotatable bonds was carried out in Autodock
tools (available as part of MGL tools, version 1.5.6) (Morris et al.,
2009) where protonation of the ligand is specifically required
by Autodock Vina (Trott and Olson, 2009). Similarly, protein
extraction and explicit removal of solvent were carried out in
UCSF Chimera, version 1.11 (Pettersen et al., 2004), and other
steps in the overall protein preparation process were carried out
in Autodock tools (part of MGL tools, version 1.5.6) (Morris et al.,
2009). All the required parameters to perform docking needed to
be included in a configuration file.

In silico Predictions: mCSM DUET, FoldX,
mCSM-lig
The computational tools based on mutation cut-off scanning
matrix, primarily mCSM DUET (Pires et al., 2014a) and mCSM-
lig (Pires et al., 2016) were used to investigate the structural
effects of nsSNPs within the pncA target protein. The effects
of nsSNPs within pncA were analysed with respect to protein
stability (DUET and FoldX (Schymkowitz et al., 2005) and ligand
affinity (mCSM-lig). The consequences of these effects were to
investigate change in protein fold and function, and effect on
mechanism of PZA drug activation, respectively. Results from
mCSM-lig (Pires et al., 2016) return both ligand affinity and
DUET scores, hence only mCSM-lig was run to obtain both the
outputs simultaneously.

A semi-automated pipeline was constructed for mCSM and
FoldX to submit and extract results for multiple mutations
consecutively using python and shell scripts. Both tools require
wild type structure, chain ID and a list of nsSNPs in the
X <POS> Y format (X: wild type residue; <POS> : position, Y:
mutant residue). The residue symbols (X and Y) are specified as
one letter amino acid code. DUET and FoldX estimate mutational
impact as a change in Gibbs Free energy (11G) in Kcal/mol.
The classification of mutational impact based on 11G from
these methods are categorised in opposing ways. For example,
11G < 0 of a SNP is classified as a “destabilising” according to
DUET, while the same is classified as “stabilising” according to
FoldX.

The mutational impact on ligand affinity is calculated as a log
fold change between wild type and mutant binding affinities. In
addition to SNP identifiers, mCSM-lig requires the ligand affinity
of the wild-type protein to be specified in nano Molar (nM) for
affinity change calculations. Since the binding affinity returned
by AutoDock Vina, version 1.1.2 (Trott and Olson, 2009) is in
Kcal/mol, these needed to be converted to nM via Eq. 1 (below).
The binding affinity for PZA in nM was 0.9911.

1G = − RTlnK. (1)

Equation 1: Calculation of binding free energy, 1G, where R
is the gas constant, 1.987 cal K−1 mol−1 and T is the absolute
temperature, 298 K. Adapted from Morris et al. (1998).
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The mCSM suite of tools (Pires et al., 2014a, 2016; Pires
and Ascher, 2017; Rodrigues et al., 2019) are based on
graph-based measures at an atomic level along with machine
learning (ML) tools for predicting enthalpic and entropic
effects of stability. mCSM achieves this broadly by generating
a signature encompassing the wild-type milieu and change in
pharmacophore properties upon mutation (Pires et al., 2014b).
Owing to the inter-atomic distance pattern within mCSM
describing the wild-type residue environment, novel parameters
like residue depth and long-range interactions are implicitly
considered. In this manner, mCSM is able to characterise
both local and global effects of missense point mutations. The
mutational change at the atomic level is considered by using a
change in the “pharmacophore count” vector, thus obviating the
need to have explicit mutant structure. All mCSM tools (Pires
et al., 2014a, 2016; Pires and Ascher, 2016, 2017; Rodrigues
et al., 2019) use the atomic changes, while DUET (Pires et al.,
2014a) is an ensemble method combining methods of mCSM
stability (Pires et al., 2014b) and SDM (Worth et al., 2011;
Pandurangan et al., 2017). FoldX, however is an empirical-based
prediction tool which summarises the change in stability between
mutant and wild type protein structures using a combination of
energy terms based on fundamental intramolecular interactions
(Schymkowitz et al., 2005).

Other Structural Parameters
Additional structural parameters for wild type structure were
also included in the analysis. These were: Accessible (ASA) and
Relative Surface Area (RSA), residue depth (RD), hydrophobicity
values according to the Kyte-Doolittle scale (KD). The DSSP
programme (Kabsch and Sander, 1983; Touw et al., 2015) was
run to extract the ASA and RSA values, while RD values
calculated as described by Chakravarty and Varadarajan (1999)
were calculated using the depth server available at http://cospi.
iiserpune.ac.in/depth. The KD values were fetched from the
expasy server (Artimo et al., 2012) available at https://web.expasy.
org/protscale/.

Data Normalisation: DUET, FoldX, and
mCSM-lig
The DUET (Pires et al., 2014a), FoldX (Schymkowitz et al., 2005),
and mCSM-lig (Pires et al., 2016) scores associated with each SNP
were subsequently normalised between the range of−1 and 1. For
mCSM-lig analyses, data was filtered according to distance from
interacting site and only residues within a distance of 10 Å of the
ligand (PZA) were considered for all ligand affinity analyses.

Minor Allele Frequency and Odds Ratio
Calculations: SNP Dataset
Across the M. tuberculosis isolates tested for PZA drug
susceptibility data, we performed association analysis to estimate
the risk of resistance for SNP alleles. For each nsSNP, minor allele
frequency (MAF) and odds ratio (OR) were calculated in relation
to all samples tested for PZA susceptibility. MAF is the average
occurrence of a given nsSNP, and OR is the measure of association
of a given nsSNP with PZA resistance. In addition to unadjusted

odds ratio (OR), and similar to a GWAS approach, adjusted
odds ratio (aOR) were estimated using logistic regression models
with a kinship matrix adjusting for a random effect representing
the SNP-based relationships between samples (e.g., the lineage-
based population structure) (Zhou and Stephens, 2012; Coll et al.,
2018). P-values were estimated using Fisher and Wald test for
unadjusted and adjusted ORs, respectively.

Statistical Analyses
Data was analysed using non-parametric statistical tests.
For assessing correlations, Spearman correlation values
were calculated. For comparing lineage distributions, the
Kolmogorov-Smirnov (KS) test was used. Statistical significance
thresholds used are ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001,
∗∗∗∗P < 0.0001).

Data Visualisation
All plots were generated using R statistical software,
version 4.0.2 (R Core Team, 2014). Protein and ligand
structures were generated using UCSF Chimera, version
1.11 (Pettersen et al., 2004).

RESULTS

Analysing the pncA Molecular Motion
and pncA-PZA Complex
Molecular motion in pncA was analysed by Normal Mode
Analysis (NMA). Regions undergoing the greatest movement
were limited to residues in loop regions and mainly concentrated
to loop 60–66, followed by loop residues 39–41 and 111–113.
Residues at site 165–167 within helix 164–178 showed the least
flexibility (Supplementary Figure 1). The frequency of mutations
in these variable regions was most prominent for sites 62–63
(>2 mutations) while the other sites were limited to at most two
mutations (Figure 1). Mutations within the most flexible region
(residues 60–66) of pncA showed mixed effects in relation to their
association with PZA resistance with the single mutation at site 64
related to PZA resistance. Sites 39 and 40 within the other highly
flexible region 39–41 were not associated with any mutations in
our study, while the two mutations at site 41 were not associated
with PZA resistance. The region 111–113 is associated with single
mutations at sites 111 and 112 which are not linked to PZA
resistance, while site 113 was not associated with any mutations in
our study. Sites 165–167, which form part of the helix (164–178),
are the most stable according to NMA. Two residues (A165 and
D166) within this helix were not associated with any mutations
in our study, while a single mutation at site T167 was not
associated with PZA drug resistance (Supplementary Figure 1
and Supplementary Table 1). Docking with AutoDock vina
(Trott and Olson, 2009) generated nine different conformations
as per default settings. In six of these poses, the aromatic ring
of PZA was oriented towards the substrate binding residue
W68 (Supplementary Figures 2A,B). The top two poses (1
and 2) returned by Vina were similar to previous molecular
docking studies (Petrella et al., 2011; Karmakar et al., 2018)
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FIGURE 1 | Logo plot showing sites with multiple missense point mutations and association with Odds Ratio. Sites associated with multiple (>2) missense point
mutations (i.e., nsSNPs). A total of 386 mutations corresponding to 113 positions on the pncA protein structure were associated with multiple nsSNPs. The
horizontal axis in (A,B) show the position numbers of sites with multiple nsSNPs, while part (C) shows the wild-type residues for each position. The vertical axis in (A)
represents Odds Ratio (OR) where letters denote mutant residues which are proportional to their corresponding OR highlighting the most resistant mutation at each
site and overall. Part (B) shows each mutant residue at a given position, highlighting nsSNP diversity by position. The wild-type and mutant residues are coloured
according to the amino acid properties as denoted. Positions marked in yellow form the catalytic triad, residues in blue and teal are involved in substrate binding,
those in green are involved in hydrogen binding while the ones in purple are involved in the iron centre coordination. The figure is generated using R statistical
software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; pncA, pyrazinamidase.

(Supplementary Figure 3). A follow-up Arpeggio analysis (Jubb
et al., 2017) indicated that pose 1 when compared to pose 2,
has more H-bonds (4 vs. 1), fewer aromatic contacts (3 vs. 13),
and greater Van der Waals interactions (3 vs. 1) (Supplementary
Figures 4A,B). Therefore, model with pose 1 was chosen to form
the pncA-PZA complex (Supplementary Figure 5).

Genomics Data
SNP data from 35,944 M. tuberculosis clinical isolates tested for
drug susceptibility to a range of first and second line drugs were
obtained (Napier et al., 2020). Among these, 39% (n = 13,914)
of these isolates were tested for PZA drug susceptibility. The
isolates were collected from over 30 different countries and
represented the 4 main M. tuberculosis lineages (L1, n = 144;
L2, n = 1,886; L3, n = 190; L4, n = 2213) (Supplementary
Figure 6). In order to infer whether the ancestral pncA
sequences for each lineage differed, we quantified the number
of samples without any mutations in each lineage. The majority
of isolates in L1–L4 had an identical pncA sequence as the
H37Rv reference indicating that the ancestral sequences for
these lineages do not differ. The majority were pan susceptible
(n = 23,256, 64.7%), with the remainder MDR-TB (n = 6,691,
18.6%), XDR-TB (n = 989, 2.8%), or another type of resistance
referred to as DR-TB (n = 5,008, 13.9%) (Table 1). From the
list, only nsSNPs within the protein coding region of pncA
(n = 4,731, 13.2%) were considered for our analyses (Table 1).
The majority of these were MDR-TB (n = 3,290, 69.5%) followed
by relatively equal numbers of XDR-TB and DR-TB (n = 625,
13.2% and n = 632, 13.4%, respectively), while only a small
percentage were susceptible (n = 184, 3.9%) (Table 1). From

a total of 13,914 samples tested for PZA drug susceptibility,
a minority of those were found to be resistant (n = 2,379,
17.1%) (Table 1). However, the burden of PZA resistance among

TABLE 1 | Number of samples analysed.

Item name Total number (%)

Clinical isolates/samples 35,944

Samples classified Susceptible 23,256 (64.7)

Drug resistant (DR) 5,008 (13.9)

Multi-drug resistant (MDR) 6,691 (18.6)

Extreme drug resistant (XDR) 989 (2.8)

Samples tested for PZA drug
susceptibility

13,914

Resistant 2,379 (17.1)

Samples with nsSNPs in the protein
coding region of pncA

4,731 (13.2)

Susceptible 184 (3.9)

Drug resistant (DR) 632 (13.4)

Multi-drug resistant (MDR) 3,290 (69.5)

Extreme drug resistant (XDR) 625 (13.2)

Samples with pncA nsSNPs tested for
PZA drug susceptibility

2,289 (48.4)

Samples with pncA nsSNPs resistant to
PZA

1,677 (73.3)

Unique nsSNPs: No. of sites 424 nsSNPs: 151 sites

Summary of clinical isolates from genome-wide analysis. PZA, pyrazinamide;
nsSNPs, non-synonymous Single Nucleotide Polymorphisms.
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FIGURE 2 | Barplots showing number of mutations and sites associated with protein stability and ligand affinity. (A) Number of nsSNPs categorised as destabilising
(n = 359) and stabilising (n = 65) according to DUET protein stability. (B) Frequency of sites associated with the number of nsSNPs, where horizontal axis denotes the
number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the number of nsSNPs. (C) Barplot showing the number of nsSNPs
categorised as destabilising (n = 168) and stabilising (n = 33) according to mCSM ligand affinity where sites lie within 10Å of ligand. (D) Frequency of sites associated
with the number of nsSNPs, where horizontal axis denotes the number of nsSNPs and vertical axis denotes the total number of sites/positions corresponding to the
number of nsSNPs. The figure is generated using R statistical software (version 4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms.

samples containing nsSNPs in the protein coding region was high
(n = 1,677, 73.3%) (Table 1).

Across the 4,731 isolates, 424 distinct nsSNPs corresponding
to 151 distinct amino acid positions on the pncA structure were
identified (Figures 2A,B). A total of 201 nsSNPs corresponding
to 54 amino acid changes were within 10 Å of the ligand binding
site (Figures 2C,D). The majority of these nsSNP mutations
have been annotated as being linked to PZA resistance within
the TBProfiler tool (227/424). The majority of these nsSNP
mutations have been annotated as being linked to PZA resistance
within the TBProfiler tool (227/424; denoted as DM), while

the others (197/424; denoted as OM) were assumed to have
weak or no links. Genomic measures like minor allele frequency
(MAF) and odds ratio (OR) were obtained for a total of 322
nsSNPs, with adjusted OR (aOR) estimated for a total of 163
nsSNPs. Across the majority of these nsSNPs, the MAFs were low
(median: 0.02% range: 0.01–2.11%) (Supplementary Figure 7A).
Similarly, when considering ORs, the majority of the nsSNPs had
high ORs (median: 9.70, range: 0.22–414.61) (Supplementary
Figure 7D). When looking at the distribution of MAF and OR
within mutations associated with PZA resistance (DM) and other
mutations (OM) (Supplementary Figures 7B,E), DM mutations
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FIGURE 3 | Mutational landscape of pncA structure (3PL1) coloured by positions linked to pyrazinamide drug (PZA) resistance. Panels (A,B) show all mutational
positions in orange while mutational positions in (C,D) are further coloured by mutations classed as either drug resistant mutations (purple) or “other mutations”
(blue), while sites linked to mutations belonging to either category are coloured in pink. The right panels (B,D) depict the corresponding structure rotated by 180◦.
The ligand (PZA) is shown as ball and stick within the active site denoted by the red circle. The figure is rendered using UCSF Chimera (version 1.14). pncA,
pyrazinamidase.

were associated with significantly higher (P < 0.0001) MAF and
OR (Supplementary Figures 7C,F).

Understanding Mutational Effects on
pncA Stability and PZA Binding Affinity
The 424 nsSNPs mapped onto the crystal structure of pncA
revealed that mutational landscape of pncA appears distributed
(Figures 3A,B) throughout the structure. Sites linked to drug
resistant mutations were predominant around the PZA binding
(active) site, while sites exclusively linked to mutations classed in
the “other” category are distal to the active site (Figures 3C,D, 4).
Furthermore, active site residues were associated with a multiple

point mutation (Table 2 and Figures 1B, 5C). All active site and
hydrogen-bond forming residues with the ligand were associated
with multiple mutations (≥2) (Figure 1B), thus representing the
high diversity of mutations present within pncA. Despite this,
there appears to be some degree of clustering around positions
4–14, 46–97, 132–143 involving the active site and metal centre
residues (Figure 5C).

The biophysical effect of mutations on protomer stability,
estimated as 11G (Kcal/mol), was measured using DUET (Pires
et al., 2014a) and FoldX (Schymkowitz et al., 2005), while
mutational impact on ligand affinity was measured using mCSM-
lig (Pires et al., 2016) (see section “Materials and Methods”).
Assessing mutational effects on protein stability as measured by
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FIGURE 4 | Comparison of structural features between Drug resistance (DM) and other mutations (OM) of pncA gene mutations according to (A) DUET protein
stability (11G), (B) FoldX stability (11G), and (C) Ligand Affinity. A total of 424 nsSNPs for DUET and FoldX (DM, n = 227, OM, n = 197), while a total of 201
nsSNPs (DM, n = 129 OM, n = 72) lying within 10 Å of PZA for ligand affinity were included in the analysis. DM and OM mutations were compared using Wilcoxon
rank-sum (unpaired) and statistical significance indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). The figure is generated using R statistical
software (version 4.0.2). ns, non-synonymous Single Nucleotide Polymorphisms; pnca, pyrazinamidase; PZA, pyrazinamide; Å, Angstroms; 11G, Change in Gibbs
free energy in Kcal/mol; ASA, Accessible Surface Area; RSA, Relative surface Area; RD, Residue Depth; KD, Kyte-Doolittle Hydrophobicity values.

DUET, nearly 85% had a destabilising effect (n = 359) compared
to nearly 15% mutations with stabilising effects (n = 47) as shown
in Figure 2A. When assessing ligand affinity, 47.4% (n = 201)
SNP mutations were present within 10 Å of the PZA binding site
(Figure 2C). Similar to DUET stability effects, the majority (84%;
n = 168) of nsSNPs were destabilising while 16% (n = 27) were
stabilising for ligand binding affinity (Figure 2C). More than
50% of the mutational positions were associated with multiple
nsSNPs for both protein stability (n = 113) and ligand affinity
(n = 49) (Figures 2B,D). The average protein stability and ligand
affinity effects of all mutations mapped onto the pncA structure
(Figures 5A,B), highlight mutations with opposing effects for
protein stability and ligand affinity. These effects are pronounced
for active site residues (I133, A134, H137, C138) (Figures 5C,D).

There were 80 sites within pncA associated with multiple
nsSNPs (>2) (Figures 1B, 2B) which included all active residues
except I133 which was associated with 2 mutations (Figure 1B).
Sites with 2 nsSNPs are considered to be budding resistance
hotspots (n = 33 for protein stability, n = 7 for ligand affinity).
A total of 57 nsSNPs within 5 Å of PZA were considered
to be within the first shell of residues lining the active site
(Table 2). While majority of the mutational sites associated with
more than two mutations comprise of destabilising mutations,
positions 1, 2, 10, 12, 43, 46, 51, 57, 63, 67, 69, 78, 82,
92, 96, 100, 104, 105, 129, 135–138, 142, 149, 164, 168, and
174 comprised of both stabilising and destabilising mutations
(Figure 5C). Similarly, for ligand affinity, most mutational sites
had destabilising mutational effects, with positions 7, 8, 13, 27,

49, 72, 78, 96, 102, 103, 105, 134, 137, 138, and 162 associated
with mutations resulting in mixed stability impact. Position 163
comprised only of mutations with stabilising effects (Figure 5D).
The budding resistance hotspot active site residue I133 contained
both mutations with destabilising effect for protein stability
(Figure 5C), while stabilising for ligand affinity (Figure 5D).
Similarly, for budding resistance hotspots, majority of the nsSNPs
were associated with destabilising effects. For protein stability,
9/33 sites had mutations with mixed stability (positions 15, 32, 61,
66, 76, 114, 127, 153, and 161) (Figure 5C), while only position 20
showed mixed stability effects for ligand affinity (Figure 5D).

Mutations With Extreme Effects
Mutations with extreme effects on protein stability and affinity
are summarised in Table 3. Overall, the most destabilising
mutation according to DUET was L4S, where a change from
a hydrophobic to a polar residue may contribute to disruption
of local conformation (Table 3). The closest most destabilising
mutational effect on protein stability was from A134D (wild-
type residue involved in hydrogen bonding) (Table 3), likely
resulting in electrostatic and steric clashes due to a change
in charge and volume affecting the overall stability negatively.
The most stabilising mutation on protomer stability was from
active site residue Y103D, while the closest such mutation was
C138R (Table 3). The stabilising effect of these mutations on the
protein stability and ligand affinity is thought to result from the
electrostatic interactions working favourably for sites lying within
5 Å of the ligand. The most destabilising mutation according
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TABLE 2 | Mutations close to the active site of PZA.

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

1 A134D Others 0.01 2.42 1.00E+00 NA NA −2.98 D 3.05 0.58 S 1.03 D 10 0.08 1.87 6.77

2 A134G Others NA NA NA NA NA −1.62 D 3.05 −0.38 D −1.29 S 10 0.08 1.87 6.77

3 A134P Others 0.01 9.70 1.71E-01 NA NA −1.43 D 3.05 0.08 S −5.20 S 10 0.08 1.87 6.77

4 A134T Others NA NA NA NA NA −1.93 D 3.05 0.88 S −0.94 S 10 0.08 1.87 6.77

5 A134V Drug
associated

0.04 19.43 3.68E-03 1.53 3.07E-05 −0.41 D 3.05 0.12 S −1.46 S 10 0.08 1.87 6.77

6 I133S Others 0.01 9.70 1.71E-01 NA NA −3.22 D 3.05 0.58 S 3.30 D 3 0.02 1.97 7.90

7 I133T Drug
associated

0.32 6.44 2.90E-09 0.86 4.86E-03 −2.79 D 3.05 0.70 S 1.58 D 3 0.02 1.97 7.90

8 D8A Drug
associated

0.01 19.41 2.92E-02 NA NA −0.51 D 3.22 −3.27 D 0.54 D 5 0.03 1.63 9.48

9 D8G Drug
associated

0.08 48.69 1.95E-07 1.25 4.42E-02 −0.85 D 3.22 −3.45 D 1.89 D 5 0.03 1.63 9.48

10 D8E Drug
associated

0.03 14.56 1.74E-02 1.19 1.46E-01 −0.79 D 3.22 0.01 S 1.90 D 5 0.03 1.63 9.48

11 D8N Drug
associated

0.05 29.16 1.49E-04 1.24 7.10E-03 −1.18 D 3.22 −1.66 D −1.26 S 5 0.03 1.63 9.48

12 C138G Others NA NA NA NA NA −0.02 D 3.28 −0.01 D 1.12 D 12 0.07 1.17 6.70

13 C138S Drug
associated

NA NA NA NA NA 0.00 D 3.28 0.81 S −0.23 S 12 0.07 1.17 6.70

14 C138W Others NA NA NA NA NA −1.05 D 3.28 0.94 S −1.72 S 12 0.07 1.17 6.70

15 C138Y Drug
associated

NA NA NA NA NA −0.52 D 3.28 0.91 S −0.57 S 12 0.07 1.17 6.70

16 C138R Drug
associated

0.09 116.96 6.10E-10 1.74 4.08E-12 0.10 S 3.28 0.35 S −2.12 S 12 0.07 1.17 6.70

17 H137N Others 0.01 2.42 1.00E+00 NA NA 0.19 S 3.42 −0.12 D 0.40 D 84 0.38 −1.40 4.60

18 H137P Drug
associated

NA NA NA NA NA 0.37 S 3.42 −0.77 D 2.19 D 84 0.38 −1.40 4.60

19 H137Y Others 0.01 2.42 1.00E+00 NA NA 0.86 S 3.42 −0.01 D 0.34 D 84 0.38 −1.40 4.60

20 H137R Drug
associated

0.03 4.85 1.38E-01 0.56 1.21E-04 −0.27 D 3.42 0.47 S 0.49 D 84 0.38 −1.40 4.60
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TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

21 D49G Drug
associated

0.05 29.16 1.49E-04 1.66 4.38E-08 −1.16 D 3.45 −3.46 D 0.46 D 7 0.04 −1.53 7.89

22 D49A Drug
associated

0.04 58.33 2.49E-05 1.67 3.17E-06 −0.45 D 3.45 −3.35 D −2.07 S 7 0.04 −1.53 7.89

23 D49N Drug
associated

0.06 77.84 7.23E-07 1.51 3.14E-04 −1.68 D 3.45 −1.93 D −0.33 S 7 0.04 −1.53 7.89

24 D49Y Drug
associated

0.01 9.70 1.71E-01 NA NA −0.74 D 3.45 −1.86 D −2.67 S 7 0.04 −1.53 7.89

25 D49E Drug
associated

0.02 9.70 7.77E-02 NA NA −0.47 D 3.45 0.25 S −0.70 S 7 0.04 −1.53 7.89

26 A102R Others 0.01 2.42 1.00E+00 NA NA −0.70 D 3.50 0.17 S 4.13 D 10 0.08 0.03 5.51

27 A102P Others 0.06 14.58 5.08E-04 0.66 5.33E-04 −1.25 D 3.50 −0.23 D −0.62 S 10 0.08 0.03 5.51

28 A102V Others 0.06 2.43 1.88E-01 0.91 3.00E-01 −0.25 D 3.50 −0.16 D −1.91 S 10 0.08 0.03 5.51

29 A102T Drug
associated

0.01 19.41 2.92E-02 1.75 4.98E-04 −0.72 D 3.50 0.88 S −2.03 S 10 0.08 0.03 5.51

30 F13C Others 0.01 1.21 1.00E+00 0.64 4.31E-03 −2.32 D 3.55 −0.49 D 2.70 D 24 0.10 0.60 6.93

31 F13I Drug
associated

0.03 14.56 1.74E-02 NA NA −1.76 D 3.55 −0.45 D 0.89 D 24 0.10 0.60 6.93

32 F13L Drug
associated

0.06 34.04 2.89E-05 1.37 2.29E-03 −2.03 D 3.55 −0.43 D 1.10 D 24 0.10 0.60 6.93

33 F13V Others 0.01 1.21 1.00E+00 NA NA −2.57 D 3.55 −0.56 D 1.40 D 24 0.10 0.60 6.93

34 F13S Drug
associated

0.03 1.62 5.28E-01 0.60 3.07E-04 −3.10 D 3.55 0.22 S 2.59 D 24 0.10 0.60 6.93

35 K96E Drug
associated

0.08 107.17 3.58E-09 1.75 2.79E-06 −2.12 D 3.98 −0.67 D 6.92 D 8 0.03 −1.87 5.96

36 K96Q Drug
associated

0.03 4.85 1.38E-01 0.64 1.17E-01 −1.32 D 3.98 −0.08 D 1.04 D 8 0.03 −1.87 5.96

37 K96T Drug
associated

0.09 58.47 6.68E-09 1.84 2.25E-13 −0.86 D 3.98 −0.57 D 3.54 D 8 0.03 −1.87 5.96

38 K96M Others 0.01 19.41 2.92E-02 NA NA 0.41 S 3.98 −1.03 D 0.27 D 8 0.03 −1.87 5.96

39 K96N Drug
associated

0.01 2.42 1.00E+00 NA NA −1.16 D 3.98 0.33 S 2.61 D 8 0.03 −1.87 5.96
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TABLE 2 | Continued

S. No. Mutation Mutation
class

MAF
(%)

OR P-value OR
adjusted

P-Wald DUET
11G

DUET
outcome

Distance
to

ligand
(Å)

mCSM-
lig

(log
affinity)

Ligand
outcome

Foldx
11G

Foldx
outcome

ASA RSA Hydro
phobicity

Residue
depth

40 K96R Drug
associated

0.11 19.49 1.66E-07 1.43 2.16E-06 −0.17 D 3.98 0.08 S −0.74 S 8 0.03 −1.87 5.96

41 H71D Drug
associated

0.01 9.70 1.71E-01 NA NA −2.69 D 4.18 −2.50 D 5.75 D 5 0.02 −0.77 6.25

42 H71N Drug
associated

NA NA NA NA NA −2.67 D 4.18 −1.34 D 0.64 D 5 0.02 −0.77 6.25

43 H71P Others 0.01 4.85 3.13E-01 NA NA −2.36 D 4.18 −2.89 D 3.26 D 5 0.02 −0.77 6.25

44 H71Q Drug
associated

0.01 19.41 2.92E-02 1.75 2.12E-04 −2.29 D 4.18 −1.73 D 1.12 D 5 0.02 −0.77 6.25

45 H71R Drug
associated

0.05 1.94 3.42E-01 0.88 2.01E-01 −1.93 D 4.18 −0.83 D −1.52 S 5 0.02 −0.77 6.25

46 H71Y Drug
associated

0.18 25.67 4.52E-13 1.48 5.50E-08 −0.46 D 4.18 −1.96 D −1.78 S 5 0.02 −0.77 6.25

47 H57D Drug
associated

0.73 166.91 2.08E-72 1.24 1.05E-01 −1.85 D 4.56 −1.28 D 1.83 D 16 0.07 −1.30 5.63

48 H57P Drug
associated

0.03 38.85 8.53E-04 1.55 1.16E-02 −1.23 D 4.56 −2.12 D 0.15 D 16 0.07 −1.30 5.63

49 H57Q Others NA NA NA NA NA −1.29 D 4.56 −0.95 D 0.85 D 16 0.07 −1.30 5.63

50 H57R Drug
associated

0.19 254.92 1.02E-20 1.48 9.69E-09 −1.17 D 4.56 −0.28 D 1.25 D 16 0.07 −1.30 5.63

51 H57L Drug
associated

NA NA NA NA NA −0.06 D 4.56 −1.92 D −1.11 S 16 0.07 −1.30 5.63

52 H57Y Drug
associated

0.02 29.13 4.99E-03 2.08 7.92E-06 0.41 S 4.56 −1.16 D −0.15 S 16 0.07 −1.30 5.63

53 W68C Drug
associated

0.04 24.29 7.49E-04 1.75 1.67E-04 −1.45 D 4.97 −1.58 D 2.68 D 45 0.16 −1.10 5.49

54 W68G Drug
associated

0.14 87.93 2.36E-13 1.58 7.39E-11 −2.57 D 4.97 −2.13 D 4.04 D 45 0.16 −1.10 5.49

55 W68L Drug
associated

NA NA NA NA NA −1.62 D 4.97 −2.24 D 0.19 D 45 0.16 −1.10 5.49

56 W68R Drug
associated

0.20 132.41 4.03E-20 1.50 4.26E-09 −1.61 D 4.97 −0.58 D 0.08 D 45 0.16 −1.10 5.49

57 W68S Drug
associated

0.01 9.70 1.71E-01 NA NA −2.67 D 4.97 −1.04 D 2.65 D 45 0.16 −1.10 5.49

Fifty-seven mutations (nsSNPs) lying within 5 Å of PZA and the corresponding GWAS measures of minor allele frequency (MAF), Odds Ratio (OR), P-values, adjusted OR (aOR), and P-values from Wald test corresponding
to aORs, along with structural measures of distance to ligand, DUET, FoldX, ligand affinity values and effect. Wild type residues for mutations highlighted and marked in green are considered to participate in hydrogen
bonding, those in yellow form the catalytic triad, residues in teal (and blue) are involved in substrate binding, while the residues in purple are involved in the iron centre. The columns are coloured to highlight the most
significant column attribute with deeper colours denoting the greatest effects. The dark colours in MAF, OR, and aOR columns indicate the highest values, while P-values are coloured with the darkest colour showing the
most significant values. Values in the DUET, mCSM-lig, and FoldX columns are coloured according to the extent of their respective effects with red indicating destabilising and blue denoting stabilising effects. nsSNPs,
non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; GWAS, Genome-Wide Association Studies. D, Destabilising; S, Stabilising.
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FIGURE 5 | Protein stability and ligand affinity effects of nsSNPs on pncA structure and by position. Mutational impact of nsSNPs on the pncA protein structure
coloured by average (A) DUET Protein stability (n = 424) and (B) ligand affinity (n = 201). Barplots (C,D) showing the frequency of mutations within the pncA gene.
The horizontal axis shows the mutational positions within pncA and the vertical axis shows the frequency of mutations. Positions on the horizontal axis are coloured
to denote the active site residues: green (residues involved in hydrogen bonding with PZA), yellow (catalytic triad), blue and teal (substrate binding), purple (iron
centre). For a given position, each corresponding mutation (nsSNP) is coloured by the level of stability according to (C) DUET(n = 424) and (D) Ligand affinity
(n = 201) where the horizontal axis denotes amino acid positions in pnca, and is restricted to positions lying within 10 Å of PZA for ligand affinity. Destabilising
mutations are depicted in red and stabilising mutations in blue, where colour intensity reflects the extent of effect, ranging from −1 (most destabilising) to + 1 (most
stabilising). The structural figures (A,B) are rendered using UCSF Chimera (version 1.14). The barplot figure (C,D) is generated using R statistical software (version
4.0.2). nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; pncA, pyrazinamidase.

to ligand affinity was D49G located at ∼3.5 Å (Table 3). The
three subsequent destabilising mutations for ligand affinity were
also all within 5 Å of PZA binding site namely D8G (∼3 Å),
D49A (∼3.5 Å), and D8A (∼3 Å) (Supplementary Table 1), all
arising likely due to the loss of charge and volume interfering
with ligand interaction. The mutation with the greatest stabilising
effect on ligand affinity was G162D, located at ∼8 Å, i.e. outside
the first shell of influence (>5 Å) from the ligand. This is
possibly due to the resulting electrostatic effects and increase in
volume, which may favour hydrogen bond formation with nearby
residues and PZA binding, thereby increasing affinity (Table 3).
The closest most stabilising mutational impact on ligand affinity
was due to mutation A134P, though this was a marginal effect
(Table 3). The most destabilising mutation according to FoldX
was C72W, which is located far away from the active site (∼27 Å).

Interestingly, mutation A134P was the most stabilising according
to FoldX, while the same was estimated to have a destabilising
effect according to DUET (Table 3). All mutations except A134D
and A134P were associated with PZA drug resistance (Table 3).

Relating Structural and GWAS Analyses
The minor allele frequencies for the 424 nsSNPs were mapped
onto their corresponding amino acid positions of the pncA
gene (Supplementary Figure 8). Position 10 had the highest
cumulative minor allele frequency (MAF, ∼2.3%), followed by
position 7 (∼1.2%), position 57 (∼1.0%), position 51 (∼0.6%),
and position 14 (0.5%). The risk of PZA resistance from the
alleles at each SNP was estimated by calculating ORs and P-values
using a GWAS approach. Additionally, adjusted OR (aOR)
which accounted for the confounding effects of lineage were also

Frontiers in Molecular Biosciences | www.frontiersin.org 12 July 2021 | Volume 8 | Article 619403

105



fmolb-08-619403 August 3, 2021 Time: 21:57 # 13

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

TABLE 3 | Mutations with extreme effects.

Mutational effects Mutation Mutation class MAF (%) OR P-value Distance
to ligand

(Å)

Stability 11G Ligand affinity

Highest OR H51D Drug-associated 0.30 414.61 4.49E-33 5.66 −2.2 −1.82

Most frequent mutation Q10P Drug-associated 2.11 156.23 1.28E-207 6.02 −0.63 −1.77

Most deStabilising for protein
stability (DUET)

L4S Drug-associated 0.25 28.46 5.63E-18 15.33 −3.87 −1.08

Closest destabilising for protein
stability (DUET)

A134D Others 0.007 2.43 1.00 3.05 −2.98 0.58

Most stabilising for protein
stability (DUET)

Y103D Others 0.22 142.33 1.24E-21 5.42 1.18 0.85

Closest stabilising for protein
stability (DUET)

C138R Drug-associated 0.09 116.96 6.09E-10 3.28 0.10 0.35

Most destabilising for ligand
affinity

D49G Drug-associated 0.05 29.16 0.0001 3.45 −1.16 −3.46

Closest destabilising for ligand
affinity

D8G Drug-associated 0.08 48.69 1.95E-07 3.22 −0.85 −3.45

Most stabilising for ligand
affinity

G162D Drug-associated 0.03 38.85 0.0008 8.32 −1.04 2.23

Closest stabilising for ligand
affinity

A134P Others 0.007 9.70 1.71E-01 3.05 −1.43 0.08

Most destabilising for protein
stability (Foldx)

C72W Drug-associated 0.01 19.41 0.03 7.05 27.46 –

Most stabilising for protein
stability (Foldx)

A134P Others 0.007 9.70 1.71E-01 3.05 −5.2 –

Mutations (nsSNPs) with extreme effects on odds ratio, frequency, thermodynamic stability, and ligand affinity. For ligand affinity, only mutations lying within 10 Å of
PZA (pyrazinamide) were considered. nsSNPs, non-synonymous Single Nucleotide Polymorphisms; Å, Angstroms; MAF, minor allele frequency; OR, Odds Ratio; 11G,
Change in Gibbs free energy in Kcal/mol.

FIGURE 6 | Correlation between biophysical effects and GWAS measures of Odds Ratio (OR), P-values (P) and minor allele frequency (MAF). Pairwise correlations
between MAF, negative log10 P-value [-Log(P)], Log10 (OR) and (A) Protein stability (DUET) and FoldX for 424 nsSNPs, (B) Ligand affinity of 201 nsSNPs (lying
within 10 Å of PZA). The upper panel in both plots include the pairwise Spearman correlation values along with their statistical significance (*P < 0.05, **P < 0.01,
***P < 0.001). The points in the lower panel represent nsSNPs, coloured according to respective stability effects: (A) nsSNPs with destabilising effect for DUET and
ligand affinity are coloured red, while for FoldX these appear in blue, (B) nsSNPs with stabilising effect for DUET and ligand affinity appear in blue, while for FoldX
these appear in red. The diagonal plots display the histogram of the corresponding parameter. The figure is generated using R statistical software (version 4.0.2).
nsSNPs, non-synonymous Single Nucleotide Polymorphisms; PZA, pyrazinamide; Units for DUET, FoldX and Ligand Affinity (Kcal/mol).
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FIGURE 7 | Density distribution of M. tuberculosis lineages. A total of 4,433 samples belonging to Lineages 1–4, containing 419‘pncA mutations were considered.
The horizontal axis shows the DUET stability values (−1, most destabilising) to blue (+1, most stabilising). while the vertical axis shows the density distribution of M.
tuberculosis lineages coloured by mutation class as either DM (associated with pyrazinamide resistance in orange) or OM (not associated with pyrazinamide drug
resistance which appear in grey). DM mutations comprise of a total of 3,565 samples contributing to 226 mutations, while 868 samples contributing to 193
mutations formed part of the OM mutation class. The figure is generated using R statistical software (version 4.0.2). Abbreviations used: nsSNPs: non-synonymous
Single Nucleotide Polymorphisms, pncA: pyrazinamidase.

analysed (Supplementary Figure 9). The majority of nsSNPs
were linked to increased likelihood of being resistant to PZA
(OR > 1). For unadjusted ORs, this was 96% (310/322), while
for aOR, it was ∼75% (122/163). Wild type position 51 had the
highest unadjusted OR (> 350, P < 10−30), followed by positions
57, 120 (OR > 250, P< 10−19), and subsequently by positions 10,
103, 68, 135, 138, 96, and 180 (OR > 100; P < 10−10) (Figure 1A,

Supplementary Figure 8, and Supplementary Table 1), with
most of these positions being present in the metal binding
and active sites.

When assessing sites in relation to mutational diversity,
active site residues were among the highest, with residues
H51, H57, H71, K96 associated with six distinct mutations,
followed by F13, D49, W68, A134, C138 with five mutation

Frontiers in Molecular Biosciences | www.frontiersin.org 14 July 2021 | Volume 8 | Article 619403

107



fmolb-08-619403 August 3, 2021 Time: 21:57 # 15

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

each, while residues D8, Y103, H137 were associated with
four distinct mutations and residues I133 associated with two
distinct mutations (Figure 1B). The dominant effect of a highly
frequent mutation (Q10P; MAF = 2.1%, OR = 156.23) in the
population compared to two other mutations observed at the
same position namely Q10R (MAF = 0.13%, OR = 83.01) and
Q10H (MAF = 0.08%, OR = 107.17) (Supplementary Table 1),
makes position 10 prominent in terms of MAF (Supplementary
Figure 8) while sites involved in the catalytic activity and iron
metal centre are more prominent with respect to SNP diversity
(Supplementary Figure 8). These results suggest that mutations
at these structurally and functionally important sites are likely
under selective pressure exerted by the drug resulting in this
observed mutational diversity.

The relationship between structural measures of stability and
OR was visualised as a bubble plot indicating that mutations
associated with greater resistance (high OR) tend not to have
extreme effects (Supplementary Figure 10). Furthermore, this
relationship along with MAF, OR, and P-values was assessed
through Spearman correlations (Figures 6A,B). MAF was
strongly correlated with P-values for all 424 mutations (ρ = 0.78,
P < 0.001) and 201 mutations lying with 10 Å of PZA (ρ = 0.84,
P < 0.001) (Figures 6A,B). As expected, OR and P-values were
strongly correlated (ρ = 0.9, P < 0.001) for all 424 nsSNPs and
201 nsSNPs close to PZA binding site (Figures 6A,B). FoldX
stability and DUET stability values showed moderate correlation
(ρ = 0.45, P < 0.001). The negative sign for the DUET and
FoldX associations is expected since stability changes measured
by these tools have opposite signs (i.e., 11G < 0: destabilising in
DUET vs. stabilising in FoldX). FoldX 11G values showed weak
but significant correlations with OR (ρ = 0.23, P < 0.001), and
P-values (ρ = 0.18, P < 0.01) (Figure 6A), while DUET 11G and
ligand affinity showed weak and insignificant association with OR
(ρ = −0.1, P > 0.05) (Figures 1B, 6A), including adjusted OR
(Supplementary Figures 9A, 8B).

When considering aOR and its relationship with stability
and other structural features [i.e., Accessible (ASA), Relative
Surface Area (RSA), residue depth (RD), and hydrophobicity
values (KD)], there was high correlation (ρ > 0.6, P < 0.05)
with adjusted and unadjusted ORs (Supplementary Figure 9A).
DUET 11G showed moderate positive correlation between
ASA and RSA (ρ > 0.6, P < 0.05), while moderately
negative correlation with RD (ρ∼−0.5, P < 0.05), and weak
negative correlation with KD values (ρ∼−0.2, P < 0.05)
(Supplementary Figure 9A). The same structural features,
however, did not demonstrate correlation with either
FoldX 11G (Supplementary Figure 9A) or ligand affinity
(Supplementary Figure 9B).

Structural Differences in Drug
Associated Mutations
Comparing stability effect (DUET and FoldX), ligand affinity,
ligand distance, and other structural features (ASA, RSA, RD,
KD) between mutations associated with PZA drug resistance
(DM) and other mutations (OM), revealed statistically significant
differences (P < 0.05) between all features except hydrophobicity

values. The difference in structural features were most prominent
when all 424 SNP mutations were considered (P < 0.0001)
(Figures 4A,B) with lesser significance for ligand affinity
(P < 0.05), ASA (P < 0.01), and RSA and RD (P < 0.001)
values when 201 nsSNPs lying within 10 Å were considered
(Figure 4C). Mutations associated with PZA resistance have
lower DUET (Figure 4A, top left) but higher FoldX stability
changes (Figure 4B, bottom left), and lower binding affinity
(Figure 4C, second from bottom left) compared to OM.
Additionally, it also appears that that while drug mutations
need not necessarily occur at the hydrophobic sites (KD values,
P > 0.05), they tend to lie buried indicated by higher RD values,
and consequently lower surface area (ASA and RSA) compared
to OM (Figures 4A,B).

Distinct Stability Profile for Drug
Mutations and Lineage 1
A total of 419 nsSNPs are lineage specific (L1: 74; L2: 277; L3:
104; L4: 311). The greatest diversity of nsSNPs was observed
in L3 (54.7%), followed by L1 (51.4%) and Lineage 2 (14.7%)
with L4 showing the lowest diversity (14.1%) despite containing
the highest number of samples (Supplementary Figure 6).
Statistical analysis of the DUET 11G distributions revealed
significant differences between all lineages except between
L3 and L4. Lineage differences for DUET 11G were most
prominent between L2 and L4 (P < 0.0001), followed by
L1 and L4 (P < 0.001) (Supplementary Table 2A). Within
each lineage, mutational distributions were significantly different
between DM and OM mutation classes (P < 0.0001) except
L3 (Supplementary Table 2B). Interestingly, a distinct stability
profile was observed for DM mutations within L1. Mutations
associated with drug resistance showed a marked peak around the
extreme end (−0.75 DUET 11G) of the destabilising spectrum
(Figure 7) within L1.

DISCUSSION

Genetic mutations including nsSNPs present within drug-targets
and their activating genes are the main drivers of resistance
development in TB (Schön et al., 2017). The motivation for
investigating the missense mutations within the protein coding
region only of the pncA gene was to enable understanding
of the phenotypic mutational effects in relation to PZA
resistance development. While the exact molecular mechanisms
of PZA resistance are yet to be fully elucidated, the binding
pocket of PZA and its key interactions are well known and
characterised (Petrella et al., 2011; Ali et al., 2020; Sheik
Amamuddy et al., 2020; Khan et al., 2021). This knowledge
was used to guide the molecular docking of PZA to generate
the pncA-PZA complex in the absence of an experimentally
solved structure of the bound complex in Mtb. While docking
generates a variety of ligand conformations (poses), choosing
the “best” pose is based on considerations around key molecular
interactions formed by the ligand, interaction energy of the
docked complex and subject expertise. Using these guides,
docking pose 1 was chosen due to its molecular interactions

Frontiers in Molecular Biosciences | www.frontiersin.org 15 July 2021 | Volume 8 | Article 619403

108



fmolb-08-619403 August 3, 2021 Time: 21:57 # 16

Tunstall et al. Pyrazinamide Resistance in Mycobacterium tuberculosis

with known key residues and close alignment with previously
published studies (Karmakar et al., 2018; Ali et al., 2020; Khan
et al., 2021). In addition, we analysed the top two docking
poses using the mCSM pipeline (Supplementary Figure 3).
The resulting mutational effects on pncA stability and ligand
affinity did not differ between poses indicating the small
differences in pose did not affect downstream analysis. It also
suggests that due to the small size of the PZA molecule, the
orientation of the aromatic ring within the cavity may have
more flexibility in its orientation and interaction with the
neighbouring residues, but without drastically impacting the
molecular interactions for global protomer stability and ligand
binding affinity.

The molecular motion of pncA assessed by NMA was
visualised to understand the mutational effects with regard
to flexibility (Supplementary Figure 1). Sites displaying high
mutational frequency or association with drug resistance
mutations were not located in regions with high flexibility, with
large molecular motions mainly restricted to the loop region 60–
66. This suggests the molecular motion in pncA does not interfere
with PZA binding as active site residues were not associated with
high fluctuations.

Normal mode analysis shows large scale molecular motions.
Molecular dynamics (MD) studies offer insights into the
finer grained atomic motions and are an excellent way to
investigate molecular mechanisms. However, these studies are
computationally intensive and are difficult to scale for studying
hundreds of mutations. A recent MD study on a subset of
mutations found within our dataset analysed seven pncA nsSNPs
(F94L, F94S, K96N, K96R, G97C, G97D, and G97S) showed
that these destabilising mutations altered the binding pocket,
allowing increased PZA flexibility (Khan et al., 2021). All seven
mutations were associated with PZA resistance and also showed
destabilising effects in our study. A similar study of destabilising
mutations R123P, T76P, H7R associated with PZA resistance
showed that the mechanism of resistance could be through
increasing the flexibility of the region they are located in,
thereby changing the binding pocket volume (Ali et al., 2020).
Another MD study of mutations P54L and H57P showed that
they decrease overall stability along with reduced ligand affinity
leading to PZA resistance (Mehmood et al., 2019). All of these
observations are concordant with our analysis.

Destabilising effects of nsSNPs are thought to be the main
reason for impeding protein function through directly effecting
protomer stability or ligand affinity. However, large stabilising
effects can have an equally deleterious impact on protein
function through rigidification, impeding flexibility and dynamic
molecular motions. This has been implicated more generally
within a disease context (Gerasimavicius et al., 2020) and more
specifically in PZA resistance (Rajendran and Sethumadhavan,
2014). It offers an explanation for the observance of the stabilising
mutation site 103. Drug associated mutations at this site (Y103C,
Y103H, and Y103S) could result from the rigidification of the
binding pocket leading to reduced binding affinity measured as
destabilising PZA affinity.

Mutations within pnca are scattered along the entire gene
length observed in studies (Stoffels et al., 2012; Miotto et al.,

2014; Whitfield et al., 2015). While two other genes, rpsA
and panD have also been linked to PZA resistance, a clear
link between rpsA and PZA resistance is lacking (Shi et al.,
2011; Alexander et al., 2012; Simons et al., 2013; Tan et al.,
2014) although there is increasing evidence to support panDs
association with PZA resistance (Pandey et al., 2016; Werngren
et al., 2017; Gopal et al., 2020). In our analysis, there were
only a few samples with rpsA and panD mutations, therefore
limiting attempts at assessing their synergistic relationship with
PZA resistance. Mutations within the pncA gene and its promoter
remain the most common route to PZA resistance (Dookie
et al., 2018) (Khan et al., 2019). Nearly 70% of the MDR
isolates and 13% XDR isolates had nsSNPs in the pncA coding
region. The burden of pncA mutations in the MDR and XDR
isolates was lower in our analysis compared to 88.0% and
∼20% observed by Pang et al. (2017). In another study, 70%
of the MDR isolates, and significantly higher i.e., 96% of XDR
isolates harboured pncA mutations including nsSNPs (Allana
et al., 2017). An alternative route to resistance for pncA as
a non-essential gene encoding an enzyme that transforms a
prodrug to drug would be by INDELs or mutations leading to
premature stop codons resulting in the protein being degraded
on translation. A recent report analysing the pncAc.85_86insG
frameshift mutation using structural and biophysical analysis
showed the mutation resulted in a truncated and incomplete
protein lacking the active site pocket (Karmakar et al., 2018).
Despite this obvious route to resistance, only 1% samples
in our dataset showed INDELs and stop codons, compared
to 13% of samples that showed missense point mutations
in pncA. This is consistent with the knowledge that nsSNPs
in pncA remain the major route to resistance for PZA
(Khan et al., 2019).

Destabilising effects are considered detrimental to the
downstream protein function (via disruption of drug affinity,
nucleic acid affinity or overall complex stability) and are thus
given higher consideration in classifying mutations (Wylie and
Shakhnovich, 2011). In our analysis, around 85% of mutations
were destabilising for overall protein stability as well as complex
affinity. It is thought that the resistant phenotype is imparted
either through affecting protein folding, instability of the PZase
protein, prevention of coenzyme complex (Gopal et al., 2016)
or loss of virulence factor synthesis (Gopal et al., 2016).
Further, this is thought to come without a high bacterial fitness
cost since pncA is primarily an activator of the PZA drug.
This is similar to a recent observation reported in the katG
gene (target for the anti-TB pro-drug, isoniazid) with a high
proportion of destabilising mutations (Portelli et al., 2018).
Also, a higher proportion 60% (n = 253) of SNP mutations
showed electrostatic changes compared to ∼35% reported by
Portelli et al. (2018). This likely due to the larger sample size of
our dataset.

All active site residues appear to be under drug selection
pressures due to multiple mutations (>2) associated with these
with the exception of I133, considered to be an emerging or
budding-resistance hotspot. In our analyses, there were 22 such
sites while 83 sites within pncA associated with > 2 nsSNPs linked
to PZA drug resistance (categorised as DM). However mutations
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were not restricted to the active site, with less than 50% resistant
variants lying within 10 Å of the active site of PZA, indicating the
possible role of distal residues in resistance development (Portelli
et al., 2018). Mutations associated with drug resistance tend to
have lower stability, lie buried within the structure with lesser
surface area as shown by Karmakar et al. (2020).

Our study compares results from two different computational
stability predictors: mCSM and FoldX (Schymkowitz et al.,
2005). Unsurprisingly, most mutations were found to have a
destabilising effect (Supplementary Figure 11). FoldX reported
∼85% (vs. ∼80% estimated by DUET) nsSNPs with destabilising
effect. The range for absolute 11G values was greater for FoldX
(median: 2.0; range: −5.2, 27.46) compared to DUET (median:
−0.1; range: −3.9, 1.2). There was however, 77% agreement
between FoldX and DUET outcomes (data not shown).
Interestingly, drug associated mutations displayed higher FoldX
11G predictions compared to mCSM-DUET 11G predictions.
A possible explanation for this is the differences in the underlying
parameters the different methods use. FoldX constructs mutant
structures by mutating the target residue and searching for the
optimal conformation by iteratively altering the position of the
neighbouring side chains. The stability of the mutant structure
is estimated using an empirical force field made of several
energy terms. This compares to DUET where estimates of the
structural effects are based on differences between the wild-type
environment and pharmacophore atomic changes resulting from
the mutation, without the need to generate mutant structures.
With this in mind, it appears that the DM mutations have
larger local perturbations in the mutated region considered
by FoldX, resulting in higher 11G predictions compared to
the lesser effects of surface area considered by DUET. Drug
resistance mutations displaying smaller surface area compared
to their susceptible counterparts were also observed in recent
studies investigating nsSNPs in Mtb genes (Portelli et al., 2018;
Karmakar et al., 2020) indicating the role of compensatory
mutations, alleviating any fitness penalty in the development of
the drug resistance phenotype. The extent of the contribution
of surface area in these methods is reflected in the observation
of moderate correlations between DUET and structural features,
and the weaker associations between FoldX and structural
features (Supplementary Figure 9A). Structural associations for
ligand affinity were also observed to be weak (Supplementary
Figure 9B) most likely due to the role of factors involved in short-
range interactions (like Van der Waal’s forces) not considered
in our analysis. A similar view emerged in the recent study by
Karmakar et al. (2020) where no significant differences were
observed for PZA binding affinity.

It has been suggested that frequently occurring mutations may
not confer extreme changes in biophysical stability measures,
with mild stability effects offering local fitness advantages
(Portelli et al., 2018). Our data presented us with the opportunity
to test this theory empirically by assessing relationships of
stability with GWAS measures of MAF, OR, and P-values. At
a glance, it appears that mutations with high OR tend be
less extreme in their impact on protein stability and ligand
affinity (Supplementary Figure 10). However, we did not find
any significant association with high frequency mutations and

extreme changes in stability or affinity parameters (Figure 6).
One possible explanation is that the fitness landscape is gene and
function specific, optimised differently for genes directly coding
for drug targets and for non-essential genes like pncA. Another
major consideration is that resistance is often acquired through
a stepwise ordinal accumulation of mutations (Woodford and
Ellington, 2007; Ismail et al., 2019). The genetic background can
dramatically influence fitness effects associated with mutations
(Wong, 2017). Consequently, the mutational impact differs when
occurring against a sequence background of extant resistant
mutations, a phenomenon known as epistasis (Wong, 2017).
Since resistance development is a balanced interplay between
fitness effects and cost of resistance, epistasis warrants due
consideration in efforts to understand and limit the evolution of
multi-drug resistance.

The use of mCSM suite of tools has the advantage of
studying global (protein stability) as well as local effects (ligand
affinity, protein-protein interaction, and protein nucleic-acid
interaction). Additionally, it also provides the methodological
consistency for comparing molecular effects and benefits
application of machine learning methods (ML) to explore
greater mechanistic details. While computationally intensive,
ML methods would benefit from using tools such as DynaMut
(Rodrigues et al., 2018) which account for protein molecular
motions when estimating mutational effect on protein stability.
Additionally methods which consider anti-symmetric properties
of mutational impact i.e., 11G (A → B) = −11G (B → A)
like DeepDDG (Cao et al., 2019) and INPS-MD (Savojardo et al.,
2016) have the potential to build robust predictive models and
improve the “learning” capability of ML methods in the context
of machine learning.

Mtb lineages have been associated with virulence, disease
transmission, drug resistance, and clinical outcome (Ford et al.,
2013; Reiling et al., 2013; Novais et al., 2017; Correa-Macedo et al.,
2019; Oppong et al., 2019; McHenry et al., 2020). Lineage specific
differences between lineages 2 and 4 have recently been noted in
the development of TB drug resistance, especially related to MDR
and XDR strains (Oppong et al., 2019). Our study highlighted
the most significant differences between L2 and L4 with respect
to protomer stability demonstrating the biophysical phenotypic
manifestation of these underlying genotypic changes. The
observance of a distinct peak for destabilising mutations related
to drug resistance within L1 suggests that the extreme mutational
consequences of such mutations in the “ancient” lineage 1 may
be rapidly giving way to other “modern” M. tuberculosis lineages
linked to MDR and XDR-TB and virulence.

Our study is based on a well-characterised clinical dataset
sourced globally from over 35 K clinical isolates, and leverages
the availability of robust metadata (lineage, geography, DST, etc.)
for each isolate. We show that the framework used in our work
allows us to investigate the interrelationships between genomic
features from GWAS analysis and the biophysical measures of
nsSNPs, helping to contextualise the underlying bacterial fitness
and mutational landscape. The need to consider multiple stability
predictors with different underlying principles to validate these
associations has also been highlighted. Lineage associations of
drug resistance, and their biophysical consequences, require
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further investigation and the functional characteristics of
mutations should be validated in future experiments. We hope
such a framework can be used to understand and inform
therapeutic and stewardship efforts.
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Supplementary Figure 1. Docking of Pyrazinamide (PZA) within pncA
Configuration of nine PZA poses returned by Autodock Vina located within the binding cavity, exploiting confirmations around the one rotatable bond
in PZA. (A) Poses 1, and 3-6 with orientation of PZA ring towards the ring of tryptophan (W68), while (B) Poses 2, 8 and 9 showing the orientation of
the PZA ring away from tryptophan. Residues marked in green participate in hydrogen bonding, residues in yellow form the catalytic triad, residues in
teal (and blue) are involved in substrate binding, while residues in purple are involved in the iron centre. The figure is rendered using Chimera (version
1.14).
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Supplementary Figure 2. Comparing PZA Poses 1 and 2 in relation to docking
(A) Comparison of poses 1 and 2 returned from Autodock Vina highlighting the differing orientation of the ring between the two poses.(B) Pose 1
resembles closely to the docking performed in the  recent case report published (Karmakar et al., 2018), while pose 2 is closely aligned with the
proposed binding cavity by the authors of the pncA crystal structure (Petrella et al., 2011).
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Supplementary Figure 3. Molecular interactions for PZA Poses 1 and 2
Arpreggio analyses showing molecular interactions between PZA pose1 (A) and (B) pose 2 reporting differences between hydrogen bonds, aromatic
contacts, polar contacts and Van der Waals interactions. Screenshot from Arpgeggio web server (Jubb et al., 2017).

pncA complex with pose 1A pncA complex with pose 2B
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Supplementary Figure 4. Molecular docking of PZA with pncA 
Protein-ligand complex formed by pncA with pose 1 of PZA after docking. Residues marked in
yellow form the catalytic triad, residues in teal and blue are involved in substrate binding, while
residues in purple are involved in the iron centre. Residues marked in green participate in hydrogen
bonding, with hydrogen bonds between PZA and D8, I133, A134 and C138 are shown in orange.
The figure is rendered using UCSF Chimera (version 1.14).
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Supplementary  Figure  5.  Barplot  of  mutations  with  protein  stability  effect
according to FoldX. 
Number of mutations (SNPs) categorised as destabilising (n=341) and stabilising (n=83). The figure
is generated using R statistical software (version 4.0.2).

Page 5 of 11
118



Supplementary Figure 6. Frequency distribution of Minor Allele Frequency 
(MAF) and Odds Ratio (OR) for pncA SNP mutations. 
MAF and OR were calculated for a total of 322 SNPs. The top panel relates to Minor Allele 
frequency where (A) Histogram of MAF, (B) Histogram of MAF according to mutation class as 
either DM (associated with pyrazinamide resistance coloured in orange) or OM (not associated with
pyrazinamide drug resistance coloured in grey). Dashed lines indicate median. (C) Box plot 
comparing MAF between DM and OM mutations. The bottom panel relates to Odds Ratio where 
(D) Histogram of OR, (E) Histogram of OR according to mutation class: ‘DM’ in orange and ‘OM’ 
in grey. Dashed lines represent median, (F) Boxplot comparing OR between DM and OM 
mutations. Wilcoxon rank-sum (unpaired) test was used to compare DM and OM mutations, and 
significance indicated as ****P<0.0001. The figure is generated and statistical analysis performed 
using R statistical software (version 4.0.2).
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Supplementary Figure 7. Allele Frequency (AF), Odds Ratio (OR) and DUET effects of SNPs within pncA
Barplot showing 322 mutations associated with AF, OR and SNP diversity by position highlighting the prominent positions in terms of AF. OR and
frequency of SNPs within pncA. The horizontal axis shows the mutational positions within pncA and are coloured as green (residues involved in
hydrogen bonding with PZA) yellow (catalytic triad), blue and teal (substrate binding), purple(iron centre).The vertical axis shows (A) cumulative AF
associated with one or more mutations at that position, (B) cumulative OR associated with one or more mutations at the given position and (C) the
frequency of SNPs at mutational position within pncA. The red and the blue bars denote destabilising (n=279) and stabilising (n=43) mutations for a
total of 322 mutations according to DUET. Destabilising mutations are depicted in red and stabilising mutations in blue, where colour intensity reflects
the extent of effect, ranging from -1 (most destabilising) to +1 (most stabilising). The figure is generated using R statistical software (version 4.0.2).
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Supplementary Figure 8. Comparing stability effects of SNPs with GWAS measures of Odds Ratio (OR)
Bubble plot displaying the relationship between OR with  (A) DUET Protein stability and  (B) Ligand affinity corresponding to and 322 and 160
mutations respectively.  The horizontal axis shows the mutational positions within pncA and the vertical axis shows protein stability effects ranging
from -1  (most  destabilising)  to  +1 (most  stabilising).  Each dot  represents  a  unique  mutation  at  that  position,  with  the  colour  corresponding to
destabilising (red) and stabilising (blue) mutations, while the size of the dot is proportional to the OR of that mutation. The figure is generated using R
statistical software (version 4.0.2).
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Supplementary Figure 9. Correlation of protomer stability and ligand affinity effects with GWAS and structural 
parameters. 
Pairwise Spearman correlations between Foldx stability, DUET stability, Allele Frequency (AF), negative log P-value (-Log(P)), Log Odds Ratio (OR),
adjusted Log OR (accounting for sample relatedness in GWAS analysis), negative log P-value from Wald test corresponding to the adjusted OR, along 
with structural parameters of accessible (ASA) and relative  (RSA) surface area, KD (hydrophobicity values based on the Kyte and Doolittle scale) and
RD (Residue Depth). The parameters are ordered using hierarchical clustering. Squares marked with an ‘X’ indicate statistical insignificance (P>0.05). 
Part (A) shows correlations with DUET and Foldx stability values, for a total of 424 SNPs, while (B) shows correlations with Ligand affinity for a 201 
SNPs. The figure is generated using R statistical software (version 4.0.2).
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Supplementary Figure 10. Barplot of total samples and mutations within Mtb 
Lineages
The total number of samples along with the number of mutations associated with PZA resistance
within the 4 Mtb Lineages. The dark grey bars show the number mutations, while the light grey bar
show the total  number of samples within each lineage.  Lineage 1 has 74 mutations out of 144
samples, Lineage 2 has 277 mutations out of 1886 samples, while lineages 3 and 4 have 104 and
311 mutations out of 190 and 2213 number of samples respectively. The figure is generated using R
statistical software (version 4.0.2).
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Supplementary Figure 11. Protein fluctuation analysis of pncA structure (3PL1)
based on Normal Mode Analysis (NMA).
Sites  associated  with  fluctuation  as  depicted  by  NMA.  The  magnitute  of  the
fluctuation is represented by thin to thick tube coloured blue (low), white (moderate)
and red (high). The corresponding wild-type residues (using the standard one-letter
code) at these sites are labelled and coloured according to the mutational effects of
one  or  more  nsSNPs at  these  sites:  Drug  resistant  mutations  (DM)  are  coloured
purple,  Other  mutations  (OM)  appear  in  blue,  while  sites  linked  to  mutations
belonging to either category are coloured in pink. Sites associated with no nsSNPs in
our study are depicted in black. The NMA analysis and figure is generated from the
DynaMut web server. Abbreviations used: pncA: pyrazinamidase.
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Lineage comparisons Lineage comparisons

KS test to compare distributions P-value Adj P-value Adj P-value signif KS test to compare distributions P-value Adj P-value Adj P-value signif
Lineage 1 vs Lineage 2 1.48E-03 8.87E-03 ** Lineage 1 7.31E-08 2.92E-07 ****
Lineage 1 vs Lineage 3 5.33E-03 3.20E-02 * Lineage 2 <0.0001 <0.0001 ****
Lineage 1 vs Lineage 4 9.69E-05 5.81E-04 *** Lineage 3 2.97E-01 1.19E+00 ns
Lineage 2 vs Lineage 3 4.46E-04 2.68E-03 ** Lineage 4 2.55E-13 1.02E-12 ****
Lineage 2 vs Lineage 4 <2.2E-016 <0.0001 ****
Lineage 3 vs Lineage 4 8.09E-03 4.86E-02 ns

Supplementary Table 1 (part of all supplementary material) for this article can be found online at: 
https://www.frontiersin.org/ar- ticles/10.3389/fmolb.2021.619403/full#supplementary-material

All mutations (n=4433)  DM (n=3565) vs OM (n=868)

Supplementary Table 2: Kolmogorov-Smirnoff (KS) test reporting the statistical differences in distributions between Mtb lineages when assessed 
based on Protein stability (DUET outcome). Lineage comparisons were performed for all mutations, and between mutations associated with PZA 
drug resistance (DM) and other mutations (OM). s). Adj. P-values: Bonferroni adjusted P-values, n=number of samples, ns = not significant, Adj. P-
value signif: Statistical significance thresholds used are *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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4.1 Background

4.1.1 Mechanism of action of Ethambutol

Ethambutol (EMB) is a drug used in the treatment of tuberculosis as a combination therapy with

isoniazid, rifampicin and pyrazinamide. The main target for EMB is an arabinosyltransferase, termed

embB, and to a lesser extent the other genes (embC and embA) in the embABC operon.1,2 The

arabinosyltransferases (EmbA, EmbB, and EmbC) are enzymes involved in the polymerisation of ara-

binogalactan, an essential component of the mycobacterial cell wall. The M. tuberculosis cell wall is

a highly complex structure enriched with lipids and carbohydrates, consisting of three distinct layers:

peptidoglycan, arabinogalactan and mycolic acids (Figure 1A). The mycolic acids are covalently

linked to the peptidoglycan via an arabinogalactan network.3 The unique composition of the my-

cobacterial cell wall with its low permeability is responsible for its pathogenicity and virulence, and

help the bacteria evade host immune response.4 with lipid-mediated defence mechanisms.5 Ethambu-

tol is bacteriostatic against actively growing TB bacilli. It works by disrupting the arabinogalactan

synthesis by inhibiting the enzyme arabinosyl transferase required for the cell wall synthesis.6 This

leads to increased cell wall permeability, allowing the drug to further diffuse into the M. tuberculosis

cells. Once inside the cell, EMB prevents formation of the cell wall component arabinogalactan and

lipoarabinomannan, the latter being a crucial virulence factor as well as a key component in modu-

lating the host-pathogen interaction.7,8 An overview of the mechanism of action of EMB is shown in

Figure 1B.

4.1.2 Active site description and EMB resistance

While mutations in the embABC operon are responsible for EMB resistance, the majority of EMB

resistance in clinical isolates occurs due to mutations in the embB gene.1,10,11 (Figure 1B). The struc-

tural characterisation of EMB in complex with M. tuberculosis EmbB was recently investigated using

cryoelectron microscopy and X-ray crystallography, generating structures of mycobacterial EmbA-

EmbB and EmbC2 in the presence of their donor (decarpaneyl phosphate, DPA) and acceptor (ara-

binan) substrates, as well EMB. The overall complex is a hetero-trimer, with EmbA-EmbB forming

a hetero-dimer complex, while EmbC forms a symmetric homo-dimer. The hetero-dimer complex is

stabilised by the presence of cardiolipin (CDL), while the presence of a calcium (Ca2+) ion is re-

sponsible for the structural stability of EmbC.12 Consistent with clinical drug resistance studies, the

authors demonstrate that EMB preferentially binds to EmbB and EmbC rather than EmbA,1,10 with

a high degree of similarity between the binding modes.11 EMB competes with donor DPA, and ac-
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A

B

Figure 1: Cell wall components of M. tuberculosis and mechanism of action for ethambutol
A) The complex cell wall components of M. tuberculosis. The peptidoglycan and arabinogalactan form the
cell wall, while mycolic acids and glycolipids form part of the outer membrane. Together these form the
mycobacterial cell envelope. Figure adapted from Sylvie Garneau-Tsodikova and Kristin J. Labby, 2016,7 B)
An overview of the mechanism of action and resistance in M. tuberculosis for ethambutol. Figure adapted from
Sheikh, et. al..9
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ceptor arabinose substrates for binding to the EmbB and EmbC subunits.11 The active site of EmbB

with EMB bound is characterised by interactions with residues D299, Y302, I303, E327, M306, W592,

H594, W988, and W1028 (Figure 2A).11 Residue D299 forms three electrostatic interactions with

EMB, while the two hydroxyl (OH) groups of EMB form hydrogen bonds with residues H594 and

E327 (Figure 2A).11 Residues I303, M306, W592, and W1028 form van der Waals interaction while

residues W988 and Y302 form pi-cation interactions with EMB.

Sites G406 and Q497 are considered resistant hotspots along with site M306, a conserved site in

all EmbB proteins. Mutations M306V and M306I are shown to be favoured by resistant clinical

isolates due to reduced binding affinity for EMB.13 Mutations at site M306 also result in disruption

of its surrounding interactions network involving residues Y302 and E327 which in turn are involved

in interacting with EMB. Residues G406 and Q497, despite being further away from EMB (>10Å)

disrupt surrounding interaction networks involving residues E328 and E327, where the latter is involved

in EMB interaction. Structural insight into mutations I289M and I289F also revealed resistance

development as a result of steric hindrance without affecting enzymatic activity.11 Additionally, all

possible interacting residues for EMB, DPA, CDL, and Ca2+ ion were identified using Arpeggio, PLIP,

and LigPlus tools. Figure 2B shows the hetero-trimer complex of the embABC (PDB-ID: 7BVF),

with interacting residues for EMB, and other interacting partners: DPA, CDL and Ca2+ ion.

Interactions in EmbB

Molecular interactions with residues in EmbB, EMB, and interacting partners (DPA CDL, and Ca2+

ion) were identified using LigPlus, PLIP and Arpeggio tools, resulting in a total of thirty-four inter-

acting residues shared among some of the interacting partners:

• Fourteen residues at sites 298, 299, 302, 303, 306, 318, 327, 334, 403, 445, 592, 594, 988, and

1028 were identified to be interacting with EMB.

• Twenty-nine residues at sites 299, 322, 329, 330, 403, 435, 438, 439, 442, 445, 446, 449, 452, 455,

486, 489, 490, 493, 506, 509, 510, 513, 514, 515, 587, 589, 590, 592, 595 were identified to be

interacting with DPA.

• Twenty-eight residues at sites 456, 457, 460, 461, 521, 525, 533, 537, 554, 558, 568, 569, 572,

573, 575, 576, 579, 580, 582, 583, 586, 601, 605, 616, 658, 661, 662, 665) were identified to be

interacting with CDL

• Nine residues at sites 847, 853, 854, 952, 954, 955, 956, 959, 960 were identified to be interacting

with the Ca2+ ion.
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An overview of the EmbB-EMB structural complex with all interactions shown in Figure 2C.

Information gathered in this manner was used to identify all possible interactions for key binding

partners (EMB, DPA, CDL, Ca2+ ion) to curate the active site residues for EmbB protein. This was

done to help visualise active sites in relation to mutational diversity, EMB resistance, and to inform

downstream ML analysis.

A

−−−−−−−→

B C

Figure 2: Active site description of M. tuberculosis EmbB and its interacting partners

Overall description of the EmbB-EMB complex and its interacting partners (PDB-ID: 7BVF). A) Ac-
tive site residues in EmbB with the chemical structure of EMB indicated on the right. Figure adapted from
Zhang, et. al.,11 B) The residues indicated in part A coloured accordingly are indicated in the structure
of EmbB-EMB complex, C) hetero-trimer EmbB-EMB complex with EmbB (chain B) indicated as surface
representation in tan colour, while chains A and B are shown as grey ribbons. All interactions for binding
partners indicated: EMB with its interacting residues appear in green; DPA and its interacting residues are
shown in dark slate grey; CDL and its interacting residues appear in navyblue; Ca2+ ion and its interacting
residues shown in purple. Abbreviations used: EMB: ethambutol, DPA: decaprenyl-phosphate-arabinose, CDL:
cardiolipin, Ca2+ ion: calcium ion.
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4.2 Structural and genomic insights into ethambutol resistance

4.2.1 Mutational landscape of EmbB

Sites with multiple SAVs (hotspots) are located away from the active site, with most active site residues
displaying single mutations

A total of 858 SAVs were found in the protein coding region of embB (Genomic id: Rv3795, coding

region: 4246514-4249810), and appear distributed across the protein (Figure 3), with mutations

present in 570 unique positions in EmbB (Figure 4).

A B

Figure 3: Mutational landscape of M. tuberculosis EmbB

An overview of all mutational sites on M. tuberculosis EmbB chain B (PDB-ID: 7BVF) appearing as
surface representation in tan colour with chains A and P appearing as grey ribbons. Panels A) and B) are
opposing representations (rotated 180◦) of EmbB, with EMB shown in green as spheres in the binding pocket.
The figure is generated using UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid
variation, EMB: ethambutol.
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A minority (5/14 for EMB, 11/29 for DPA, 3/9 for Ca2+ ion) of residues in the active site excluding

those interacting with CDL at the PPI (Figure 2) displayed SAVs. Sites beyond the active site showed

multiple SAVs with a maximum of 6 SAVs at three non-active site residues: F330, G406, and Q497

(Figure 4). A majority (19/28) of residues involved in CDL interactions were however associated

with SAVs, budding resistant hotspots being most prominent at the PPI (Figure 4, sites marked in

navy blue). Mapping mutations by positions in EMB (Figure 4) highlight the following:

Prominent mutation hotspots not involving the active site

• Single or budding resistant hotspots: None

• Hotspots with four mutations: G305, D311, A356, E378, S500, K511, V744

• Hotspots with five mutations: A201

• Hotspots with six mutations: D328, G406 and Q497

Sites with EMB interactions associated with a maximum of 4 SAVs (sites marked in green)

• Single mutation: N318, H334, and Q445

• Budding resistant hotspots: I303

• Hotspots with four mutations: M306

Sites with DPA interactions associated with a maximum of 4 SAVs (sites marked in dark slate
grey)

• Single mutation: V435, Q445, I489, V493, T506, L449, V452

• Budding resistant hotspots: A438 and A510

• Hotspots with three mutations: A439

• Hotspots with four mutations: F330

Sites with CDL interactions associated with a maximum of 3 SAVs (sites marked in navy blue)

• Single mutation: A457, R573, G576, A601, L558, G569, M582, M586, P616, P661, K662

• Budding resistant hotspots: E521, V554, R568, M575, G580, S658, G665

• Hotspots with three mutations: V456

Sites with Ca2+ ion interactions associated with a maximum of 2 SAVs (sites marked in purple)

• Single mutation: Q854, T956

• Budding resistant hotspots: Q853

Resistant hotspot sites D328, G406, and Q497 display the highest (6 SAVs each) number of SAV

mutations in EmbB, despite these sites not being directly involved with EMB binding. Resistance is

thought to arise due to disruption in the EMB interaction network (Figure 2). For example, it is

thought that SAVs at site 497 cause conformational changes that affect E327, one of the EMB binding

sites.14 Similarly SAVs at site G406 and D328 may also affect drug binding by disrupting underlying

molecular interactions causing protein conformational changes.14 It appears that resistant hotspots
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not involving EMB binding residues, affect drug binding indirectly, by disrupting the network of EMB

binding residues or by inducing local protein conformational changes, which reduce EMB binding

affinity.11

Of the two active site residues, M306 and F330 displaying four SAVs each, the amino acid property only

changed for a single mutation at these sites. For example, when considering mutations M306I, M306L,

M306T, and M306V, only mutation M306T changed the property of the amino acid from hydrophobic

amino acid in the wild-type (M) to a polar residue (T) while all other mutations (M306I, M306L,

and M306V) retained the hydrophobic amino acid property similar to the wild-type (Figure 4, site

marked in green). Similarly, residue F330 involved with DPA interactions, displaying multiple SAVs

(F330S, F330V, F330I, and F330L) also retained the hydrophobic wild-type amino acid property (F)

for all mutations except F330S (Figure 4, site marked in dark slate grey). The majority (55%,

n=474) of the mutational effects resulted in electrostatic changes.
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Figure 4: Sites associated with SAVs in M. tuberculosis EmbB
Logo plot showing 570 unique sites/positions associated with 858 SAVs in M. tuberculosis EmbB. The horizontal
axis shows the wild-type positions associated with SAVs in EmbB and the vertical axis shows all the mutant
residues observed in our data highlighting SAV diversity at a given site. Residues are coloured according to
the amino acid (aa) property where acidic aa appear in red, basic aa appear in blue, hydrophobic aa in black,
neutral aa in purple, and polar aa in darkgreen. The structural positions associated with SAVs in EmbB are
indicated on the horizontal axis. The wild-type (WT) residues also coloured according to aa property appear
under the respective position markings. The heat bar underneath the WT residues indicate the distance of that
position from EMB according to the magma colour gradient where light yellow indicates sites closer to EMB
(ligand distance in Angstroms). The positions are further annotated to reflect active site residues involved in
interactions with EMB (green), DPA (dark slate grey), CDL (navy blue), and Ca2+ ion (purple). The figure is
generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single amino
acid variation, EMB: ethambutol, DPA: decaprenyl-phosphate-arabinose, CDL: cardiolipin, Ca2+ ion: calcium
ion.
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4.2.2 Mutational outcome from protomer stability changes and evolutionary con-

servation

Mutational consequences are destabilising for protomer stability without affecting protein function

Most mutations had a destabilising effect on the overall protomer stability when assessed using dif-

ferent computational tools (Figure 5A-D), with mCSM-DUET estimating over 90% (n=790) as

destabilising, followed by ∼84% (n=721) predicted as destabilising by DeepDDG, and Dynamut2 pre-

dicting ∼80% (n=684) as destabilising mutations. FoldX predicted the fewest with just over 60%

(n=524) of mutations as destabilising. From an evolutionary conservation perspective, over 60% of

the mutations were predicted to have a non-deleterious impact (effect) on protein function indicated

by PROVEAN and SNAP2 scores. PROVEAN estimated 62% (n=532) SAVs with neutral effect (Fig-

ure 5E) while SNAP2 predicted 66% (n=570) SAVs with neutral effect (Figure 5F). The mentioned

computational estimates were independently run for all 858 SAVs, without assessing for agreement

among them.

Figure 5: Protein stability outcome of SAVs in M. tuberculosis EmbB
Mutational impact on overall protein stability and evolutionary conservation changes for 858 SAVs, A-D)
Barplots showing number of SAVs categorised as destabilising (red) or stabilising (blue) according to protein
stability changes (∆∆G Kcal/mol) as measured by four computational tools: mCSM-DUET, FoldX, DeepDDG,
and Dynamut2, E-F) Number of SAVs categorised as Effect/Deleterious (magenta) or Neutral (pink) according
to evolutionary conservation changes estimated by computational tools: PROVEAN, and SNAP2. The figures
are generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in
Gibbs free energy, SAV: single amino acid variation.

Evolutionary and structure-based predictors provide different insights into understanding mutational

impact. Mutational impact in this context is considered to be its effect on protein stability, drug

binding affinity, other binding affinities such as PPI or nucleic acid, and functional effects arising
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from protein sequence variations. The first three mutational consequences are assessed by structure

based predictors relying on the 3D structure of a protein, while the last is assessed by sequence based

predictors relying mainly on evolutionary conservation trends across many proteins using multiple

sequence alignments. The sequence based predictors are aimed at predicting pathogenicity or change

of molecular function, structure based tools rely on estimating variant effects in relation to structure

damage, corresponding to stability changes, as protein stability is considered the basic characteristic

affecting function, activity, and regulation. Predictors such as ConSurf are able to use both struc-

tural and sequence information to identify important functional regions conserved in proteins. A

variant classified as ’deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Thus, different methodological strategies benefit from

complementary information when assessing specific proteins.

Sites involving EMB and DPA were mostly destabilising while those interacting with CDL were mostly
stabilising

When assessing the impact on protomer stability changes due to mutations, the estimates from all

four tools employed: mCSM-DUET, FoldX, DeepDDG, and Dynamut2 were considered together and

averaged to provide a consensus mutational effect (Figure 6G). While most (n=645) mutational

effects were destabilising, most sites with 2 or more mutations showed mixed stability effects. Of such

mutations, sites interacting with CDL at the PPI, mutations V456, V554, S658, and S659 were purely

stabilising in their impact for all mutations observed (except V456 displaying 3 SAVs, others were

budding resistant hotspots) Figure 7, sites marked in navy blue). The impact of mutations were

mainly stabilising (2 out of 3) for residues involved in Ca2+ ion interactions with site T956 showing

only mildly destabilising impact (Figure 7, sites marked in purple). Where all four mutations at site

M306 involved in EMB interaction were associated with moderate-strong destabilising effects, residues

nearby, at sites 305 and 311, each had 3 out of 4 mutations with stabilising effects (Figure 7, top

panel, near the first two sites marked green). Similarly, another interesting site 328 near to the bound

EMB showed 6 SAVs, of which 4 were stabilising (Figure 7, top panel).
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Figure 6: Average protein stability effects of SAVs mapped onto the M. tuberculosis EmbB pro-
tein structure
The protein stability changes (∆∆G Kcal/mol) of SAV mutations measured by mCSM-DUET, FoldX, Deep-
DDG, and Dynamut2 were averaged and mapped onto EmbB sites (appearing as tan coloured ribbon). Desta-
bilising mutational sites are depicted in red and stabilising mutational sites appear in blue, where the colour
intensity reflects the extent of effect, ranging from -1 (most destabilising) to +1 (most stabilising). EMB is
shown in green spheres in the binding pocket, while other binding partners are coloured as sticks in dark slate
grey (DPA), navy blue (CDL), and Ca2+ ion (purple). The figure is rendered using UCSF Chimera version 1.14.
Abbreviations used: ∆∆G: change in Gibbs free energy, SAV: single amino acid variation, EMB: ethambutol,
DPA: decaprenyl-phosphate-arabinose, CDL: cardiolipin, Ca2+ ion: calcium ion.
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Figure 7: Average protein stability effect for individual SAVs occurring in M. tuberculosis embB
Barplot showing the number of single amino acid variation (SAV) mutation at each position in EmbB coloured
by the average protein stability effect, where the horizontal axis shows the wild-type positions associated with
SAVs, and the vertical axis shows the number of SAVs at that position. The horizontal axis is ordered to
highlight wild-type positions with the highest number of SAVs. For a given position, each corresponding SAV is
coloured by the average protein stability effect calculated across estimates (∆∆G Kcal/mol) from mCSM-DUET,
FoldX, DeepDDG, and Dynamut2. The structural positions associated with SAVs in EmbB are indicated on
the horizontal axis. The heat bar underneath the positions indicates the distance of that position from EMB
according to the magma colour gradient where light yellow indicates sites closer to EMB (ligand distance in
Angstroms). The positions are further annotated to reflect active site residues involved in interactions with:
EMB (green), DPA (dark slate grey), CDL (navy blue), and Ca2+ ion (purple). The figure is generated using
R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in Gibbs free energy,
SAV: single amino acid variation, EMB: ethambutol, DPA: decaprenyl-phosphate-arabinose, CDL: cardiolipin,
Ca2+ ion: calcium ion.

4.2.3 Mutational consequences on affinity changes and prominent mutational ef-

fects

Mutations decrease binding affinity of EMB while increasing affinity at the PPI

Only 5% (n=47) of SAVs inducing changes in EMB binding affinity were within 10Å of EMB. These

mutations occurred at 23 distinct sites, with most sites showing single mutations. Of these, over

90% (n=44) had a destabilising effect on EMB binding affinity as measured by mCSM-lig and all

47 mutations were destabilising when measured by mmCSM-lig (Figure 8A top panel, Appendix

Table 4.A.1). When the 23 mutational sites with their average effect on binding affinity were mapped

onto the EmbB chain B, these showed mild to moderate destabilising mutational consequences (Fig-

ure 8A bottom panel. Analysing the PPI of EmbB highlighted 14% (n=121) of mutations to be within

10Å of the PPI as measured by mCSM-PPI2, with 65% (n=79) of mutational effects being destabil-

ising (Figure 8B top panel, Appendix Table 4.B.1). Interestingly, sites at the PPI showed mixed

mutational effects on binding affinity and were distributed throughout the entire interface (Figure 8B

bottom panel).

Of the total 570 unique sites in EmbB displaying SAVs, 62% (n=355) of these sites harboured single

mutations, followed by 28% (n=162) sites presenting as budding resistant hotspots, followed by 40

sites displaying 3 mutations, 9 sites displaying 4 mutations, 1 site showing 5 mutations, and 3 sites

showing a maximum of 6 mutations (Figure 8C top panel).

The most prominent effects on EMB binding were from reduced affinity (destabilising effect), con-

tributed by 38 mutations (Figure 8C, yellow text boxes, and bottom panel) at surrounding sites.

Similarly, the dimer interface of EmbB was principally affected by affinity changes at the interface with

the majority (n=22) of the effects resulting in stabilising i.e. increasing PPI affinity (Figure 8C, pink

text boxes, and bottom panel). All other sites were affected largely (but not exclusively) by desta-
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bilising mutations for EmbB protein structure (Figure 8C, blue and red text boxes, and bottom

panel).
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Figure 8: Mutational impact on EMB binding affinity, protein-protein interaction on EmbB, and
sites with the most prominent mutational effects within M. tuberculosis EmbB
The top panel displays barplots showing the mutational outcome of affinity changes and their corresponding
site frequency, while the bottom panel shows the corresponding mutational impact mapped onto EmbB (chain
B, PDB-ID: 7BVF) appearing in tan colour, while chains A and P are shown as grey ribbons. EMB is shown in
green as spheres in the binding site. Other binding partners are indicated as sticks: DPA in dark slate grey, and
CDL is shown in navy blue. A) Mutational impact on EMB binding affinity (log fold change) from mCSM-lig
and mmCSM-lig where 47 mutations, corresponding to 23 sites within 10Å of EMB, B) Mutational impact on
protein-protein (PP) binding affinity (∆∆G) for 121 mutations, corresponding to 84 sites within 10Å of the PPI.
For both parts A) and B), red denotes destabilising mutational sites while blue denotes stabilising mutational
sites, and the colour intensity reflects the extent of the effect ranging from -1 (most destabilising) to +1 (most
stabilising), C) Most prominent mutational effect for all 858 SAVs (corresponding to 570 sites) prioritised in
order of increasing effect size: mCSM/mmCSM-lig, mCSM-PPI2, followed by overall stability changes where
brighter colours indicate stabilising effects. Sites marked in yellow indicate changes due to ligand (EMB) binding
affinity with lighter yellow indicating destabilising changes, pink areas indicate prominent changes due to PPI
affinity where bright pink indicates stabilising while light pink areas indicate destabilising effects. All other sites
are coloured by overall stability changes where blue denotes stabilising and red denotes destabilising effects.
The corresponding number of mutation sites contributing to the different effect types are indicated in the text
box at the top, and coloured accordingly. The barplots figures are generated using R statistical software version
4.0.4, ggplot2 package. The structure figures are generated using Chimera version 1.14. Abbreviations used: Å:
Angstroms, ∆∆G: change in Gibbs free energy in kcal/mol, SAV: single amino acid variation, EMB: ethambutol,
DPA: decaprenyl-phosphate-arabinose, CDL: cardiolipin.

4.2.4 Mutational association with EMB resistance and flexibility

Most mutations occur in the variable regions with resistant mutation sites associated with lower flexi-
bility relative to sites with sensitive mutations.

Mutational association with resistance according to aggregate DST data showed only a minority (14%,

n=127) of mutations as resistant. Mutational sites on EmbB were mapped onto the 3D structure to

highlight sites with exclusively resistant (red), sensitive (blue) and sites displaying both resistant and

sensitive mutations (purple). For EmbB, there were 54 sites with exclusively resistant mutations, 46

sites with both resistant and sensitive mutations, while 470 sites with exclusively sensitive mutations

(Figure 9A).

While there were some resistant mutations close to EMB and the PPI, mutations were not restricted to

these areas, with resistant mutations occurring as far away as 57Å from the drug (Figure 9A). This is

perhaps due to EmbB being part of a larger multimeric complex, such that sites far away in EmbB are

closer to the binding site on another chain of the protein complex. As such, interactions in a multimeric

protein become important to consider when understanding mutational association with resistance.

ConSurf scores are calculated for each site on the protein, and range from 1 (rapidly evolving, variable

sites) to 9 (slowly evolving, conserved sites). The resistant mutational sites surrounding EMB were

not found to be located in the conserved regions of EmbB, as defined by ConSurf, with sensitive

mutational sites predominantly located in the variable regions of EmbB (Figure 9A left and right

panels). Exclusively resistant mutation sites (Figure 9A) were not restricted in the conserved regions
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of EmbB (Figure 9B left panel) with most mutations (n=206) occurring in the highly variable regions

(ConSurf score 1) of EmbB (Figure 9B right panel).

The local flexibility in EmbB in relation to EMB resistance was also analysed with thickness of the

ribbon/tube (thinthick) indicating the extent of flexibility. Normal mode analysis (from Dynamut2) of

the protein component of EmbB-EMB complex showed that overall EmbB displayed low-to-moderate

flexibility (Figure 10 left panel). Visual inspection highlighted that sites with sensitive mutations

were comparatively more flexible that those with resistant mutations. (Figure 10 left panel). The

most prominent sites displaying the highest flexibility (thickest tubes) were: T643 (site with both

resistant and sensitive mutations), M423 (site with exclusively resistant mutations), while G645 and

I649 were sites with no SAVs. Similarly, regions surrounding EMB, as well as DPA and CDL were

associated with low flexibility (Figure 10 right panel).
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B

Figure 9: Mutational association with ethambutol resistance and evolutionary conservation in
M. tuberculosis EmbB
Mutational landscape of M. tuberculosis EmbB according to different measures where A) All sites associated
with SAVs on EmbB (chain B, PDB-ID: 7BVF) shown as surface representation in tan colour, along with chains
A and P appearing as grey ribbons. EMB is shown in green either represented as spheres or ball-and-stick to
aid visibility. The left panel shows all mutational sites associated with resistant (red, n=54 sites), sensitive
(blue,n=470 sites), while common sites with both resistant and sensitive mutations appear in purple (n=46).
The corresponding right panel depicts the structure rotated by 180◦, B) Left panel shows EmbB chain B
coloured according to ConSurf scores where maroon indicates conserved sites and teal indicates variable sites.
EMB appears in green in the conserved binding pocket. Yellow areas reflect sites with uncertainty due to
insufficient data for ConSurf score calculation. The barplot on the right panel shows the number of mutations
associated with ConSurf values that range from 1 (variable) in teal to 9 (conserved) in maroon, where 0 denotes
insufficient data/not defined (ND). The barplot figures are generated using R statistical software version 4.0.4,
ggplot2 package. All structure figures were generated using UCSF Chimera version 1.14. Abbreviations used:
SAV: single amino acid variation, EMB: ethambutol, DPA: decaprenyl-phosphate-arabinose, CDL: cardiolipin,
Ca2+ ion: calcium ion.
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Figure 10: Mutational association with ethambutol resistance and local protein flexibility of M.
tuberculosis EmbB
Mutational landscape of M. tuberculosis EmbB according to flexibility in EmbB according to normal mode
analysis (NMA), measuring atomic deformation according to protein dynamics to denote flexibility associated
at sites in EmbB. The magnitude of flexibility is represented from thin (low flexibility) to thick (high flexibility)
tubes. Left panel: The tubes are further coloured to show mutational association with EMB resistance, red:
resistant sites, blue: sensitive sites, purple: shared sites, black: sites with no SAVs, where sites with the
highest flexibility (thickest tubes) are labelled according to the wild-type residues using the standard one-letter
amino acid code. Right panel: Slightly zoomed in view to indicate EMB, DPA, CDL, and Ca2+ ion as well
as their interacting residues sites in green, light yellow, steel blue, and light pink respectively. Similar to the
left panel, the residues are labelled to indicate sites with the highest flexibility (thickest tube) according to
the standard one-letter amino acid code. All structure figures were generated using UCSF Chimera version
1.14. Abbreviations used: SAV: single amino acid variation, EMB: ethambutol, DPA: decaprenyl-phosphate-
arabinose, CDL: cardiolipin, Ca2+ ion: calcium ion.

4.2.5 Relating mutational frequency and biophysical and evolutionary conserva-

tional changes

Correlation analysis was performed to understand the relationship between frequently occurring mu-

tations as assessed by MAF and their association with stability (mCSM-DUET, FoldX, DeepDDG,

Dynamut2), conservation (ConSurf, SNAP2, PROVEAN) and affinity changes (mCSM-lig/mmCSM-

lig, and mCSM-PPI2), distance to ligand (Lig-Dist) and protein-protein interface (PPI-Dist). A com-

bined analysis with all mutations, as well as separately for resistant (R) and sensitive (S) mutations

was undertaken (Figures 11 and 12). Analyses focused on determining the strength of association

without regard for the direction of the association due to dissimilarity of threshold criteria used by

the various estimators.

Frequently occurring sensitive mutations were weakly related to protomer stability changes while fre-
quently occurring resistant mutations were moderately associated with decreasing distance from EMB

Frequently occurring mutations were weakly related to protomer stability changes according to Deep-

DDG (ρR+S=0.14, P<0.001), but not associated with FoldX (ρR+S=-0.07, P<0.05), Dynamut2 and
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mCSM-DUET (ρR+S=0, P>0.05) (Figure 11). The weak associations with DeepDDG estimates were

driven by sensitive mutations (ρS=0.19, P<0.001 for sensitive mutations) suggesting that frequently

occurring sensitive mutations were weakly associated with protomer stability changes (Figure 11).

Frequently occurring resistant mutations were moderately associated with decreasing distance from

EMB (ρR∼0.3, P<0.01), and weakly related to PPI (ρR=0.22, P<0.05) (Figure 11). As expected,

mCSM-DUET and Dynamut2 were strongly correlated as these tools share common methodology

(ρR+S=0.82, P<0.001), while other computational tools showed weak to strong associations amongst

their predicted estimates, overall as well as for resistant and sensitive mutation groups individually

(0.3< ρR+S≤0.8, P<0.001) (Figure 11). Of note, the negative sign associated with FoldX correlations

with other predictors is due to the inverse criteria used by these tools (Chapter 2: Methods).

Frequently occurring resistant mutations were weakly associated with evolutionary rate, while frequently
occurring sensitive mutations were weakly associated with protein functional effects

Frequently occurring resistant mutations were weakly related to evolutionary conservation estimates

(ρR=-0.19, P<0.05) (Figure 12 left panel), while frequently occurring sensitive mutations were weakly

associated with predicted protein functional effects according to SNAP2 (ρS=-0.24, P<0.001) and

PROVEAN (ρS=0.21, P<0.001). There was good agreement (moderate to strong association) between

estimates across the three conservation estimators, overall (ρR+S≥0.5, P<0.001) and in the mutation

groups (ρR/S>0.4, P<0.001) (Figure 12 left panel).

Frequently occurring mutations were weakly related to EMB affinity changes

Frequently occurring resistant mutations were weakly related to EMB binding affinity (mCSM- and

mmCSM-lig) (ρR≥-0.24, P<0.01), and not associated with changes in PPI binding (mCSM-PPI2)

(ρR/S<-0.1, P>0.05) (Figure 12 right panel). As expected, estimates from mCSM- and mmCSM-lig

were highly correlated, both, overall and in the mutation groups (ρ>0.8, P<0.001) due to shared

underlying methodology (Figure 12 right panel).
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Figure 11: Correlation of protein stability changes and genomics measures
Pairwise correlations between minor allele frequency (MAF), protein stability changes (∆∆G) estimated using
DUET, FoldX, DeepDDG, and Dynamut2, and distance to EMB, and the dimer interface for 858 SAVs. The
upper panel in both plots include the pairwise Spearman (ρ) correlation values along with their statistical
significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where
black denotes the overall correlation with both resistant (R) and sensitive (S) mutations, while red denotes
correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations.
The points in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent
sensitive mutations individually. The diagonal in each plot displays the density distribution of the corresponding
parameter split by the two mutation groups. The figure is generated using R statistical software version 4.0.4,
ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV:
single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist: distance to protein-protein interface in
Å, EMB: ethambutol.
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Figure 12: Correlation of evolutionary conservation, affinity changes, and genomics measures
Pairwise correlations of evolutionary conservation, affinity changes, and genomic measure of minor allele frequency (MAF) for 858 SAVs. Left panel: Evolutionary conservation predictors: ConSurf,
SNAP2, and PROVEAN, Right panel: EMB binding affinity changes estimated as log fold change (mCSM-lig and mmCSM-lig) of 47 SAVs lying within 10Å of EMB, and protein-protein (PP)
affinity changes (∆∆G) measured using mCSM-PPI2 of 121 SAVs lying within 10Å of the dimer interface. All corresponding affinity measures for mutations located more than 10Å of EMB, and
the PPI were given a value of 0 to allow complete SAVs to be used for analysis, while respecting the distance threshold for the respective tools. The upper panel in both plots include the pairwise
Spearman (ρ) correlation values along with their statistical significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where black denotes the overall
correlation with both resistant (R) and sensitive (S) mutations, while red denotes correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations. The
points in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent sensitive mutations individually. The diagonal in each plot displays the density distribution of
the corresponding parameter split by the two mutation groups. The figure is generated using R statistical software version 4.0.4, ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change
in Gibbs free energy in Kcal/mol, SAV: single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist: distance to protein-protein interface in Å, EMB: ethambutol.

150



4.2.6 Comparing resistant and sensitive mutations

Resistant mutations occur less frequently, are more conserved and tend to be destabilising for protomer
stability, located closer to EMB binding site without affecting binding affinity

Resistant mutations were more destabilising for changes in overall protomer stability compared with

sensitive mutations but only according to DeepDDG (P<0.001) (Figure 13C), and not according to

mCSM-DUET, DeepDDG, and Dynamut2 (P>0.05) (Figures 13A, 139C, 139D). Furthermore,

frequently occurring mutations are also less likely to be resistant (P<0.0001) (Figure 13E). Resis-

tant mutations were closer to EMB binding site (P<0.001) (Figure 13F) without affecting binding

affinity (P>0.05) (Figure 13K, 13L). Resistant mutations were also not close to the PPI (P>0.05)

(Figure 13G) and did not result in changes in PPI affinity (P>0.05) (Figure 13M). Resistant mu-

tations are conserved and predicted to result in deleterious effects (P<0.001) (Figures 13H, 13I and

13J).
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Figure 13: Comparison of resistant (R) and sensitive (S) mutations
Violin plots showing the distribution of features related to structural properties, genomic measure, evolutionary
conservation for 858 SAVs. For affinity changes related to ligand (EMB) binding affinity measured by mCSM-
and mmCSM-lig, only those mutations within 10Å of EMB (n=47) were considered. Similarly, for protein-
protein (PP) affinity changes measured by mCSM-PPI2, only those mutation within 10Å of the PPI (n=121)
were analysed. Mutations were grouped either as resistant (R, n=127) or sensitive (S, n=731) and were compared
using the Wilcoxon rank-sum (unpaired) test, with statistical significance indicated as: *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001). Mutations in the resistant group appear as red dots, while those
in the sensitive group appear as blue dots, and the horizontal line in the violin plots display the median
value. The two mutations groups were compared based on A-D) Stability changes (∆∆G) estimated from
four computational tools: mCSM-DUET, FoldX, DeepDDG and Dynamut2, E) genomic measure of average
mutational occurrence (Log10MAF), F-G) Distance to ligand (Lig-Dist) and Distance to the PPI (PPI-Dist),
H-J) Evolutionary conservation measured by ConSurf (<0: Conserved, >0: Variable), PROVEAN (>-2.5:
Neutral, < -2.5: Deleterious) and SNAP2 (<=0: Neutral, >0:Effect) computational tools, K-L) Comparison
of EMB binding affinity changes from mCSM-lig and mmCSM-lig measured as log fold change for R (n=21)
and S (n=26) mutations, and those for M) PP binding affinity changes (mCSM-PPI2) measured as ∆∆G
for R (n=17) and S (n=104) mutations. The figure is generated using R statistical software version 4.0.4.
Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid
variation, ns: not-significant, EMB: ethambutol, MAF: minor allele frequency, Lig-Dist: distance to ligand in
Å, PPI-Dist: distance to protein-protein Interface in Å, R: resistant mutations, S: sensitive mutations.

4.2.7 Associating mutations with Odds Ratio and extreme effects

Mutations with high OR are not restricted to EMB active site

Based on DST data available for 614 (out of 858) SAVs, mutational association with resistance was

further estimated using Odds Ratio (OR), with values above 1 suggesting association with EMB re-

sistance. The higher the OR, the greater the likelihood of a given mutation being resistant. The

majority (89%, n=549/614) of mutations were predicted to be associated with EMB resistance, much

higher than observed in our data (14%, n=127/858). An overview of mutations associated with resis-

tance show that sites with high OR are more prominent in areas close to EMB or residues interacting

with DPA, Ca2+ ion, and to a lesser extent for CDL, although sites far away from EMB also show

mutations with high OR (Figure 14). Residues interacting with EMB as well as those surround-

ing it (positions between 303 and 306, and those between 319 and 334) were associated with OR>5

indicating the importance of sites surrounding EMB with detrimental consequences of mutations at

these sites on EMB binding. Similarly, the region 405-409 also contained mutations with OR>10. All

interacting partners for DPA except A439S were associated with OR>1 with Q445R, F330S, F330L

showing OR>10. Both mutations at the Ca2+ ion interacting site: Q853R and Q853P were associated

with OR>5. Sites at the dimer interface with CDL interacting residues showed less prominent OR

compared with EMB, DPA and Ca2+ ion interacting sites (Figure 14) suggesting the important role

of interface residues in maintaining the overall protein complex. Overall, these findings suggest the

importance of sites surrounding, and distal to, EMB, along with interface residues. As such, resistance

development appears to be mediated by compensatory mutational effects that alleviate fitness costs
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at these important sites.

The top 10 mutations with the highest association with resistance were not related to residues interact-

ing with EMB or other binding partners, with the exception of V456A (a site at the PPI interacting

with CDL, OR=52.54, P<0.001). The SAV with the highest OR was at a hotspot site, Q497H

(OR=52.64, P<0.0001) located >10Å from the EMB binding site and the PPI ((Table 1)). These

were followed by A409P (OR=48.40), E405D (OR=38.18), G406A (OR=35.75), D328Y (OR=28.63).

All P-values <0.0001. The next 4 in the list with OR>26 were T642A, N129D, R173L, and G1087D,

but these were not statistically significant (adjusted P>0.05) (Figure 14). Of the 38 mutations which

occurred within 10Å of EMB, ∼29% (n=11) of mutations showed significant association with resis-

tance (OR>1, P<0.05). The closest most significant mutation associated with resistance was Y334H

(OR=7.90, P<0.0001), followed by M306V, M306L, and M306T (OR=22.87, OR=10.41, OR=10.34

respectively, P<0.0001) (Figure 14).

However, when analysing the 84 mutations occurring within 10Å of the PPI, only 2% (n=2) of muta-

tions were significantly associated with resistance. These were V456A (mentioned above) which was

also the mutation with the second highest OR in the dataset, followed by T642A (OR=26.27, P<0.01).

These results indicate that the burden of resistant mutations is less at the PPI of EMB compared

with sites in proximity to EMB (Figure 14, Appendix Tables 4.A.1 and 4.B.1).

Mutations with extreme effects are mainly located away from the active site

The most frequently occurring mutation, E378A (MAF ∼34%), as well as the most destabilising and

stabilising mutations for PPI affinity (F676S and P690L respectively) are not involved with interactions

in the active site related to EMB, DPA, CDL or Ca2+ ion (Table 1). The single exception is mutation

N318D (involved in EMB binding, and a single mutation at the site), which was responsible for the

most destabilising effect on EMB binding affinity (Table 1). This suggests that mutations with

extreme effects in EMB do not involve the active site or binding partner residues, underscoring the

importance of these sites. Consequently, mutational effects at key sites are thought to be milder,

conferring local fitness advantages.
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Figure 14: Logo plot showing mutational sites and their association with resistance according to
Odds Ratio
Logo plot showing 614 SAVs by mutational site according to their association with EMB resistance calculated
using Odds Ratio (OR). The vertical axis represents the OR where letters denote mutant residues which are
proportional to their corresponding OR, highlighting the most resistant mutation at each site and overall.
The mutant residues are coloured according to the amino acid (aa) properties as denoted where red denotes
acidic aa, basic aa appear in blue, hydrophobic aa in black, neutral aa in purple, and polar aa in darkgreen.
The structural positions associated with SAVs with OR are indicated on the horizontal axis. The heat bar
underneath the positions indicate the distance of that position from EMB according to the magma colour
gradient where light yellow indicates sites closer to EMB (ligand distance in Angstroms). The positions are
further annotated to reflect residues involved in interactions with EMB (green), DPA (dark slate grey), CDL
(navy blue), and Ca2+ ion (purple). The figure is generated using R statistical software version 4.0.2, ggplot2
package. Abbreviations used: SAV: single amino acid variation, EMB: ethambutol, DPA: dcaprenyl-phosphate-
arabinose, CDL: cardiolipin, Ca2+ ion: calcium ion.

Mutation Mutational effect
Mutational effect

value Lig-Dist (Å)
PPI-Dist

(Å)
Interacting

partner
Q497H Mutations with the

highest OR OR = 52.64 14.14 28.28 none
E378A

Most frequent mutation
MAF (%) = 33.52

37.34 21.77 none
V508G Most Destabilising for

protomer ∆∆G = -0.56 12.65 17.39 none
H312P Most Stabilising for

protomer ∆∆G = 0.50 17.61 35.90 none
N318D Most Destabilising for

EMB binding affinity
Log fold change =

-0.90 4.66 22.51 EMB
F676S Most Destabilising for

PPI affinity ∆∆G = -1.17 33.90 5.82 none
P690L Most Stabilising for PPI

affinity ∆∆G = 0.84 54.47 6.13 none

Table 1: Mutations with extreme effects
Mutations (SAVs) with extreme effects related to Odds Ratio (OR), mutational frequency (MAF), stability and
affinity changes. For affinity changes only mutations within 10Å of EMB for EMB binding affinity, and Protein-
Protein (PP) interface for PPI affinity were considered. The protomer stability changes are the average effect of
all four estimates (mCSM-DUET, FoldX, DeepDDG and Dynamut2) combined, and the EMB binding affinity
changes are the average effect of the two mCSM based tools (mCSM-lig and mmCSM-lig) combined. Changes
in PP affinity correspond to estimates from mCSM-PPI. The estimated effects were categorised as Destabilising
(log fold affinity change/∆∆G<0) and Stabilising (log fold affinity change/∆∆G>0). Abbreviations used:
∆∆G: change in Gibbs free energy in Kcal/mol, MAF: minor allele frequency, SAV: single amino acid variation,
Lig-Dist: distance to ligand, PPI-Dist: distance to protein-protein interface, EMB: ethambutol.
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4.2.8 Relating lineage and protomer Stability

Lineages 1, 2 and 4 show comparable sample contribution while lineage 3 displays the highest SAV
diversity

Around 44% of samples (n=15,526) consisted of SAVs in the protein coding region of EmbB, where

13,535 samples contributed to the four main M. tuberculosis lineages (Lineages 1-4). Most samples

with EmbB mutations belonged to lineage 4 (n=5,276), followed by lineage 1 (n=4,013), lineage 2

(n=3,554) and finally by lineage 3 (n=692) with the smallest number of samples (Figure 15A).

However, lineage 3 was high in its SAV diversity (19%, n=189), followed by approximately similar

SAV diversity for lineages 4 and 2 (8%, n=430 vs. 7%, n=241 SAVs respectively), with lineage 1

showing the least diversity of around 5% (n=189) (Figure 15B).

Average stability distribution for mutations across the lineages was in the milder stability change

estimates (∆∆G between +/- 0.3 Kcal/mol), highlighting that the mutational effects on stability

for EmbB are not extreme (Figure 15C). Resistant mutations for all lineages showed prominent

peaks around mildly destabilising protomer stability changes (∆∆G ∼ -0.3 Kcal/mol). Resistant

mutations were multimodal (>=3) for all lineages with two peaks around mildly destabilising (∆∆G

-0.2 Kcal/mol and -0.3 Kcal/mol), with an additional peak around the mildly stabilising (∆∆G ∼0.2

Kcal/mol) protomer stability changes (Figure 15C).

Sensitive mutations showed multiple peaks in all lineages except lineage 1. Lineage 1 displayed a single

distinct peak for sensitive mutations with mildly destabilising effect on average protomer stability

changes (-0.25 Kcal/mol<∆∆G<0). Lineage 2 showed a similar peak (-0.25 Kcal/mol<∆∆G<0

for sensitive mutations but spanned a wider range of stability estimates (-0.6 Kcal/mol<∆∆G<0.3

Kcal/mol). Lineage 3 however displayed a more distinct peak for sensitive mutations towards the

mildly stabilising (0<∆∆G<0.25 Kcal/mol) protomer stability estimates, Lineage 4 showed showed a

similar peak like lineage 3 for sensitive stabilising mutations with an additional peak around the mildly

destabilising (-0.1 Kcal/mol<∆∆G<0) (Figure 15C). Overall distributions for protomer stability

changes were significantly different between all lineages (adjusted P<0.0001), as well as in lineages

between resistant and sensitive mutation (adjusted P<0.0001) (Appendix Table 4.C.1).
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Figure 15: Lineage and protomer stability distribution
Total number of samples (n=13,535) along with the number of mutations associated with EMB resistance in
the four M. tuberculosis lineages (L1-L4). A) The dark grey bars show the number of mutations (SAVs), while
the light grey bar show the total number of samples in each lineage, B) Mutational diversity in each lineage,
C) Density distribution of lineages according to protein stability changes (∆∆G). Estimates from four different
computational tools: mCSM-DUET, FoldX, DeepDDG,and Dynamut2 were combined to calculate the average
mutational stability impact for each SAV. The horizontal axis shows the average stability values (-1: highly
destabilising and +1: highly stabilising) further coloured by mutational association with EMB resistance: Red
denotes resistant mutations (n=127, from 6,878 samples) and blue indicates sensitive mutations (n=731, from
6,657 samples). The figure is generated using the R statistical software version 4.0.4. Abbreviations used:
∆∆G: change in Gibbs free energy, SAV: single amino acid variation, EMB: ethambutol.

4.3 Chapter summary

With only a few active site residues having SAV mutations, and the majority of those being single SAV,

sites involved with EMB binding are conserved and have limited tolerance for mutational heterogeneity.

Most mutational consequences destabilise protomer stability without affecting function, and occur in

variable regions, reinforcing its essential role in EMB binding. Due to EMBs competitive binding with

the natural substrate (DPA), mutational effects involving EMB and DPA follow closely, e.g. M306

involved in EMB binding, and F330 involved in DPA binding, both display 4 SAVs with destabilising

effects and the highest associations with EMB resistance. Similarly, EMB binding sites I303, and DPA

interacting residues A438 and A510, each show 3 mutations with destabilising effects. Contrary to

this, sites with CDL interactions tend to show the reverse, where most mutational impact is stabilising
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for the PPI. This highlights that the resistance development in EmbB is a balanced interplay of the

molecular interactions of the overall hetero-trimer complex, where flexibility in EmbB likely playing a

role, though the mechanism is unclear. Resistance in EmbB appears underestimated in DST (14%),

with GWAS inference predicting over 80% of mutations as resistant. As such, resistance hotspots can

be located away from EMB with limited impact on its binding affinity.

References

[1] Qing Sun et al. “Mutations within embCAB Are Associated with Variable Level of Ethambutol
Resistance in Mycobacterium Tuberculosis Isolates from China”. In: Antimicrobial Agents and
Chemotherapy 62.1 (Jan. 2018), e01279–17. issn: 1098-6596. doi: 10.1128/AAC.01279-17.

[2] S. V. Ramaswamy et al. “Single Nucleotide Polymorphisms in Genes Associated with Isoniazid
Resistance in Mycobacterium Tuberculosis”. In: Antimicrobial Agents and Chemotherapy 47.4
(Apr. 2003), pp. 1241–1250. doi: 10.1128/AAC.47.4.1241-1250.2003.

[3] E. Lederer. “The Mycobacterial Cell Wall”. In: Pure and Applied Chemistry. Chimie Pure Et
Appliquee 25.1 (1971), pp. 135–165. issn: 0033-4545. doi: 10.1351/pac197125010135.

[4] N. Rastogi. “Recent Observations Concerning Structure and Function Relationships in the My-
cobacterial Cell Envelope: Elaboration of a Model in Terms of Mycobacterial Pathogenicity,
Virulence and Drug-Resistance”. In: Research in Microbiology 142.4 (May 1991), pp. 464–476.
issn: 0923-2508. doi: 10.1016/0923-2508(91)90121-p.

[5] Jéssica D. Petrilli et al. “Differential Host Pro-Inflammatory Response to Mycobacterial Cell
Wall Lipids Regulated by the Mce1 Operon”. In: Frontiers in Immunology 11 (2020). issn: 1664-
3224.

[6] Ethambutol. Vol. 88. Handbook of Anti-Tuberculosis Agents. Mar. 1, 2008. 102-105.
[7] Sylvie Garneau-Tsodikova and Kristin J. Labby. “Mechanisms of Resistance to Aminoglycoside

Antibiotics: Overview and Perspectives”. In: MedChemComm 7.1 (2016), pp. 11–27. doi: 10.
1039/C5MD00344J.

[8] Isabelle Vergne, Martine Gilleron, and Jérôme Nigou. “Manipulation of the Endocytic Pathway
and Phagocyte Functions by Mycobacterium Tuberculosis Lipoarabinomannan”. In: Frontiers
in Cellular and Infection Microbiology 4 (2014), p. 187. issn: 2235-2988. doi: 10.3389/fcimb.
2014.00187.

[9] Bashir A. Sheikh et al. “Development of New Therapeutics to Meet the Current Challenge
of Drug Resistant Tuberculosis”. In: Current Pharmaceutical Biotechnology 22.4 (Mar. 2021),
pp. 480–500. issn: 13892010. doi: 10.2174/1389201021666200628021702.

[10] Florence Brossier et al. “Molecular Analysis of the embCAB Locus and embR Gene Involved
in Ethambutol Resistance in Clinical Isolates of Mycobacterium Tuberculosis in France”. In:
Antimicrobial Agents and Chemotherapy 59.8 (July 16, 2015), pp. 4800–4808. doi: 10.1128/
AAC.00150-15.

[11] Lu Zhang et al. “Structures of Cell Wall Arabinosyltransferases with the Anti-Tuberculosis Drug
Ethambutol”. In: Science (New York, N.Y.) 368.6496 (June 12, 2020), pp. 1211–1219. issn: 1095-
9203. doi: 10.1126/science.aba9102.

[12] Luke J. Alderwick et al. “The C-Terminal Domain of the Arabinosyltransferase Mycobacterium
Tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module”. In: PLOS Pathogens 7.2
(Feb. 24, 2011), e1001299. issn: 1553-7374. doi: 10.1371/journal.ppat.1001299.

[13] Betzaida Cuevas-Córdoba et al. “Mutation at embB Codon 306, a Potential Marker for the
Identification of Multidrug Resistance Associated with Ethambutol in Mycobacterium Tuber-
culosis”. In: Antimicrobial Agents and Chemotherapy 59.9 (Aug. 14, 2015), pp. 5455–5462. doi:
10.1128/AAC.00117-15.

159

https://doi.org/10.1128/AAC.01279-17
https://doi.org/10.1128/AAC.47.4.1241-1250.2003
https://doi.org/10.1351/pac197125010135
https://doi.org/10.1016/0923-2508(91)90121-p
https://doi.org/10.1039/C5MD00344J
https://doi.org/10.1039/C5MD00344J
https://doi.org/10.3389/fcimb.2014.00187
https://doi.org/10.3389/fcimb.2014.00187
https://doi.org/10.2174/1389201021666200628021702
https://doi.org/10.1128/AAC.00150-15
https://doi.org/10.1128/AAC.00150-15
https://doi.org/10.1126/science.aba9102
https://doi.org/10.1371/journal.ppat.1001299
https://doi.org/10.1128/AAC.00117-15


[14] Precious Bwalya et al. “Characterization of embB Mutations Involved in Ethambutol Resistance
in Multi-Drug Resistant Mycobacterium Tuberculosis Isolates in Zambia”. In: Tuberculosis 133
(Mar. 1, 2022), p. 102184. issn: 1472-9792. doi: 10.1016/j.tube.2022.102184.

160

https://doi.org/10.1016/j.tube.2022.102184


Appendix for

Chapter 4

161



4.A Mutations close to ethambutol

Muta-
tion

Lig-Dist
(Å)

mCSM-lig
affinity

mCSM-lig
outcome

mmCSM-lig
affinity

mmCSM-lig
outcome

MAF
(%)

Odds
Ratio P-value

Adjusted
P-value

Adjusted
P-value

significance
E405D 7.31 -1.94 Destabilising -1.05 Destabilising 0.37 38.18 <0.0001 <0.0001 ****
D328Y 9.03 -2.53 Destabilising -0.61 Destabilising 0.34 28.63 <0.0001 <0.0001 ****
M306V 3.81 -1.11 Destabilising -1.09 Destabilising 15.84 22.87 <0.0001 <0.0001 ****
Y319S 8.59 -0.9 Destabilising -0.72 Destabilising 0.59 18.47 <0.0001 <0.0001 ****
Q445R 4.47 -2.47 Destabilising -0.89 Destabilising 0.07 17.5 0.01 0.09 ns
I303M 3.77 -2.62 Destabilising -0.92 Destabilising 0.02 17.49 0.03 0.33 ns
D328F 9.03 -2.57 Destabilising -0.68 Destabilising 0.02 17.49 0.03 0.33 ns
F330L 8.13 -1.68 Destabilising -0.89 Destabilising 0.02 17.49 0.03 0.33 ns
F330S 8.13 -0.38 Destabilising -0.85 Destabilising 0.03 17.49 0.03 0.33 ns
D328G 9.03 -3.87 Destabilising -0.7 Destabilising 0.27 16.13 <0.0001 <0.0001 ****
D1024N 5.71 -1.85 Destabilising -0.9 Destabilising 1.19 14.65 <0.0001 <0.0001 ****
M306L 3.81 -1.1 Destabilising -1.09 Destabilising 0.89 10.42 <0.0001 <0.0001 ****
M306I 3.81 -1.1 Destabilising -1.09 Destabilising 13.66 10.33 <0.0001 <0.0001 ****
Y319C 8.59 -1.81 Destabilising -0.77 Destabilising 0.16 8.76 <0.0001 0.01 **
P404S 5.51 -1.01 Destabilising -1.37 Destabilising 0.06 8.75 0.09 0.7 ns
M306T 3.81 0.4 Stabilising -1.26 Destabilising 0.01 8.74 0.19 0.76 ns
F320C 7.78 -1.81 Destabilising -1.03 Destabilising 0.01 8.74 0.19 0.76 ns
F330I 8.13 -1.68 Destabilising -0.61 Destabilising 0.01 8.74 0.19 0.76 ns
Y334H 3.75 -2.39 Destabilising -1.15 Destabilising 0.3 7.91 <0.0001 <0.0001 ****
S297A 8.3 -1.18 Destabilising -1.12 Destabilising 0.4 6.26 <0.0001 0.01 **
D328H 9.03 -2.68 Destabilising -0.69 Destabilising 0.14 4.38 0.02 0.33 ns
V593M 7.77 -2.91 Destabilising -0.86 Destabilising 0.02 4.37 0.34 1 ns
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L1023M 7.57 -0.16 Destabilising -1.09 Destabilising 0.16 4.37 0.16 0.76 ns
L402V 6.78 -1.74 Destabilising -1.09 Destabilising 0.14 2.63 0.1 0.74 ns
D300E 6.95 -0.86 Destabilising -1.16 Destabilising 0.01 2.19 1 1 ns
G305C 9.69 -1.57 Destabilising -0.66 Destabilising 0.01 2.19 1 1 ns
S317F 7.35 -1.51 Destabilising -0.9 Destabilising 0.01 2.19 1 1 ns
D328I 9.03 -3.41 Destabilising -0.7 Destabilising 0.01 2.19 1 1 ns
D328V 9.03 -3.56 Destabilising -0.69 Destabilising 0.01 2.19 1 1 ns
P404T 5.51 -1.06 Destabilising -1.37 Destabilising 0.01 2.19 1 1 ns
A1020S 9.14 0.39 Stabilising -0.95 Destabilising 0.01 2.19 1 1 ns
L1023Q 7.57 0.98 Stabilising -1.06 Destabilising 0.01 2.19 1 1 ns
F320Y 7.78 -1.94 Destabilising -1.05 Destabilising 0.02 2.19 1 1 ns
P404L 5.51 -2.68 Destabilising -1.03 Destabilising 0.02 2.19 1 1 ns
Y319D 8.59 -0.89 Destabilising -0.72 Destabilising 0.02 2.19 0.46 1 ns
D300G 6.95 -3.45 Destabilising -1.04 Destabilising 0.02 1.09 1 1 ns
A989T 8.25 -0.55 Destabilising -1.2 Destabilising 0.03 0.73 1 1 ns
S317A 7.35 -2.36 Destabilising -1.12 Destabilising 0.05 0.55 1 1 ns
I303L 3.77 -2.16 Destabilising -1.09 Destabilising 0.01 NA NA NA ns
G305H 9.69 -1.85 Destabilising -1.13 Destabilising 0.01 NA NA NA ns
G305T 9.69 -0.96 Destabilising -0.87 Destabilising 0.01 NA NA NA ns
S325R 8.66 -1.91 Destabilising -0.82 Destabilising 0.01 NA NA NA ns
F330V 8.13 -1.67 Destabilising -0.89 Destabilising 0.01 NA NA NA ns
V593I 7.77 -2.95 Destabilising -1.01 Destabilising 0.01 NA NA NA ns
N318D 4.66 -3.65 Destabilising -1.18 Destabilising 0.02 NA NA NA ns
G305Q 9.69 -0.67 Destabilising -0.74 Destabilising 0.04 NA NA NA ns
Y333F 8.88 -2.14 Destabilising -0.84 Destabilising 0.05 NA NA NA ns
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Table 4.A.1: Mutations close to EMB
Forty-seven single amino acid variation (SAV) mutations lying within 10Å of EMB and their corresponding ligand affinity changes (log fold change) measured by
mCSM-Lig and mmCSM-lig. The estimated effect are categorised as Destabilising (log fold affinity change<0) and Stabilising (∆∆G>0). The genomic measures of
minor allele frequency (MAF), Odds Ratio, P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01, ***P <
0.001, ****P < 0.0001, ns: >0.05. The table is arranged by Odds Ratio to show mutation with the highest OR at the top for mutations close to EMB. Columns with
NA indicate insufficient data to calculate Odds Ratio and P-values. Abbreviations used: FDR: false discovery rate, ns: not significant, EMB: ethambutol.
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4.B Mutations close to the protein-protein interface

Mutation
PPI2-
Dist
(Å)

mCSM-
PPI2
(∆∆G)

mCSM-
PPI2 out-
come

MAF
(%)

Odds
Ratio P-value

Ad-
justed
P-value

Adjusted P-
value signif-
icance

V456A 5.78 -0.2 Decreasing 0.09 52.55 <0.001 0 ***
T642A 6.41 -0.51 Decreasing 0.05 26.27 <0.05 0.01 **
N129D 3.47 0.62 Increasing 0.02 26.25 0.01 0.1 ns
R524H 7.32 -0.03 Decreasing 0.02 17.49 0.03 0.33 ns
P690L 6.13 0.84 Increasing 0.02 17.49 0.03 0.33 ns
P690S 6.13 -0.1 Decreasing 0.02 17.49 0.03 0.33 ns
Q853R 7.11 0.25 Increasing 0.02 17.49 0.03 0.33 ns
A457T 6.92 0.24 Increasing 0.01 8.74 0.19 0.76 ns
T643A 9.02 -0.3 Decreasing 0.01 8.74 0.19 0.76 ns
T667A 7.04 -0.13 Decreasing 0.01 8.74 0.19 0.76 ns
V786L 9.92 0 Decreasing 0.01 8.74 0.19 0.76 ns
E958D 6.26 0.2 Increasing 0.01 8.74 0.19 0.76 ns
L585M 9.56 -0.29 Decreasing 0.02 8.74 0.19 0.76 ns
L635V 7.25 -0.37 Decreasing 0.02 8.74 0.19 0.76 ns
L636M 6.69 -0.59 Decreasing 0.13 8.74 0.19 0.76 ns
Q853P 7.11 0.04 Increasing 0.09 5.47 0.01 0.22 ns
M804I 7.01 -0.09 Decreasing 0.02 4.37 0.34 1 ns
I671V 7.76 -0.2 Decreasing 0.07 4.37 0.34 1 ns
L635M 7.25 -0.46 Decreasing 0.08 4.37 0.34 1 ns
T643I 9.02 -0.63 Decreasing 0.09 4.37 0.08 0.69 ns
F633L 6.83 -0.72 Decreasing 0.15 4.37 0.34 1 ns
W640F 7.24 -0.16 Decreasing 0.16 4.37 0.16 0.76 ns
L1023M 7.58 -0.02 Decreasing 0.16 4.37 0.16 0.76 ns
K107R 8.64 -0.06 Decreasing 0.01 2.19 1 1 ns
S119I 7.52 0 Increasing 0.01 2.19 1 1 ns

R122H 3.21 -0.24 Decreasing 0.01 2.19 1 1 ns
D127A 7.01 -0.34 Decreasing 0.01 2.19 1 1 ns
I132F 7.74 0.52 Increasing 0.01 2.19 1 1 ns
D178N 8.9 -0.3 Decreasing 0.01 2.19 1 1 ns
E521A 4.66 -0.94 Decreasing 0.01 2.19 1 1 ns
N522H 2.36 0.14 Increasing 0.01 2.19 1 1 ns
L528V 7.83 -0.18 Decreasing 0.01 2.19 1 1 ns
R568H 5.65 -0.2 Decreasing 0.01 2.19 1 1 ns
R573W 9.36 0.13 Increasing 0.01 2.19 1 1 ns
M575V 9.94 -0.39 Decreasing 0.01 2.19 1 1 ns
A627G 9.98 -0.05 Decreasing 0.01 2.19 1 1 ns
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L632F 9.71 0.56 Increasing 0.01 2.19 1 1 ns
L636P 6.69 -0.07 Decreasing 0.01 2.19 1 1 ns
T667K 7.04 -0.06 Decreasing 0.01 2.19 1 1 ns
V668A 7.78 0.02 Increasing 0.01 2.19 1 1 ns
F676S 5.82 -1.17 Decreasing 0.01 2.19 1 1 ns
A684V 7.87 0.08 Increasing 0.01 2.19 1 1 ns
L686P 6.35 -0.41 Decreasing 0.01 2.19 1 1 ns
N807D 7.95 0.2 Increasing 0.01 2.19 1 1 ns
G851V 8.68 -0.21 Decreasing 0.01 2.19 1 1 ns
L1023Q 7.58 -0.63 Decreasing 0.01 2.19 1 1 ns
V456L 5.78 -0.12 Decreasing 0.02 2.19 1 1 ns
M462L 7.53 -0.27 Decreasing 0.02 2.19 1 1 ns
M462T 7.53 -0.18 Decreasing 0.02 2.19 1 1 ns
L466F 7.11 0.2 Increasing 0.02 2.19 1 1 ns
R468K 6.54 -0.08 Decreasing 0.02 2.19 1 1 ns
V554M 5.04 -0.5 Decreasing 0.02 2.19 1 1 ns
L558F 3.66 -0.01 Decreasing 0.02 2.19 1 1 ns
F584S 8.4 -0.38 Decreasing 0.02 2.19 1 1 ns
A630T 9.69 0.37 Increasing 0.02 2.19 1 1 ns
P690H 6.13 0.24 Increasing 0.02 2.19 1 1 ns
K882T 8.48 -0.05 Decreasing 0.02 2.19 1 1 ns
Q896P 7.86 -0.02 Decreasing 0.02 2.19 1 1 ns
V554L 5.04 0.24 Increasing 0.05 2.19 1 1 ns
T667S 7.04 0.11 Increasing 0.1 2.19 0.46 1 ns
L632V 9.71 -0.39 Decreasing 0.12 2.19 0.46 1 ns
K561R 3.51 0.04 Increasing 0.18 2.19 1 1 ns
A659T 9.86 0.05 Increasing 0.23 2.19 0.38 1 ns
L638F 4.22 0.34 Increasing 0.03 1.46 0.56 1 ns
A680T 9.65 0.22 Increasing 0.03 1.46 0.56 1 ns
I563V 9.56 -0.21 Decreasing 0.16 1.46 0.56 1 ns
M462I 7.53 -0.1 Decreasing 0.23 1.46 0.65 1 ns
D108N 7.07 -0.27 Decreasing 0.02 1.09 1 1 ns
A517V 6.24 0.04 Increasing 0.02 1.09 1 1 ns
L544F 7.51 0.24 Increasing 0.02 1.09 1 1 ns
M575L 9.94 -0.39 Decreasing 0.02 1.09 1 1 ns
A683V 8.73 0.19 Increasing 0.02 1.09 1 1 ns
R469H 9.2 -0.07 Decreasing 0.03 1.09 1 1 ns
Q121K 9.58 0.02 Increasing 0.11 1.09 1 1 ns
M557I 4.09 -0.28 Decreasing 0.13 1.09 1 1 ns
V131M 3.59 -0.25 Decreasing 0.82 1.09 0.78 1 ns
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T126N 4.57 -0.19 Decreasing 0.02 0.73 1 1 ns
S119N 7.52 -0.1 Decreasing 0.11 0.73 1 1 ns
F115L 9.37 -0.56 Decreasing 0.03 0.55 1 1 ns
V123L 9.21 -0.16 Decreasing 0.05 0.55 1 1 ns
A547S 9.9 0.19 Increasing 0.05 0.55 1 1 ns
I563L 9.56 -0.37 Decreasing 0.13 0.55 1 1 ns
M582I 8.47 -0.25 Decreasing 0.05 0.44 0.59 1 ns
V668I 7.78 -0.16 Decreasing 0.33 0.44 0.41 1 ns
V456I 5.78 -0.01 Decreasing 0.01 NA NA NA ns
L463V 4.26 -0.58 Decreasing 0.01 NA NA NA ns
L466S 7.11 -0.4 Decreasing 0.01 NA NA NA ns
R468H 6.54 -0.17 Decreasing 0.01 NA NA NA ns
Q516E 6.81 0.12 Increasing 0.01 NA NA NA ns
E521D 4.66 0.48 Increasing 0.01 NA NA NA ns
A547V 9.9 0.07 Increasing 0.01 NA NA NA ns
R568S 5.65 0.23 Increasing 0.01 NA NA NA ns
M586I 3.7 0.03 Increasing 0.01 NA NA NA ns
W621S 4.24 -0.26 Decreasing 0.01 NA NA NA ns
W640S 7.24 -0.55 Decreasing 0.01 NA NA NA ns
A659S 9.86 0.13 Increasing 0.01 NA NA NA ns
M660I 3.42 -0.13 Decreasing 0.01 NA NA NA ns
P661L 9.85 -0.13 Decreasing 0.01 NA NA NA ns
K662E 8.34 -0.25 Decreasing 0.01 NA NA NA ns
T670I 5.68 -0.16 Decreasing 0.01 NA NA NA ns
I671M 7.76 -0.29 Decreasing 0.01 NA NA NA ns
F672L 6.78 -0.85 Decreasing 0.01 NA NA NA ns
A684D 7.87 0.55 Increasing 0.01 NA NA NA ns
F688C 3.5 -0.86 Decreasing 0.01 NA NA NA ns
G851S 8.68 -0.02 Decreasing 0.01 NA NA NA ns
Q854R 6.45 0.23 Increasing 0.01 NA NA NA ns
S856R 8.69 0.11 Increasing 0.01 NA NA NA ns
K882R 8.48 -0.08 Decreasing 0.01 NA NA NA ns
S119H 7.52 0.09 Increasing 0.02 NA NA NA ns
R471H 5.17 -0.1 Decreasing 0.02 NA NA NA ns
A684T 7.87 0.26 Increasing 0.02 NA NA NA ns
K805N 3.09 -0.24 Decreasing 0.02 NA NA NA ns
T956I 2.46 0.12 Increasing 0.02 NA NA NA ns
E958A 6.26 -0.27 Decreasing 0.02 NA NA NA ns
V125I 8.11 -0.36 Decreasing 0.03 NA NA NA ns
A517E 6.24 0.61 Increasing 0.05 NA NA NA ns
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L544I 7.51 -0.3 Decreasing 0.05 NA NA NA ns
T552A 8.64 -0.12 Decreasing 0.05 NA NA NA ns
A553S 8.7 0.28 Increasing 0.05 NA NA NA ns
F584C 8.4 -0.57 Decreasing 0.05 NA NA NA ns
K561M 3.51 -0.35 Decreasing 0.07 NA NA NA ns

Table 4.B.1: Mutations close to EmbB PPI
One hundred and twenty one single amino acid variation (SAV) mutations lying within 10Å of the Protein-
Protein interface (PPI) and their corresponding PPI affinity changes (∆∆G) measured by mCSM-PPI2. The
estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures
of minor allele frequency (MAF), Odds Ratio, P-values, and FDR adjusted P-values are shown. Statistical
significance is indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns: >0.05. The table is
arranged by Odds Ratio to show mutation with the highest OR at the top for mutations at the PPI. Columns
with NA indicate insufficient data to calculate Odds Ratio and P-values. Abbreviations used: ∆∆G: change in
Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant, EMB: ethambutol.
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4.C Average stability comparisons for lineages

Lineage
comparisons Samples (n)

Adjusted
P-values

Adjusted P-values
Significance

L1 vs L2 L1 (4013), L2 (3554) <0.0001 ****
L1 vs L3 L1 (4013), L3 (692) <0.0001 ****
L1 vs L4 L1 (4013), L4 (5276) <0.0001 ****
L2 vs L3 L2 (3554), L3 (692) <0.0001 ****
L2 vs L4 L2 (3554), L4 (5276) <0.0001 ****
L3 vs L4 L3 (692), L4 (5276) <0.0001 ****

Within Lineage comparisons
L1: R vs S R (n=209), S (n=3804) <0.0001 ****
L2: R vs S R (n=3014), S (n=540) <0.0001 ****
L3: R vs S R (n=486), S (n=206) <0.0001 ****

Table 4.C.1: Lineage comparisons for EmbB mutations
Kolmogorov-Smirnoff (KS) test reporting the statistical differences in distributions between M. tuberculosis lin-
eages when assessed based on average stability changes (∆∆G) measured by mCSM-DUET, FoldX, DeepDDG,
and Dynamut2. Lineage comparisons were performed for samples containing mutations associated with sensi-
tivity (R: Resistant, S: Sensitive). These comparisons were performed for R and S samples between and within
lineages. Statistical significance thresholds used are *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Abbre-
viations used: ∆∆G: change in Gibbs free energy in Kcal/mol, Adj. P-values: Bonferroni adjusted P-values,
n=number of samples.
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Chapter 5

GidB-streptomycin

results
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5.1 Background

5.1.1 Mechanism of action of streptomycin

Streptomycin (STR) was the first aminoglycoside antibiotic to be discovered, and the first antibiotic

to be successfully used against TB.1,2 As an aminoglycoside, STR is bactericidal in nature and works

by interfering with ribosomal peptide/protein synthesis.3,4 The mechanism of action of STR involves

binding to the 30S subunit of bacterial ribosome at ribosomal S12 protein and 16S rRNA.3,4 Different

regions in the 16S rRNA including residues G526, G527 and the G530 hairpin loop are involved

in binding to STR. In this manner, STR interferes with downstream protein synthesis by causing

misreading of mRNA and thus halting protein synthesis altogether5,6 (Figure 1).

5.1.2 Streptomycin resistance in M. tuberculosis

The effectiveness of STR as a broad spectrum antibiotic (active against both Gram-positive and Gram-

negative bacteria) has diminished largely due to prevailing and emerging drug resistance.7 Rapid

emergence of STR resistance in M. tuberculosis was quickly discovered from monotherapy regimens

used initially.8 Thereafter STR has only been used in combination with other drugs like isoniazid,

rifampicin, and pyrazinamide for the treatment of active TB.

The main route to STR resistance is from mutations in the rpsL and rrs genes which together ac-

count for 60%-70% of STR resistance.4,9 These genes respectively code for the ribosomal S12 protein

and the 16S rRNA (located on the smaller subunit of the 30S subunit) ribosomal components re-

spectively. However 20%-30% of strains do not show mutations in either gene,10 where another gene,

Glucose-inhibited division protein B (gidB or gid), previously known as Ribosomal RNA small subunit

methyltransferase G (rmsG) is implicated in the development of low-level STR resistance with a min-

imum inhibitory concentration (MIC) of <32 µg/ml).6,11 MIC is defined as the lowest concentration

of a drug that prevents the visible in vitro growth of the microorganism being tested.12

The gene gidB encodes a conserved S-adenosylmethionine (SAM)-dependent 7-methylguanosine (M7G)

methyltransferase. The SAM co-factor of GidB is known to methylate G527 in the 530 loop of the

16S rRNA, and as such is considered a mutational hotspot where GidB mutants lacking an M7G

modification result in resistance to STR (Figure 1).

For mutations in the rpsL gene, substitutions in codon 43 and 88 (K43R and K88R) have been the most

commonly reported mutations associated with high-level STR resistance. For the rrs gene, the most

common mutations occur around nucleotides 530 and 915. SAV mutations in gidB are increasingly
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being identified and linked to STR resistance.13 Interestingly, gidB mutations occurring together with

mutations in rpsL and/or rrs mutations result in high level STR resistance.6,11,14,15 SAV mutations

G34E, P75T, G76R, L79S, E92K, L101F, G164D, E170D, R206L in gidB have also been linked to

STR resistance and include residues involved in interactions with the SAM co-factor in the GidB-SAM

complex. Also SAV mutations including G30R, W45C, W45S, H48Y, L49P, N52T, D67H, P75S, L79F,

P84L, W148R, G164C have been linked to low-level resistance. Further, it has been shown that the

sequential progression of low-high level resistance to STR has occurred due to existing gidB alterations

in the genetic background.5 In this chapter, SAVs in the GidB were investigated to understand the

biophysical consequences of SAVs on the GidB-SAM and STR complex.
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A

B C

Figure 1: Mechanism of action and resistance for streptomycin and its chemical structure
A) An overview of the mechanism of action and resistance for streptomycin (STR), with 60-70% STR resistance
is attributed to mutations within rpsL and rrs genes, while 20-30% STR resistance is due to mutations within
gidB. Figure adapted from Sheikh, et. al..16 B) The chemical structure of STR displayed at the bottom left
is sourced from DrugBank (ID: DB01082), C) Figure showing the target for GidB (G527 residue), on the
secondary structure of the 530 loop region of E. coli 16SrRNA. Nucleotide in red is involved in STR binding,
while those in cyan are involved in the formation of the pseudo-knot structure connected by the dotted line.
Figure adapted from Okamoto, et. al..6

5.1.3 Description of the GidB complex

As it is the GidB complex that interacts with STR, a model that included all co-factors and binding

partners was required. As described above, SAM is considered an essential partner for GidB. Addi-

tionally, the structure of T. Thermophilus GidB (PDB-ID: 3G89) published in 200917 contained an

Adenosine monophosphate (AMP) molecule bound together with SAM. The authors proposed that the

site for AMP binding may serve as a potential binding site for RNA. Thus AMP was considered one of
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the interacting partners of GidB. Similarly, in the absence of a crystal structure for the 30S ribosomal

unit in M. tuberculosis bound with STR, the crystal structure of T. thermophilus 30S ribosomal sub-

unit bound with streptomycin (PDB-ID: 4DR3)18 was used to extract a 5nt RNA fragment (residues

G526-G530) containing STR. Therefore the 5nt RNA fragment was also considered an interacting

partner required to form the final GidB-complex. As an experimentally determined structure of GidB

in M. tuberculosis was not publicly available until 2021 (PDB-ID: 7CFE, paper not yet published), the

structure of M. tuberculosis GidB was modelled, followed by molecular docking with AMP, SAM, and

5nt-RNA (bound with STR) to form the complete GidB-AMP-SAM-RNA-STR complex (see Chapter

2: Methods) for use in all downstream analyses.

Interactions of GidB binding partners

Molecular interactions between GidB binding partners: AMP, RNA, and SAM, and those interacting

with the drug STR were identified using LigPlus, PLIP and Arpeggio resulting in a total of forty

interacting residues:

• Eighteen residues at sites 33, 34, 35, 36, 37, 38, 47, 48, 51, 94, 97, 137, 138, 139, 163, 164, 165,

and 199 were identified to be interacting with the RNA fragment.

• Twenty-one residues were found to be interacting with the co-factor SAM present at sites 68,

69, 92, 93, 97, 117, 118, 119, 120, 136, 137, 138, 139, 140, 148, 218, 219, 220, 221, 222, and 223.

• Four residues at sites 123, 125, 213, and 214 were identified to be interacting with AMP.

• Four residues at sites 118, 148, 220, 223, and 224 were identified to be interacting with STR.

An overview of the GidB structural complex with all interactions identified is shown in Figure 2.
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Figure 2: Description of M. tuberculosis GidB complex with all interacting partners: RNA, SAM,
and AMP.
Overall description of GidB and its interacting partners and streptomycin (STR). The RNA fragment (G526-
G530) is shown in deep pink with all its interacting residues shown in light pink as sticks. The co-factor
SAM is shown as ball-and-stick in dark slate grey with its interacting residues shown in light grey as sticks.
STR appears as green ball-and-stick with interacting residues shared with SAM. The surface of AMP and its
interacting residues are indicated similarly in navy blue. Abbreviations used: SAM: S-adenosylmethionine,
AMP: adenosine monophosphate.
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5.2 Structural and genomic insights into streptomycin resistance

5.2.1 Mutational landscape of GidB

Multiple SAV mutations are distributed on GidB and include, but are not restricted to GidB binding
partners

A total of 531 SAVs were found in the protein coding region of gidB (Genomic id: Rv3919, coding re-

gion:4407528-4408202), and appear distributed across the protein (Figure 3), with mutations present

in 201 unique positions for a maximum of 6 SAVs (Figure 4).

A B

Figure 3: Mutational landscape of M. tuberculosis GidB
An overview of all mutational sites on M. tuberculosis GidB appearing as surface representation in tan colour.
Sites associated with SAVs are coloured orange. Panels A) and B) are opposing representations (rotated 180◦)
of GidB, with STR shown in green as ball-and-stick. The RNA fragment (G526-G530) is shown in deep pink,
co-factor SAM appears as dark slate grey sticks, while the surface of AMP is indicated in navy blue. The figure
is generated using UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, AMP:
adenosine monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.

Most residues interacting with GidB binding partners were associated with SAVs with a maximum of 6

SAVs at a single site. RNA interacting residue 165, SAM interacting residue 222 and AMP interacting

residue 123 were not associated with SAVs (Figure 2 and Figure 4). While sites with multiple

SAVs were not restricted to GidB binding partners (Figure 4), most residues (33/40) interacting

with GidB binding partners exhibited multiple SAVs, with mutant residues altering the corresponding

wild-type amino acid property (Figure 4). Mapping mutations by position in GidB highlights the

following:

Sites with RNA interactions associated with a maximum of 6 SAVs (sites marked in deep pink)

• Single mutation: L94

• Budding resistant hotspots: R33, V36 and N51
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• Hotspots with three mutations: P38, R97, V139, P199

• Hotspots with four mutations: L35, G37 and K163

• Hotspots with five mutations: G34, R47, R137 and A138

• Hotspots with six mutations: H48 and G164

Sites with SAM interactions associated with a maximum of 5 SAVs (sites marked in dark slate

grey)

• Single mutation: I68, A219, S220, T223, E120

• Budding resistant hotspots: A140, M218, G221

• Hotspots with three mutations: P93, R97, R118, S136, V139, W148

• Hotspots with four mutations: G69, G117, A119

• Hotspots with five mutations: E92, R137, A138

Sites with AMP interactions associated with a maximum of 3 SAVs (sites marked in navy blue)

• Single mutation: Q125, R213

• Budding resistant hotspots: None

• Hotspots with three mutations: G214

Sites with STR interactions associated with a maximum of 3 SAVs (sites marked in green)

• Single mutation: S220, T223

• Budding resistant hotspots: A224

• Hotspots with three mutations: R118, W148

The majority (56%, n=298) of the mutational effects resulted in electrostatic changes.
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Figure 4: Sites associated with SAVs in M. tuberculosis GidB protein

Logo plot showing 201 unique sites/positions associated with 531 SAVs in M. tuberculosis GidB. The horizontal axis shows the wild-type positions associated
with SAVs in GidB and the vertical axis shows all the mutant residues observed in our data highlighting SAV diversity at any given site. Residues are coloured according
to the amino acid (aa) property where acidic aa appear in red, basic aa appear in blue, hydrophobic aa in black, neutral aa in purple, and polar aa in dark green. The
structural positions associated with SAVs in GidB are indicated on the horizontal axis. The wild-type (WT) residues also coloured according to aa property appear
under the respective position markings. The heat bar underneath the WT residues indicate the distance of that position from STR according to the magma colour
gradient where light yellow indicates sites closer to STR (ligand distance in Angstroms). The positions are further annotated to reflect active site residues involved in
interactions with binding partners: STR (green), RNA fragment (deep pink), SAM (dark slate grey), and AMP (navy blue). The figure is generated using R statistical
software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single amino acid variation, AMP: adenosine monophosphate, SAM: S-adenosylmethionine, STR:
streptomycin.
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5.2.2 Mutational outcome from protomer stability changes and evolutionary con-

servation

Mutational consequences are destabilising for protomer stability and have deleterious impact on protein
function

Most mutations had a destabilising effect on the overall protomer stability when measured by differ-

ent computational tools (Figure 5A-D), with DeepDDG estimating 93% (n=495) as destabilising,

followed by Dynamut2 (n=460) and mCSM-DUET (n=450) estimating about 85% mutations as desta-

bilising, followed by FoldX predicting 80% (n=425) mutations as destabilising. From an evolutionary

conservation perspective, most mutations were predicted to result in a deleterious impact (effect) on

protein function indicated by PROVEAN and SNAP2 scores. PROVEAN estimated 75% (n=396)

(Figure 5E) and SNAP2 estimated nearly 67% (n=355) SAVs to result in a deleterious impact

(Figure 5F).

Figure 5: Protein stability outcome of SAVs in M. tuberculosis GidB
Mutational impact on overall protein stability and evolutionary conservation changes for 531 SAVs, A-D)
Barplots showing number of SAVs categorised as destabilising (red) or stabilising (blue) according to protein
stability changes (∆∆G Kcal/mol) as measured by four computational tools: mCSM-DUET, FoldX, DeepDDG,
and Dynamut2, E-F) Number of SAVs categorised as Effect/Deleterious (magenta) or Neutral (pink) according
to evolutionary conservation changes estimated by computational tools: PROVEAN, and SNAP2. The figures
are generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in
Gibbs free energy, SAV: single amino acid variation.

Evolutionary and structure-based predictors provide different insights into understanding mutational

impact. Mutational impact in this context is considered to be its effect on protein stability, drug

binding affinity, other binding affinities such as PPI or nucleic acid, and functional effects arising

from protein sequence variations. The first three mutational consequences are assessed by structure
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based predictors relying on the 3D structure of a protein, while the last is assessed by sequence based

predictors relying mainly on evolutionary conservation trends across many proteins using multiple

sequence alignments. The sequence based predictors are aimed at predicting pathogenicity or change

of molecular function, structure based tools rely on estimating variant effects in relation to structure

damage, corresponding to stability changes, as protein stability is considered the basic characteristic

affecting function, activity, and regulation. Predictors such as ConSurf are able to use both struc-

tural and sequence information to identify important functional regions conserved in proteins. A

variant classified as ’deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Thus, different methodological strategies benefit from

complementary information when assessing specific proteins.

Sites interacting with AMP, and those distal to STR and RNA have stabilising mutational conse-
quences

When assessing the impact on protomer stability changes due to mutations, the estimates from all

four tools employed: mCSM-DUET, FoldX, DeepDDG, and Dynamut2, were considered together

and averaged to provide a consensus mutational effect (Figure 6). While most (n=410) mutational

effects were destabilising for overall protomer stability, mutations at sites interacting with AMP pre-

dominantly resulted in stabilising effects (Figure 6 and Figure 7, sites marked in navy blue). The

impact of mutations on SAM, RNA, and STR interacting sites were overall destabilising for protomer

stability with the exception of sites 139 and 199 where all mutational impact resulted in stabilising

effect (Figure 7, sites marked in pink and dark slate grey ). Sites distal to STR and RNA exhibited

predominantly stabilising mutational impact (Figure 6) with mutational sites 6, 39, 87, 122, 139,

166, 181, 194, 199, 218, resulting in all mutational effects being stabilising, and sites 12 (5 SAVs) and

85 (6 SAVs) with all but one mutations being stabilising (Figure 7).
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Figure 6: Average protein stability effects of SAVs mapped onto the M. tuberculosis GidB protein
structure
The protein stability changes (∆∆G Kcal/mol) of SAV mutations measured by mCSM-DUET, FoldX, Deep-
DDG, and Dynamut2 were averaged and mapped onto GidB positions (appearing as tan coloured ribbon).
Destabilising mutational sites are depicted in red and stabilising mutational sites appear in blue, where colour
intensity reflects the extent of effect, ranging from -1 (most destabilising) to +1 (most stabilising). STR is
shown in green as ball-and-stick, RNA fragment (G526-G530) is shown in deep pink, co-factor SAM appears as
dark slate grey sticks, while AMP is indicated on the ribbon representation as navy blue. The figure is rendered
using UCSF Chimera version 1.14. Abbreviations used: ∆∆G: change in Gibbs free energy, SAV: single amino
acid variation, AMP: adenosine monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.
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Figure 7: Average protein stability effect for individual SAVs occurring in M. tuberculosis gidB
Barplot showing the number of number of single amino acid variation (SAV) mutations at each position in GidB coloured by the average protein stability effect, where
the horizontal axis shows the wild-type positions associated with SAVs, and the vertical axis shows the number of SAVs at that position. For a given position, each SAV
is coloured by the average protein stability effect calculated across estimates (∆∆G Kcal/mol) from mCSM-DUET, FoldX, DeepDDG, and Dynamut2. The structural
positions associated with SAVs in GidB are indicated on the horizontal axis. The heat bar underneath the positions indicates the distance of that position from STR
according to the magma colour gradient where light yellow indicates sites closer to STR (ligand distance in Angstroms). The positions are further annotated to reflect
active site residues involved in interactions with binding partners: STR (green), RNA (deep pink), SAM (dark slate grey), and AMP (navy blue). The figure is generated
using R statistical software version 4.0.2, ggplot2 package. The structural figure is rendered using UCSF Chimera version 1.14. Abbreviations used: ∆∆G: change in
Gibbs free energy in Kcal/mol, SAV: single amino acid variation, AMP: adenosine monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.
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5.2.3 Mutational consequences on affinity changes and prominent mutational ef-

fects

Mutations decrease binding affinity of STR while increasing affinity for RNA

Only 10% (n=51) of SAVs inducing changes in ligand affinity were within 10Å of STR. These mu-

tations occurred at 21 distinct sites, with most sites (n=17) showing up to three mutations. All

mutations were predicted to result in a destabilising effect on STR binding affinity measured by both

mCSM-lig and mmCSM-lig (Figure 8A top panel, Appendix Table 5.A.1). The average effect on

binding affinity at 21 mutational sites were shown to have mildly destabilising mutational consequences

(Figure 8A bottom panel). Analysing the sites close to RNA highlighted 43% (n=226) of mutations,

corresponding to 76 distinct sites that were located within 10Å of the RNA measured by mCSM-NA.

Among these, 61% (n=139) of mutations resulted in destabilising effects with triple SAVs being the

most frequent (n=22) (Figure 8B top panel, Appendix Table 5.B.1). Interestingly, sites close to

the RNA fragment predominantly exhibited mutations with mild to moderate stabilising effects, with

destabilising mutations located farther away (Figure 8B bottom).

Of the total 201 unique sites in GidB displaying SAVs, about 50% of sites exhibited up to two SAVs,

with single and double mutations occurring at 49 sites each. Triple mutations occurred most frequently

presenting at 52 sites, followed by 32 sites displaying 4 mutations, 14 sites displaying 5 mutations,

with 5 sites showing a maximum of 6 mutations (Figure 8C top panel).

The most prominent effects on STR interactions were from reduced (destabilising) affinity on STR

contributed by mutations occurring at 17 surrounding sites (Figure 8C, yellow text boxes, and bottom

panel). This was followed by sites close to the RNA fragment where mutational impact increased RNA

binding affinity from 9 mutational sites, with only 2 sites contributing to destabilising effects, located

farther away from the RNA fragment (Figure 8C, brown text boxes, and bottom panel). Though all

other sites were affected largely (n=132) by destabilising mutations, stabilising mutations sites were

near GidB binding/interacting partners (Figure 8C blue and red text boxes, and bottom panel).

This suggests that the most prominent mutational effects result in reduced binding affinity for STR

while increasing the binding affinity for RNA.
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Figure 8: Mutational impact on STR binding affinity, protein-protein interaction on GidB and
sites with the most prominent mutational effects within M. tuberculosis GidB
The top panel displays barplots showing the mutational outcome of affinity changes and their corresponding
site frequency, while the bottom panel shows the corresponding mutational impact mapped onto GidB. STR
is shown in green as ball-and-stick. Other binding partners are indicated: RNA fragment (G526-530) in deep
pink, co-factor SAM appears as dark slate grey sticks, while the surface of AMP is indicated in navy blue. A)
Mutational impact on STR binding affinity (log fold change) upon mutation estimated from mCSM-lig and
mmCSM-lig mutations for 51 mutations corresponding to 21 sites within 10Å of STR, B) Mutational impact
on RNA binding affinity (∆∆G) for 226 mutations, corresponding to 76 sites within 10Å of the RNA fragment.
For both parts A) and B), red denotes destabilising mutational sites while blue denotes stabilising mutational
sites, and the colour intensity reflects the extent of the effect ranging from -1 (most destabilising) to +1 (most
stabilising), C) Most prominent mutational effect for all 531 SAVs (corresponding to 201 sites) prioritised in
order of increasing effect size: mCSM/mmCSM-lig, mCSM-NA, protomer stability changes. Mutational effects
are coloured according to the effect type with brighter colours representing stabilising mutational effects. Sites
marked in yellow indicate changes due to ligand (STR) binding affinity with light yellow indicating destabilising
effect, brown areas indicate changes in nucleic acid (NA) i.e. RNA binding affinity with light brown indicating
destabilising and dark brown denoting stabilising effects. Protomer stability changes are coloured with blue
indicating stabilising and red indicating destabilising mutational consequences. The corresponding number of
mutation sites contributing to the different effect types are indicated in the text box at the top, and coloured
accordingly. The barplot figures are generated using R statistical software version 4.0.4, ggplot2 package. The
structure figures are generated using Chimera version 1.14. Abbreviations used: Å: angstroms, ∆∆G: change
in Gibbs free energy in kcal/mol, SAV: single amino acid variation, AMP: adenosine monophosphate, SAM:
S-adenosylmethionine, STR: streptomycin.

5.2.4 Mutational association with STR resistance and flexibility

RNA sites are more conserved than SAM, and all GidB interacting sites are associated with moderate
to high flexibility

Mutational association with resistance according to aggregate DST data showed only a minority (7%,

n=38) of mutations as resistant. Mutational sites on GidB were mapped onto the 3D structure to

highlight sites with exclusively resistant (red), sensitive (blue) and sites displaying both resistant and

sensitive mutations (purple). For GidB, there were 5 sites with exclusively resistant mutations, 29

sites with both resistant and sensitive mutations, while 167 sites with exclusively sensitive mutations

(Figure 9A).

ConSurf scores are calculated for each site on the protein, and range from 1 (rapidly evolving, variable

sites) to 9 (slowly evolving, conserved sites). Exclusively resistant mutation sites did not appear to

occur in the conserved regions of GidB (Figure 9B left panel, Figure 9A), though most mutations

(n=147) occurred in the highly conserved regions of GidB (ConSurf score 9) (Figure 9B right panel).

Also, sites surrounding the RNA were particularly more conserved compared with regions surrounding

co-factor SAM (Figure 9B left panel, Figure 9A). Residues 222-224 (interacting with SAM) appear

in yellow due to inconclusive results from ConSurf (Figure 9B left panel), similar to residues 1 and

2 which appear at the surface and away from STR, RNA and SAM (Figure 9B left panel).
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Figure 9: Mutational association with streptomycin resistance and evolutionary conservation in
M. tuberculosis GidB
Mutational landscape of M. tuberculosis GidB according to different measures with all sites associated with
SAVs on GidB. STR appears in green as ball-and-stick, co-factor SAM appears in dark slate grey. The RNA
fragment appears in orange, while the AMP surface is shown in steel blue in panes A and C, and navy blue
in panel B to aid visibility. A) The left panel shows all mutational sites associated with resistant (red, n=5
sites), sensitive (blue, n=167 sites), while common sites with both resistant and sensitive mutations appear in
purple (n=29). The corresponding right panel depicts the structure rotated by 180◦, B) Left panel shows GidB
coloured according to ConSurf Scores where maroon indicates conserved sites and teal indicates variable sites.
Yellow areas reflect sites with uncertainty due to insufficient data for ConSurf score calculation. The barplot
on the right panel shows the number of mutations associated with ConSurf values that range from 1 (variable)
in teal to 9 (conserved) in maroon, where 0 denotes insufficient data/not defined (ND). The barplot figures
are generated using R statistical software version 4.0.4, ggplot2 package. All structure figures were generated
using UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, AMP: adenosine
monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.
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The local flexibility in GidB in relation to STR resistance was also analysed with thickness of the

ribbon/tube (thinthick) indicating the extent of flexibility. Normal mode analysis (from Dynamut2)

of the protein component of GidB-complex highlighted that regions surrounding GidB interacting

partners were associated with moderate to high flexibility (Figure 10 left panel). SAM interacting

residue S220 showed the highest flexibility (Figure 10 left panel), followed by residues A140, R118

and A119 (Figure 10 right panel). Sites with exclusively resistant mutations were not located in

areas of high flexibility (Figure 10 right panel). All GidB binding partner residues associated with

moderate-to-high flexibility were sites with sensitive mutations (Figure 10 left panel).

Figure 10: Mutational association with streptomycin resistance and local protein flexibility of M.
tuberculosis GidB
Mutational landscape of M. tuberculosis GidB according to flexibility in GidB according to normal mode analysis
(NMA) measuring atomic deformation according to protein dynamics to denote flexibility associated at sites
in GidB. The magnitude of flexibility is represented from thin (low flexibility) to thick (high flexibility) tubes.
Left panel: The tubes are further coloured to show mutational association with STR resistance, red: resistant
sites, blue: sensitive sites, purple: shared sites, black: sites with no SAVs. Right panel: indicates RNA and its
interacting residues in orange, SAM interacting residues in dark slate grey, and AMP interacting residues in
steel blue. The three resistant sites are labelled with the wild-type residues using the standard one-letter code.
Other residues marked are those associated with moderate-to-high flexibility as related to GidB interacting
partners. The drug (STR) is hidden here to help highlight the labelled residues. All structure figures were
generated using UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, AMP:
adenosine monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.

5.2.5 Relating mutational frequency and biophysical and evolutionary conserva-

tional changes

Correlation analysis was performed to understand the relationship between frequently occurring mu-

tations as assessed by MAF and their association with stability (mCSM-DUET, FoldX, DeepDDG,

Dynamut2), conservation (ConSurf, SNAP2, PROVEAN) and affinity changes (mCSM-lig/mmCSM-

lig, and mCSM-NA), and distance to ligand (Lig-Dist) and nucleic acid (NA-Dist). A combined

analysis with all mutations, as well as separately for resistant (R) and sensitive (S) mutations was un-
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dertaken (Figures 11 and 12). Analyses focused on determining the strength of association without

regard for the direction of the association due to dissimilarity of threshold criteria used by the various

estimators.

Frequently occurring sensitive mutations were weakly related to protomer stability changes and distance
from the RNA

Frequently occurring mutations were weakly related to protomer stability changes: DeepDDG (ρR+S=-

0.24, P<0.001), FoldX (ρR+S=0.21,P<0.001), Dynamut2 (ρR+S=-0.14, P<0.01), and mCSM-DUET

(ρR+S=-0.12, P<0.01) (Figure 11) with sensitive mutations driving this association (P<0.05 for

sensitive mutations, P>0.05 for resistant mutations) suggesting that frequently occurring sensitive

mutations did not introduce strong changes in protomer stability (Figure 11). Frequently occurring

mutations were overall weakly associated with distance from STR (ρR+S=-0.10, P<0.05), and RNA

(ρ=-0.18, P<0.001) with sensitive mutations driving the association (P<0.05 for sensitive mutations,

P>0.05 for resistant mutations) (Figure 11).

The different computational tools showed good consensus (moderate to strong associations) amongst

their predicted estimates, both overall as well as for resistant and sensitive mutation groups individu-

ally (0.4≤ ρR+S<0.8, P<0.001). As expected, mCSM-DUET and Dynamut2 were strongly correlated

as these tools share common methodology (ρR+S=0.74, P<0.001) (Figure 11). Of note, the negative

sign associated with FoldX correlations with other predictors is due to the inverse classification criteria

used by these tools (Chapter 2: Methods).

Frequently occurring resistant mutations were moderately associated with evolutionary conservation
changes

Frequently occurring mutations were moderately related to evolutionary conservation estimates overall

(ρR+S≥0.3, P<0.001) (Figure 12 left panel). Frequently occurring resistant mutations were mod-

erately associated with rate of evolution according to ConSurf (ρR=0.40, P<0.05), and conservation

of protein function according to SNAP2 (ρR=0.44, P<0.001), and PROVEAN (ρR=-0.30, P>0.05).

Also, frequently occurring sensitive mutations were moderately related to evolutionary conservation

changes concordantly (ρR≥0.3, P<0.001). There was good agreement (moderate to strong association)

between estimates across the three conservation estimators both overall (ρR+S≥0.6, P<0.001) and in

the mutation groups (ρR/S≥0.4, P<0.001) (Figure 12 left panel).

Frequently occurring mutations were not related to affinity changes

Frequently occurring mutations were not related to STR binding affinity (mCSM- and mmCSM-lig)

or RNA binding affinity changes (mCSM-NA) either overall or within the mutation groups (ρR+S<0.1
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and ρR/S<0.1, P>0.05) (Figure 12 right panel). As expected, estimates from mCSM- and mmCSM-

lig were highly correlated, both, overall and within the mutation groups (ρR+S=1, P<0.001) due to

shared underlying methodology (Figure 12 right panel).

Figure 11: Correlation of protein stability changes and genomics measures
Pairwise correlations between minor allele frequency (MAF), protein stability changes (∆∆G) estimated using
DUET, FoldX, DeepDDG, and Dynamut2, and distances to STR and RNA for 531 SAVs. The upper panel in
both plots include the pairwise Spearman (ρ) correlation values along with their statistical significance (.P<0.10,
*P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where black denotes the overall
correlation with both resistant (R) and sensitive (S) mutations, while red denotes correlation estimates for
resistant mutations, and blue denotes correlation estimates for sensitive mutations individually. The points
in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent sensitive
mutations. The diagonal in each plot displays the density distribution of the corresponding parameter split by
R and S mutation groups. The figure is generated using R statistical software version 4.0.4, ggplot2 package.
Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid
variation, Lig-Dist: distance to ligand in Å, NA-Dist: distance to nucleic-acid Å, STR: streptomycin.
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Figure 12: Correlation of evolutionary conservation, affinity changes, and genomics measures
Pairwise correlations of evolutionary conservation, affinity changes, and genomic measure of minor allele frequency (MAF) for 858 SAVs. Left panel: Evolutionary conservation predictors: ConSurf,
SNAP2, and PROVEAN, Right panel: STR binding affinity changes estimated as log fold change (mCSM-lig and mmCSM-lig) of 51 SAVs lying within 10Å of STR, and RNA affinity changes
(mCSM-NA) estimated as ∆∆G for 226 SAVs lying within 10Å of the RNA fragment. All corresponding affinity measures for mutations located more than 10Å of STR, and the RNA fragment were
given a value of 0 to allow complete SAVs to be used for analysis, while respecting the distance threshold for the respective tools. The upper panel in both plots include the pairwise Spearman (ρ)
correlation values along with their statistical significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where black denotes the overall correlation with
both resistant (R) and sensitive (S) mutations, while red denotes correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations individually. The points
in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent sensitive mutations. The diagonal in each plot displays the density distribution of the corresponding
parameter split by R and S mutation groups. The figure is generated using R statistical software version 4.0.4, ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free
energy in Kcal/mol, SAV: single amino acid variation, Lig-Dist: distance to ligand in Å, NA-Dist: distance to nucleic-acid Å, STR: streptomycin.
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5.2.6 Comparing resistant and sensitive mutations

Resistant mutations are marginally destabilising for protomer stability and located further away from
RNA interacting sites

Resistant mutations were slightly more destabilising for changes in overall protomer stability compared

with sensitive mutations but only according to FoldX (P<0.01) (Figures 13B), and not according

to mCSM-DUET, DeepDDG, and Dynamut2 (P>0.05) (Figures 13A, 13C, 13D). Resistant and

sensitive mutations are likely to occur with a similar frequency (P>0.05) (Figure 13E). Resistant

mutations were not closer to the drug binding site (P>0.05) (Figure 13F) but occurred further away

from the nucleic acid (RNA) interacting sites with sensitive mutations occurring closer to sites in-

teracting with RNA (P<0.05) (Figure 13G). While there were no differences in mutational impact

resulting from ligand and nucleic acid binding affinity changes (P<0.05) these results are inconclusive

due to low numbers in the resistant group. There were only 3 resistant mutations (versus 48 sensitive

mutations) for mCSM/mmCSM-lig analyses, and 12 resistant mutations (versus 214 sensitive muta-

tions) for mCSM-NA analyses (Figures 13K, 13L, 13M). All measures of evolutionary conservation

were also statistically insignificant (P>0.05) (Figures 13H, 13I and 13J).
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Figure 13: Comparison of resistant (R) and sensitive (S) mutations
Violin plots showing the distribution of features related to structural properties, genomic measure, evolutionary
conservation for 531 SAVs. For affinity changes related to ligand (STR) measured by mCSM- and mmCSM-lig,
only those mutations within 10Å of STR (n=51) were considered. Similarly, for nucleic acid (NA) affinity
changes measured by mCSM-NA, only those mutations within 10Å of the RNA fragment (n=226) were con-
sidered. Mutations were grouped as either resistant (R, n=38) or sensitive (S, n=493), and were compared
using the Wilcoxon rank-sum (unpaired) test, with statistical significance indicated as: *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001). Mutations in the resistant group appear as red dots, while those in the
sensitive group appear as blue dots, and the horizontal line in the violin plots display the median value. The
two mutations groups were compared based on A-D) Stability changes (∆∆G) estimated from four compu-
tational tools: mCSM-DUET, FoldX, DeepDDG and Dynamut2, E) genomic measure of average mutational
occurrence (Log10MAF), F-G) Distance to ligand (Lig-Dist) and Distance to Nucleic acid (Distance to NA), H-
J)Evolutionary conservation measured by ConSurf (<0: Conserved, >0: Variable), PROVEAN (>-2.5: Neutral,
< -2.5: Deleterious) and SNAP2 (<=0: Neutral, >0: Effect) computational tools, K-L) Comparison of STR
binding affinity changes from mCSM-lig and mmCSM-lig measured as log fold change for R (n=3) and S (n=48)
mutations, M) RNA binding affinity changes (mCSM-NA) estimated as ∆∆G for R (n=12) and S (n=214)
mutations. The figure is generated using R statistical software version 4.0.4. Abbreviations used: Å: Angstroms,
∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid variation, ns: not-significant, STR:
streptomycin, MAF: minor allele frequency, Lig-Dist: distance to ligand in Å, NA-Dist: distance to nucleic acid
in Å, R: resistant mutations, S: sensitive mutations.
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5.2.7 Associating mutations with Odds Ratio and extreme effects

Mutations with high OR are not restricted to GidB binding partners

Based on DST data available for 268 (out of 531) SAVs, mutational association with resistance was

further estimated using Odds Ratio (OR), with values above 1 suggesting association with STR resis-

tance. The higher the OR, the greater the likelihood of a given mutation being resistant. This resulted

in nearly 50% (n=130/268) of mutations predicted to be associated with STR resistance, much higher

than observed in our data (7%, n=38/531).

An overview of mutations in GidB shows that sites with high OR are not restricted to residues

interacting with GidB binding partners (Figure 14). The mutations with the highest OR (OR=23.44)

were A134E and L44Q (Figure 14, Table 1). Of the sites that were interacting with one or more

binding partners, sites interacting with RNA displayed mutations with higher OR compared with

those interacting with SAM, while sites interacting with AMP were not associated with resistance

(OR<1) (Figure 14).

Other sites with prominent association with resistance like A200, G76, G71, P75, T146, A8, D85, C52,

A180 were not involved with any GidB binding partners. The only notable exception is G34E that is

involved in interaction with RNA.

Mutations with extreme effects primarily affect SAM, and RNA but not AMP

The most frequently occurring mutation, E92D (MAF ∼52%) and the most destabilising mutation

for STR affinity, R118L, are involved with SAM interactions. The most destabilising mutation for

nucleic acid affinity was W45G, site not involved with any GidB binding partners. The most stabilising

mutation for nucleic acid affinity was G34W, which is involved in RNA interactions (Table 1).
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Figure 14: Logo plot showing mutational sites and their association with resistance according to Odds Ratio
Logo plot showing 268 SAVs by mutational site according to their association with STR resistance calculated using Odds Ratio (OR). The vertical axis represents the
OR where letters denote mutant residues which are proportional to their corresponding OR, highlighting the most resistant mutation at each site and overall. The
mutant residues are coloured according to the amino acid (aa) properties as denoted where red denotes acidic aa, basic aa appear in blue, hydrophobic aa in black,
neutral aa in purple, and polar aa in darkgreen. The structural positions associated with SAVs with OR are indicated on the horizontal axis. The heat bar underneath
the positions indicate the distance of that position from STR according to the magma colour gradient where light yellow indicates sites closer to STR (ligand distance
in Angstroms). The positions are further annotated to reflect residues involved in interactions with binding partners: STR (green), RNA (deep pink), SAM (dark slate
grey), and AMP (navy blue). The figure is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single amino acid variation,
AMP: adenosine monophosphate, SAM: S-adenosylmethionine, STR: streptomycin.
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Mutation Mutational effect
Mutational effect

value Lig-Dist (Å)
NA-Dist

(Å)
Interacting

partner

A134E
Mutations with the

highest OR OR = 23.44 16.85 13.60 none

L44Q OR = 23.44 21.67 7.82 none
E92D Most frequent mutation MAF (%) = 51.60 8.94 5.69 SAM

Y22S
Most Destabilising for

protomer ∆∆G = -0.66 20.14 8.56 none

R96L
Most Stabilising for

protomer ∆∆G = 0.58 13.08 5.87 none

R118L
Most Destabilising for
STR binding affinity

Log fold change =
-0.97 1.98 5.46 SAM

W45G
Most Destabilising for

RNA affinity ∆∆G = -8.49 25.25 9.42 none

G34W
Most Stabilising for

RNA affinity ∆∆G = 10.22 11.82 3.95 RNA

Table 1: Mutations with extreme effects
Mutations (SAVs) with extreme effects related to Odds Ratio (OR), mutational frequency,stability and affin-
ity changes. For affinity changes only mutations within 10Å of STR and RNA for their respective binding
affinities were considered. The protomer stability changes are the average effect of all four estimates (mCSM-
DUET, FoldX, DeepDDG and Dynamut2) combined, and the STR binding affinity changes are the average
effect of the two mCSM based tools (mCSM-lig and mmCSM-lig) combined. Changes in RNA binding affinity
correspond to estimates from mCSM-NA. The estimated effects were categorised as Destabilising (log fold affin-
ity change/∆∆G<0) and Stabilising (log fold affinity change/∆∆G>0). Abbreviations used: Å: Angstroms,
∆∆G: change in Gibbs free energy in Kcal/mol, MAF: minor allele frequency, SAV: single amino acid variation,
Lig-Dist: distance to ligand, NA: nucleic acid, NA-Dist: distance to nucleic acid, STR: streptomycin.

5.2.8 Relating lineage and protomer stability

Lineages 1 and 3 have high SAV diversity, with stabilising sensitive mutations overrepresented in
Lineage 4

About 50% of samples (n=18,584) consisted of SAVs in the protein coding region of gidB, where 18,252

samples contributed to the four main M. tuberculosis lineages (Lineages 1-4). Most samples with GidB

mutations belonged to lineage 2 (n=9,465), followed by lineage 4 (n=7,372),lineage 1 (n=747) and

finally by lineage 3 with the least number of samples (n=668) (Figure 15A). However, Lineages

1 and 3 were nearly equal when assessing SAV diversity (Lineage 1: 26%, n=196; Lineage 3: 25%,

n=430). Lineage 4 showed 5% (n=372) while lineage 2 showed only 1% (n=96) SAV diversity despite

contributing the highest numbers of samples (Figure 15B). Resistant mutations for all lineages

showed prominent peaks around the highly destabilising protomer stability (∆∆G ∼ -0.8 Kcal/mol).

Resistant mutations were prominently bimodal for lineages 4 and 3 with additional peaks around

mildly stabilising ∆∆G (-0.25 Kcal/mol). Lineage 1 was multimodal with additional peaks around

the moderately stabilising (∆∆G ∼ -0.4 Kcal/mol) and around marginal stability (∆∆G ∼ -0.2

Kcal/mol) (Figure 15C).

Sensitive mutations were most pronounced in lineages 4 and 2. While lineage 4 showed a prominent

peak around the moderately stabilising ∆∆G values (∼0.35 Kcal/mol), lineage 2 showed a similar
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peak but towards the moderately destabilising ∆∆G values (∼ -0.6 Kcal/mol). Lineage 1 peaked

around the mildly destabilising (∆∆G ∼ -0.25), but spanned a wider range of protomer stability

estimates. Lineage 3 was bimodal with peaks around mildly destabilising (∆∆G ∼ -0.25 Kcal/mol)

and mildly stabilising (∆∆G ∼0.25 Kcal/mol) protomer stability values (Figure 15C). Overall lineage

distributions were significantly different between all lineages (adjusted P<0.0001), as well as in a given

lineage between resistant and sensitive mutation distributions (adjusted P<0.0001) except for lineage

1 (adjusted P>0.05) (Appendix Table 5.C.1).

Figure 15: Lineage and protomer stability distribution
Total number of samples (n=18,252) along with the number of mutations associated with STR resistance in
the four M. tuberculosis lineages (L1-L4). A) The dark grey bars show the number of mutations (SAVs), while
the light grey bar show the total number of samples in each lineage, B) Mutational diversity in each lineage,
C) Density distribution of lineages according to average protein stability changes (∆∆G).Estimates from four
different computational tools: mCSM-DUET, FoldX, DeepDDG,and Dynamut2 were combined to calculate the
average mutational stability impact for each SAV. The horizontal axis shows the average stability values (-1:
highly destabilising and +1:highly stabilising) further coloured by mutational association with STR resistance:
Red denotes resistant mutations (n=38, from 510 samples) and blue indicates sensitive mutations (n=493, from
17742 samples). The figure is generated using R statistical software version 4.0.4. Abbreviations used: ∆∆G:
change in Gibbs free energy, SAV: single amino acid variation, STR: streptomycin.

5.3 Chapter summary

The resistance profile for GidB is evolving, with triple SAVs being the most frequent, and extending

to sites beyond those involved in GidB binding partners. Most mutations occur in conserved regions
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with sites around RNA, SAM and STR with multiple SAVs displaying moderate-to-high flexibility.

The overall mutational effect on sites around the RNA are stabilising without affecting RNA binding

affinity. Resistance in gidB is underestimated from DST (7%), with GWAS inference predicting nearly

50% of mutations as resistant. As such, resistance hotspots can be located away from GidB binding

partners. This mutational promiscuity comes without a large fitness penalty as STR does not directly

bind to GidB, and mutations are unlikely to affect protein function.
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5.A Mutations close to streptomycin

Muta-
tion

Lig-Dist
(Å)

mCSM-lig
affinity

mCSM-lig
outcome

mmCSM-
lig affinity

mmCSM-lig
outcome

MAF
(%)

Odds
Ratio P-value

Adjusted
P-value

Adjusted
P-value

significance
E92Q 8.94 -0.94 Destabilising -2.61 Destabilising 0.07 11.7 0.04 0.47 ns

G117V 7.81 -1 Destabilising -2.69 Destabilising 0.02 7.8 0.11 0.65 ns
R97H 8.88 -0.27 Destabilising -2.41 Destabilising 0.04 7.8 0.11 0.65 ns
R118S 1.98 -1.43 Destabilising -3.04 Destabilising 0.04 5.85 0.12 0.65 ns
G69D 9.54 -0.85 Destabilising -3.13 Destabilising 0.26 5.85 0.12 0.65 ns
E92D 8.94 -0.69 Destabilising -2.93 Destabilising 51.6 5.09 <0.0001 <0.0001 ****
E120K 7.75 -0.74 Destabilising -3.06 Destabilising 0.01 3.9 0.34 0.8 ns
I68S 9.45 -0.67 Destabilising -2.32 Destabilising 0.01 3.9 0.34 0.8 ns

R118L 1.98 -1.58 Destabilising -3.08 Destabilising 0.02 3.9 0.34 0.8 ns
V139A 9.85 -0.78 Destabilising -2.8 Destabilising 0.02 3.9 0.34 0.8 ns
T223M 2.62 -1.06 Destabilising -2.99 Destabilising 0.04 3.9 0.27 0.8 ns
P93L 5.58 -1.09 Destabilising -2.77 Destabilising 0.06 3.9 0.34 0.8 ns

A119D 6.66 -1.02 Destabilising -2.77 Destabilising 0.13 3.9 0.34 0.8 ns
A119T 6.66 -1.28 Destabilising -3.07 Destabilising 0.95 1.19 0.7 >1 ns
G117W 7.81 -0.63 Destabilising -2.19 Destabilising 0.01 0.97 >1 >1 ns
A140V 8.18 -1.13 Destabilising -2.79 Destabilising 0.01 0.97 >1 >1 ns
R217G 8.43 -1.22 Destabilising -2.32 Destabilising 0.01 0.97 >1 >1 ns
A119V 6.66 -1.28 Destabilising -2.96 Destabilising 0.01 0.97 >1 >1 ns
E92A 8.94 -0.77 Destabilising -2.79 Destabilising 0.02 0.97 >1 >1 ns
E92G 8.94 -0.77 Destabilising -2.69 Destabilising 0.02 0.97 >1 >1 ns
P93S 5.58 -1.15 Destabilising -3.05 Destabilising 0.02 0.97 >1 >1 ns

M218V 7.4 -0.79 Destabilising -2.8 Destabilising 0.02 0.97 >1 >1 ns
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A224V 4.23 -0.8 Destabilising -2.96 Destabilising 0.02 0.97 >1 >1 ns
G69S 9.54 -1.13 Destabilising -3.22 Destabilising 0.03 0.97 >1 >1 ns
R97L 8.88 -0.3 Destabilising -2.77 Destabilising 0.04 0.97 >1 >1 ns
E92K 8.94 -0.95 Destabilising -2.86 Destabilising 0.05 0.97 >1 >1 ns
V139L 9.85 -0.75 Destabilising -2.8 Destabilising 0.05 0.97 >1 >1 ns
A219V 5.75 -0.86 Destabilising -2.96 Destabilising 0.05 0.97 >1 >1 ns
G117R 7.81 -1.26 Destabilising -2.65 Destabilising 0.07 0.97 >1 >1 ns
P93Q 5.58 -1.26 Destabilising -2.84 Destabilising 0.05 0.32 0.56 0.99 ns

R217W 8.43 -0.77 Destabilising -2.11 Destabilising 0.07 0.32 0.56 0.99 ns
G69I 9.54 -1.04 Destabilising -2.43 Destabilising 0.01 NA NA NA ns
G69V 9.54 -1.06 Destabilising -2.43 Destabilising 0.01 NA NA NA ns
L94P 6.71 -0.78 Destabilising -2.75 Destabilising 0.01 NA NA NA ns
R97C 8.88 -0.64 Destabilising -2.47 Destabilising 0.01 NA NA NA ns

A119G 6.66 -1.13 Destabilising -3.04 Destabilising 0.01 NA NA NA ns
V139M 9.85 -0.79 Destabilising -2.3 Destabilising 0.01 NA NA NA ns
A140S 8.18 -1.04 Destabilising -2.99 Destabilising 0.01 NA NA NA ns
W148C 4.61 -0.84 Destabilising -2.31 Destabilising 0.01 NA NA NA ns
W148L 4.61 -0.92 Destabilising -2.7 Destabilising 0.01 NA NA NA ns
W148R 4.61 -0.76 Destabilising -2.46 Destabilising 0.01 NA NA NA ns
R217L 8.43 -1.18 Destabilising -2.97 Destabilising 0.01 NA NA NA ns
S220R 2.96 -0.67 Destabilising -3.04 Destabilising 0.01 NA NA NA ns
G221R 5.71 -0.86 Destabilising -2.48 Destabilising 0.01 NA NA NA ns
G221V 5.71 -0.89 Destabilising -2.36 Destabilising 0.01 NA NA NA ns
G117E 7.81 -0.95 Destabilising -3.09 Destabilising 0.02 NA NA NA ns
R118H 1.98 -1.13 Destabilising -2.71 Destabilising 0.02 NA NA NA ns
M218I 7.4 -0.8 Destabilising -2.8 Destabilising 0.02 NA NA NA ns
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L145S 9.33 -0.39 Destabilising -2.32 Destabilising 0.05 NA NA NA ns
A224G 4.23 -0.8 Destabilising -3.04 Destabilising 0.05 NA NA NA ns
L145F 9.33 -0.94 Destabilising -2.47 Destabilising 0.13 NA NA NA ns

Table 5.A.1: Mutations close to STR
Fifty one single amino acid variation (SAV) mutations lying within 10Å of STR and their corresponding ligand affinity changes (log fold change) measured by mCSM-Lig
and mmCSM-lig. The estimated effect are categorised as Destabilising (log fold affinity change<0) and Stabilising (∆∆G>0). The genomic measures of minor allele
frequency (MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01, ***P
< 0.001, ****P < 0.0001, ns:>0.05. The table is arranged by OR to show mutation with the highest OR at the top for mutations close to STR. Columns with NA
indicate insufficient data to calculate OR. Abbreviations used: FDR: false discovery rate, ns: not significant, STR: streptomycin.
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5.B Mutations close to the nucleic acid

Mutation
NA-Dist

(Å)
mCSM-NA

(∆∆G)
mCSM-NA

outcome
MAF
(%) Odds Ratio P-value

Adjusted
P-value

Adjusted P-value
significance

L44Q 7.82 2.66 Increased affinity 0.04 23.44 <0.001 0.04 *
A200E 4.26 -0.18 Reduced affinity 0.1 19.52 <0.05 0.11 ns
G76C 9.67 3.67 Increased affinity 0.08 17.59 <0.001 0.02 *
G71R 4.97 3.84 Increased affinity 0.05 15.61 0.01 0.25 ns
G34E 3.95 1.46 Increased affinity 0.1 15.61 0.01 0.25 ns
C52F 7.66 2.03 Increased affinity 0.05 11.7 0.04 0.47 ns
E92Q 5.69 1.66 Increased affinity 0.07 11.7 0.04 0.47 ns
P75R 7.12 2.29 Increased affinity 0.08 9.76 0.02 0.32 ns
G73A 8.03 0.46 Increased affinity 0.2 9.76 0.02 0.32 ns
Y22S 8.56 -2.06 Reduced affinity 0.02 7.8 0.11 0.65 ns
G37E 2.3 2.06 Increased affinity 0.02 7.8 0.11 0.65 ns

G117V 8.49 -0.06 Reduced affinity 0.02 7.8 0.11 0.65 ns
G76R 9.67 2.38 Increased affinity 0.04 7.8 0.11 0.65 ns
R97H 3.93 0.9 Increased affinity 0.04 7.8 0.11 0.65 ns
A141E 6.12 -0.44 Reduced affinity 0.05 7.8 0.11 0.65 ns
H48N 3.04 0.1 Increased affinity 0.06 7.8 0.11 0.65 ns
R137P 0.93 -2.13 Reduced affinity 0.07 7.8 0.05 0.54 ns
S136P 6.84 -3.7 Reduced affinity 0.08 7.8 0.11 0.65 ns
L91P 8.54 0.01 Increased affinity 0.11 7.8 0.11 0.65 ns
S70R 5.57 -1.18 Reduced affinity 0.53 5.86 0.02 0.34 ns
R118S 5.46 0.97 Increased affinity 0.04 5.85 0.12 0.65 ns
G164D 2.84 -0.45 Reduced affinity 0.05 5.85 0.12 0.65 ns
G34V 3.95 1.75 Increased affinity 0.08 5.85 0.12 0.65 ns
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E32D 7.12 0.18 Increased affinity 0.11 5.85 0.12 0.65 ns
G69D 3.39 -0.56 Reduced affinity 0.26 5.85 0.12 0.65 ns
E92D 5.69 -0.32 Reduced affinity 51.6 5.09 <0.0001 <0.0001 ****
P75S 7.12 3.55 Increased affinity 0.26 4.88 0.05 0.54 ns

V202A 8.74 0 Increased affinity 0.01 3.9 0.34 0.8 ns
P38R 3.72 4.84 Increased affinity 0.01 3.9 0.34 0.8 ns
I68S 6.67 3.6 Increased affinity 0.01 3.9 0.34 0.8 ns
I162S 3.76 3.42 Increased affinity 0.01 3.9 0.34 0.8 ns
Y22H 8.56 -2.25 Reduced affinity 0.02 3.9 0.34 0.8 ns
R33P 2.08 -1.37 Reduced affinity 0.02 3.9 0.34 0.8 ns
G34R 3.95 4.08 Increased affinity 0.02 3.9 0.34 0.8 ns
H48P 3.04 -1.54 Reduced affinity 0.02 3.9 0.34 0.8 ns
R118L 5.46 -2.62 Reduced affinity 0.02 3.9 0.34 0.8 ns
V139A 2.88 -0.27 Reduced affinity 0.02 3.9 0.34 0.8 ns
L142W 7.41 8.36 Increased affinity 0.02 3.9 0.34 0.8 ns
K163Q 3.12 -1.51 Reduced affinity 0.02 3.9 0.34 0.8 ns
C191F 6.92 2.26 Increased affinity 0.02 3.9 0.34 0.8 ns
E40K 8.11 3.32 Increased affinity 0.03 3.9 0.34 0.8 ns
L49P 8.05 0.02 Increased affinity 0.04 3.9 0.34 0.8 ns
G76D 9.67 -0.26 Reduced affinity 0.04 3.9 0.34 0.8 ns

T223M 9.9 -3.57 Reduced affinity 0.04 3.9 0.27 0.8 ns
G37A 2.3 2.34 Increased affinity 0.05 3.9 0.27 0.8 ns
P93L 4.51 -0.4 Reduced affinity 0.06 3.9 0.34 0.8 ns
P75T 7.12 3.56 Increased affinity 0.1 3.9 0.19 0.8 ns
R47W 1.51 7.21 Increased affinity 0.29 3.74 <0.001 0.01 *
E170D 7.68 0.04 Increased affinity 0.03 2.92 0.34 0.8 ns
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H48Y 3.04 4.14 Increased affinity 0.17 2.92 0.34 0.8 ns
L26F 7.62 6.33 Increased affinity 0.07 2.6 0.24 0.8 ns
G30D 8.02 0.99 Increased affinity 0.12 2.6 0.24 0.8 ns
D67G 8.41 0.28 Increased affinity 0.26 2.6 0.24 0.8 ns
G30V 8.02 1.29 Increased affinity 0.02 1.95 >1 >1 ns
H48Q 3.04 0.12 Increased affinity 0.02 1.95 >1 >1 ns

R116W 7.91 6.06 Increased affinity 0.02 1.95 >1 >1 ns
Y22C 8.56 -2.02 Reduced affinity 0.03 1.95 >1 >1 ns
H48R 3.04 0.78 Increased affinity 0.04 1.95 >1 >1 ns
R96C 5.87 1.01 Increased affinity 0.04 1.95 >1 >1 ns

K163N 3.12 -1.51 Reduced affinity 0.05 1.95 >1 >1 ns
E170K 7.68 3.33 Increased affinity 0.05 1.95 >1 >1 ns
P75L 7.12 -0.02 Reduced affinity 0.06 1.95 >1 >1 ns
R96L 5.87 -2.59 Reduced affinity 0.13 1.95 >1 >1 ns
L50R 8.56 2.27 Increased affinity 0.38 1.95 >1 >1 ns

A138V 3.31 -0.3 Reduced affinity 0.45 1.95 0.46 0.99 ns
A138E 3.31 -0.6 Reduced affinity 0.16 1.17 >1 >1 ns
P29L 8.95 0.05 Increased affinity 0.01 0.97 >1 >1 ns

G117W 8.49 8.41 Increased affinity 0.01 0.97 >1 >1 ns
A140V 4.63 0.1 Increased affinity 0.01 0.97 >1 >1 ns
G192R 7.45 2.65 Increased affinity 0.01 0.97 >1 >1 ns
A200T 4.26 3.74 Increased affinity 0.01 0.97 >1 >1 ns
E32K 7.12 3.47 Increased affinity 0.01 0.97 >1 >1 ns
R43S 6.66 1.64 Increased affinity 0.01 0.97 >1 >1 ns
R43T 6.66 1.65 Increased affinity 0.01 0.97 >1 >1 ns
A72T 5.67 5.31 Increased affinity 0.01 0.97 >1 >1 ns
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L74F 4.27 6.41 Increased affinity 0.01 0.97 >1 >1 ns
S136A 6.84 -3.73 Reduced affinity 0.01 0.97 >1 >1 ns
A161D 7.79 -0.35 Reduced affinity 0.01 0.97 >1 >1 ns
G164A 2.84 -0.15 Reduced affinity 0.01 0.97 >1 >1 ns
G164S 2.84 3.47 Increased affinity 0.01 0.97 >1 >1 ns
D67A 8.41 0.29 Increased affinity 0.02 0.97 >1 >1 ns
D67E 8.41 0.03 Increased affinity 0.02 0.97 >1 >1 ns
E92A 5.69 -0.04 Reduced affinity 0.02 0.97 >1 >1 ns
E92G 5.69 -0.05 Reduced affinity 0.02 0.97 >1 >1 ns
P93S 4.51 3.19 Increased affinity 0.02 0.97 >1 >1 ns

C191W 6.92 5.09 Increased affinity 0.02 0.97 >1 >1 ns
A193G 5.87 0.18 Increased affinity 0.02 0.97 >1 >1 ns
R96H 5.87 0.76 Increased affinity 0.02 0.97 >1 >1 ns
R47G 1.51 -1.3 Reduced affinity 0.03 0.97 >1 >1 ns
R47Q 1.51 0.39 Increased affinity 0.03 0.97 >1 >1 ns
C52W 7.66 4.85 Increased affinity 0.03 0.97 >1 >1 ns
G69S 3.39 3.36 Increased affinity 0.03 0.97 >1 >1 ns
G71E 4.97 1.21 Increased affinity 0.03 0.97 >1 >1 ns
H174Y 8.05 2.32 Increased affinity 0.03 0.97 >1 >1 ns
L26S 7.62 4.26 Increased affinity 0.04 0.97 >1 >1 ns
S70N 5.57 -1.86 Reduced affinity 0.04 0.97 >1 >1 ns
L74S 4.27 4.34 Increased affinity 0.04 0.97 >1 >1 ns
R97L 3.93 -2.46 Reduced affinity 0.04 0.97 >1 >1 ns
T98P 8.4 -3.58 Reduced affinity 0.04 0.97 >1 >1 ns

R137Q 0.93 -0.47 Reduced affinity 0.04 0.97 >1 >1 ns
K163E 3.12 -3.47 Reduced affinity 0.04 0.97 >1 >1 ns
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G34A 3.95 1.74 Increased affinity 0.05 0.97 >1 >1 ns
E92K 5.69 2.97 Increased affinity 0.05 0.97 >1 >1 ns
V139L 2.88 -0.24 Reduced affinity 0.05 0.97 >1 >1 ns
P199A 2.1 0.48 Increased affinity 0.05 0.97 >1 >1 ns
G117R 8.49 2.27 Increased affinity 0.07 0.97 >1 >1 ns
G34W 3.95 10.22 Increased affinity 0.08 0.97 >1 >1 ns
L50P 8.56 -0.07 Reduced affinity 0.08 0.97 >1 >1 ns

A167D 7.62 -0.3 Reduced affinity 0.08 0.97 >1 >1 ns
R137W 0.93 6.35 Increased affinity 0.14 0.97 >1 >1 ns
G30R 8.02 3.62 Increased affinity 0.07 0.78 >1 >1 ns
A138T 3.31 3.31 Increased affinity 0.04 0.65 >1 >1 ns
E40D 8.11 0.03 Increased affinity 0.01 0.49 0.55 0.99 ns
P75Q 7.12 1.62 Increased affinity 0.01 0.49 0.55 0.99 ns
S136L 6.84 -3.69 Reduced affinity 0.01 0.49 0.55 0.99 ns
L44R 7.82 3.34 Increased affinity 0.02 0.49 0.55 0.99 ns
L35P 3.04 2.2 Increased affinity 0.04 0.49 0.55 0.99 ns
W45S 9.42 -4.85 Reduced affinity 0.04 0.49 0.55 0.99 ns
C52R 7.66 -1.3 Reduced affinity 0.07 0.49 0.55 0.99 ns
P75A 7.12 -0.07 Reduced affinity 0.07 0.49 0.55 0.99 ns
G73E 8.03 0.17 Increased affinity 0.11 0.49 0.55 0.99 ns
G73R 8.03 2.79 Increased affinity 0.2 0.49 0.55 0.99 ns
H174R 8.05 -1.04 Reduced affinity 0.03 0.32 0.56 0.99 ns
P93Q 4.51 1.25 Increased affinity 0.05 0.32 0.56 0.99 ns
C52Y 7.66 2.02 Increased affinity 0.07 0.32 0.56 0.99 ns
L91V 8.54 0.01 Increased affinity 0.12 0.32 0.56 0.99 ns
G71V 4.97 1.52 Increased affinity 0.16 0.28 0.28 0.8 ns
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G37R 2.3 4.68 Increased affinity 0.18 0.28 0.28 0.8 ns
R166Q 6.74 -0.61 Reduced affinity 0.02 0.24 0.31 0.8 ns
A167P 7.62 0.01 Increased affinity 0.16 0.16 0.1 0.65 ns
Y22N 8.56 -4 Reduced affinity 0.01 NA NA NA ns
V31G 8.85 0.02 Increased affinity 0.01 NA NA NA ns
R33G 2.08 -1.41 Reduced affinity 0.01 NA NA NA ns
L35M 3.04 2.2 Increased affinity 0.01 NA NA NA ns
L35Q 3.04 3.86 Increased affinity 0.01 NA NA NA ns
V36A 2.08 2.53 Increased affinity 0.01 NA NA NA ns
P38H 3.72 5.88 Increased affinity 0.01 NA NA NA ns
P38L 3.72 2.52 Increased affinity 0.01 NA NA NA ns
R39C 7.7 1.33 Increased affinity 0.01 NA NA NA ns
R39P 7.7 -2.27 Reduced affinity 0.01 NA NA NA ns
E40G 8.11 0.3 Increased affinity 0.01 NA NA NA ns
R43G 6.66 -2 Reduced affinity 0.01 NA NA NA ns
L44P 7.82 1.01 Increased affinity 0.01 NA NA NA ns
W45G 9.42 -8.49 Reduced affinity 0.01 NA NA NA ns
D46H 6.79 3.64 Increased affinity 0.01 NA NA NA ns
R47L 1.51 -1.25 Reduced affinity 0.01 NA NA NA ns
R47P 1.51 -1.26 Reduced affinity 0.01 NA NA NA ns
H48D 3.04 -1.86 Reduced affinity 0.01 NA NA NA ns
L49V 8.05 0.02 Increased affinity 0.01 NA NA NA ns
N51T 3.72 2.58 Increased affinity 0.01 NA NA NA ns
C52S 7.66 -0.03 Reduced affinity 0.01 NA NA NA ns
V54A 8.75 0.02 Increased affinity 0.01 NA NA NA ns
D67H 8.41 3.69 Increased affinity 0.01 NA NA NA ns
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G69I 3.39 -0.23 Reduced affinity 0.01 NA NA NA ns
G69V 3.39 -0.24 Reduced affinity 0.01 NA NA NA ns
S70G 5.57 -3.54 Reduced affinity 0.01 NA NA NA ns
A72V 5.67 1.72 Increased affinity 0.01 NA NA NA ns
G73W 8.03 8.93 Increased affinity 0.01 NA NA NA ns
L74V 4.27 0.76 Increased affinity 0.01 NA NA NA ns
G76S 9.67 3.65 Increased affinity 0.01 NA NA NA ns
L94P 1.98 -0.64 Reduced affinity 0.01 NA NA NA ns
L95V 7.12 0 Reduced affinity 0.01 NA NA NA ns
R96P 5.87 -2.6 Reduced affinity 0.01 NA NA NA ns
R97C 3.93 1.13 Increased affinity 0.01 NA NA NA ns
T98A 8.4 -3.61 Reduced affinity 0.01 NA NA NA ns
T98I 8.4 -3.57 Reduced affinity 0.01 NA NA NA ns

R116G 7.91 -2.46 Reduced affinity 0.01 NA NA NA ns
R137G 0.93 -2.16 Reduced affinity 0.01 NA NA NA ns
R137L 0.93 -2.12 Reduced affinity 0.01 NA NA NA ns
A138P 3.31 -0.3 Reduced affinity 0.01 NA NA NA ns
A138S 3.31 3.3 Increased affinity 0.01 NA NA NA ns
V139M 2.88 -0.25 Reduced affinity 0.01 NA NA NA ns
A140S 4.63 3.69 Increased affinity 0.01 NA NA NA ns
A141P 6.12 -0.12 Reduced affinity 0.01 NA NA NA ns
A141T 6.12 3.48 Increased affinity 0.01 NA NA NA ns
L142F 7.41 5.54 Increased affinity 0.01 NA NA NA ns
L142S 7.41 3.48 Increased affinity 0.01 NA NA NA ns

W148C 8.9 -4.84 Reduced affinity 0.01 NA NA NA ns
W148L 8.9 -8.46 Reduced affinity 0.01 NA NA NA ns
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W148R 8.9 -6.12 Reduced affinity 0.01 NA NA NA ns
A161P 7.79 -0.01 Reduced affinity 0.01 NA NA NA ns
A161V 7.79 -0.01 Reduced affinity 0.01 NA NA NA ns
K163R 3.12 -0.83 Reduced affinity 0.01 NA NA NA ns
G164C 2.84 3.47 Increased affinity 0.01 NA NA NA ns
R166W 6.74 6.2 Increased affinity 0.01 NA NA NA ns
E170G 7.68 0.32 Increased affinity 0.01 NA NA NA ns
H174D 8.05 -3.66 Reduced affinity 0.01 NA NA NA ns
H174N 8.05 -1.7 Reduced affinity 0.01 NA NA NA ns
T190I 8.62 -3.46 Reduced affinity 0.01 NA NA NA ns
T190S 8.62 0.14 Increased affinity 0.01 NA NA NA ns
C191R 6.92 -1.04 Reduced affinity 0.01 NA NA NA ns
C191Y 6.92 2.26 Increased affinity 0.01 NA NA NA ns
G192V 7.45 0.32 Increased affinity 0.01 NA NA NA ns
A193E 5.87 -0.09 Reduced affinity 0.01 NA NA NA ns
N194D 9.09 -1.9 Reduced affinity 0.01 NA NA NA ns
N194S 9.09 2 Increased affinity 0.01 NA NA NA ns
R197H 7.26 1.09 Increased affinity 0.01 NA NA NA ns
P198R 3.97 2.48 Increased affinity 0.01 NA NA NA ns
P199H 2.1 3.88 Increased affinity 0.01 NA NA NA ns
P199R 2.1 2.84 Increased affinity 0.01 NA NA NA ns
T201P 5.69 -3.04 Reduced affinity 0.01 NA NA NA ns
V202G 8.74 -0.02 Reduced affinity 0.01 NA NA NA ns
V202L 8.74 0.06 Increased affinity 0.01 NA NA NA ns
G30C 8.02 4.9 Increased affinity 0.02 NA NA NA ns
V36G 2.08 2.51 Increased affinity 0.02 NA NA NA ns
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E40A 8.11 0.31 Increased affinity 0.02 NA NA NA ns
L49R 8.05 2.34 Increased affinity 0.02 NA NA NA ns
A72S 5.67 5.29 Increased affinity 0.02 NA NA NA ns
G76V 9.67 0.08 Increased affinity 0.02 NA NA NA ns
G117E 8.49 -0.36 Reduced affinity 0.02 NA NA NA ns
R118H 5.46 0.74 Increased affinity 0.02 NA NA NA ns
A161G 7.79 -0.06 Reduced affinity 0.02 NA NA NA ns
L196S 6.03 3.75 Increased affinity 0.02 NA NA NA ns
S70I 5.57 -3.5 Reduced affinity 0.03 NA NA NA ns

G164R 2.84 2.19 Increased affinity 0.03 NA NA NA ns
W45R 9.42 -6.11 Reduced affinity 0.04 NA NA NA ns
D67N 8.41 1.98 Increased affinity 0.04 NA NA NA ns
N194T 9.09 2.01 Increased affinity 0.04 NA NA NA ns
R197C 7.26 1.34 Increased affinity 0.04 NA NA NA ns
L91R 8.54 2.35 Increased affinity 0.05 NA NA NA ns
L145S 8.51 3.6 Increased affinity 0.05 NA NA NA ns
G164V 2.84 -0.14 Reduced affinity 0.05 NA NA NA ns
N51K 3.72 1.95 Increased affinity 0.06 NA NA NA ns
L35R 3.04 4.53 Increased affinity 0.07 NA NA NA ns
G37V 2.3 2.35 Increased affinity 0.13 NA NA NA ns
L145F 8.51 5.66 Increased affinity 0.13 NA NA NA ns

Table 5.B.1: Mutations close to nucleic acid in GidB
Two hundred and twenty six single amino acid variation (SAV) mutations lying within 10Å of the nucleic acid (NA) and their corresponding NA affinity changes (∆∆G)
measured by mCSM-NA. The estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures of minor allele frequency
(MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, ns: >0.05. The table is arranged by OR to to show mutation with the highest OR at the top for mutations close to the nucleic acid. Columns with
NA indicate insufficient data to calculate OR. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant.
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5.C Average stability comparisons for lineages

Lineage (L)
comparisons Samples (n)

Adjusted
P-values

Adjusted P-values
Significance

L1 vs L2 L1 (747), L2 (9465) <2.2e-16 ****
L1 vs L3 L1 (747), L3 (668) 3.3e-016 ****
L1 vs L4 L1 (747), L4 (7372) <2.2e-16 ****
L2 vs L3 L2 (9465), L3 (668) <2.2e-16 ****
L2 vs L4 L2 (9465), L4 (7372) <2.2e-16 ****
L3 vs L4 L3 (668), L4 (7372) <2.2e-16 ****

Within Lineage comparisons
L1: R vs S R (n=19), S (n=728) 0.05 ns
L2: R vs S R (n=218), S (n=9247) <2.2e-16 ****
L3: R vs S R (n=33), S (n=635) 0 ****

Table 5.C.1: Lineage comparisons for GidB mutations
Kolmogorov-Smirnoff (KS) test reporting the statistical differences in distributions between M. tuberculosis lin-
eages when assessed based on average stability changes (∆∆G) measured by mCSM-DUET, FoldX, DeepDDG,
and Dynamut2. Lineage comparisons were performed for samples containing mutations associated with sensitiv-
ity (R: Resistant, S: Sensitive). These comparisons were performed for R and S samples between and in lineages.
Statistical significance thresholds used are *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, ns >0.05. Abbre-
viations used: ∆∆G: change in Gibbs free energy in Kcal/mol, Adj. P-values: Bonferroni adjusted P-values, n:
number of samples, ns: not significant.
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Chapter 6

KatG-isoniazid

results

217



6.1 Background

6.1.1 Mechanism of action of isoniazid

Isoniazid, also known as isonicotinic acid hydrazide (INH) is an antibiotic used in the treatment

of active and latent TB. For active TB, it is used in combination with other drugs like rifampicin,

pyrazinamide, streptomycin or ethambutol. INH is a pro-drug that is activated by the enzyme catalase

peroxidase encoded by the katG gene.1 The primary mechanism of action of INH is inhibition of mycolic

acid synthesis by binding to the NADH-dependent enoyl-acyl carrier reductase protein, encoded by the

inhA gene.2,3 Activation of INH by katG produces a range of radicals including nitric oxide capable

of attacking multiple targets in M. tuberculosis.4 KatG catalyses the formation of isonicotinic acyl

radical which together with NADH forms the nicotinoyl-NAD adduct. This complex then binds to

inhA (enoyl-acyl carrier protein reductase protein) to block the natural enoyl-AcpM substrate leading

to inhibition of the biosynthesis of mycolic acids - an essential component of mycobacterial cell walls

(Figure 1).

A

B

Figure 1: Chemical structure and mechanism of action and resistance for isoniazid
A) The chemical structure of isoniazid (INH) is shown at the top left and is sourced from DrugBank
(ID:DB00951). An overview of the mechanism of action and resistance for isoniazid (INH) is shown, with
mutations in katG and inhA playing an important role in INH resistance. Figure adapted from Sheikh et. al.,5
B)(enoyl-acyl carrier protein reductase protein). Figure adapted from Unissa et. al..6
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6.1.2 Isoniazid resistance in M. tuberculosis

TB treatment with INH has been compromised due to drug resistance, with mutations in the NADH-

dependent enoyl-acyl-carrier-protein reductase (inhA) and Catalase-peroxidase-peroxynitritase T (katG)

genes, with katG being the major mechanism of INH resistance.6–8 The most prevalent mutation identi-

fied is S315T in katG which results in the formation of an INH derivative unable to form the INH-NAD

adduct required for its antibacterial activity.8–12 This mutation is commonly observed in MDR (resis-

tant to both isoniazid and rifampicin) strains of M. tuberculosis.13 Additional mutations at this site

(S315I, S315R, S315N, S315G) in clinical strains have been shown to interfere with flexibility and

stability of the INH binding site causing rigidity, leading to reduced- or in- activity of the enzyme.8

Among other mutations commonly associated with INH resistance are R104L, H108Q, N138S, D142A,

L148R, H270Q, T275P, W321G, D381G, L587M, A350T, R463L, R463G,1,14,15 as well as high confi-

dence mutations associated with resistance: A139P, S140N, S140R, D142A, G279D, G285D, G316D,

S457I, and G593D.16

6.1.3 Active site description and INH resistance

An experimentally determined atomic structure of KatG in M. tuberculosis is available as PDB en-

try 1SJ217 as a homo-dimeric enzyme. The KatG protein is a homo-dimeric bifunctional heme-

dependent enzyme. It exhibits catalytic and broad spectrum peroxidatic activity, comparable to

monofunctional catalases. As such, INH binding is mediated by the co-factor heme bound to the

KatG protein.17,18

Interactions in KatG

Molecular interactions with residues between KatG, INH, and the heme co-factor were identified using

LigPlus, PLIP and Arpeggio tools, resulting in a total of thirty-four interacting residues:

• Ten residues at sites 104, 107, 108, 136, 137, 228, 229, 230, 232, 315 were identified as interacting

with INH.

• Twenty-nine residues at sites 94, 100, 101, 103, 104, 107, 230, 231, 232, 248, 252 265, 266,

269, 270, 272, 273, 274, 275, 276, 314, 315, 317, 321, 378, 380, 381, 408, 412 were identified as

interacting with co-factor heme.

An overview of the KatG structural complex with all interactions identified is shown in Figure 2.
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A

B

Figure 2: Description of M. tuberculosis KatG protein complex with INH and co-factor heme
Overall description of KatG-INH complex. INH appears as green spheres while co-factor heme is shown in
dark slate grey as ball-and-stick. A) homo-dimer KatG in complex with INH with chain A indicated as surface
representation in tan colour, while chain B is shown as grey ribbons, B) Close-up view of all interacting residues
coloured green for INH and dark slate grey for co-factor heme, and labelled accordingly. The key active site
residue S315 is highlighted in blue. Abbreviation used: INH: isoniazid.
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6.2 Structural and genomic insights into isoniazid resistance

6.2.1 Mutational landscape of KatG

Multiple SAVs are spread along KatG including the active site and beyond

A total of 817 SAVs were found in the protein coding region of katG (Rv1908c: 2153889-2156111).

The mutational landscape of KatG appears distributed across the protein (Figure 3), with mutations

present in 460 unique positions with a maximum of nine SAVs at a single site (Figure 4).

A B

Figure 3: Mutational landscape of M. tuberculosis KatG
An overview of all mutational sites on M. tuberculosis KatG appearing as surface representation in tan colour
with chain B is shown as grey ribbons. Sites associated with SAVs are coloured orange. Panels A) and B) are
opposing representations (rotated 180◦) of INH, with INH shown as green spheres in the binding pocket while
co-factor heme appears as dark slate grey sphere. The figure is generated using UCSF Chimera version 1.14.
Abbreviations used: SAV: single amino acid variation, INH: isoniazid.

Half (50%, n=5) of residues interacting with INH (Figure 2) had SAVs, as did 72% (n=21) of residues

interacting with heme (Figure 2). Mapping mutations by positions in KatG highlighted (Figure 4)

the following:

Sites with INH interactions associated with a maximum of 5 SAVs (sites marked in dark green)

• Single mutations: P136, I228

• Budding resistant hotspots: R104, shared interaction with heme.

• Hotspots with four mutations: P232, shared interaction with heme.

• Hotspots with five mutations: S315, shared interaction with heme.

Sites with heme interactions associated with a maximum of 5 SAVs (sites marked in dark slate

grey)
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• Single mutations: D94N, P100T, N231K, I248T, F252L, H276Q

• Budding resistant hotspots: L101, R104, G269, G273, T275, and L378 where R104 shared

interaction with INH.

• Hotspots with three mutations: I103, F272, T314, and I317 showed triple mutations.

• Hotspots with four mutations: P232 and F408 showed 4 mutations each where P232 shared

interaction with INH.

• Hotspots with five mutations: S315 and T380 showed 5 mutations each where key residue S315

shared interaction with INH.

Sites in KatG which did not involve residues interacting with INH or heme, and were located more

than 10Å away from INH had many mutations at a single site to a maximum of 9. These were H116 (9

SAV mutations) and G124 (8 SAV mutations). The majority (61%, n=504) of the mutational effects

resulted in electrostatic changes (Figure 4).
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Figure 4: Sites associated with SAVs in M. tuberculosis KatG
Logo plot showing 460 unique sites/positions associated with 817 SAVs in M. tuberculosis KatG. The horizontal axis shows the wild-type positions associated with SAVs
in KatG and the vertical axis shows all the mutant residues observed in our data highlighting SAV diversity at a given site. Residues are coloured according to the
amino acid (aa) property where acidic aa appear in red, basic aa appear in blue, hydrophobic aa in black, neutral aa in purple, and polar aa in darkgreen. The structural
positions associated with SAVs in KatG are indicated on the horizontal axis. The wild-type (WT) residues also coloured according to aa property appear under the
respective position markings. The heat bar underneath the WT residues indicate the distance of that position from INH according to the magma colour gradient where
light yellow indicates sites closer to INH (ligand distance in Angstroms). The positions are further annotated to reflect active site residues involved in interactions with
INH (green), and co-factor heme in dark slate grey. The figure is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single
amino acid variation, INH: isoniazid.
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6.2.2 Mutational outcome from protomer stability changes and evolutionary con-

servation

Most mutational consequences are destabilising for protomer stability and have deleterious impact on
protein function

Most mutations have a destabilising effect on the overall protomer stability when measured by the

different computational tools (Figure 5A-4D), with DeepDDG estimating 90% (n=740) as desta-

bilising, followed by ∼84% of mutations estimated by Dynamut2 (n=687) and mCSM (n=685) as

destabilising, and then by FoldX predicting ∼81% (n=658) mutations as destabilising. From an evo-

lutionary conservation perspective, most mutations were predicted to result in a deleterious impact

(effect) on protein function indicated by PROVEAN and SNAP2 scores. PROVEAN estimated around

71% (n=580) Figure 5E) and SNAP2 estimated nearly 68% (n=553) SAVs resulting in deleterious

effects (Figure 5F).

Figure 5: Protein stability outcome of SAVs in M. tuberculosis KatG
Mutational impact on overall protein stability and evolutionary conservation changes for 817 SAVs, A-D)
Barplots showing number of SAVs categorised as destabilising (red) or stabilising (blue) according to protein
stability changes (∆∆G Kcal/mol) measured by four computational tools: mCSM-DUET, FoldX, DeepDDG,
and Dynamut2, E-F) Number of SAVs categorised as Effect/Deleterious (magenta) or Neutral (pink) according
to evolutionary conservation changes estimated by computational tools: PROVEAN, and SNAP2. The figure
is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in
Gibbs free energy, SAV: single amino acid variation.

Evolutionary and structure-based predictors provide different insights into understanding mutational

impact. Mutational impact in this context is considered to be its effect on protein stability, drug

binding affinity, other binding affinities such as PPI or nucleic acid, and functional effects arising

from protein sequence variations. The first three mutational consequences are assessed by structure
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based predictors relying on the 3D structure of a protein, while the last is assessed by sequence based

predictors relying mainly on evolutionary conservation trends across many proteins using multiple

sequence alignments. The sequence based predictors are aimed at predicting pathogenicity or change

of molecular function, structure based tools rely on estimating variant effects in relation to structure

damage, corresponding to stability changes, as protein stability is considered the basic characteristic

affecting function, activity, and regulation. Predictors such as ConSurf are able to use both struc-

tural and sequence information to identify important functional regions conserved in proteins. A

variant classified as ’deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Thus, different methodological strategies benefit from

complementary information when assessing specific proteins.

6.2.3 Mutational consequences on affinity changes and prominent mutational ef-

fects

Mutations decrease binding affinity for INH and the dimer interface

Around 9% (n=74) of SAVs inducing changes in INH binding affinity were within 10Å of INH. These

mutations occurred at 36 distinct sites, with most sites (n=18) having single mutations. Over 91% of

mutations (n=68) were predicted to result in a destabilising effect on INH binding affinity measured

by mCSM-lig, and all (n=74) mutations were destabilising according to mmCSM-lig (Figure 6A top

panel, Appendix Table 6.A.1). The average binding affinity effect of the 36 mutational sites showed

mildly destabilising mutational consequences (Figure 6A bottom panel ). Analysing the sites close

to the dimer interface highlighted about 32% (n=260) mutations, corresponding to 144 distinct sites,

to be within 10Å of the dimer interface as measured by mCSM-PPI2, where 80% (n=210) of mutations

resulted in destabilising effects (Figure 6B top panel, Appendix Table 6.B.1). Sites around the PPI

showed mixed stability effects with stabilising mutations appearing closer to the dimer interface on

visual inspection (Figure 6B bottom panel).

Of the total 460 unique sites in KatG displaying SAVs, approximately 52% (n=239) of sites showed

single mutations, followed by ∼30% (n=136) sites as budding resistant hotspots (Figure 6C top

panel). The most prominent effects on INH binding were from reduced (destabilising) binding affinity

to INH contributed by mutations from 27 surrounding sites (Figure 6C, yellow text boxes and

bottom panel). Sites close to the dimer interface were mostly affected by destabilising mutations from

43 surrounding sites, while 12 sites contributing to stabilising mutational impacts (Figure 6C, pink

text boxes, and bottom panel). All other sites were largely (n=332) affected by destabilising mutations

(Figure 6C, blue and red text boxes, and bottom panel) impacting protomer stability.
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Figure 6: Mutational impact on INH binding affinity, protein-protein interaction on KatG, and
sites with the most prominent mutational effects within M. tuberculosis KatG
The top panel displays barplots showing the mutational outcome of affinity changes and their corresponding site
frequency, while the bottom panel shows the corresponding mutational impact mapped onto the KatG (chain
A) appearing in tan colour, while chain B is shown as grey ribbons. INH is shown as green spheres in the
binding site, while heme appears as dark slate grey sticks. A) Mutational impact on INH binding affinity (log
fold change) from mCSM-lig and mmCSM-lig with 74 mutations occurring at 36 sites within 10Å of INH, B)
Mutational impact on protein-protein (PP) binding affinity (∆∆G) for 260 mutations at 144 sites within 10Å
of the PPI. For both parts A) and B), red denotes destabilising mutational sites while blue denotes stabilising
mutational sites, and the colour intensity reflects the extent of the effect ranging from -1 (most destabilising)
to +1 (most stabilising), C) Most prominent mutational effect for all 817 SAVs present at 460 sites, prioritised
in order of increasing effect size: mCSM/mmCSM-lig, mCSM-PPI2, followed by overall stability changes where
brighter colours indicate stabilising effects. Sites marked in yellow indicate changes due to ligand (INH) binding
affinity with light yellow denoting destabilising changes, pink areas indicate changes due to PPI affinity with
bright pink highlighting stabilising and light pink areas indicating destabilising mutational effects. All other
sites are coloured by protomer stability changes with blue showing stabilising and red indicating destabilising
effects. The corresponding number of mutation sites contributing to these changes are indicated in the text
box at the top, and coloured accordingly. The barplot figures are generated using R statistical software version
4.0.4, ggplot2 package. The structure figures are generated using Chimera version 1.14. Abbreviations used: Å:
Angstroms, ∆∆G: change in Gibbs free energy in kcal/mol, SAV: single amino acid variation, INH: isoniazid.

6.2.4 Mutational association with INH resistance and flexibility

Most mutations lie in conserved areas and are associated with mild-to-moderate flexibility

Mutational association with resistance according to aggregate DST data showed approximately equal

number of resistant (45%, n=369) and sensitive mutations (54%, n=448). Mutational sites were

mapped onto KatG to highlight the location of sites with exclusively resistant (red) and sensitive

(blue) mutations while sites displaying both resistant and sensitive mutations were coloured purple.

There were 140 sites with resistant mutations, 119 sites with both resistant and sensitive mutations,

while 201 sites with sensitive mutations (Figure 7A).

ConSurf scores are calculated for each site on the protein, and range from 1 (rapidly evolving, variable

sites) to 9 (slowly evolving, conserved sites). While there were some resistant mutations close to INH

and the PPI, such mutations were not restricted in these areas, with resistant mutations occurring

away from INH, heme co-factor, and the dimer interface (Figure 7B left panel). Most mutations

(n=270) occurred in the highly conserved regions of katG ConSurf score 9)(Figure 7B right panel).

Further, the local flexibility in KatG in relation to INH resistance was also analysed, with thickness of

the ribbon/tube (thinthick) corresponding to the extent of flexibility. Normal mode analysis of KatG

highlighted that regions associated with SAVs in KatG were located in regions of moderate flexibility

(Figure 8 left panel) though the key active site residue S315 was in a region of low flexibility (Figure 8

right panel). A budding resistant hotspot site E233 was associated with high flexibility (Figure 8

right panel), and the heme interacting residue site N231 exhibited mild-to-moderate flexibility on
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B

Figure 7: Mutational association with isoniazid resistance and evolutionary conservation in M.
tuberculosis KatG
Mutational landscape of M. tuberculosis KatG according to different measures where A) All sites associated with
SAVs on M. tuberculosis KatG with INH shown as green spheres, A) The left panel shows all mutational sites
associated with resistant (red, n=140 sites), sensitive (blue, n=201 sites), while common sites with both resistant
and sensitive mutations appear in purple (n=119). The corresponding right panel depicts the structure rotated
by 180◦, B) Left panel shows KatG coloured according to ConSurf scores where maroon indicates conserved
sites and teal indicates variable sites. Yellow areas reflect sites with uncertainty due to insufficient data for
ConSurf score calculation. The barplot on the right panel shows the the number of mutations associated with
ConSurf values that range from 1 (variable) in teal to 9 (conserved) in maroon, where 0 denotes insufficient
data/not defined (ND). The barplot figures are generated using R statistical software version 4.0.4, ggplot2
package. All structure figures were generated using UCSF Chimera version 1.14. Abbreviations used: SAV:
single amino acid variation, INH: isoniazid.
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Figure 8: Mutational association with isoniazid resistance and local protein flexibility of M.
tuberculosis KatG
Mutational landscape of M. tuberculosis KatG according to flexibility in KatG according to normal mode analysis
(NMA), measuring atomic deformation according to protein dynamics to denote flexibility associated at sites in
KatG. The magnitude of flexibility is represented from thin (low flexibility) to thick (high flexibility) tubes. Left
panel: The tubes are further coloured to show mutational association with INH resistance, red: resistant sites,
blue: sensitive sites, purple: shared sites, black: sites with no SAVs. Right panel: further coloured to indicate
INH and heme interacting residues in green and steel blue respectively. Wild-type residues marked using the
standard one-letter amino acid code denote key active site residue S315 associated with low flexibility, heme
interacting residue N231 associated with marginal flexibility, and residue E223 as a resistant site associated with
high flexibility. All structure figures were generated using UCSF Chimera version 1.14. Abbreviations used:
SAV: single amino acid variation, INH: isoniazid.

visual inspection. Regions with the highest flexibility (black thick tubes) did not present with SAVs

(Figure 8 left panel).

6.2.5 Relating mutational frequency and biophysical and evolutionary conserva-

tional changes

Correlation analysis was performed to understand the relationship between frequently occurring mu-

tations as assessed by MAF and their association between stability (mCSM-DUET, FoldX, DeepDDG,

Dynamut2), conservation (ConSurf, SNAP2, PROVEAN) and affinity changes (mCSM-lig/mmCSM-

lig, and mCSM-PPI2), distance to ligand (Lig-Dist), and protein-protein interface (PPI-Dist). A com-

bined analysis with all mutations, as well as separately for resistant (R) and sensitive (S) mutations

was undertaken (Figures 9 and 10). Analyses focused on determining the strength of association

without regard for the direction of the association due to dissimilarity of threshold criteria used by

the various estimators.

Frequently occurring sensitive mutations were weakly related to protomer stability changes and distance
from INH
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Frequently occurring mutations were not related to protomer stability changes (ρR+S<0.1) (Fig-

ure 9), though weak association was observed for frequently occurring sensitive mutations according

to DeepDDG (ρS=0.21, P<0.001), and FoldX (ρS=-0.15, P<0.01). Frequently occurring mutations

were overall weakly associated with distance from the drug (ρR+S=-0.17, P<0.001), but moderate

association was observed for the resistant mutation group (ρR∼0.3, P<0.001). Mutational frequency

was not associated with distance to the dimer interface (ρR+S<0.1 and ρR/S<0.1, P>0.05). The dif-

ferent computational tools showed good consensus (moderate to strong associations) amongst their

predicted estimates, both overall (0.4<ρR+S<0.8, P<0.001), as well as for resistant and sensitive muta-

tion groups individually (0.3≤ρR/S<0.8, P<0.001). As expected, mCSM-DUET and Dynamut2 were

strongly correlated as these tools share common methodology (ρ=0.83, P<0.001) (Figure 9).

Frequently occurring sensitive mutations were weakly associated with evolutionary conservation changes

Overall, there was no association with mutational frequency and rate of evolution according to Con-

Surf (ρR+S<0.1, P>0.05), with only weak associations with changes in protein function according to

PROVEAN (ρR+S=0.12, P<0.001) but not SNAP2 (ρR+S∼0.1, P<0.05). In particular, frequently

occurring sensitive mutations were driving the moderate association according to SNAP2 (ρS∼0.3,

P<0.001) and PROVEAN (ρS∼0.3, P<0.001). There was good agreement (moderate to strong asso-

ciation) between estimates across the three conservation predictors both overall (ρR+S>0.6, P<0.001)

and in the mutation groups (ρR/S>0.5, P<0.001) (Figure 10 left panel).

Frequently occurring resistant mutations were weakly related to INH affinity changes

Frequently occurring mutations were weakly related to INH affinity changes (mCSM-lig: ρR+S=-

0.11, P<0.01, mmCSM-lig: ρR+S=-0.18, P<0.001) with only resistant mutations driving this weak

association for mCSM-lig ρR=-0.18, and moderate association for mmCSM-lig ρR∼0.3, P<0.001

(Figure 10 right panel). There was no association between mutational frequency and changes in

dimer interface affinity (ρR+S<0.1, ρR/S<0.1, P>0.05) Figure 10 right panel). As expected, mCSM-

and mmCSM-lig values were strongly correlated overall and in the mutation groups (ρR+S>0.80,

ρR/S>0.80, P<0.001).
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Figure 9: Correlation of protein stability changes and genomics measures
Pairwise correlations between minor allele frequency (MAF), protein stability changes (∆∆G) estimated using
DUET, FoldX, DeepDDG, and Dynamut2, and distance to INH, and the dimer interface for 817 SAVs. The
upper panel in both plots include the pairwise Spearman (ρ) correlation values along with their statistical
significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where
black denotes the overall correlation with both resistant (R) and sensitive (S) mutations, while red denotes
correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations.
The points in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent
sensitive mutations individually. The diagonal in each plot displays the density distribution of the corresponding
parameter split by the two mutation groups. The figure is generated using R statistical software version 4.0.4,
ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV:
single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist: distance to protein-protein interface in
Å, INH: isoniazid.
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Figure 10: Correlation of evolutionary conservation, affinity changes, and genomics measures
Pairwise correlations of evolutionary conservation, affinity changes, and genomic measure of minor allele frequency (MAF) for 817 SAVs. Left panel: Evolutionary
conservation predictors: ConSurf, SNAP2, and PROVEAN, Right panel: INH binding affinity changes estimated as log fold change (mCSM-lig and mmCSM-lig of
74 SAVs lying within 10Å of INH, protein-protein affinity changes (∆∆G) measured using mCSM-PPI2 of 260 SAVs lying within 10Å of the PPI. All corresponding
affinity measures for mutations located more than 10Å of INH, and the PPI were given a value of 0 to allow complete SAVs to be used for analysis, while respecting the
distance threshold for the respective tools. The upper panel in both plots include the pairwise Spearman (ρ) correlation values along with their statistical significance
(.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where black denotes the overall correlation with both resistant (R) and
sensitive (S) mutations, while red denotes correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations. The points in
the lower panel represent SAVs, where red dots denote resistant mutations and blue represent sensitive mutations individually. The diagonal in each plot displays the
density distribution of the corresponding parameter split by the two mutation groups. The figure is generated using R statistical software version 4.0.4, ggplot2 package.
Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist:
distance to protein-protein interface in Å, INH: isoniazid.
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6.2.6 Comparing resistant and sensitive mutations

Resistant mutations occur less frequently and closer to the drug without affecting drug binding affinity,
and are also likely to affect protein function despite being destabilising for protomer stability

Resistant mutations were destabilising compared with sensitive mutations for protomer stability

changes across all four computational tools (Figures 11A-D), with FoldX and DeepDDG being

highly statistically significant (P<0.0001, Figures 11B and 11C), followed by mCSM-DUET and

Dynamut2 (P<0.01, Figures 11A and 11D). Resistant mutations were also slightly less frequent com-

pared with sensitive mutations (P<0.01, Figure 11E). Similarly, compared with sensitive mutations,

resistant mutations were located significantly closer to the drug (P<0.0001, Figure 11F) without

affecting drug binding affinity (P<0.05, Figures 11K and 11L). Further, resistant mutations were

located marginally closer to the dimer interface (P<0.05, Figure 11G) resulting in marginal re-

duction in affinity to the dimer interface (P<0.05, Figure 11M). Resistant mutations were conserved

(slower rate of evolution according to ConSurf) (P<0.0001, Figure 11H), and were more likely to

result in deleterious impact towards protein function when assessed by both SNAP2 and PROVEAN

(P<0.0001, Figures 11J and 11H).
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Figure 11: Comparison of resistant (R) and sensitive (S) mutations
Violin plots showing the distribution of features related to structural properties, genomic measure, evolutionary
conservation for 817 SAVs. For affinity changes related to the ligand (INH) binding affinity measured by
mCSM- and mmCSM-lig, only mutations within 10Å of INH (n=74) were considered. Similarly, for protein-
protein (PP) affinity changes measured by mCSM-PPI2, only mutations within 10Å of the PPI (n=260) were
analysed. Mutations were grouped as either resistant (R, n=369) or sensitive (S, n=448) and were compared
using the Wilcoxon rank-sum (unpaired) test, with statistical significance is indicated as: *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns>0.05. Mutations in the resistant group appear as red dots, while
those in the sensitive group appear as blue dots, and the horizontal line in the violin plots display the median
value. The two mutations groups were compared based on A-D) Stability changes (∆∆G) estimated from
four computational tools: mCSM-DUET, FoldX, DeepDDG and Dynamut2, E) genomic measure of average
mutational occurrence (Log10MAF), F-G) Distance to ligand (Lig-Dist) and Distance to the PPI (PPI-Dist),
H-J) Evolutionary conservation measured by ConSurf (<0: Conserved, >0: Variable), PROVEAN (>-2.5:
Neutral, < -2.5: Deleterious) and SNAP2 (<=0: Neutral, >0: Effect) computational tools, K-L) Comparison
of INH binding affinity changes from mCSM-lig and mmCSM-lig measured as log fold change for R (n=58)
and S (n=16) mutations, and those for M) PP binding affinity changes (mCSM-PPI2) measured as ∆∆G
for R (n=125) and S (n=135) mutations. The figure is generated using R statistical software version 4.0.4.
Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid
variation, ns: not-significant, INH: isoniazid, MAF: minor allele frequency, Lig-Dist: distance to ligand in Å,
PPI-Dist: distance to protein-protein interface in Å, R: resistant mutations, S: sensitive mutations.

6.2.7 Associating mutations with Odds Ratio and extreme effects

Mutations involving the active site S315T and T275P are strongly associated with INH resistance and
reduction in INH binding affinity respectively

Based on DST data available for 573 (out of 817) SAVs, mutational association with resistance was

further estimated using Odds Ratio (OR), with values above 1 suggesting association with INH re-

sistance. The higher the OR, the greater the likelihood of a given mutation being resistant. This

resulted in a majority (70%, n=401/573) of mutations predicted to be associated with INH resistance,

much higher than observed in our data (45%, n=369/817).

An overview of mutations in KatG show that mutations involving active site residues showed strong

(among top 10 mutations with high OR) association with INH resistance, with the strongest associa-

tion exhibited by prominent active site residue S315T (OR=806.87), followed by S315N (OR=119.50)

which were among the top 5 most frequently occurring mutations. All other SAVs at S315 were also

associated with resistance: S315G (OR=36.93), S315I (OR=31.05), S315R showing lowest associa-

tion with resistance among other mutations at S315 (OR=7.75) (Figure 12). Mutations directly

following S315T and S315N, linked to INH resistance did not include INH or heme binding residues:

I335V (OR=58.28), W328L (OR=50.49), Y98C (OR=38.82), D142G (OR=34.93). Residues inter-

acting with co-factor heme: T380I (OR=34.93), F252L (OR=31.05), and P232 (OR=31.05) followed

thereafter (Figure 12). Other prominent sites with link to resistance but not involving the ac-

tive site were G699E, R484H, W161R (OR=23.29) (Figure 12). Additionally, of the 13 commonly

known INH resistant mutations mentioned at the start, only 3 were found in this analysis: N138S
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(OR=23.27), T275P (OR=11.63), and R463L (1.54). Similarly, of the 9 high confidence INH resistant

mutations mentioned in the beginning, only 3 were found in this analysis: A139P (OR=6.05), and

S140N (OR=8.11), and G279D (OR=13.54) (Figure 12). This suggests that despite other mutations

being linked to INH resistance, the combination of highly frequency and highly resistant mutations,

with little fitness cost, explains the widespread prevalence of INH driven MDR-TB prevalence.

Most frequently occurring mutation and other extreme mutational effects occurred at sites away from
the active site

The most frequently occurring mutation R463L (MAF ∼52%) was located far away from INH (54Å),

as well as the dimer interface (25Å), although the most destabilising mutation for INH binding affinity

was co-factor heme binding residue T275P. Mutations with other extreme effects like those affecting

protomer stability (Y98C: destabilising, Q679Y: stabilising), dimer affinity (W149G: destabilising,

E703Q: stabilising) were not involved with the active site (Table 1).
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Figure 12: Logo plot showing mutational sites and their association with resistance according to Odds Ratio
Logo plot showing 573 SAVs by mutational site according to their association with INH resistance calculated using Odds Ratio (OR). The vertical axis represents the OR
where letters denote mutant residues which are proportional to their corresponding OR, highlighting the most resistant mutation at each site and overall. The mutant
residues are coloured according to the amino acid (aa) properties as denoted where red denotes acidic aa, basic aa appear in blue, hydrophobic aa in black, neutral aa
in purple, and polar aa in darkgreen. The structural positions associated with SAVs with OR are indicated on the horizontal axis. The heat bar underneath positions
indicate the distance of that position from INH according to the magma colour gradient where light yellow indicates sites closer to INH (ligand distance in Angstroms).
The positions are further annotated to reflect residues involved in interactions with INH (green), and co-factor heme in dark slate grey. The figure is generated using R
statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single amino acid variation, INH: isoniazid.
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Mutation Mutational effect
Mutational effect

value
Lig-Dist

(Å) PPI-Dist (Å)
Interacting

partner

S315T
Mutation with highest

OR OR = 806.87 4.06 17.02 INH and heme

R463L Most frequent mutation MAF (%) = 51.60 53.72 25.28 none

Y98D
Most Destabilising for

protomer ∆∆G = -0.65 13.49 9.62 none

Q679Y
Most Stabilising for

protomer ∆∆G = 0.49 49.47 6.71 none

T275P
Most Destabilising for
INH binding affinity

Log fold change =
-0.80 7.20 20.45 heme

W149G
Most Destabilising for

PPI affinity ∆∆G = -2.14 20.95 3.48 none

E703Q
Most Stabilising for PPI

affinity ∆∆G = 1.27 37.89 3.05 none

Table 1: Mutations with extreme effects
Mutations (SAVs) with extreme effects related to Odds Ratio (OR), mutational frequency (MAF), stability and
affinity changes. For affinity changes only mutations within 10Å of INH for INH binding affinity, and Protein-
Protein Interface (PPI) for PPI affinity were considered. The protomer stability changes are the average effect
of all four estimates (mCSM-DUET, FoldX, DeepDDG and Dynamut2) combined, and the INH binding affinity
changes are the average effect of the two mCSM based tools (mCSM-lig and mmCSM-lig) combined. Changes
in PP affinity correspond to estimates from mCSM-PPI. The estimated effects were categorised as Destabilising
(log fold affinity change/∆∆G<0) and Stabilising (log fold affinity change/∆∆G>0). Abbreviations used: Å:
Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, MAF: minor allele frequency, SAV: single amino
acid variation, Lig-Dist: distance to ligand, PPI-Dist: distance to protein-protein interface, INH: isoniazid.

6.2.8 Relating lineage and protomer stability

A majority of samples contained katG mutations with a fairly homogenous SAV distribution for lineages
1-3. Mutational impact on protomer stability is dominated by high frequency resistant and sensitive
mutations

About 80% of samples (n=28,106) consisted of SAVs in the protein coding region of KatG, where

26,439 samples contributed to the four main M. tuberculosis lineages (Lineages 1-4). Most samples

with KatG mutations belonged to lineage 2 (n=12,809), followed by lineage 4 (n=5,103), lineage 3

(n=4,782) and finally by lineage 1 with the least number of samples (n=3,745) (Figure 13A). All

lineages were low (<10%) in their SAV diversity with lineage 4 showing slightly higher (9%, n=436)

compared with other lineages: 3% for lineage 2 (n=340) and lineage 3 (n=134), followed by Lineage

1 (2%, n=93) (Figure 13B).

The distributions of average stability for mutations across the four lineages were distinct for resistant

and sensitive mutations. Sensitive mutations showed a prominent peak for moderate stability changes

∆∆G ∼0.45 Kcal/mol across all four lineages (P<0.0001, Appendix Table 6.C.1). Resistant mutations

peaked only around the marginally destabilising (∆∆G ∼ -0.01 Kcal/mol) across all four lineages

(P< 0.0001, Appendix Table 6.C.1). Additionally, the distribution of protein stability for sensitive

mutations in lineage 4 was multimodal with the highest peak around the moderately stabilising ∆∆G

0.45 Kcal/mol, similar to all other lineages, followed by a second peak around a mildly stabilising
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∆∆G 0.10 Kcal/mol, with a further smaller peak around the mild-moderate destabilising ∆∆G 0.25

Kcal/mol (Figure 13C).

Figure 13: Lineage and protomer stability distribution
Total number of samples (n=26,439) along with the number of mutations associated with INH resistance in
the four M. tuberculosis lineages (L1-L4). A) The dark grey bars show the number of mutations (SAVs), while
the light grey bar show the total number of samples in each lineage, B) Mutational diversity in each lineage,
C) Density distribution of lineages according to protein stability changes (∆∆G). Estimates from four different
computational tools: mCSM-DUET, FoldX, DeepDDG,and Dynamut2 were combined to calculate the average
mutational stability impact for each SAV. The horizontal axis shows the average stability values (∆∆G) (-1:
highly destabilising and +1: highly stabilising) further coloured by mutational association with INH resistance:
Red denotes resistant mutations (n=8,613 samples) and blue indicates sensitive mutations (n=17,826 samples).
The figure is generated using R statistical software version 4.0.4. Abbreviations used: ∆∆G: change in Gibbs
free energy, SAV: single amino acid variation.

6.3 Chapter summary

Mutations in katG are prevalent in M. tuberculosis. The active site residue S315 is associated with

multiple SAVs, with mutation S315T being the most frequently occurring and strongly linked to INH

resistance. The resistance profile of KatG is highly optimised by the presence of highly frequent, low-

fitness costs mutations. Despite this, KatG displays mutational promiscuity in and beyond the active

site, which comes without a large fitness penalty due to KatG being involved in processing the pro-

drug to its active form rather than directly binding to INH. Mutational consequences only marginally

impact protomer stability thus conferring fitness advantages towards resistance development.
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6.A Mutations close to isoniazid

Muta-
tion

Interacting
partner

Lig-Dist
(Å)

mCSM-lig
affinity

mCSM-lig
outcome

mmCSM-
lig

affinity

mmCSM-lig
outcome

MAF
(%)

Odds
Ratio P-value

Ad-
justed
P-value

Adjusted
P-value

significance
S315T drug and heme 4.06 -0.06 Destabilising -1.14 Destabilising 34.63 806.87 <0.0001 <0.0001 ****
S315N drug and heme 4.06 0.44 Stabilising -1.26 Destabilising 0.83 119.5 <0.0001 <0.0001 ****
S315G drug and heme 4.06 -0.85 Destabilising -1.26 Destabilising 0.13 36.93 <0.0001 <0.0001 ****
T380I heme 7.24 -2.23 Destabilising -1.14 Destabilising 0.06 34.93 <0.001 0.01 **
F252L heme 6.25 -1.63 Destabilising -0.93 Destabilising 0.04 31.05 <0.001 0.01 **
P232S drug and heme 4.55 0.32 Stabilising -1.33 Destabilising 0.05 31.05 <0.001 0.01 **
S315I drug and heme 4.06 -0.51 Destabilising -0.88 Destabilising 0.08 31.05 <0.001 0.01 **
N138S none 5.39 -2.43 Destabilising -0.98 Destabilising 0.03 23.28 <0.001 0.04 *
Q127P none 9.54 -2.09 Destabilising -0.64 Destabilising 0.06 23.28 <0.001 0.04 *
M105I none 8.28 -0.97 Destabilising -0.85 Destabilising 0.03 19.4 <0.05 0.07 ns
L141F none 7.13 -0.84 Destabilising -1.04 Destabilising 0.03 19.4 <0.05 0.07 ns
P232R drug and heme 4.55 -0.27 Destabilising -0.77 Destabilising 0.03 19.4 <0.05 0.07 ns
I317V heme 7.36 -0.92 Destabilising -1.09 Destabilising 0.04 19.4 <0.05 0.07 ns
T275A heme 7.2 -2.52 Destabilising -1.14 Destabilising 0.05 19.4 <0.05 0.07 ns
A109T none 9.51 -0.45 Destabilising -0.94 Destabilising 0.06 17.47 0<0. 0.01 *
N138H none 5.39 -0.94 Destabilising -0.94 Destabilising 0.06 15.52 <0.05 0.03 *
L378M heme 7.03 -2.54 Destabilising -1.09 Destabilising 0.02 15.51 0.01 0.14 ns
R104Q drug and heme 3.66 -2.08 Destabilising -1.14 Destabilising 0.02 15.51 0.01 0.14 ns
I248T heme 8.07 0.08 Stabilising -0.85 Destabilising 0.02 15.51 0.01 0.14 ns
I317T heme 7.36 0.24 Stabilising -1.03 Destabilising 0.02 15.51 0.01 0.14 ns
T380P heme 7.24 -2.26 Destabilising -0.92 Destabilising 0.02 15.51 0.01 0.14 ns
L141S none 7.13 0.16 Stabilising -0.72 Destabilising 0.05 15.51 0.01 0.14 ns
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A139V none 6.05 -1.39 Destabilising -1.09 Destabilising 0.12 11.64 0.01 0.11 ns
T275P heme 7.2 -2.35 Destabilising -1.38 Destabilising 0.01 11.63 0.04 0.29 ns
A222T none 7.7 -0.93 Destabilising -1.1 Destabilising 0.02 11.63 0.04 0.29 ns
G234R none 9.48 -1.08 Destabilising -1 Destabilising 0.02 11.63 0.04 0.29 ns
L378P heme 7.03 -2.06 Destabilising -1.17 Destabilising 0.02 11.63 0.04 0.29 ns
S140N none 8.11 -1.56 Destabilising -0.99 Destabilising 0.16 9.7 0.02 0.19 ns
A109V none 9.51 -1.85 Destabilising -0.86 Destabilising 0.02 7.76 0.05 0.33 ns
A139P none 6.05 -1.39 Destabilising -0.71 Destabilising 0.01 7.75 0.12 0.38 ns
P232T drug and heme 4.55 0.31 Stabilising -0.77 Destabilising 0.01 7.75 0.12 0.38 ns
W135S none 7.47 -1.02 Destabilising -0.49 Destabilising 0.01 7.75 0.12 0.38 ns
P136L drug 4.72 -1.13 Destabilising -0.7 Destabilising 0.01 7.75 0.12 0.38 ns
N138D none 5.39 -1.72 Destabilising -1.16 Destabilising 0.01 7.75 0.12 0.38 ns
T380A heme 7.24 -2.37 Destabilising -1.14 Destabilising 0.01 7.75 0.12 0.38 ns
S315R drug and heme 4.06 -0.52 Destabilising -0.84 Destabilising 0.03 7.75 0.12 0.38 ns
E233G none 7.92 -3.33 Destabilising -0.81 Destabilising 0.02 5.82 0.12 0.38 ns
P232A drug and heme 4.55 -1.33 Destabilising -1.28 Destabilising 0.03 5.82 0.12 0.38 ns
I103T heme 9.18 -0.62 Destabilising -0.56 Destabilising 0 3.88 0.34 0.5 ns
R104W drug and heme 3.66 -0.57 Destabilising -0.72 Destabilising 0 3.88 0.34 0.5 ns
G111D none 7.31 -1.91 Destabilising -1.39 Destabilising 0 3.88 0.34 0.5 ns
S140I none 8.11 -2.42 Destabilising -0.58 Destabilising 0 3.88 0.34 0.5 ns
L141V none 7.13 -1.03 Destabilising -1.09 Destabilising 0 3.88 0.34 0.5 ns
Q224R none 8.66 -2.36 Destabilising -0.92 Destabilising 0 3.88 0.34 0.5 ns
M225V none 9.91 -1.41 Destabilising -0.82 Destabilising 0 3.88 0.34 0.5 ns
T251K none 7.38 -2.56 Destabilising -1.12 Destabilising 0 3.88 0.34 0.5 ns
H276Q heme 7.82 -0.81 Destabilising -0.79 Destabilising 0 3.88 0.34 0.5 ns
W300C none 9.48 -1.19 Destabilising -0.53 Destabilising 0 3.88 0.34 0.5 ns
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T380N heme 7.24 -1.02 Destabilising -1.39 Destabilising 0 3.88 0.34 0.5 ns
D381A heme 9.53 -2.36 Destabilising -0.62 Destabilising 0 3.88 0.34 0.5 ns
P100T heme 9.22 -0.64 Destabilising -1.06 Destabilising 0.01 3.88 0.34 0.5 ns
I103V heme 9.18 -1.52 Destabilising -0.51 Destabilising 0.01 3.88 0.34 0.5 ns
T112I none 9.1 -2.57 Destabilising -0.88 Destabilising 0.01 3.88 0.34 0.5 ns
I228L drug 4.07 -1.06 Destabilising -1.09 Destabilising 0.01 3.88 0.34 0.5 ns
E233Q none 7.92 -2.44 Destabilising -0.89 Destabilising 0.01 3.88 0.34 0.5 ns
W300S none 9.48 -0.71 Destabilising -0.49 Destabilising 0.01 3.88 0.34 0.5 ns
W300R none 9.48 -0.81 Destabilising -0.49 Destabilising 0.01 3.88 0.27 0.5 ns
A139G none 6.05 -1.56 Destabilising -1.26 Destabilising 0.02 3.88 0.34 0.5 ns
S140G none 8.11 -2.67 Destabilising -1.03 Destabilising 0.01 1.94 >1 >1 ns
I317L heme 7.36 -1.08 Destabilising -1.09 Destabilising 0.06 1.94 >1 >1 ns
L205R none 8.35 -0.32 Destabilising -0.83 Destabilising 0 0.97 >1 >1 ns
A109S none 9.51 -0.33 Destabilising -0.94 Destabilising 0.01 0.97 >1 >1 ns
L101M heme 9.3 -2.14 Destabilising -0.85 Destabilising 0.02 0.97 >1 >1 ns
L101F heme 9.3 -1.69 Destabilising -0.78 Destabilising 0 NA NA NA ns
I103N heme 9.18 -0.27 Destabilising -0.46 Destabilising 0 NA NA NA ns
A109D none 9.51 -0.23 Destabilising -0.71 Destabilising 0 NA NA NA ns
L141I none 7.13 -1.5 Destabilising -1.09 Destabilising 0 NA NA NA ns
N231K heme 5.3 -1.87 Destabilising -1.09 Destabilising 0 NA NA NA ns
T251M none 7.38 -2.97 Destabilising -0.98 Destabilising 0 NA NA NA ns
T314N heme 5.22 -0.41 Destabilising -1.39 Destabilising 0 NA NA NA ns
T314S heme 5.22 -1.07 Destabilising -1.14 Destabilising 0 NA NA NA ns
T380S heme 7.24 -1.68 Destabilising -1.14 Destabilising 0 NA NA NA ns
W300G none 9.48 -1.74 Destabilising -0.49 Destabilising 0.01 NA NA NA ns
T314A heme 5.22 -1.79 Destabilising -1.14 Destabilising 0.01 NA NA NA ns
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Table 6.A.1: Mutations close to INH
Seventy-four single amino acid variation (SAV) mutations lying within 10Å of INH and their corresponding ligand affinity changes (log fold change) measured by
mCSM-Lig and mmCSM-lig. The estimated effect are categorised as Destabilising (log fold affinity change<0) and Stabilising (∆∆G>0). The genomic measures of
minor allele frequency (MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance indicated as: *P < 0.05, **P <
0.01, ***P < 0.001, ****P < 0.0001, ns: >0.05. The table is arranged by OR to show mutation with the highest OR at the top for mutations close to INH. Columns
with NA indicate insufficient data to calculate OR. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant,
INH: isoniazid.
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6.B Mutations close to the protein-protein interface

Mutation
Interacting

partner
PPI-Dist
(Å)

mCSM-
PPI2
(∆∆G)

mCSM-
PPI2 out-
come

MAF
(%)

Odds Ra-
tio P-value

Adjusted P-
value

Adjusted P-value
significance

Y98C none 9.62 -0.38 Decreasing 0.06 38.82 <0.0001 <0.01 **
D142G none 7.23 -0.3 Decreasing 0.04 34.93 <0.0001 <0.01 **
W161R none 3.2 -0.88 Decreasing 0.03 23.28 <0.001 0.04 *
G699E none 3.42 -0.99 Decreasing 0.03 23.28 <0.001 0.04 *
Q127P none 7.53 -0.15 Decreasing 0.06 23.28 <0.001 0.04 *
W149C none 3.48 -2.03 Decreasing 0.02 19.4 <0.01 0.07 ns
G299S none 8.75 -0.72 Decreasing 0.02 19.4 <0.01 0.07 ns
D189N none 7.18 -0.84 Decreasing 0.03 19.4 <0.01 0.07 ns
N655D none 8.07 -0.01 Decreasing 0.02 15.51 0.01 0.14 ns
P89D none 6.92 0.02 Increasing 0.07 15.51 0.01 0.14 ns
W191R none 3.35 -1.65 Decreasing 0.12 13.59 <0.0001 <0.001 ***
W191G none 3.35 -1.27 Decreasing 0.13 13.59 <0.0001 <0.001 ***
Y155C none 4.51 -0.82 Decreasing 0.05 11.64 0.01 0.11 ns
W90R none 3.3 -1.09 Decreasing 0.01 11.63 0.04 0.29 ns
V697A none 4.31 -0.79 Decreasing 0.01 11.63 0.04 0.29 ns
W149R none 3.48 -1.96 Decreasing 0.02 11.63 0.04 0.29 ns
Y155S none 4.51 -0.79 Decreasing 0.02 11.63 0.04 0.29 ns
W161C none 3.2 -1.04 Decreasing 0.02 11.63 0.04 0.29 ns
T677P none 8.47 -0.62 Decreasing 0.03 11.63 0.04 0.29 ns
K153Q none 2.68 0.9 Increasing 0.11 11.63 0.04 0.29 ns
R145C none 6.31 -0.36 Decreasing 0.03 9.7 0.02 0.19 ns
G297V none 3.74 -0.96 Decreasing 0.03 9.7 0.02 0.19 ns
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T625A none 7.49 -0.26 Decreasing 0.09 9.7 0.02 0.19 ns
K27E none 3.85 -0.93 Decreasing 0.02 7.76 0.05 0.33 ns
D189A none 7.18 -0.56 Decreasing 0.02 7.76 0.05 0.33 ns
P131Q none 3.03 -0.77 Decreasing 0.01 7.75 0.12 0.38 ns
L132R none 5.85 -0.4 Decreasing 0.01 7.75 0.12 0.38 ns
A144T none 9.13 0.55 Increasing 0.01 7.75 0.12 0.38 ns
Y155H none 4.51 -0.17 Decreasing 0.01 7.75 0.12 0.38 ns
D189Y none 7.18 0.08 Increasing 0.01 7.75 0.12 0.38 ns
G299V none 8.75 -0.81 Decreasing 0.01 7.75 0.12 0.38 ns
N660D none 7.23 0.21 Increasing 0.01 7.75 0.12 0.38 ns
L48P none 4.73 -1.61 Decreasing 0.01 7.75 0.12 0.38 ns
Q88P none 6.49 -0.29 Decreasing 0.01 7.75 0.12 0.38 ns
R128W none 3.63 -0.34 Decreasing 0.01 7.75 0.12 0.38 ns
W135S none 6.08 -1.73 Decreasing 0.01 7.75 0.12 0.38 ns
P136L drug 7.77 -0.15 Decreasing 0.01 7.75 0.12 0.38 ns
K143E none 6.71 -0.69 Decreasing 0.01 7.75 0.12 0.38 ns
A144V none 9.13 0.22 Increasing 0.01 7.75 0.12 0.38 ns
W149G none 3.48 -2.14 Decreasing 0.01 7.75 0.12 0.38 ns
L159P none 7.27 -0.39 Decreasing 0.01 7.75 0.12 0.38 ns
I165T none 8.81 -0.17 Decreasing 0.01 7.75 0.12 0.38 ns
A291D none 4.94 0.33 Increasing 0.01 7.75 0.12 0.38 ns
P292A none 4.1 -0.23 Decreasing 0.01 7.75 0.12 0.38 ns
Q295E none 5.2 0.83 Increasing 0.01 7.75 0.12 0.38 ns
M296V none 3.22 -0.91 Decreasing 0.01 7.75 0.12 0.38 ns
G299C none 8.75 -0.65 Decreasing 0.01 7.75 0.12 0.38 ns
E607D none 4.49 -0.29 Decreasing 0.01 7.75 0.12 0.38 ns
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M624K none 8.44 0.09 Increasing 0.01 7.75 0.12 0.38 ns
D663Y none 5.56 0.02 Increasing 0.01 7.75 0.12 0.38 ns
Q679E none 6.71 0.43 Increasing 0.01 7.75 0.12 0.38 ns
S700F none 3.59 -0.53 Decreasing 0.01 7.75 0.12 0.38 ns
S700P none 3.59 -0.64 Decreasing 0.01 7.75 0.12 0.38 ns
Y711D none 3.92 -1.37 Decreasing 0.01 7.75 0.12 0.38 ns
R254H none 9.68 -0.03 Decreasing 0.02 7.75 0.12 0.38 ns
D189G none 7.18 -0.48 Decreasing 0.03 7.75 0.12 0.38 ns
P29S none 3.32 -1.21 Decreasing 0.02 5.82 0.12 0.38 ns
D675Y none 6.99 0 Increasing 0.02 5.82 0.12 0.38 ns
K27I none 3.85 -0.53 Decreasing 0 3.88 0.34 0.5 ns
G33S none 4.72 -0.52 Decreasing 0 3.88 0.34 0.5 ns
G34A none 5.34 -0.07 Decreasing 0 3.88 0.34 0.5 ns
G34V none 5.34 -0.3 Decreasing 0 3.88 0.34 0.5 ns
D37G none 6.24 -0.53 Decreasing 0 3.88 0.34 0.5 ns
P57S none 3.12 -0.93 Decreasing 0 3.88 0.34 0.5 ns
F62L none 6.76 -0.84 Decreasing 0 3.88 0.34 0.5 ns
Y98D none 9.62 -0.51 Decreasing 0 3.88 0.34 0.5 ns
H116S none 6.49 -0.22 Decreasing 0 3.88 0.34 0.5 ns
G124E none 9.73 0.01 Increasing 0 3.88 0.34 0.5 ns
G124H none 9.73 -0.07 Decreasing 0 3.88 0.34 0.5 ns
M126A none 8.23 0.3 Increasing 0 3.88 0.34 0.5 ns
M126L none 8.23 0.11 Increasing 0 3.88 0.34 0.5 ns
A130E none 3.33 1.17 Increasing 0 3.88 0.34 0.5 ns
D142N none 7.23 -0.76 Decreasing 0 3.88 0.34 0.5 ns
R145S none 6.31 -0.24 Decreasing 0 3.88 0.34 0.5 ns
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L148I none 7.39 -0.63 Decreasing 0 3.88 0.34 0.5 ns
K152T none 4.4 -1.55 Decreasing 0 3.88 0.34 0.5 ns
G156D none 3.65 -1.28 Decreasing 0 3.88 0.34 0.5 ns
L159F none 7.27 0.76 Increasing 0 3.88 0.34 0.5 ns
A162E none 9.46 0.52 Increasing 0 3.88 0.34 0.5 ns
E192A none 3.46 -0.56 Decreasing 0 3.88 0.34 0.5 ns
E192D none 3.46 -0.23 Decreasing 0 3.88 0.34 0.5 ns
V196G none 3.81 -0.83 Decreasing 0 3.88 0.34 0.5 ns
Y197D none 3.46 -1.88 Decreasing 0 3.88 0.34 0.5 ns
W204S none 3.39 -1.24 Decreasing 0 3.88 0.34 0.5 ns
R209C none 7.53 -0.35 Decreasing 0 3.88 0.34 0.5 ns
P219L none 3.28 -0.99 Decreasing 0 3.88 0.34 0.5 ns
Q224R none 8.71 -0.24 Decreasing 0 3.88 0.34 0.5 ns
M225V none 3.79 -1.22 Decreasing 0 3.88 0.34 0.5 ns
R254L none 9.68 -0.11 Decreasing 0 3.88 0.34 0.5 ns
P288L none 5.64 -1.02 Decreasing 0 3.88 0.34 0.5 ns
E289K none 2.99 -1.31 Decreasing 0 3.88 0.34 0.5 ns
A290V none 3.95 -0.07 Decreasing 0 3.88 0.34 0.5 ns
Q295P none 5.2 -0.29 Decreasing 0 3.88 0.34 0.5 ns
L298S none 3.56 -0.81 Decreasing 0 3.88 0.34 0.5 ns
G299A none 8.75 -0.49 Decreasing 0 3.88 0.34 0.5 ns
G299D none 8.75 -0.59 Decreasing 0 3.88 0.34 0.5 ns
W300C none 8.4 -0.51 Decreasing 0 3.88 0.34 0.5 ns
D612G none 4.41 -0.43 Decreasing 0 3.88 0.34 0.5 ns
A614E none 8.39 0.36 Increasing 0 3.88 0.34 0.5 ns
A621T none 4.92 0.49 Increasing 0 3.88 0.34 0.5 ns
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F657L none 9.29 -0.8 Decreasing 0 3.88 0.34 0.5 ns
L662V none 3.29 -1.16 Decreasing 0 3.88 0.34 0.5 ns
W668C none 3.26 -1.82 Decreasing 0 3.88 0.34 0.5 ns
D675G none 6.99 -0.12 Decreasing 0 3.88 0.34 0.5 ns
W689R none 9.53 -0.3 Decreasing 0 3.88 0.34 0.5 ns
G691D none 8.54 -0.37 Decreasing 0 3.88 0.34 0.5 ns
D695A none 6.52 -0.84 Decreasing 0 3.88 0.34 0.5 ns
L696P none 3.3 -2.03 Decreasing 0 3.88 0.34 0.5 ns
G699V none 3.42 -1.29 Decreasing 0 3.88 0.34 0.5 ns
L704S none 6.06 -0.71 Decreasing 0 3.88 0.34 0.5 ns
R705G none 3.04 -1.34 Decreasing 0 3.88 0.34 0.5 ns
R705W none 3.04 -0.38 Decreasing 0 3.88 0.34 0.5 ns
V710A none 3.29 -1 Decreasing 0 3.88 0.34 0.5 ns
D723A none 4.24 -0.54 Decreasing 0 3.88 0.34 0.5 ns
D723N none 4.24 -0.73 Decreasing 0 3.88 0.34 0.5 ns
A61S none 8.82 -0.09 Decreasing 0.01 3.88 0.34 0.5 ns
D117E none 6.29 -0.33 Decreasing 0.01 3.88 0.34 0.5 ns
G125D none 8.84 -0.45 Decreasing 0.01 3.88 0.34 0.5 ns
P131S none 3.03 -0.92 Decreasing 0.01 3.88 0.34 0.5 ns
N133D none 3.89 0.23 Increasing 0.01 3.88 0.34 0.5 ns
S134R none 3.78 0.09 Increasing 0.01 3.88 0.34 0.5 ns
R145H none 6.31 -0.13 Decreasing 0.01 3.88 0.34 0.5 ns
E289A none 2.99 -0.97 Decreasing 0.01 3.88 0.34 0.5 ns
W300S none 8.4 -0.44 Decreasing 0.01 3.88 0.34 0.5 ns
T625K none 7.49 -0.21 Decreasing 0.01 3.88 0.34 0.5 ns
S692R none 5.67 -0.34 Decreasing 0.01 3.88 0.34 0.5 ns
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R693H none 3.77 -0.44 Decreasing 0.01 3.88 0.34 0.5 ns
W300R none 8.4 -0.44 Decreasing 0.01 3.88 0.27 0.5 ns
W91R none 7.83 -0.58 Decreasing 0.02 3.88 0.27 0.5 ns
H116F none 6.49 0.17 Increasing 0.02 3.88 0.34 0.5 ns
G124D none 9.73 -0.28 Decreasing 0.02 3.88 0.27 0.5 ns
E709A none 3.14 -0.93 Decreasing 0.02 3.88 0.34 0.5 ns
G124R none 9.73 -0.31 Decreasing 0.03 3.88 0.34 0.5 ns
V151L none 6.87 -0.14 Decreasing 0.05 3.88 0.34 0.5 ns
L159I none 7.27 -0.23 Decreasing 0.26 3.88 0.07 0.38 ns
V68G none 9.95 0.23 Increasing 0.01 1.94 >1 >1 ns
W689G none 9.53 -0.29 Decreasing 0.02 1.94 >1 >1 ns
K157N none 3.07 0.66 Increasing 0.15 1.94 0.32 0.5 ns
V151I none 6.87 0.4 Increasing 0.18 1.16 >1 >1 ns
G32S none 3.41 -0.2 Decreasing 0 0.97 >1 >1 ns
V47I none 4.66 0.66 Increasing 0 0.97 >1 >1 ns
W91S none 7.83 -0.56 Decreasing 0 0.97 >1 >1 ns
K143N none 6.71 -0.18 Decreasing 0 0.97 >1 >1 ns
R146L none 3.17 -0.39 Decreasing 0 0.97 >1 >1 ns
L205R none 6.13 -0.64 Decreasing 0 0.97 >1 >1 ns
G206R none 6.68 -0.58 Decreasing 0 0.97 >1 >1 ns
P603L none 3.35 -0.27 Decreasing 0 0.97 >1 >1 ns
L616S none 9.59 -0.16 Decreasing 0 0.97 >1 >1 ns
L661M none 4.49 -0.79 Decreasing 0 0.97 >1 >1 ns
T667I none 5.79 -0.13 Decreasing 0 0.97 >1 >1 ns
Y678C none 3.86 -1.7 Decreasing 0 0.97 >1 >1 ns
Q679Y none 6.71 -0.13 Decreasing 0 0.97 >1 >1 ns
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L696Q none 3.3 -1.56 Decreasing 0 0.97 >1 >1 ns
L707F none 3.42 0.94 Increasing 0 0.97 >1 >1 ns
E709G none 3.14 -1.08 Decreasing 0 0.97 >1 >1 ns
V710I none 3.29 -0.74 Decreasing 0 0.97 >1 >1 ns
D714N none 2.84 -0.31 Decreasing 0 0.97 >1 >1 ns
P52S none 3.95 0.24 Increasing 0.01 0.97 >1 >1 ns
Q88E none 6.49 -0.22 Decreasing 0.01 0.97 >1 >1 ns
E195K none 3.24 -1.02 Decreasing 0.01 0.97 >1 >1 ns
M609T none 5.07 -0.52 Decreasing 0.01 0.97 >1 >1 ns
D663G none 5.56 -0.8 Decreasing 0.01 0.97 >1 >1 ns
A713S none 3.82 0.73 Increasing 0.01 0.97 >1 >1 ns
T667P none 5.79 -0.5 Decreasing 0.02 0.97 >1 >1 ns
G124Q none 9.73 -0.32 Decreasing 0.11 0.97 >1 >1 ns
M126Q none 8.23 -0.05 Decreasing 0.11 0.97 >1 >1 ns
D714E none 2.84 -0.15 Decreasing 2.36 0.51 <0.01 0.04 *
H116G none 6.49 0.01 Increasing 0.01 0.48 0.55 0.77 ns
A162V none 9.46 0.37 Increasing 0.01 0.48 0.55 0.77 ns
A606T none 7.8 0.17 Increasing 0.01 0.48 0.55 0.77 ns
D194N none 5.98 -0.49 Decreasing 0.01 0.48 0.55 0.77 ns
Q295A none 5.2 -0.34 Decreasing 0.01 0.48 0.55 0.77 ns
T618M none 6.94 -0.06 Decreasing 0.01 0.48 0.55 0.77 ns
A606P none 7.8 -0.1 Decreasing 0.02 0.48 0.55 0.77 ns
Q36P none 3.24 -0.77 Decreasing 0.02 0.32 0.56 0.77 ns
L707R none 3.42 -1.57 Decreasing 0.02 0.24 0.31 0.5 ns
G124A none 9.73 -0.03 Decreasing 0.12 0.19 0.17 0.5 ns
G24V none 3.71 -0.02 Decreasing 0 NA NA NA ns

254



Y28H none 3.46 -1.66 Decreasing 0 NA NA NA ns
Y28L none 3.46 -1.76 Decreasing 0 NA NA NA ns
V30A none 3 -1.11 Decreasing 0 NA NA NA ns
Q36H none 3.24 -0.16 Decreasing 0 NA NA NA ns
P40T none 3.02 -0.11 Decreasing 0 NA NA NA ns
L43P none 3.87 -1.36 Decreasing 0 NA NA NA ns
K46N none 3.53 0.31 Increasing 0 NA NA NA ns
L48R none 4.73 -0.93 Decreasing 0 NA NA NA ns
D56H none 4.03 -0.19 Decreasing 0 NA NA NA ns
Y64C none 9.76 -0.28 Decreasing 0 NA NA NA ns
I71F none 9.82 0.28 Increasing 0 NA NA NA ns
I71S none 9.82 -0.22 Decreasing 0 NA NA NA ns
W90C none 3.3 -1.31 Decreasing 0 NA NA NA ns
Y98N none 9.62 -0.43 Decreasing 0 NA NA NA ns
H116E none 6.49 -0.27 Decreasing 0 NA NA NA ns
H116L none 6.49 0.03 Increasing 0 NA NA NA ns
H116P none 6.49 -0.11 Decreasing 0 NA NA NA ns
M126S none 8.23 0.06 Increasing 0 NA NA NA ns
R128G none 3.63 -1.31 Decreasing 0 NA NA NA ns
R128L none 3.63 -0.67 Decreasing 0 NA NA NA ns
R128Q none 3.63 -1.32 Decreasing 0 NA NA NA ns
F129S none 3.51 -1.64 Decreasing 0 NA NA NA ns
P131L none 3.03 -1.04 Decreasing 0 NA NA NA ns
W149L none 3.48 -2.01 Decreasing 0 NA NA NA ns
K152E none 4.4 -1.72 Decreasing 0 NA NA NA ns
G156S none 3.65 -1.09 Decreasing 0 NA NA NA ns
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K158N none 4.96 -0.14 Decreasing 0 NA NA NA ns
A162T none 9.46 0.53 Increasing 0 NA NA NA ns
L164R none 8.88 -0.49 Decreasing 0 NA NA NA ns
I165L none 8.81 -0.33 Decreasing 0 NA NA NA ns
I165Y none 8.81 0.33 Increasing 0 NA NA NA ns
E208K none 2.66 -0.38 Decreasing 0 NA NA NA ns
N218S none 3.7 -0.09 Decreasing 0 NA NA NA ns
R254C none 9.68 -0.04 Decreasing 0 NA NA NA ns
R254S none 9.68 0.09 Increasing 0 NA NA NA ns
M296T none 3.22 -0.7 Decreasing 0 NA NA NA ns
G297L none 3.74 -0.9 Decreasing 0 NA NA NA ns
N602D none 6.84 0.12 Increasing 0 NA NA NA ns
P605S none 5.72 0.07 Increasing 0 NA NA NA ns
Y608D none 3.31 -1.9 Decreasing 0 NA NA NA ns
L611R none 3.52 -1.18 Decreasing 0 NA NA NA ns
A614G none 8.39 0.17 Increasing 0 NA NA NA ns
S620T none 3.43 0.64 Increasing 0 NA NA NA ns
A621D none 4.92 0.27 Increasing 0 NA NA NA ns
M624V none 8.44 -0.24 Decreasing 0 NA NA NA ns
I666V none 5.89 -0.28 Decreasing 0 NA NA NA ns
W668L none 3.26 -1.66 Decreasing 0 NA NA NA ns
D675H none 6.99 0.11 Increasing 0 NA NA NA ns
K681T none 9.36 -0.05 Decreasing 0 NA NA NA ns
R693C none 3.77 -0.95 Decreasing 0 NA NA NA ns
F698V none 6.39 -0.55 Decreasing 0 NA NA NA ns
E703Q none 3.05 1.27 Increasing 0 NA NA NA ns
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L704W none 6.06 -0.4 Decreasing 0 NA NA NA ns
R705L none 3.04 -0.54 Decreasing 0 NA NA NA ns
D714G none 2.84 -1.14 Decreasing 0 NA NA NA ns
F720S none 8.53 -0.74 Decreasing 0 NA NA NA ns
L43R none 3.87 -1.29 Decreasing 0.01 NA NA NA ns
W91G none 7.83 -0.41 Decreasing 0.01 NA NA NA ns
W91L none 7.83 -0.45 Decreasing 0.01 NA NA NA ns
H116A none 6.49 0.02 Increasing 0.01 NA NA NA ns
G124T none 9.73 -0.35 Decreasing 0.01 NA NA NA ns
G125S none 8.84 -0.7 Decreasing 0.01 NA NA NA ns
M126I none 8.23 0.13 Increasing 0.01 NA NA NA ns
P131A none 3.03 -1.44 Decreasing 0.01 NA NA NA ns
N133S none 3.89 -0.89 Decreasing 0.01 NA NA NA ns
K157Q none 3.07 -0.11 Decreasing 0.01 NA NA NA ns
K158S none 4.96 -0.16 Decreasing 0.01 NA NA NA ns
P286L none 7.46 -0.11 Decreasing 0.01 NA NA NA ns
P288H none 5.64 -0.84 Decreasing 0.01 NA NA NA ns
A290P none 3.95 -0.23 Decreasing 0.01 NA NA NA ns
W300G none 8.4 -0.44 Decreasing 0.01 NA NA NA ns
A614T none 8.39 0.61 Increasing 0.01 NA NA NA ns
F657S none 9.29 -0.89 Decreasing 0.01 NA NA NA ns
G680D none 8.44 -0.39 Decreasing 0.01 NA NA NA ns
K681Q none 9.36 -0.07 Decreasing 0.01 NA NA NA ns
G124S none 9.73 -0.22 Decreasing 0.02 NA NA NA ns
M624I none 8.44 -0.22 Decreasing 0.02 NA NA NA ns
H116Q none 6.49 -0.3 Decreasing 0.03 NA NA NA ns
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P718S none 7.41 -0.13 Decreasing 0.07 NA NA NA ns
H116T none 6.49 -0.08 Decreasing 0.08 NA NA NA ns
K157R none 3.07 -0.09 Decreasing 0.08 NA NA NA ns
I165M none 8.81 -0.37 Decreasing 0.09 NA NA NA ns

Table 6.B.1: Mutations close to KatG PPI
Two-hundred and sixty single amino acid variation (SAV) mutations lying within 10Å of the Protein-Protein interface (PPI) and their corresponding PPI affinity changes
(∆∆G) measured by mCSM-PPI2. The estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures of minor allele
frequency (MAF), Odds Ratio, P-values, and FDR adjusted P-values are shown. Statistical significance indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P <
0.0001, ns: >0.05. The table is arranged by Odds Ratio to show mutation with the highest OR at the top for mutations at the PPI. Columns with NA indicate insufficient
data to calculate Odds Ratio and P-values. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant, INH:
isoniazid.
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6.C Average stability comparisons for lineages

Lineage
comparisons Samples (n)

Adjusted
P-values

Adjusted P-values
Significance

L1 vs L2 L1 (3745), L2 (12809) <0.0001 ****
L1 vs L3 L1 (3745), L3 (4782) <0.0001
L1 vs L4 L1 (3745), L4 (5103) <0.0001
L2 vs L3 L2 (12809), L3 (4782) <0.0001
L2 vs L4 L2 (12809), L4 (5103) <0.0001
L3 vs L4 L3 (4782), L4 (5103) <0.0001

Within Lineage comparisons
L1: R vs S R (n=346), S (n=3399) <0.0001 ****
L2: R vs S R (n=3705), S (n=9104) <0.0001
L3: R vs S R (n=741), S (n=4041) <0.0001

Table 6.C.1: Lineage comparisons for KatG mutations
Kolmogorov-Smirnoff (KS) test reporting the statistical differences in distributions between M. tuberculosis lin-
eages when assessed based on average stability changes (∆∆G) measured by mCSM-DUET, FoldX, DeepDDG,
and Dynamut2. Lineage comparisons were performed for samples containing mutations associated with sensi-
tivity (R: Resistant, S: Sensitive). These comparisons were performed for R and S samples between and within
lineages. Statistical significance thresholds used are *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Abbre-
viations used: ∆∆G: change in Gibbs free energy in Kcal/mol, Adj. P-values: Bonferroni adjusted P-values,
n=number of samples.
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Chapter 7

Alr-cycloserine

results
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7.1 Background

7.1.1 Mechanism of action of cycloserine

Cycloserine, or more specifically D-cycloserine (DCS), is a bacteriostatic antibiotic used in the treat-

ment of MDR TB. It is a cyclic analogue of D-alanine and is thought to competitively target at least

two bacterial enzymes alanine racemase (alr) and D-alanine ligase (Ddl). DCS inhibits the action of

these two crucial enzymes involved in the peptidoglycan synthesis an important component of any

bacterial cell wall.1 The alr gene codes for a pyridoxal 5’-phosphate-dependent enzyme involved in

the conversion of L-alanine to D-alanine, which in turn serves as a substrate for Ddl which then joins

two D-alanine together residues with a dipeptide bond.2,3 DCS, by targeting these enzymes, prevents

formation of the D-alanine residues, as well as the dipeptide derivative, thus removing components

required for peptidoglycan biosynthesis.2,3

7.1.2 Cycloserine resistance in M. tuberculosis

The rate of emergence of DCS resistance has thus far remained low since its initial use more than half

a century ago, due to a low mutation rate associated with alr.4,5 DCS has been used in all regimens

of MDR-TB treatment since 20186 where MDR-TB accounts for upwards of half a million cases

per year. Overexpression and SAVs in alr have been reported to be associated with resistance.5,7,8

Mutations in ddl,3 as well as other targets are also involved in DCS resistance.8,9 Despite the low

rise of resistance, the burden of resistance-conferring mutations, however, remains high in alr, with

potential compensatory mechanisms alleviating the associated high fitness costs.5 SAVs in Alr: E373G,

L113R,10 as well as M343T, Y388D, R397L are implicated in DCS resistance, where SAVs M343T,

and Y388D in particular have been associated with XDR M. tuberculosis strains.11 It was noted that

the equivalent positions in the Nakatani, et. al., study are offset by -24.

More recently, it has been shown that DCS is a slow but reversible covalent inhibitor of Alr enzymes

contrary to the prior understanding.12 In slow growing bacteria like M. tuberculosis, DCS is unable to

effectively inhibit Alr causing reactivation through a previously unrecognised pathway involving DCS-

ring opening and subsequent reactivation of M. tuberculosis Alr.12 An overview of the mechanism of

action and resistance development in DCS is shown in Figure 1.
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D-Cycloserine (DCS)

Figure 1: Chemical structure and mechanism of action and resistance for cycloserine
The chemical structure of cycloserine (DCS) appears at the top left and is sourced from DrugBank (ID:DB00260),
along with its mechanism of action shown: L alanine is converted to D-alanine via alanine racemase alr where
D-alanine molecules are joined by D-ala-D-ala ligase to produce the dipeptide D-alanine-D-alanine which is
incorporated into peptidoglycan of the M. tuberculosis cell wall. It is also highlighted that mutations within alr
are primarily responsible for driving DCS resistance. Figure adapted from Desjardins, et. al..13

A B

Figure 2: Active site description of M. tuberculosis Alr with DCS and PLP bound
Overall description of Alr-DCS complex. A) homo-dimer Alr in complex with DCS and co-factor PLP bound.
Chain A of Alr is shown as surface representation in tan, while chain B appears as grey ribbons. DCS appears
as green spheres, and co-factor PLP is shown as navy blue spheres, B) Close-up view of all interacting residues
coloured green for DCS and blue for co-factor PLP, and labelled accordingly. The figure is generated using
UCSF Chimera version 1.14. DCS: cycloserine, PLP: pyridoxal phosphate.
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7.1.3 Description of the Alr-DCS complex

Alr is shown to form a native homo-dimer. DCS covalently binds to cofactor pyridoxal 5’-phosphate

(PLP), disrupting the Alr-PLP covalent bond formation and thus inhibiting Alr activity.14 Only

recently has it been shown that this is not an entirely irreversible reaction in slow growing bacteria

like M. tuberculosis where the slow growth rate is used as one of the key mechanisms to avoid antibiotic

induced toxicity effects.12

Interactions of Alr

Molecular interactions with residues in alr, DCS, and co-factor PLP were identified using LigPlus,

PLIP and Arpeggio, resulting in a total of twenty-seven interacting residues:

• Twenty three residues at sites 64, 66, 70, 112, 157, 164, 194, 196, 200, 236, 237, 252, 253, 254,

255, 256, 295, 314, 342, 343, 344, 386, 388 were identified to interact with DCS, with residues

M343 and Y388 directly involved in the active site of Alr.

• Ten residues at sites 66, 70, 112, 196, 227, 237, 252, 254, 255, and 388 were identified to be

interacting with co-factor PLP, with residue L66 forming an essential covalent bond with DCS.

An overview of the Alr homo-dimer structural complex with all interactions identified is described in

(Figure 2).

7.2 Structural and genomic insights into cycloserine resistance

7.2.1 Mutational landscape of Alr

Limited active site residues exhibited SAVs with mutations distributed across Alr

A total of 271 SAVs were found in the protein coding region of Alr (Genomic id: Rv3423c, coding

region: 3840194-3841420), and appear to be widely distributed across the protein (Figure 3), with

mutations present in 186 unique positions for a maximum of 4 SAVs at any one site (Figure 4). Not

all active site residues were associated with SAVs. Of those that were, sites with single aa mutations

were the most common.

Mapping mutations on Alr highlight (Figure 4) the following:

Sites with DCS interactions were associated with a maximum of 3 SAVs (sites marked in green)

• Single mutation: 157, 237, 253, 295, 314, 343, 344 with 237 sharing interaction with PLP

• Budding resistant hotspots: A256 and Y388 with Y388 sharing interaction with DCS
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• Hotspots with three mutations: A200

Sites with PLP interactions associated with a maximum of 2 point mutations (sites marked in navy

blue)

• Single mutation: 237 sharing interaction with DCS

• Budding resistant hotspots: Y388 sharing interaction with DCS

The majority (57%, n=155) of the mutational effects resulted in electrostatic changes.

Figure 3: Mutational landscape of M. tuberculosis Alr
An overview of all mutational sites on M. tuberculosis Alr chain A appearing as surface representation in tan
colour with chain B shown as grey ribbons. The left and right panels are opposing representations (rotated
180◦) of Alr. The drug (DCS) is shown in green as ball-and-stick in the binding pocket and co-factor PLP
is shown in navy blue sticks. The figure is generated using UCSF Chimera version 1.14. Abbreviations used:
SAV: single amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate.
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Figure 4: Sites associated with SAVs in M. tuberculosis Alr
Logo plot showing 188 unique sites/positions associated with 271 SAVs in the M. tuberculosis Alr. The horizontal axis shows the wild-type positions associated with
SAVs in Alr and the vertical axis shows all the mutant residues observed in our data highlighting SAV diversity at a given site. Residues are coloured according to
the amino acid (aa) property, where acidic aa appear in red, basic aa appear in blue, hydrophobic aa in black, neutral aa in purple, and polar aa in dark green. The
structural positions associated with SAVs in Alr are indicated on the horizontal axis. The wild-type (WT) residues also coloured according to aa property appear under
the respective position markings. The heat bar underneath the WT residues indicate the distance of that position from DCS according to the magma colour gradient,
where light yellow indicates sites closer to DCS (ligand distance in Angstroms). The positions are further annotated to reflect active site residues involved in interactions
with DCS (green), and co-factor PLP (navy blue). The figure is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single
amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate.
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7.2.2 Mutational outcome from protomer stability changes and evolutionary con-

servation

Mutations were destabilising for overall protomer stability without affecting protein function

Over 75% of mutations had a destabilising effect on overall protomer stability when measured by

the different computational tools (Figure 5A-D), with DeepDDG estimating ∼87% (n=235) mu-

tations as destabilising, followed by Dynamut2 predicting ∼82% (n=223) mutations as destabilising,

and both mCSM-DUET and FoldX estimating 78% (n=213) mutations as destabilising. Based on

evolutionary conservation, over 50% of mutations were predicted to have a non-deleterious impact

(effect) on protein function indicated by PROVEAN and SNAP2 scores, where SNAP2 predicted a

higher number (n=187) of SAVs compared with PROVEAN (n=143) with neutral effect (Figure 5E

and Figure 5F).

Figure 5: Protein stability outcome of SAVs in M. tuberculosis Alr
Mutational impact of SAVs on overall protein stability and evolutionary conservation changes for 271 SAVs, A-
D) Barplots showing number of SAVs categorised as destabilising (red) or stabilising (blue) according to protein
stability changes (∆∆G Kcal/mol) as measured by four computational tools: mCSM-DUET, FoldX, DeepDDG,
and Dynamut2, E-F) Number of SAVs categorised as Effect/Deleterious (magenta) or Neutral (pink) according
to evolutionary conservation changes as estimated by computational tools: PROVEAN and SNAP2. The figures
are generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in
Gibbs free energy, SAV: single amino acid variation.

Evolutionary and structure-based predictors provide different insights into understanding mutational

impact. Mutational impact in this context is considered to be its effect on protein stability, drug

binding affinity, other binding affinities such as PPI or nucleic acid, and functional effects arising

from protein sequence variations. The first three mutational consequences are assessed by structure

based predictors relying on the 3D structure of a protein, while the last is assessed by sequence based
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predictors relying mainly on evolutionary conservation trends across many proteins using multiple

sequence alignments. The sequence based predictors are aimed at predicting pathogenicity or change

of molecular function, structure based tools rely on estimating variant effects in relation to structure

damage, corresponding to stability changes, as protein stability is considered the basic characteristic

affecting function, activity, and regulation. Predictors such as ConSurf are able to use both struc-

tural and sequence information to identify important functional regions conserved in proteins. A

variant classified as ’deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Thus, different methodological strategies benefit from

complementary information when assessing specific proteins.

Active site residues were all destabilising for protomer stability except S237

When assessing the impact of mutations on protomer stability changes due to mutations, the estimates

from all four tools: mCSM-DUET, FoldX, DeepDDG, and Dynamut2 were considered together and

averaged to gain an understanding of the consensus mutational effect (Figure 6). All active site

residues associated with SAVs were destabilising except DCS (and PLP) interacting residue S237 with

a single mutation (S237A) resulting in a stabilising effect (Figure 7). Sites 58, 143, 321, 381 with

multiple SAVs were stabilising for overall protomer stability.
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Figure 6: Average protein stability effects of SAVs mapped onto the M. tuberculosis Alr protein
structure
The protein stability changes (∆∆G Kcal/mol) of SAV mutations measured by mCSM-DUET, FoldX, Deep-
DDG, and Dynamut2 were averaged and mapped onto Alr positions with mutations. Destabilising mutational
sites are depicted in red while stabilising mutational sites appear in blue where the colour intensity reflects
the extent of the effect, ranging from -1 (most destabilising) to +1 (most stabilising). DCS is shown as green
spheres in the binding pocket, with co-factor PLP shown in navy blue spheres. The figure is rendered using
UCSF Chimera version 1.14. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single
amino acid variation, PLP: pyridoxal phosphate, DCS: cycloserine.
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Figure 7: Average protein stability effect for individual SAVs occurring in M. tuberculosis alr
Barplot showing the number of single amino acid variation (SAV) mutation at each position in Alr coloured by the average protein stability effect, where the horizontal
axis shows the wild-type positions associated with SAVs, and the vertical axis shows the number of SAVs at that position. For a given position, each corresponding
SAV is coloured by the average protein stability effect calculated across estimates (∆∆G Kcal/mol) from mCSM-DUET, FoldX, DeepDDG, and Dynamut2. The
structural positions associated with SAVs in Alr are indicated on the horizontal axis. The heat bar underneath the positions indicates the distance of that position from
DCS according to the magma colour gradient where light yellow indicates sites closer to DCS (ligand distance in Angstroms). The positions are further annotated to
reflect active site residues involved in interactions with DCS in green, and co-factor PLP in navy blue. The barplot figures are generated using R statistical software
version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid variation, PLP: pyridoxal phosphate, DCS:
cycloserine.
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7.2.3 Mutation consequences on affinity changes and prominent mutational ef-

fects

Mutations decrease binding affinity of DCS as well as the dimer interface

When considering SAV induced DCS binding affinity changes for sites within 10Å of DCS, 15% (n=40)

of mutations were identified. These mutations occurred at 30 distinct sites, with most (n=23) sites

showing single mutations. Of these, nearly 88% (n=35) had a destabilising effect on DCS binding

affinity as measured by mCSM-lig and all 40 mutations were destabilising when measured by mmCSM-

lig (Figure 8A top panel, Appendix Table 7.A.1). The 30 mutational sites with their average affinity

outcome impact were mapped onto the Alr (chain A) which showed mild-to-moderate destabilising

mutational consequences (Figure 8A bottom panel). Inspecting the dimer interface of Alr highlighted

45% (n=122) of mutations to be within 10Å of the PPI as estimated by mCSM-PPI2, with 73% (n=89)

of mutational consequences being destabilising (Figure 8B top panel, Appendix Table 7.B.1). The

mutations at the dimer interface showed mild-to-moderate destabilising effects on visual inspection

(Figure 8B bottom panel).

Of the total 188 unique sites in Alr displaying SAVs, only 10% of sites (n=20) had multiple SAVs, 39

sites were considered budding resistant hotspots, with the majority (n=129) of sites exhibiting single

mutations (Figure 8C top panel). The most prominent effects on DCS binding were from reduced

affinity (destabilising effect) to DCS from mutations at 14 surrounding sites (Figure 8C, yellow text

boxes, and bottom panel). Similarly, the dimer surface of Alr was chiefly affected by destabilising

mutations, which reduced affinity for the second Alr protomer from mutations at 11 surrounding sites

(Figure 8C, pink text boxes, and bottom panel). All other sites were largely (n=132) affected by

destabilising mutations (Figure 8C, blue and red text boxes, and bottom panel).
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Figure 8: Mutational impact on DCS binding affinity, protein-protein interaction on Alr and sites
with the most prominent mutational effects within M. tuberculosis Alr
The top panel displays barplots showing the mutational outcome of affinity changes and their corresponding
site frequency, while the bottom panel shows the corresponding mutational impact mapped onto the Alr (chain
A appearing in tan colour, while chain B is shown as grey ribbons. DCS is shown in green as ball-and-stick
in the binding site, while co-factor PLP appears in navy blue. A) Mutational impact on DCS binding affinity
(log fold change) from mCSM-lig and mmCSM-lig where 40 mutations, corresponding to 30 sites within 10Å of
DCS, B) Mutational impact on protein-protein (PP) binding affinity (∆∆G) for 122 mutations, corresponding
to 81 sites within 10Å of the PPI. For both parts A) and B), red denotes destabilising mutational sites while
blue denotes stabilising mutational sites, and the colour intensity reflects the extent of the effect ranging from
-1 (most destabilising) to +1 (most stabilising), C) Most prominent mutational effect for all 271 SAVs at 188
sites, prioritised in order of increasing effect size: mCSM/mmCSM-lig, mCSM-NA, protomer stability changes.
Mutational effects are coloured according to the effect type with brighter colours indicate stabilising effects. Sites
marked in yellow indicate changes due to ligand (DCS) binding affinity with light yellow indicating destabilising
effect, pink areas indicate changes due to PPI affinity with bright pink highlighting stabilising and light pink
areas indicating destabilising mutational effects. Protomer stability changes are coloured with blue indicating
stabilising and red indicating destabilising mutational consequences. The corresponding number of mutation
sites contributing to the different effect types are indicated in the text box at the top, and coloured accordingly.
The barplot figures are generated using R statistical software version 4.0.4, ggplot2 package. The structure
figures are generated using Chimera version 1.14. Abbreviations used: Å: Angstroms, ∆∆G: Change in Gibbs
free energy in Kcal/mol, SAV: single amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate.

7.2.4 Mutational association with DCS resistance and flexibility

Most mutations occur in highly variable regions of Alr, and are not associated with high flexibility

Mutational association with resistance according to aggregate DST data showed only 2 mutations as

Resistant. These were L113R and M343T (Figure 9A), where L113R occurred at 7.35Å of DCS and

M343T occurred >10Å of DCS, but close to the dimer interface at 3.73Å (Appendix Tables 7.A.1 and

7.B.1).

DCS and PLP are located in the conserved regions of Alr (Figure 9B1). Sites close to DCS as well

as the dimer surface are moderate-to-highly conserved (Figure 9B1). ConSurf scores are calculated

for each site on the protein, and range from 1 (rapidly evolving, variable sites) to 9 (slowly evolving,

conserved sites). Most mutations (n=54) occurred in the most variable region of Alr (ConSurf score

1) (Figure 9B2), but the two resistant mutations were in moderate-to-highly conserved regions of

Alr (Figure 9B1).

The local flexibility in Alr in relation to DCS resistance was also analysed with thickness of the

ribbon/tube (thinthick) corresponding to the extent of flexibility. Normal mode analysis of the Alr

protein highlighted that residues interacting with DCS and PLP were not associated with high flex-

ibility (Figure 10A1), where regions associated with high flexibility were not associated with any

SAVs (Figure 10A2).
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A B1 B2

Figure 9: Mutational association with cycloserine resistance and evolutionary conservation in M. tuberculosis Alr
Mutational landscape of M. tuberculosis Alr according to different measures where A) All sites associated with SAVs in Alr chain A (surface representation in tan
colour), along with chain B appearing as grey ribbons. DCS is represented as green ball-and-stick in the binding pocket and co-factor PLP is shown in navy blue sticks.
Sites are coloured according to association with resistance for one or more SAVs, where red denotes sites with exclusively resistant mutations (n=2), and blue indicates
sites with exclusively sensitive mutations (n=186). There were no sites with both sensitive and resistant mutations, B1) Alr chain A coloured according to ConSurf
Scores where maroon indicates conserved sites and teal indicates variable sites. DCS appears as green ball-and-stick in the binding pocket and co-factor PLP is shown
in navy blue sticks, B2) shows the number of mutations associated with ConSurf values that range from 1 (variable) in teal to 9 (conserved) in maroon, where 0 denotes
insufficient data/not defined (ND). The barplot figure is generated using R statistical software version 4.0.4, ggplot2 package. The structure figures were generated
using UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate, DCS: cycloserine.
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Figure 10: Mutational association with cycloserine resistance and local protein flexibility of M. tuberculosis Alr
Mutational landscape of M. tuberculosis Alr according to flexibility in Alr according to normal mode analysis (NMA), measuring atomic deformation according to protein
dynamics to denote flexibility associated at sites in Alr. The magnitude of the flexibility is represented from thin (low flexibility) to thick (high flexibility) tubes coloured
to show mutational association with resistance, red: resistant sites, blue: sensitive sites, black: sites with no SAVs. Resistant residues (using standard one-letter amino
acid code) are indicated in red, and two others which are associated with moderate to high flexibility appear in black to denote these sites were not associated with
SAVs in our data. A1) Overview of the Alr homo-dimer protein according to NMA flexibility, with chain A shown as tubes coloured as described above, and chain B
appearing as grey coloured tubes, A2) Close-up view to show that highly resistant mutations L113R is a region of low flexibility, while areas coloured green (interacting
with DCS) and steel blue (interacting with PLP) are also regions of low flexibility. DCS is denoted as green spheres. The structure figures were generated using UCSF
Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate, DCS: cycloserine.
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7.2.5 Relating mutational frequency and biophysical and evolutionary conserva-

tional changes

Correlation analysis was performed to understand the relationship between frequently occurring mu-

tations as assessed by MAF and their association stability (mCSM-DUET, FoldX, DeepDDG, Dy-

namut2), conservation (ConSurf, SNAP2, PROVEAN), affinity changes (mCSM-lig/mmCSM-lig, and

mCSM-PPI2), distance to ligand (Lig-Dist), and protein-protein interface (PPI-Dist). Mutations were

not separated into resistant and sensitive mutations due to there being only two resistant mutations

(Figures 11 and 12). Analyses focused on determining the strength of association without regard

for the direction of the association due to dissimilarity of threshold criteria used by the various esti-

mators.

Frequently occurring mutations were weakly related to stability and evolutionary conservation and not
related to affinity changes

Mutational frequency was overall weakly associated with only DeepDDG stability changes (ρ=0.15,

P<0.05). All other measures of stability changes (mCSM-DUET, FoldX and Dynamut2), as well as

distance to ligand and dimer interface, were not associated (ρ=0.0, P>0.05) (Figure 11).

Similarly, mutational frequency was very weakly associated with PROVEAN estimates (ρ=0.12,

P<0.05) (Figure 12 left panel), while affinity changes (mCSM-/mmCSM-lig and mCSM-PPI2) were

not found to be associated with mutational frequency (Figure 12 right panel).
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Figure 11: Correlation of protein stability changes and genomics measures
Pairwise correlation between minor allele frequency (MAF), protein stability changes (∆∆G) estimated using
DUET, FoldX, DeepDDG, and Dynamut2, and distance to DCS, and the dimer interface for 271 SAVs. The
upper panel in both plots includes the pairwise Spearman (ρ) correlation values along with their statistical
significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). The diagonal in each plot displays the density dis-
tribution of the corresponding parameter. The figure is generated using R statistical software version 4.0.4,
ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV:
single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist: distance to protein-protein interface in
Å, DCS: cycloserine.

277



Figure 12: Correlation of evolutionary conservation, affinity changes, and genomics measures
Pairwise correlations of evolutionary conservation, affinity changes, and genomic measure of minor allele frequency (MAF) for 271 SAVs. Left panel: Evolutionary
conservation predictors: ConSurf, SNAP2, and PROVEAN, Right panel: DCS binding affinity changes, estimated as log fold change (mCSM-lig) of 40 SAVs lying
within 10Å of DCS, and protein-protein (PP) affinity changes (∆∆G) measured using mCSM-PPI2 of 122 SAVs lying within 10Å of the dimer interface. All corresponding
affinity measures for mutations located more than 10Å of DCS, and the dimer interface were given a value of 0 to allow all identified SAVs to be used for analysis,
while respecting the distance threshold for the respective tools. The upper panel in both plots includes the pairwise Spearman (ρ) correlation values along with their
statistical significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). The diagonal in each plot displays the density distribution of the corresponding parameter. The
figure is generated using R statistical software version 4.0.4, ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV:
single amino acid variation, Lig-Dist: distance to ligand in Å, PPI-Dist: distance to protein-protein interface in Å, DCS: cycloserine.
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7.2.6 Associating mutations with Odds Ratio and extreme effects

L113R, not an active site residue was highly associated with DCS resistance

Based on DST data available for only 15 (out of 271) SAVs, mutational association with resistance

was further estimated using Odds Ratio (OR), with values above 1 suggesting association with DCS

resistance. The higher the OR, the greater the likelihood of a given mutation being resistant. All

15 mutations were predicted to be associated with DCS resistance (Figure 13), compared with

the 2 mutations according to the available DST data. Mutation L113R, one of the two resistant

mutations according to DST, was the most frequently occurring (MAF=14%) (Table 1), and highly

associated with DCS resistance (OR=51.87) (Figure 13). Further, it was also the single mutation

at the site suggesting selective pressure from the drug. This was followed by residue Y388D involved

with DCS and PLP binding showing the next highest association with DCS resistance (OR=16.50),

followed thereon by mutations: A358T, L283P, H297R, N331D, T399I, S321L, E140D, L138F, A200V

(OR=4.08), M343T (OR=1.91), S261N (OR=1.64), D139H (OR=1.36). Of these A200V and M343T

are active site residues (Figure 13).

Mutations with extreme effects did not include active site residues

As mentioned above, L113R was the most frequently occurring and highly associated with DCS resis-

tance (OR=51.87) (Figure 13, Table 1). Mutation E389G was the most destabilising for DCS, as

well as for dimer interface binding affinity. The most stabilising mutation for the dimer interface was

mutation L162M. Mutations V391G and S238L were the most destabilising and stabilising mutations

respectively for overall protomer stability. None of these residues was involved in DCS and/or PLP

interactions (Table 1).
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Figure 13: Logo plot showing mutational sites and their association with resistance according to Odds Ratio
Logo plot showing 15 SAVs by mutational site according to their association with DCS resistance calculated using Odds Ratio (OR). The vertical axis represents the
OR, where letters denote mutant residues which are proportional to their corresponding OR, highlighting the most resistant mutation at each site and overall. The
mutant residues are coloured according to the amino acid (aa) properties as denoted where red denotes acidic aa, basic aa appear in blue, hydrophobic aa in black,
neutral aa in purple, and polar aa in dark green. The structural positions associated with SAVs with OR are indicated on the horizontal axis. The heat bar underneath
the positions indicate the distance of that position from DCS according to the magma colour gradient, where light yellow indicates sites closer to DCS (ligand distance
in Angstroms). The positions are further annotated to reflect residues involved in interactions with DCS (green), and co-factor PLP (navy blue). Empty positions imply
missing DST data preventing OR calculations. The figure is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: SAV: single
amino acid variation, DCS: cycloserine, PLP: pyridoxal phosphate.
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Mutation Mutational effect
Mutational effect

value Lig-Dist (Å)
PPI2-Dist

(Å)
Interacting

partner

L113R
Mutation with highest

OR OR = 51.87 7.35 3.79 none

L113R Most frequent mutation MAF (%) = 14.20 7.35 3.79 none

V391G
Most Destabilising for

protomer ∆∆G = -0.64 9.85 5.92 none

S238L
Most Stabilising for

protomer ∆∆G = 0.71 5.21 9.92 none
E389G Most Destabilising for

DCS binding affinity
Log fold change =

-0.68 7.50 2.95 none
Most Destabilising for

PPI affinity ∆∆G = -2.17 7.50 2.95 none

L162M
Most Stabilising for PPI

affinity ∆∆G = 1.09 7.81 3.72 none

Table 1: Mutations with extreme effects
Mutations (SAVs) with extreme effects related to Odds Ratio (OR), mutational frequency (MAF), stability and
affinity changes. For affinity changes only mutations within 10Å of DCS for DCS binding affinity, and Protein-
Protein (PP) interface for PPI affinity were considered. The protomer stability changes are the average effect of
all four estimates (mCSM-DUET, FoldX, DeepDDG and Dynamut2) combined, and the DCS binding affinity
changes are the average effect of the two mCSM based tools (mCSM-lig and mmCSM-lig) combined. Changes
in PP affinity correspond to estimates from mCSM-PPI. The estimated effects were categorised as Destabilising
(log fold affinity change/∆∆G<0) and Stabilising (log fold affinity change/∆∆G>0). Abbreviations used: Å:
Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, MAF: minor allele frequency, SAV: single amino
acid variation, Lig-Dist: distance to ligand, PPI-Dist: distance to protein-protein interface, DCS: cycloserine,
PLP: pyridoxal phosphate.

7.2.7 Alr mutations in lineages

A small minority of samples contained mutations in Alr with lineage 1 showing the highest SAV
diversity despite the lowest number of samples

Only 4% of samples (n=1,310) contained mutations in the protein coding region of alr, with 1025

samples contributing to the four main M. tuberculosis lineages (Lineages 1-4). Most samples belonged

to lineage 4 (n=535), followed by lineage 2 (n=296), lineage 3 (n=106) and finally by lineage 1 (n=88)

with the least number of samples (Figure 14A). However, lineage 1 was high in its SAV diversity

(55%, n=48), followed by lineage 3 (45% (n=48), and thereafter by lineages 4 and 2 with approximately

similar SAV diversity (25%, n=135 vs 23%, n=68) SAVs respectively (Figure 14B).
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Figure 14: Lineage samples with alr mutations
Total number of samples (n=1,025) along with the number of mutations associated with DCS resistance in the
four M. tuberculosis lineages (L1-L4). A) The dark grey bars show the number of mutations (SAVs), while
the light grey bar show the total number of samples in each lineage, B) Mutational diversity in each lineage.
Abbreviations used: SAV: single amino acid variation, DCS: cycloserine.

7.3 Chapter summary

With only a small minority of samples exhibiting SAVs, the contribution of SAVs in alr driven DCS

resistance appears low. SAV mutations in Alr are spread across the protein with limited involvement

of active site residues and, as such, mutations extend beyond the active site. Though most mutational

effects destabilise the protomer overall, they occur in the highly variable regions of Alr that are not

associated with high flexibility and, as such, are unlikely to affect protein function. This reinforces

Alr’s essential role as the target for DCS binding. The prominent mutational effects are related to

a decrease in DCS binding affinity with nearly 15% mutations occurring close to DCS. Similarly,

45% mutations occurring at the dimer interface reducing the PP affinity highlights the importance

of molecular interactions at the interface in maintaining the functions of the complex. The single

mutation L113R at site L113, occurred most frequently and is strongly associated with DCS resistance.

This suggests that site L113 is under selective pressure exerted by DCS, despite not being an active site

residue. Mutations at active site residues M343T and Y388D observed in XDR strains were associated

with DCS resistance, though association of DCS resistance for Y388D was much stronger (OR=16.50)
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than observed for M343T (OR=1.91), suggesting that these mutations are acquired independently.

Together, these findings suggest the delayed onset of alr-driven DCS resistance is mediated by factors

involving interactions with other genes, and the possible role of evolutionary convergence for certain

mutations, rather than being driven by a lack of SAVs within alr.
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7.A Mutations close to cycloserine

Muta-
tion

Interacting
partner

Lig-
Dist
(Å)

mCSM-
lig

affinity

mCSM-lig
outcome

mmCSM-
lig affinity

mmCSM-lig
outcome

MAF
(%)

Odds
Ratio P-value

Ad-
justed
P-value

Adjusted
P-value

significance
L113R none 7.35 -1.28 Destabilising -0.85 Destabilising 14.2 51.87 <0.0001 <0.001 ****
Y388D drug and plp 2.86 -2.4 Destabilising -0.33 Destabilising 4.36 16.5 0.11 0.82 ns
A200V drug 4.8 -0.7 Destabilising -0.82 Destabilising 0.3 4.09 >1 >1 ns
S261N none 7.91 -0.72 Destabilising -0.92 Destabilising 3.35 1.64 0.5 1 ns
M62I none 6.56 -1.68 Destabilising -0.82 Destabilising 0.1 NA NA NA ns
A63G none 7.14 -2.15 Destabilising -0.59 Destabilising 0.1 NA NA NA ns
L89F none 8.63 -1.82 Destabilising -0.69 Destabilising 0.1 NA NA NA ns
A92T none 6.82 -0.54 Destabilising -0.74 Destabilising 0.1 NA NA NA ns
T155A none 9.55 -2.3 Destabilising -0.81 Destabilising 0.1 NA NA NA ns
T155S none 9.55 -1.74 Destabilising -0.79 Destabilising 0.1 NA NA NA ns
L162M none 7.81 -0.87 Destabilising -0.82 Destabilising 0.1 NA NA NA ns
G166D none 9.9 0.94 Stabilising -1.97 Destabilising 0.1 NA NA NA ns
M197I none 6.94 0.31 Stabilising -0.82 Destabilising 0.1 NA NA NA ns
A200S drug 4.8 -0.38 Destabilising -0.96 Destabilising 0.1 NA NA NA ns
D201G none 7.16 -0.97 Destabilising -0.4 Destabilising 0.1 NA NA NA ns
S235W none 5.3 0.42 Stabilising -0.47 Destabilising 0.1 NA NA NA ns
S237A drug and plp 2.68 -0.64 Destabilising -0.91 Destabilising 0.1 NA NA NA ns
S238L none 5.21 -0.39 Destabilising -0.28 Destabilising 0.1 NA NA NA ns
A256S drug 4.22 -0.42 Destabilising -0.96 Destabilising 0.1 NA NA NA ns
A256T drug 4.22 -0.52 Destabilising -0.92 Destabilising 0.1 NA NA NA ns
V257L none 6.15 -1.79 Destabilising -0.82 Destabilising 0.1 NA NA NA ns
L260V none 6.86 -1.77 Destabilising -0.69 Destabilising 0.1 NA NA NA ns

286



H387Q none 8.05 -0.66 Destabilising -0.93 Destabilising 0.1 NA NA NA ns
Y388C drug 2.86 -1.41 Destabilising -0.56 Destabilising 0.1 NA NA NA ns
V391G none 9.85 -1.39 Destabilising -0.29 Destabilising 0.1 NA NA NA ns
T392P none 8.58 -1.19 Destabilising -1.1 Destabilising 0.1 NA NA NA ns
P253L drug 3.84 -0.78 Destabilising -0.6 Destabilising 0.2 NA NA NA ns
V263A none 8.71 -0.28 Destabilising -0.55 Destabilising 0.2 NA NA NA ns
A92D none 6.82 -0.94 Destabilising -0.74 Destabilising 0.3 NA NA NA ns
P262S none 5.83 0.53 Stabilising -1.2 Destabilising 0.3 NA NA NA ns
E389G none 7.5 -2.91 Destabilising -0.71 Destabilising 0.3 NA NA NA ns
A200D drug 4.8 -1.47 Destabilising -0.74 Destabilising 0.41 NA NA NA ns
T385P none 9.82 -1.17 Destabilising -1.1 Destabilising 0.51 NA NA NA ns
H387N none 8.05 -0.43 Destabilising -1.02 Destabilising 0.61 NA NA NA ns
A131G none 8.11 -1.33 Destabilising -0.59 Destabilising 0.81 NA NA NA ns
P262L none 5.83 -0.14 Destabilising -0.6 Destabilising 0.81 NA NA NA ns
H387Y none 8.05 -1.95 Destabilising -0.85 Destabilising 0.81 NA NA NA ns
L61V none 9.84 -0.88 Destabilising -0.69 Destabilising 1.72 NA NA NA ns
P262Q none 5.83 0.61 Stabilising -0.88 Destabilising 2.54 NA NA NA ns
K157E drug 3.96 -0.6 Destabilising -0.93 Destabilising 2.74 NA NA NA ns

Table 7.A.1: Mutations close to DCS
Forty mutations single amino acid variation (SAV) mutations lying within 10Å of DCS and their corresponding ligand affinity changes (log fold change) measured by
mCSM-Lig and mmCSM-lig. The estimated effect are categorised as Destabilising (log fold affinity change<0) and Stabilising (∆∆G>0). The genomic measures of
minor allele frequency (MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P
< 0.01, ***P < 0.001, ****P < 0.0001, ns:>0.05. The table is arranged by OR to show mutation with the highest OR at the top for mutations close to DCS. Columns
with NA indicate insufficient data to calculate OR. Abbreviations used: FDR: false discovery rate, ns: not significant, DCS: cycloserine.
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7.B Mutations close to the protein-protein interface

Muta-
tion

Interacting
partner PPI2-Dist

(Å)
mCSM-PPI2
(∆∆G)

mCSM-
PPI2 out-
come

MAF
(%) Odds Ratio P-value

Adjusted
P-value

Adjusted P-value
significance

L113R none 3.79 -0.74 Decreasing 14.2 51.87 <0.0001 <0.0001 ****
Y388D drug and plp 3.18 -1.5 Decreasing 4.36 16.5 0.11 0.82 ns
L283P none 3.8 -1.08 Decreasing 0.1 4.09 >1 >1 ns
G292A none 3.48 -0.75 Decreasing 0.2 4.09 >1 >1 ns
H297R none 2.89 -0.25 Decreasing 0.2 4.09 >1 >1 ns
A200V drug 5.16 0.12 Increasing 0.3 4.09 >1 >1 ns
A358T none 7 0.26 Increasing 0.3 4.09 >1 >1 ns
T399I none 7.9 -0.07 Decreasing 0.41 4.09 >1 >1 ns
S321L none 5.06 -0.06 Decreasing 0.51 4.09 >1 >1 ns
E140D none 6.38 -0.06 Decreasing 0.71 4.09 >1 >1 ns
M343T drug 3.73 -1.62 Decreasing 4.16 1.91 0.4 >1 ns
L35F none 4.49 0.01 Increasing 0.1 NA NA NA ns
A36V none 7.63 0.15 Increasing 0.1 NA NA NA ns
D68N none 6.89 0.31 Increasing 0.1 NA NA NA ns
A92T none 3.14 0.26 Increasing 0.1 NA NA NA ns
V94I none 7.95 -0.3 Decreasing 0.1 NA NA NA ns
D95G none 6.05 -0.51 Decreasing 0.1 NA NA NA ns
I118T none 8.3 -0.1 Decreasing 0.1 NA NA NA ns
I118V none 8.3 -0.23 Decreasing 0.1 NA NA NA ns
L162M none 3.72 1.09 Increasing 0.1 NA NA NA ns
G166D none 5.41 -0.48 Decreasing 0.1 NA NA NA ns
A170T none 6.75 0.18 Increasing 0.1 NA NA NA ns
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M197I none 3.7 -0.63 Decreasing 0.1 NA NA NA ns
A200S drug 5.16 0.4 Increasing 0.1 NA NA NA ns
D201G none 5.21 -0.61 Decreasing 0.1 NA NA NA ns
S237A drug and plp 9.85 -0.22 Decreasing 0.1 NA NA NA ns
S238L none 9.92 -0.29 Decreasing 0.1 NA NA NA ns
A256S drug 9.79 0.72 Increasing 0.1 NA NA NA ns
A256T drug 9.79 0.51 Increasing 0.1 NA NA NA ns
L260V none 8.03 -0.42 Decreasing 0.1 NA NA NA ns
A280S none 5.4 0.28 Increasing 0.1 NA NA NA ns
A280V none 5.4 0.03 Increasing 0.1 NA NA NA ns
V284A none 7.76 -0.26 Decreasing 0.1 NA NA NA ns
V284M none 7.76 -0.38 Decreasing 0.1 NA NA NA ns
R288H none 5.7 -0.05 Decreasing 0.1 NA NA NA ns
A289E none 8.16 0.53 Increasing 0.1 NA NA NA ns
Y295F drug 2.95 -0.59 Decreasing 0.1 NA NA NA ns
G296A none 2.84 -0.78 Decreasing 0.1 NA NA NA ns
W299R none 6.77 -0.7 Decreasing 0.1 NA NA NA ns
N306D none 9.35 -0.27 Decreasing 0.1 NA NA NA ns
A308T none 8.25 0.24 Increasing 0.1 NA NA NA ns
A308V none 8.25 0.2 Increasing 0.1 NA NA NA ns
Y314C drug 3.15 -1.93 Decreasing 0.1 NA NA NA ns
D316G none 6.15 -0.99 Decreasing 0.1 NA NA NA ns
R320W none 2.94 0.02 Increasing 0.1 NA NA NA ns
S321A none 5.06 -0.16 Decreasing 0.1 NA NA NA ns
G323S none 8.63 -0.02 Decreasing 0.1 NA NA NA ns
G323V none 8.63 0.03 Increasing 0.1 NA NA NA ns
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R325P none 8.6 -1.09 Decreasing 0.1 NA NA NA ns
V338G none 7.49 -0.37 Decreasing 0.1 NA NA NA ns
M347L none 4.36 -0.75 Decreasing 0.1 NA NA NA ns
D361G none 6.41 -0.43 Decreasing 0.1 NA NA NA ns
D361N none 6.41 -0.43 Decreasing 0.1 NA NA NA ns
D381N none 9.21 -0.44 Decreasing 0.1 NA NA NA ns
G384D none 4.42 0.22 Increasing 0.1 NA NA NA ns
H387Q none 6.59 -0.33 Decreasing 0.1 NA NA NA ns
Y388C drug and plp 3.18 -1.26 Decreasing 0.1 NA NA NA ns
V391G none 5.92 -0.84 Decreasing 0.1 NA NA NA ns
T392P none 3.34 -1.36 Decreasing 0.1 NA NA NA ns
R397C none 3.37 -0.75 Decreasing 0.1 NA NA NA ns
G71S none 6.73 -0.32 Decreasing 0.2 NA NA NA ns
A97V none 9.94 0.3 Increasing 0.2 NA NA NA ns
G117D none 6.63 0.19 Increasing 0.2 NA NA NA ns
G117S none 6.63 -0.01 Decreasing 0.2 NA NA NA ns
L135V none 8.63 -0.35 Decreasing 0.2 NA NA NA ns
D205G none 7.74 -0.25 Decreasing 0.2 NA NA NA ns
A280P none 5.4 0.06 Increasing 0.2 NA NA NA ns
G290W none 7.45 -0.1 Decreasing 0.2 NA NA NA ns
V293M none 3.6 -1.41 Decreasing 0.2 NA NA NA ns
R303H none 9.22 -0.01 Decreasing 0.2 NA NA NA ns
N306T none 9.35 -0.27 Decreasing 0.2 NA NA NA ns
L307V none 5.05 0.19 Increasing 0.2 NA NA NA ns
D316E none 6.15 -0.64 Decreasing 0.2 NA NA NA ns
D316Y none 6.15 -0.35 Decreasing 0.2 NA NA NA ns
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S321P none 5.06 -0.07 Decreasing 0.2 NA NA NA ns
M347I none 4.36 -0.23 Decreasing 0.2 NA NA NA ns
V348I none 8.78 -0.32 Decreasing 0.2 NA NA NA ns
T399A none 7.9 -0.1 Decreasing 0.2 NA NA NA ns
T399N none 7.9 -0.23 Decreasing 0.2 NA NA NA ns
H72Y none 8.39 0.05 Increasing 0.3 NA NA NA ns
A92D none 3.14 0.25 Increasing 0.3 NA NA NA ns
P169S none 8.42 -0.07 Decreasing 0.3 NA NA NA ns
P262S none 9.16 -0.07 Decreasing 0.3 NA NA NA ns
I287V none 3.19 0 Decreasing 0.3 NA NA NA ns
R340L none 5.89 -0.45 Decreasing 0.3 NA NA NA ns
A358G none 7 -0.42 Decreasing 0.3 NA NA NA ns
E389G none 2.95 -2.17 Decreasing 0.3 NA NA NA ns
T399S none 7.9 -0.21 Decreasing 0.3 NA NA NA ns
A200D drug 5.16 0.3 Increasing 0.41 NA NA NA ns
K285N none 2.97 -0.3 Decreasing 0.41 NA NA NA ns
R397G none 3.37 -0.65 Decreasing 0.41 NA NA NA ns
I398V none 9.57 -0.3 Decreasing 0.41 NA NA NA ns
V132L none 9.78 -0.27 Decreasing 0.51 NA NA NA ns
R136H none 4.13 -0.14 Decreasing 0.51 NA NA NA ns
T160A none 6.94 -0.31 Decreasing 0.51 NA NA NA ns
I300T none 8.54 -0.1 Decreasing 0.51 NA NA NA ns
P311L none 4.47 -1.04 Decreasing 0.51 NA NA NA ns
P311S none 4.47 -0.14 Decreasing 0.51 NA NA NA ns
T385P none 3.59 -1.34 Decreasing 0.51 NA NA NA ns
L135E none 8.63 -0.38 Decreasing 0.61 NA NA NA ns
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V318M none 4.56 -0.42 Decreasing 0.61 NA NA NA ns
D381E none 9.21 0.04 Increasing 0.61 NA NA NA ns
H387N none 6.59 0.22 Increasing 0.61 NA NA NA ns
A308G none 8.25 0.18 Increasing 0.71 NA NA NA ns
R397L none 3.37 -0.71 Decreasing 0.71 NA NA NA ns
L135Q none 8.63 -0.21 Decreasing 0.81 NA NA NA ns
Q137H none 6.31 0.22 Increasing 0.81 NA NA NA ns
P262L none 9.16 -0.36 Decreasing 0.81 NA NA NA ns
A280T none 5.4 0.39 Increasing 0.81 NA NA NA ns
H387Y none 6.59 0.09 Increasing 0.81 NA NA NA ns
H114P none 4.93 -0.6 Decreasing 1.12 NA NA NA ns
I118F none 8.3 0.28 Increasing 1.12 NA NA NA ns
G292S none 3.48 -0.13 Decreasing 1.12 NA NA NA ns
I312V none 6.03 -0.35 Decreasing 1.12 NA NA NA ns
V318I none 4.56 -0.39 Decreasing 1.12 NA NA NA ns
D344N drug 3.21 -1.22 Decreasing 1.42 NA NA NA ns
V383L none 5.96 -0.19 Decreasing 2.23 NA NA NA ns
P262Q none 9.16 -0.03 Decreasing 2.54 NA NA NA ns
M347V none 4.36 -0.68 Decreasing 2.64 NA NA NA ns
K157E drug 6.5 -0.03 Decreasing 2.74 NA NA NA ns
R288S none 5.7 -0.38 Decreasing 4.16 NA NA NA ns
V284L none 7.76 -0.26 Decreasing 4.26 NA NA NA ns

Table 7.B.1: Mutations close to Alr PPI
One hundred and twenty two single amino acid variation (SAV) mutations lying within 10Å of the protein-protein interface (PPI) and their corresponding PPI affinity
changes (∆∆G) measured by mCSM-PPI2. The estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures of minor
allele frequency (MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns: >0.05. The table is arranged by OR to show mutation with the highest OR at the top for mutations at the PPI. Columns with
NA indicate insufficient data to calculate OR. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant, DCS:
cycloserine.
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8.1 Background

8.1.1 Mechanism of action of rifampicin

Rifampicin (RFP) is an antibiotic that is used in the treatment of both active and latent TB.1 It

is used with other antibiotics such as isoniazid, pyrazinamide and ethambutol. RFP in combination

with isoniazid forms the basis of treatment for MDR-TB.2 RFP inhibits the elongation of messenger

RNA by binding to the β-subunit of the bacterial RNA polymerase (RpoB RNAP).3 The target for

RFP is the rpoB gene encoding a DNA-dependent RNA polymerase enzyme.4 It has been shown

that RFP binding to rpoB induces hydroxyl radical formation in susceptible but not resistant bacilli,

contributing to the bactericidal activity of RFP.5

8.1.2 Rifampicin resistance in M. tuberculosis

SAVs in rpoB are the major contributing factor to RFP resistance development.6–8 About 96% of rpoB

SAVs occur frequently within a 81 base pair (bp) region, spanning codons 507-533 (encoding 27 amino

acids). This region is commonly known as the Rifampicin Resistance Determining Region (RRDR).7

RFP resistant mutations are particularly found in codons 518, 523-529, and 5319,10 (Figure 1).

Despite this, mutations beyond the RRDR have been investigated, and reported to being linked with

RFP resistance.11,12 Further, the role of compensatory mutations in rpoA and rpoC in restoring any

fitness penalty from mutations in rpoB have been shown to result in strains with a high degree of

transmissibility.13–15

A

Rifampicin

B

Figure 1: Chemical structure and mechanism of action and resistance for rifampicin
A) The chemical structure of rifampicin (RFP) is shown at the top left and is sourced from DrugBank (ID:
DB01045), and shows an aromatic core linked by aliphatic chains, B) An overview of the mechanism of action
and resistance for Rifampicin. Figure adapted from Sheikh et. al..16
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8.1.2.1 Active site description of the RpoB RNAP-RFP complex

The genomic location and coding region of rpoB was retrieved from the Mycobrowser database

(Rv0667c: 759807-763325). An experimentally determined 3D atomic structure of the RpoB RNAP

complex from M. tuberculosis containing a 3 nucleotide RNA with RFP bound is available as the PDB

entry 5UHC as a native hetero-hexamer.17 RFP is bound at the β subunit of rpoB (chain C), while

the transcribed DNA i.e. nucleic acid (NA) is present at the cleft between rpoB, and rpoC (chain D,

subunit β’). The other chains in the complex comprise of rpoA (chain A and B, subunits α1 and α2),

rpoZ (chain E, subunit ω), and rpoD (chain F, subunit SigA).17

Interactions with RFP

Molecular interactions between RFP and RpoB RNAP were identified using LigPlus, PLIP and Arpeg-

gio resulting in a total of twenty-one interaction sites: 70, 428, 429, 430, 431, 432, 433, 435, 445, 448,

450, 452, 453, 458, 459, 483, 487, 491, 604, 607, 674. An overview of the RpoB RNAP structural

complex with all interactions identified is shown in Figure 2.

Figure 2: Description of M. tuberculosis RpoB RNA polymerase β subunit complex with ri-
fampicin bound
Left panel shows the overall description of hetero-hexamer RpoB RNA polymerase β subunit in complex with
RFP (PDB-ID: 5UHC) shown as surface representation, with chain C (rpoB) appearing as gold ribbon. The
transcribed DNA i.e. nucleic acid (NA) is present at the cleft between subunit complex. Chains A, B and D
appear in steel blue, light yellow, and dark grey surfaces. RFP is shown in green as spheres, with nucleic acid
appearing in bright pink. Right panel shows a close-up view of RpoB RNAP interactions with RFP shown as
green ball-and-stick. RFP interacting residues are indicated in green, with nucleic acid in bright pink, along
with Mg2+ and Zn2+ ions which formed part of the complex. Abbreviations used: RFP: rifampicin.
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8.2 Structural and genomic insights into rifampicin resistance

8.2.1 Mutational landscape of RpoB RNAP

Mutations peak around the active site with residue H445 showing a maximum of 13 SAVs

A total of 1132 SAVs were located in the protein coding region of rpoB (Rv0667c: 759807-763325).

The mutational landscape is distributed across the protein (Figure 3) with mutations present in 631

unique positions, with a maximum of 13 SAVs at a single site (Figure 4).

Figure 3: Mutational landscape of M. tuberculosis RpoB RNA polymerase β subunit
An overview of all mutational sites on M. tuberculosis RpoB RNA polymerase β subunit (PDB-ID: 5UHC, chain
C) appearing as surface representation in tan colour, nucleic acid (NA) bound in complex is shown in bright
pink, while the RFP appears as green spheres. The left and right panels are opposing representations (rotated
180◦) of RFP, with RFP shown as green spheres. The figure is generated using UCSF Chimera version 1.14.
Abbreviations used: SAV: single amino acid variation, RFP: rifampicin.

Mapping mutations by position on the RpoB RNAP (Figure 4) highlight the following:

Sites interacting with RFP were associated with a maximum of 13 SAVs at a single site (sites marked

in green)

• Single mutations: F433, S458, R459, and N487

• Budding resistant hotspots: R448, G453, P483

• Hotspots with three mutations: S428, L430

• Hotspots with four mutations: Q429, S431, L452

• Hotspots with five mutations: Q432

• Hotspots with seven mutations: I491

• Hotspots with ten mutations: D435
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• Hotspots with eleven mutations: S450

• Hotspots with thirteen: H445

Sites away from RFP also showed a maximum of 5 SAVs at a single site. A majority (56%, n=639) of

the mutational effects resulted in electrostatic changes (Figure 4).
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Figure 4: Sites associated with SAVs in M. tuberculosis RpoB RNA polymerase β subunit complex
Logo plot showing 631 unique sites/positions associated with 1132 SAVs in M. tuberculosis RpoB RNA polymerase β subunit. The horizontal axis shows the wild-type
positions associated with SAVs in RpoB RNA polymerase β subunit and the vertical axis shows all the mutant residues observed in our data highlighting SAV diversity
at a given site. Residues are coloured according to the amino acid (aa) property where acidic aa appear in red, basic aa appear in blue, hydrophobic aa in black, neutral
aa in purple, and polar aa in darkgreen. The structural positions associated with SAVs in RpoB RNA polymerase β subunit are indicated on the horizontal axis. The
wild-type (WT) residues also coloured according to aa property appear under the respective position markings. The heat bar underneath the WT residues indicate
the distance of that position from RFP according to the magma colour gradient where light yellow indicates sites closer to RFP (ligand distance in Angstroms). The
positions are further annotated to reflect active site residues involved in interactions with RFP (green). The figure is generated using R statistical software version 4.0.2,
ggplot2 package. Abbreviations used: SAV: single amino acid variation, RFP: rifampicin.
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8.2.2 Mutational outcome from protomer stability changes and evolutionary con-

servation

Most mutational consequences are destabilising for protomer stability with possible consequences on
protein function

Most mutations had a destabilising effect on the overall protomer stability when measured by the

different computational tools (Figure 5A-4D), with DeepDDG estimating 88% (n=997) as destabil-

ising, followed by ∼81% of mutations estimated by Dynamut2 (n=687) as destabilising, about 78%

(n=774) estimated as destabilising by mCSM-DUET, followed by FoldX predicting ∼69% (n=778)

mutations as destabilising. Based on an analysis of evolutionary conservation, PROVEAN estimated

nearly equal numbers of mutations as deleterious (n=564) and neutral (n=568) (Figure 5E) while

SNAP2 estimated 61% (n=691) with non-deleterious impact (Figure 5F).

Figure 5: Protein stability outcome of SAVs in M. tuberculosis RpoB RNA polymerase β subunit
Mutational impact on overall protein stability and evolutionary conservation changes for 1132 SAVs, A-D)
Barplots showing number of SAVs categorised as destabilising (red) or stabilising (blue) according to protein
stability changes (∆∆G Kcal/mol) measured by four computational tools: mCSM-DUET, FoldX, DeepDDG,
and Dynamut2, E-F) Number of SAVs categorised as Effect/Deleterious (magenta) or Neutral (pink) according
to evolutionary conservation changes estimated by computational tools: PROVEAN, and SNAP2. The figure
is generated using R statistical software version 4.0.2, ggplot2 package. Abbreviations used: ∆∆G: change in
Gibbs free energy, SAV: single amino acid variation.

Evolutionary and structure-based predictors provide different insights into understanding mutational

impact. Mutational impact in this context is considered to be its effect on protein stability, drug

binding affinity, other binding affinities such as PPI or nucleic acid, and functional effects arising

from protein sequence variations. The first three mutational consequences are assessed by structure

based predictors relying on the 3D structure of a protein, while the last is assessed by sequence based
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predictors relying mainly on evolutionary conservation trends across many proteins using multiple

sequence alignments. The sequence based predictors are aimed at predicting pathogenicity or change

of molecular function, structure based tools rely on estimating variant effects in relation to structure

damage, corresponding to stability changes, as protein stability is considered the basic characteristic

affecting function, activity, and regulation. Predictors such as ConSurf are able to use both struc-

tural and sequence information to identify important functional regions conserved in proteins. A

variant classified as ’deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Thus, different methodological strategies benefit from

complementary information when assessing specific proteins.

8.2.3 Mutational consequences on affinity changes and prominent mutational ef-

fects

Mutations reduce binding affinity for RFP, and PPI without largely affecting affinity for NA

About 15% (n=168) of SAVs inducing changes in RFP binding affinity were within 10Å of RFP. These

mutations occurred at 54 distinct sites, with most sites (n=16) showing single mutations. Nearly 74%

of mutations (n=168) were predicted to result in a destabilising effect on RFP binding affinity measured

by mCSM-lig, and all (n=168) mutations were destabilising according to mmCSM-lig (Figure 6A

top panel, Appendix Table 8.A.1). When the 36 mutational sites with their average effect on RFP

binding affinity were mapped onto the RpoB RNAP, these were shown to result in mild-moderate

destabilising mutational consequences (Figure 6A bottom panel).

Analysing sites close to the nucleic acid highlighted around 17% (n=195) mutations, corresponding to

86 distinct sites within 10Å of the NA measured by mCSM-NA, with 58% (n=114) of mutations classed

as destabilising (Figure 6B top panel). While sites around the NA showed a mixture of stability

effects on visual inspection, sites with stabilising mutations appear in the immediate surrounding areas

to the NA, followed by mild-moderate destabilising mutations, with strongly destabilising mutations

located further away (Figure 6B bottom panel, Appendix Table 8.B.1).

Considering the hetero-hexamer RpoB RNAP, the PPI surfaces covered nearly 60% (n=674) mutations

at 367 distinct sites located within 10Å of the PPI measured by mCSM-PPI2, with 70% (n=467) of

mutations resulting in destabilising effects (Figure 6C top panel). Sites around the PPI showed a

mixture of effects but predominately with mild stability impact (Figure 6C bottom panel, Appendix

Table 8.C.1). Of the total 631 unique sites in RpoB RNAP displaying SAVs, about 58% of sites

(n=364) showed single mutations, with 23% (n=146) of sites as budding resistant hotspots (Figure 7
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top panel).

The most prominent effects on RFP binding were from reduced (destabilising) affinity to RFP con-

tributed by mutations from 31 surrounding sites. Four sites contributing mutations that increased

the binding affinity to RFP (Figure 7, yellow text boxes, and bottom panel). Sites around the NA

had mutations that contributed nearly equally towards decreasing (n=11) and increasing NA affinity

(n=10), with stabilising mutations appearing to be located farther away from NA on visual inspec-

tion, with destabilising mutational sites appearing to be comparatively closer to the NA (Figure 7,

yellow text boxes, and bottom panel). Sites close to the PPI had mostly destabilising mutations from

54 surrounding sites, while 27 had a stabilising mutational impact (Figure 7, pink text boxes, and

bottom panel). All other sites were largely (n=418) affected by destabilising mutations (Figure 7,

blue and red text boxes, and bottom panel) impacting protomer stability.
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Figure 6: Mutational impact on binding affinities for RFP, nucleic acid, and protein-protein interface in M. tuberculosis RpoB RNA polymerase
β subunit
The top panel displays barplots showing the mutational outcome of affinity changes and their corresponding site frequency, while the bottom panel shows the corresponding mutational impact
mapped onto the RpoB RNA polymerase β subunit (PDB-ID: 5UHC, chain C) shown as surface representation. Chains A, B and D appear in steel blue, light yellow, and dark grey. RFP is shown
as green spheres while the nucleic acid (NA) fragment is indicated in pink. A) Mutational impact on RFP binding (log fold change) from mCSM-lig and mmCSM-lig with 168 mutations at 54
sites within 10Å of RFP, B) Mutational impact on NA binding affinity (∆∆G) for 195 mutations at 86 sites within 10Å of the NA, C) Mutational impact on protein-protein (PP) affinity (∆∆G)
for 674 mutations at 367 sites within 10Å of the PPI. For all parts, red denotes destabilising and blue denotes stabilising mutational sites, and the colour intensity reflects the extent of the effect:
-1 (most destabilising) to +1 (most stabilising). Barplots are generated using R statistical software version 4.0.4, ggplot2 package. The structure figures are generated using Chimera version 1.14.
Abbreviations used: Å: angstroms, ∆∆G: change in Gibbs free energy in kcal/mol, SAV: single amino acid variation, RFP: rifampicin.
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Figure 7: Prominent mutational effects in M. tuberculosis RpoB RNA polymerase β subunit
Most prominent mutational effect for all 1132 SAVs located in 631 sites prioritised in order of increasing effect
size: mCSM/mmCSM-lig, mCSM-NA, mCSM-PPI2, followed by overall stability changes. The left panel shows
a barplot displaying the overall frequency of 1132 SAVs with respect to 631 sites, with the coloured bars denot-
ing the site frequency with respect to the most prominent effects. Mutational effects are coloured according to
the effect type with brighter colours representing stabilising mutational effects. Sites marked in yellow indicate
changes due to ligand (RFP) affinity with light yellow showing destabilising and bright yellow indicating stabil-
ising effect, brown areas indicate changes in nucleic acid (NA) affinity with light brown indicating destabilising
and dark brown denoting stabilising effects, pink areas indicate changes due to PPI binding affinity with bright
pink highlighting stabilising and light pink areas indicating destabilising mutational effects. Protomer stability
changes are coloured with blue indicating stabilising and red indicating destabilising mutational consequences.
The corresponding number of mutation sites contributing to these changes are indicated in the text box at
the top, and coloured accordingly. The barplot figures are generated using R statistical software version 4.0.4,
ggplot2 package. The structure figures are generated using Chimera version 1.14. Abbreviations used: Å:
angstroms, ∆∆G: change in Gibbs free energy in kcal/mol, SAV: single amino acid variation, RFP: rifampicin.

8.2.4 Mutational association with RFP resistance and flexibility

Resistant mutations appear to be concentrated around RFP and the PPI areas as well as in low-to-mild
flexibility regions

Mutational association with resistance according to aggregate DST data showed a minority (30%,

n=329) of mutations as resistant. Mutational sites were mapped onto the RpoB RNAP to highlight

the location of sites with exclusively resistant (red) and sensitive (blue) mutations while sites displaying

both resistant and sensitive mutations were coloured purple. For RpoB RNAP, there were 120 sites

with resistant mutations, 201 sites with sensitive mutations, and 86 sites with both resistant and

sensitive mutations (Figure 8A).

Resistant mutations appear to cluster around sites close to RFP, NA and the PPI, while sensitive
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mutations were spread across the structure (Figure 8A and 8B). ConSurf scores are calculated for

each site on the protein, and range from 1 (rapidly evolving, variable sites) to 9 (slowly evolving,

conserved sites). Most mutations (n=270) occurred in the highly variable regions of RpoB RNAP

(ConSurf score 1) (Figure 8B right panel), in line with observation that sensitive mutations were

distributed across the RpoB RNAP (Figure 8A). As such resistant mutations were located in the

conserved regions surrounding RFP (Figure 8B left panel).

Further, the local flexibility in RpoB RNAP in relation to RFP resistance was also analysed with

thickness of the ribbon/tube (thinthick) corresponding to the extent of flexibility. Normal mode

analysis of RpoB RNAP highlighted that regions associated with SAVs were in low-mild flexibility

(Figure 9 left panel) and the key active site residue H445 (site with the highest SAV diversity: 13

SAVs) and S450 (most frequently occurring mutation) were regions of low flexibility (Figure 9 right

panel). All mutations at H445 were resistant, while S450 had both sensitive and resistant mutations.

Other active site residues S428, Q429, S431, D435 and R459 were also regions of mild flexibility

(Figure 9 right panel). Non-active site residues S458 and N437 showing mild flexibility contained

a single sensitive mutation (S458T) and five resistant mutations (N437D, N437H, N437S, N437T,

N437Y) respectively (Figure 9 left panel).
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A

B

Figure 8: Mutational association with rifampicin resistance and evolutionary conservation in M.
tuberculosis RpoB RNA polymerase β subunit
Mutational landscape of M. tuberculosis RpoB RNA polymerase β subunit according to different measures where
A) All sites associated with SAVs on M. tuberculosis RpoB RNA polymerase β subunit (chain C, PDB-ID:
5UHC) appearing as surface representation in tan colour). RFP appears in green either as spheres or ball-and-
stick representation, while nucleic acid (NA) is shown in orange to aid visibility, A) The left panel shows all
mutational sites associated with resistant (red, n=120 sites), sensitive (blue, n=425 sites), while common sites
with both resistant and sensitive mutations appear in purple (n=86). The corresponding right panel depicts the
structure rotated by 180◦, B) Left panel shows RpoB RNA polymerase β subunit, chain C coloured according to
ConSurf scores where maroon indicates conserved sites and teal indicates variable sites with RFP (green spheres)
located in the conserved binding pocket. Yellow areas reflect sites with uncertainty due to insufficient data for
ConSurf score calculation. The barplot on the right panel shows the the number of mutations associated with
ConSurf values that range from 1 (variable) in teal to 9 (conserved) in maroon, where 0 denotes insufficient
data/not defined (ND). The barplot figures are generated using R statistical software version 4.0.4, ggplot2
package. All structure figures were generated using UCSF Chimera version 1.14. Abbreviations used: SAV:
single amino acid variation, RFP: rifampicin.
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Figure 9: Mutational association with rifampicin resistance and local protein flexibility of M.
tuberculosis RpoB RNA polymerase β subunit
Mutational landscape of M. tuberculosis RpoB RNA polymerase β subunit according to flexibility in RpoB
RNA polymerase β subunit, chain C according to normal mode analysis (NMA), measuring atomic deformation
according to protein dynamics to denote flexibility associated at sites in RpoB RNA polymerase β subunit.
The magnitude of flexibility is represented from thin (low flexibility) to thick (high flexibility) tubes. Left
panel: The tubes are further coloured to show mutational association with RFP resistance, red: resistant sites,
blue: sensitive sites, purple: shared sites, black: sites with no SAVs, Right panel: Close up view of the RFP
binding pocket to denote RFP interacting residues associated with mild-to-moderate flexibility labelled using
the standard one-letter amino acid code for the wild-type residue. All structure figures were generated using
UCSF Chimera version 1.14. Abbreviations used: SAV: single amino acid variation, RFP: rifampicin.

8.2.5 Relating mutational frequency and biophysical and evolutionary conserva-

tional changes

Correlation analysis was performed to understand the relationship between frequently occurring mu-

tations as assessed by MAF and their association with stability (mCSM-DUET, FoldX, DeepDDG,

Dynamut2), conservation (ConSurf, SNAP2, PROVEAN), affinity changes (mCSM-lig/mmCSM-lig,

mCSM-NA, and mCSM-PPI2), and distances to ligand (Lig-Dist), nucleic acid (NA-Dist) and protein-

protein interface (PPI-Dist). A combined analysis with all mutations, as well as separately for resistant

(R) and sensitive (S) mutations was performed (Figures 10 and 11). Analyses focused on determin-

ing the strength of association without regard for the direction of the association due to dissimilarity

of threshold criteria used by the various estimators.

Frequently occurring sensitive mutations were weakly related to protomer stability changes, while fre-
quently occurring resistant mutations were weakly related to distance from nucleic acid, and moderately
related to distance from RFP

Frequently occurring mutations were not related to protomer stability changes (P>0.05) accord-

ing to mCSM-DUET and Dynamut2, though weak association were noted when assessed by FoldX

(ρR+S<0.1, P<0.01) and DeepDDG (ρR+S=0.1, P<0.001). FoldX showed a weak link with sensitive

mutations (ρS=-0.14, P<0.001), similarly to DeepDDG which also showed weak associations for sensi-

tive mutations (ρS=0.27, P<0.001) (Figure 10). Frequently occurring mutations were overall weakly
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associated with distance from the drug (ρR+S=-0.11, P<0.001), though resistant mutations driving

this association were moderately associated (ρR=-0.34, P<0.001). Mutational frequency was not as-

sociated with distance to nucleic-acid (ρR+S<0.1, P<0.05) with only weak association for resistant

mutations noted (ρR<=-0.15, P<0.01). Mutational frequency was not associated with distance to the

dimer interface (ρR+S<0.1 and ρR/S<0.1, P>0.05).

The different computational tools showed good consensus (moderate to strong associations) amongst

their predicted estimates, both overall (0.3≤ρR+S<0.8, P<0.001), as well as individually for resistant

and sensitive mutation groups (0.3≤ρR/S<0.8, P<0.001). As expected, mCSM-DUET and Dynamut2

were strongly correlated as these tools share common methodology (ρ=0.74, P<0.001) (Figure 10).

Of note, the negative sign associated with FoldX correlations with other estimators is due to the

inverse classification criteria used by these tools (See Chapter 2: Methods for details).

Frequently occurring resistant mutations were weakly associated with evolutionary conservation, while
frequently occurring sensitive mutations were moderately associated with protein functional effects

Overall, there was no association with mutational frequency and rate of evolution estimated from Con-

Surf (ρR+S<0.1, P>0.05), though resistant mutations showed a weak association (ρR=-0.17, P<0.01).

Frequently occurring mutations were weakly associated with functional changes in protein as esti-

mated by SNAP2 and PROVEAN (ρR+S<0.3, P<0.001) with both sensitive and resistant mutations

contributing to this association (0.1 <ρR/S<0.3, P<0.001). There was good agreement (moderate to

strong association) between estimates across the three conservation predictors both overall (ρR+S>0.6,

P<0.001) and individually in sensitive and resistant mutation groups (ρR/S>0.5, P<0.001) (Figure 11

left panel).

Frequently occurring sensitive mutations were weakly related to PPI affinity changes, while frequently
occurring resistant mutations were weakly related to RFP affinity changes

Frequently occurring mutations were weakly related to RFP affinity changes according to mmCSM-lig

(ρR+S=-0.15, P<0.001), but not according to mCSM-lig (ρR+S<0.1, P<0.01). Further, only resistant

mutations appeared to drive this weak association for mCSM (ρR=-0.15, P<0.01) and moderate

association for mmCSM-lig (ρR:-0.31, P<0.001) (Figure 11 right panel). No association between

mutational frequency and NA affinity was noted, either overall or individually in sensitive and resistant

mutation groups (ρR+S and ρR/S<0.1, P>0.05). However, weak associations were noted with PP

affinity changes for sensitive mutations (ρs=0.13, P<0.001) (Figure 11 right panel). Estimates from

mCSM- and mmCSM-lig were not as strongly correlated (ρR+S<0.6, ρR/S<0.5, P<0.001) despite the

underlying shared methodology (Figure 11 right panel).
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Figure 10: Correlation of protein stability changes and genomics measures
Pairwise correlations between minor allele frequency (MAF), protein stability changes (∆∆G) estimated using
DUET, FoldX, DeepDDG, and Dynamut2, and distance to RFP, and the protein-protein interface for 1132 SAVs.
The upper panel in both plots include the pairwise Spearman (ρ) correlation values along with their statistical
significance (.P<0.10, *P<0.05, **P<0.01, ***P<0.001). Three correlation values appear in each plot where
black denotes the overall correlation with both resistant (R) and sensitive (S) mutations, while red denotes
correlation estimates for resistant mutations, and blue denotes correlation estimates for sensitive mutations.
The points in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent
sensitive mutations individually. The diagonal in each plot displays the density distribution of the corresponding
parameter split by the two mutation groups. The figure is generated using R statistical software version 4.0.4,
ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV:
single amino acid variation, Lig-Dist: distance to ligand in Å, NA-Dist: distance to nucleic-acid in Å, PPI-Dist:
distance to protein-protein interface in Å, RFP: rifampicin.
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Figure 11: Correlation of evolutionary conservation, affinity changes, and genomics measures
Pairwise correlations of evolutionary conservation, affinity changes, and genomic measure of minor allele frequency (MAF) for 1132 SAVs. Left panel: Evolutionary conservation predictors: ConSurf,
SNAP2, and PROVEAN, Right panel: RFP binding affinity changes estimated as log fold change (mCSM-lig and mmCSM-lig) of 54 SAVs lying within 10Å of RFP, nucleic acid (NA) affinity
changes (mCSM-NA) estimated as ∆∆G 195 mutations within 10Å of NA, and protein-protein (PP) binding affinity changes (mCSM-PPI2) estimated as ∆∆G for 674 SAVs lying within 10Å of
PPI. All corresponding affinity measures for mutations located more than 10Å of RFP, and the PPI were given a value of 0 to allow complete SAVs to be used for analysis, while respecting the
distance threshold for the respective tools. The upper panel in both plots include the pairwise Spearman (ρ) correlation values along with their statistical significance (.P<0.10, *P<0.05, **P<0.01,
***P<0.001). Three correlation values appear in each plot where black denotes the overall correlation with both resistant (R) and sensitive (S) mutations, while red denotes correlation estimates
for resistant mutations, and blue denotes correlation estimates for sensitive mutations. The points in the lower panel represent SAVs, where red dots denote resistant mutations and blue represent
sensitive mutations individually. The diagonal in each plot displays the density distribution of the corresponding parameter split by the two mutation groups. The figure is generated using R
statistical software version 4.0.4, ggplot2 package. Abbreviations used: Å: Angstroms, ∆∆G: change in Gibbs free energy in Kcal/mol, SAV: single amino acid variation, Lig-Dist: distance to ligand
in Å, NA-Dist: distance to nucleic-acid in Å, PPI-Dist: distance to protein-protein interface in Å, RFP: rifampicin.
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8.2.6 Comparing resistant and sensitive mutations

Resistant mutations occur marginally less frequently, are closer to RFP, NA and PPI, are destabilising
for protomer stability, and also likely to affect protein function

Resistant mutations were destabilising compared with sensitive mutations for changes in protomer

stability as measured by FoldX (P<0.001) and DeepDDG (P<0.0001), but not by mCSM-DUET and

Dynamut2 (Figures 12A-12D). Resistant mutations were only slightly less frequent compared with

sensitive mutations (P<0.05, Figure 12E), were located significantly closer to RFP (P<0.0001, Fig-

ure 12F) without affecting drug binding affinity (P<0.05, Figures 12L and 12M). Further, resistant

mutations were located closer to NA (P<0.0001, Figure 12G) and PPI (P<0.001, Figure 12H)

resulting in marginal reduction in affinity of interaction at the PPI (P<0.05, Figure 12O), but not

to NA binding affinity (P>0.05, Figure 12N). Resistant mutations were conserved (slower rate of

evolution according to ConSurf) (P<0.0001, Figure 12I), and were more likely to result in delete-

rious impact towards protein function when assessed by both PROVEAN and SNAP2 (P<0.0001,

Figures 12J and 12K).
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Figure 12: Comparison of resistant (R) and sensitive (S) mutations
Violin plots showing the distribution of features related to structural properties, genomic measure, evolutionary
conservation for 1132 RpoB RNA polymerase β subunit SAVs. For affinity changes related to the ligand
(RFP) binding affinity measured by mCSM- and mmCSM-lig, only mutations within 10Å of RFP (n=168)
were considered. Similarly, for nucleic acid (NA) binding affinity, mutations within 10Å of nucleic acid (NA)
estimated by mCSM-NA (n=195), and for protein-protein (PP) affinity changes estimated by mCSM-PPI2,
mutations within 10Å of the PPI (n=674) were considered. Mutations were grouped as either resistant (R,
n=127) or sensitive (S, n=731) and were compared using the Wilcoxon rank-sum (unpaired) test, with statistical
significance indicated as: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Mutations in the resistant
group appear as red dots, while those in the sensitive group appear as blue dots, and the horizontal line in
the violin plots display the median value. The two mutations groups were compared based on A-D) Stability
changes (∆∆G) estimated from four computational tools: mCSM-DUET, FoldX, DeepDDG and Dynamut2, E)
genomic measure of average mutational occurrence (Log10MAF), F-H) Distance to ligand (Lig-Dist), Distance
to Nucleic acid (Distance to NA), and Distance to the PPI (PPI-Dist), I-K) Evolutionary conservation measured
by ConSurf (<0: Conserved, >0: Variable), PROVEAN >-2.5: Neutral, < -2.5: Deleterious) and SNAP2 (<=0:
Neutral, >0: Effect) computational tools, L-M) Comparison of STR binding affinity changes from mCSM-lig
and mmCSM-lig measured as log fold change for R (n=120) and S (n=48) mutations, N), those for NA binding
affinity changes (mCSM-NA) measured as ∆∆G for R (n=110) and S (n=85) mutations, and for O) PP
binding affinity changes (mCSM-PPI2) measured as ∆∆G for R (n=17) and S (n=104) mutations. The figure
is generated using R statistical software version 4.0.4. Abbreviations used: Å: Angstroms, ∆∆G: change in
Gibbs free energy in Kcal/mol, SAV: single amino acid variation, ns: not-significant, Lig-Dist: distance to
ligand in Å, NA-Dist: distance to nucleic-acid in Å, PPI-Dist: distance to protein-protein interface/s in Å,
RFP: rifampicin, MAF: minor allele frequency, R: resistant mutations, S: sensitive mutations.

8.2.7 Associating mutations with Odds Ratio and extreme effects

Mutations involving and surrounding the active site are associated with high OR and RFP resis-
tance

Based on DST data available for 793 (out of 1132) SAVs, mutational association with resistance

was further estimated using Odds Ratio (OR), with values above 1 suggesting association with RFP

resistance. The higher the OR, the greater the likelihood of a given mutation being resistant. This

resulted in a majority (77%, n=611/793) of mutations predicted to be associated with RFP resistance,

much higher than observed in our data (30%, n=329/1132).

An overview of mutations in RpoB RNAP show that mutations involving active site residues (H445,

D435, S450) and those within 10Å of RFP were the ones with the strongest association with RFP re-

sistance: H445D (OR=1038.14), D435V (OR=863.35), and S450L (OR=573.58) (Figure 13). These

were followed by mutations L731P (OR=372.02), V170F (OR=297.78), R827C (OR=292.85), V534M

(OR=199.42), I480V (OR=150.51) though not directly involved with the active site were located

within 10Å of RFP (Figure 13).

Mutations at active site residues H445D, S450L, and I491T occurred most frequently, showed the
strongest link to RFP resistance and reduction in binding affinity to RFP

The most frequently occurring mutation S450L (MAF ∼54%) was located close to RFP (4Å), NA

(9Å), and PPI (9Å). The most destabilising mutation for RFP binding affinity was active site residue

I491T, while T444P was the most stabilising mutation for RFP binding affinity. Mutations with
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other extreme effects like those affecting protomer stability (V168G: destabilising, T702I: stabilising),

NA affinity (F367L: destabilising, R225W: stabilising), PPI (Y1073S: destabilising, I717Y: stabilising)

were not involved with the active site (Table 1).

Mutation Mutational effect
Mutational
effect value

Lig-Dist
(Å)

NA-Dist
(Å)

PPI-Dist
(Å)

Interacting
partner

H445D
Mutation with

highest OR OR = 1038.14 3.85 9.32 7.97 drug

S450L
Most frequent

mutation MAF (%) = 53.66 3.32 9.34 7.97 drug

V168G
Most Destabilising

for protomer ∆∆G = -0.59 7.19 13.59 12.01 no

T702I
Most Stabilising for

protomer ∆∆G = 0.55 19.48 19.87 10.82 no

I491T
Most Destabilising
for RFP binding

affinity

Log fold change =
-0.83 3.62 7.59 5.35 drug

T444P
Most Stabilising for
RFP binding affinity

Log fold change =
0.32 5.96 11.06 10.15 no

F367L
Most Destabilising

for NA binding
affinity

∆∆G = -5.90 14.56 7.82 7.82 no

R225W
Most Stabilising for
NA binding affinity ∆∆G = 6.41 29.40 7.4 7.40 no

Y1073S
Most Destabilising

for PPI affinity ∆∆G = -2.45 27.35 16.38 2.98 no

I717Y
Most Stabilising for

PPI affinity ∆∆G = 2.12 28.14 20.25 3.15 no

Table 1: Mutations with extreme effects
Mutations (SAVs) with extreme effects related to Odds Ratio (OR), mutational frequency (MAF), stability
and affinity changes. For affinity changes only mutations within 10Å of RFP for RFP binding affinity, NA
for NA binding affinity, and Protein-Protein Interface (PPI) for PPI affinity were considered. The protomer
stability changes are the average effect of all four estimates (mCSM-DUET, FoldX, DeepDDG and Dynamut2)
combined, and the RFP binding affinity changes are the average effect of the two mCSM based tools (mCSM-
lig and mmCSM-lig) combined. Changes in NA binding affinity and PP affinity correspond to estimates from
mCSM-NA and mCSM-PPI respectively. The estimated effects were categorised as Destabilising (log fold affinity
change/∆∆G<0) and Stabilising (log fold affinity change/∆∆G>0). Abbreviations used: Å: Angstroms, ∆∆G:
change in Gibbs free energy in Kcal/mol, MAF: minor allele frequency, SAV: single amino acid variation, Lig-
Dist: distance to ligand, PPI-Dist: distance to protein-protein interface, RFP: rifampicin
.
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Figure 13: Logo plot showing mutational sites and their association with resistance according to Odds Ratio
Logo plot showing 793 SAVs by mutational site according to their association with RFP resistance calculated using Odds Ratio (OR). The vertical axis represents the
OR where letters denote mutant residues which are proportional to their corresponding OR highlighting the most resistant mutation at each site and overall. The
mutant residues are coloured according to the amino acid (aa) properties as denoted where red denotes acidic aa, basic aa appear in blue, hydrophobic aa in black,
neutral aa in purple, and polar aa in darkgreen. The structural positions associated with SAVs with OR are indicated on the horizontal axis. The heat bar underneath
the positions indicate the distance of that position from RFP according to the magma colour gradient where light yellow indicates sites closer to RFP (ligand distance
in Angstroms). The positions are further annotated to reflect residues involved in interacting with RFP (green). The figure is generated using R statistical software
version 4.0.2, ggplot2 package. Abbreviations used: SAV: single amino acid variation, RFP: rifampicin.
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8.2.8 Relating lineage and protomer stability

Lineages 1 and 3 have high SAV diversity, with resistant mutations marginally stabilising for protomer
stability

Nearly 45% of clinical isolates (n=15,898) consisted of SAVs in the protein coding region of rpoB, with

14,061 samples contributing to the four main M. tuberculosis lineages (Lineages 1-4). Most samples

with RpoB RNAP mutations belonged to lineage 4 (n=6,861), followed by lineage 2 (n=5,121), lineage

3 (n=1,341) and finally by lineage 1 with the least number of samples (n=737) (Figure 14A). How-

ever, lineages 1 and 3 displayed higher SAV diversity (Lineage 1: 26%, n=188; Lineage 3: 21%, n=486),

compared with lineages 4 and 2 (Lineage 4: 11%, n=735; Lineage 2:25%, n=486) (Figure 14B).

Resistant mutations for all lineages showed prominent peaks centred around ∆∆G 0.15 Kcal/mol

corresponding to mildly stabilising protomer effects, with a smaller peak around ∆∆G 0.5 Kcal/mol

corresponding to moderately stabilising protomer effects. Lineage 3 showed an additional peak with

a ∆∆G -0.15 Kcal/mol corresponding to mildly destabilising protomer effects (Figure 14C).

Sensitive mutations across all lineages were widely distributed around the moderately destabilising-to-

mildly stabilising protomer effects (-0.3 Kcal/mol <∆∆G < 0.5 Kcal/mol). Lineages 2 and 3 peaked

with a ∆∆G of -0.12 Kcal/mol corresponding to marginally destabilising the protomer, with lineage

1 displaying a smaller peak with a ∆∆G of 0.35 Kcal/mol corresponding to moderately stabilising

the protomer (Figure 14C). Overall the distributions were significantly different between all lin-

eages (adjusted P<0.0001), as well as in lineages between resistant and sensitive mutations (adjusted

P<0.0001) except for lineage 1 (adjusted P>0.05) (Appendix Table 8.D.1).
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Figure 14: Lineage and Protomer stability distribution
Total number of samples (n=14,061) along with the number of mutations associated with RFP resistance in
the four M. tuberculosis lineages (L1-L4). A) The dark grey bars show the number of mutations (SAVs), while
the light grey bar show the total number of samples in each lineage, B) Mutational diversity in each lineage,
C) Density distribution of lineages according to protein stability changes (∆∆G). Estimates from four different
computational tools: mCSM-DUET, FoldX, DeepDDG,and Dynamut2 were combined to calculate the average
mutational stability impact for each SAV. The horizontal axis shows the average stability values (-1: highly
destabilising and +1:highly stabilising) further coloured by mutational association with resistance: Red denotes
resistant mutations (n=127, from 6,878 samples) and blue indicates sensitive mutations (n=731, from 6,657
samples) where the same sample may have mutations with differing sensitivities. The figure is generated using
R statistical software version 4.0.4. Abbreviations used:∆∆G: change in Gibbs free energy, SAV: single amino
acid variation, RFP: rifampicin.

8.3 Chapter summary

Mutations in RpoB RNAP are prevalent in M. tuberculosis, with mutations at active site residues

all contributing to RFP resistance. Most mutational consequences destabilise protomer stability with

possible consequences on protein function, with frequently occurring mutations being weakly associ-

ated with evolutionary conservation. Resistant mutations appear to be concentrated around RFP, NA,

and the PPI, as well as being located in regions of low-to-mild flexibility. Consequently, mutations

reduce RFP binding affinity, as well as PP affinity, but do not affect NA binding affinity, indicating

that mutations at the NA binding sites result in deleterious consequences with fitness costs being

ameliorated by other factors. This suggests that mutations in the active site show a gain-of-function

survival mechanism, able to tolerate extreme mutational consequences around RFP, NA, and the PPI
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without a severe fitness penalty. As part of the larger hetero-hexamer complex, this large mutational

tolerance, without compromising function, is likely to come from compensatory effects from rpoC and

rpoA genes.
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8.A Mutations close to rifampicin

Mutation
Interacting

partner
Lig-Dist

(Å)
mCSM-

lig
mCSM-lig
outcome

mmCSM-
lig

mmCSM-lig
outcome

MAF
(%)

Odds
Ratio P-value

Ad-
justed
P-value

Adjusted
P-value
signifi-
cance

H445D drug 3.85 -0.58 Destabilising -1.07 Destabilising 3.23 1,038.14 <0.0001 <0.0001 ****
D435V drug 3.10 -0.34 Destabilising -0.72 Destabilising 6.40 863.35 <0.0001 <0.0001 ****
S450L drug 3.32 -0.40 Destabilising -0.86 Destabilising 53.66 573.58 <0.0001 <0.0001 ****
V170F no 3.52 -0.37 Destabilising -0.76 Destabilising 0.81 297.78 <0.0001 <0.0001 ****
H445Y drug 3.85 0.06 Stabilising -0.95 Destabilising 4.58 237.23 <0.0001 <0.0001 ****
I480V no 9.00 -0.16 Destabilising -0.70 Destabilising 0.38 150.51 <0.0001 <0.0001 ****
H445C drug 3.85 -0.44 Destabilising -0.48 Destabilising 0.42 145.63 <0.0001 <0.0001 ****
S441L no 6.97 0.46 Stabilising -0.58 Destabilising 0.42 135.87 <0.0001 <0.0001 ****
I488V no 7.18 0.12 Stabilising -0.92 Destabilising 0.26 111.51 <0.0001 <0.0001 ****
H445L drug 3.85 -0.06 Destabilising -0.55 Destabilising 1.13 86.80 <0.0001 <0.0001 ****
H445Q drug 3.85 -0.34 Destabilising -0.94 Destabilising 0.24 82.33 <0.0001 <0.0001 ****
S450F drug 3.32 -0.38 Destabilising -0.43 Destabilising 0.52 77.69 <0.0001 <0.0001 ****
V168A no 7.19 0.73 Stabilising -0.79 Destabilising 0.16 67.76 <0.0001 <0.0001 ****
Q432L drug 3.25 -0.47 Destabilising -0.76 Destabilising 0.23 67.76 <0.0001 <0.0001 ****
H445R drug 3.85 -0.20 Destabilising -1.02 Destabilising 1.10 57.86 <0.0001 <0.0001 ****
S450W drug 3.32 -0.50 Destabilising -0.43 Destabilising 1.43 57.07 <0.0001 <0.0001 ****
I491V drug 3.62 -1.15 Destabilising -0.92 Destabilising 0.14 53.21 <0.0001 <0.0001 ****
Q432P drug 3.25 -0.51 Destabilising -0.77 Destabilising 0.37 48.45 <0.0001 <0.0001 ****
D435G drug 3.10 -0.30 Destabilising -0.88 Destabilising 1.31 46.33 <0.0001 <0.0001 ****
Q432K drug 3.25 -0.64 Destabilising -0.77 Destabilising 0.27 46.02 <0.0001 <0.0001 ****
S431G drug 4.65 -0.11 Destabilising -1.09 Destabilising 0.11 43.52 <0.0001 <0.001 ***
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S428R drug 4.35 -0.87 Destabilising -0.91 Destabilising 0.10 38.68 <0.0001 <0.001 ***
S450Q drug 3.32 -0.82 Destabilising -0.61 Destabilising 0.10 38.68 <0.0001 <0.001 ***
L430R drug 4.04 -0.91 Destabilising -0.94 Destabilising 0.19 36.31 <0.0001 <0.0001 ****
Q172R no 6.26 0.08 Stabilising -0.78 Destabilising 0.08 33.84 <0.0001 0.01 **
F424V no 8.77 -0.27 Destabilising -0.35 Destabilising 0.07 29.00 <0.001 0.01 **
I491L drug 3.62 -1.12 Destabilising -0.92 Destabilising 0.07 29.00 <0.001 0.01 **
Q429H drug 3.44 -1.33 Destabilising -0.67 Destabilising 0.09 29.00 <0.001 0.01 **
F424L no 8.77 -0.23 Destabilising -0.54 Destabilising 0.10 29.00 <0.001 0.01 **
D435A drug 3.10 -0.31 Destabilising -0.81 Destabilising 0.19 26.60 <0.0001 <0.001 ***
E481A no 5.39 -0.05 Destabilising -0.74 Destabilising 0.05 24.16 <0.001 0.02 *
L378R no 8.71 -0.58 Destabilising -0.56 Destabilising 0.07 24.16 <0.001 0.02 *
H445P drug 3.85 -0.19 Destabilising -0.43 Destabilising 0.08 24.16 <0.001 0.02 *
K446Q no 8.89 0.52 Stabilising -0.73 Destabilising 0.11 24.16 <0.001 0.02 *
V170A no 3.52 -0.31 Destabilising -0.85 Destabilising 0.04 19.33 0.01 0.05 ns
T427I no 5.26 -0.38 Destabilising -0.61 Destabilising 0.05 19.33 0.01 0.05 ns
S428G drug 4.35 -0.53 Destabilising -1.09 Destabilising 0.05 19.33 0.01 0.05 ns
E460G no 6.79 -0.69 Destabilising -0.88 Destabilising 0.06 19.33 0.01 0.05 ns
D435E drug 3.10 0.11 Stabilising -0.92 Destabilising 0.08 19.33 0.01 0.05 ns
H674R no 4.61 -0.62 Destabilising -0.62 Destabilising 0.09 19.33 0.01 0.05 ns
D435F drug 3.10 -0.28 Destabilising -0.67 Destabilising 0.41 17.77 <0.0001 <0.0001 ****
M434I no 6.61 0.26 Stabilising -0.92 Destabilising 0.19 15.73 <0.0001 <0.001 ***
I491T drug 3.62 -1.41 Destabilising -1.06 Destabilising 0.08 14.50 <0.001 0.03 *
S441Q no 6.97 0.51 Stabilising -0.72 Destabilising 0.19 14.50 <0.001 0.03 *
S441M no 6.97 0.29 Stabilising -0.57 Destabilising 0.03 14.49 0.03 0.15 ns
R448Q drug 3.14 -0.41 Destabilising -0.96 Destabilising 0.03 14.49 0.03 0.15 ns
G456S no 7.41 -0.65 Destabilising -1.42 Destabilising 0.03 14.49 0.03 0.15 ns
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K446R no 8.89 0.33 Stabilising -0.73 Destabilising 0.04 14.49 0.03 0.15 ns
I491M drug 3.62 -1.03 Destabilising -0.92 Destabilising 0.05 14.49 0.03 0.15 ns
A451V no 6.18 -0.45 Destabilising -0.93 Destabilising 0.06 14.49 0.03 0.15 ns
A584D no 8.97 -0.42 Destabilising -0.55 Destabilising 0.06 14.49 0.03 0.15 ns
N437D no 5.34 -0.12 Destabilising -0.96 Destabilising 0.13 12.09 <0.001 0.01 **
D435N drug 3.10 -0.28 Destabilising -0.73 Destabilising 0.06 12.08 0.01 0.07 ns
H445G drug 3.85 -0.26 Destabilising -0.40 Destabilising 0.09 12.08 0.01 0.07 ns
L452P drug 3.46 -1.11 Destabilising -0.82 Destabilising 3.04 11.41 <0.0001 <0.0001 ****
V168G no 7.19 0.63 Stabilising -0.92 Destabilising 0.02 9.66 0.09 0.35 ns
Q436P no 7.38 0.02 Stabilising -0.53 Destabilising 0.02 9.66 0.09 0.35 ns
T444S no 5.96 0.68 Stabilising -0.96 Destabilising 0.02 9.66 0.09 0.35 ns
S450A drug 3.32 -0.52 Destabilising -0.94 Destabilising 0.02 9.66 0.09 0.35 ns
A451G no 6.18 -0.54 Destabilising -1.06 Destabilising 0.02 9.66 0.09 0.35 ns
P483S drug 3.56 -1.13 Destabilising -1.11 Destabilising 0.02 9.66 0.09 0.35 ns
S582A no 9.26 0.67 Stabilising -0.72 Destabilising 0.02 9.66 0.09 0.35 ns
N437S no 5.34 0.18 Stabilising -0.81 Destabilising 0.03 9.66 0.09 0.35 ns
I480T no 9.00 -0.57 Destabilising -0.58 Destabilising 0.03 9.66 0.09 0.35 ns
N437H no 5.34 0.04 Stabilising -0.74 Destabilising 0.04 9.66 0.09 0.35 ns
H445T drug 3.85 -0.37 Destabilising -0.40 Destabilising 0.04 9.66 0.09 0.35 ns
M434V no 6.61 0.27 Stabilising -0.92 Destabilising 0.06 9.66 0.03 0.16 ns
N673S no 9.91 -0.34 Destabilising -0.57 Destabilising 0.06 9.66 0.09 0.35 ns
S493L no 5.80 0.76 Stabilising -0.86 Destabilising 0.07 9.66 0.03 0.16 ns
Q432E drug 3.25 -0.64 Destabilising -0.93 Destabilising 0.09 9.66 0.09 0.35 ns
D435Y drug 3.10 -0.30 Destabilising -0.83 Destabilising 2.96 8.92 <0.0001 <0.0001 ****
L430P drug 4.04 -0.28 Destabilising -1.01 Destabilising 1.78 5.07 <0.0001 <0.0001 ****
E166G no 9.50 -0.08 Destabilising -0.46 Destabilising 0.01 4.83 0.29 0.58 ns
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V170G no 3.52 -0.42 Destabilising -0.47 Destabilising 0.01 4.83 0.29 0.58 ns
V170L no 3.52 -0.13 Destabilising -0.92 Destabilising 0.01 4.83 0.29 0.58 ns
L173P no 8.72 -0.02 Destabilising -1.10 Destabilising 0.01 4.83 0.29 0.58 ns
T427P no 5.26 -0.36 Destabilising -0.93 Destabilising 0.01 4.83 0.29 0.58 ns
Q429P drug 3.44 -1.30 Destabilising -0.92 Destabilising 0.01 4.83 0.29 0.58 ns
L430V drug 4.04 -0.31 Destabilising -0.92 Destabilising 0.01 4.83 0.29 0.58 ns
Q432H drug 3.25 -0.70 Destabilising -0.67 Destabilising 0.01 4.83 0.29 0.58 ns
D435H drug 3.10 -0.39 Destabilising -0.72 Destabilising 0.01 4.83 0.29 0.58 ns
D435S drug 3.10 -0.29 Destabilising -0.78 Destabilising 0.01 4.83 0.29 0.58 ns
Q436L no 7.38 -0.03 Destabilising -0.75 Destabilising 0.01 4.83 0.29 0.58 ns
S441V no 6.97 0.49 Stabilising -0.97 Destabilising 0.01 4.83 0.29 0.58 ns
G442R no 8.85 -0.35 Destabilising -0.94 Destabilising 0.01 4.83 0.29 0.58 ns
H445V drug 3.85 -0.11 Destabilising -0.48 Destabilising 0.01 4.83 0.29 0.58 ns
R448K drug 3.14 -0.39 Destabilising -0.94 Destabilising 0.01 4.83 0.29 0.58 ns
L449M no 6.09 -0.24 Destabilising -0.92 Destabilising 0.01 4.83 0.29 0.58 ns
S450Y drug 3.32 -0.45 Destabilising -0.44 Destabilising 0.01 4.83 0.29 0.58 ns
L452S drug 3.46 -1.34 Destabilising -0.50 Destabilising 0.01 4.83 0.29 0.58 ns
G453R drug 4.32 -1.53 Destabilising -0.82 Destabilising 0.01 4.83 0.29 0.58 ns
P454R no 6.38 -0.88 Destabilising -0.69 Destabilising 0.01 4.83 0.29 0.58 ns
N604S no 4.80 -0.02 Destabilising -0.81 Destabilising 0.01 4.83 0.29 0.58 ns
N673D no 9.91 -0.66 Destabilising -0.72 Destabilising 0.01 4.83 0.29 0.58 ns
H1028D no 8.77 -0.58 Destabilising -1.12 Destabilising 0.01 4.83 0.29 0.58 ns
N437Y no 5.34 0.20 Stabilising -0.83 Destabilising 0.02 4.83 0.29 0.58 ns
T444P no 5.96 1.00 Stabilising -0.50 Destabilising 0.02 4.83 0.29 0.58 ns
S450C drug 3.32 -0.63 Destabilising -0.63 Destabilising 0.02 4.83 0.29 0.58 ns
S450G drug 3.32 -0.61 Destabilising -1.09 Destabilising 0.02 4.83 0.29 0.58 ns
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S450V drug 3.32 -0.41 Destabilising -0.94 Destabilising 0.02 4.83 0.29 0.58 ns
I488L no 7.18 0.11 Stabilising -0.92 Destabilising 0.02 4.83 0.29 0.58 ns
I491S drug 3.62 -1.44 Destabilising -0.47 Destabilising 0.02 4.83 0.29 0.58 ns
S431C drug 4.65 -0.30 Destabilising -0.63 Destabilising 0.03 4.83 0.29 0.58 ns
T444I no 5.96 0.92 Stabilising -0.97 Destabilising 0.03 4.83 0.29 0.58 ns
H674N no 4.61 -0.49 Destabilising -0.59 Destabilising 0.03 4.83 0.29 0.58 ns
H445F drug 3.85 0.03 Stabilising -0.97 Destabilising 0.03 4.83 0.21 0.58 ns
M434L no 6.61 0.26 Stabilising -0.92 Destabilising 0.04 4.83 0.29 0.58 ns
H674Y no 4.61 -0.23 Destabilising -0.80 Destabilising 0.04 4.83 0.21 0.58 ns
R167H no 5.86 0.31 Stabilising -0.64 Destabilising 0.07 4.83 0.29 0.58 ns
P454H no 6.38 -0.67 Destabilising -0.41 Destabilising 0.07 4.83 0.21 0.58 ns
P454L no 6.38 -0.27 Destabilising -0.78 Destabilising 0.08 4.83 0.21 0.58 ns
A584G no 8.97 0.53 Stabilising -0.81 Destabilising 0.10 4.03 0.05 0.29 ns
H445S drug 3.85 -0.41 Destabilising -0.40 Destabilising 0.16 3.22 0.21 0.58 ns
I491F drug 3.62 -1.00 Destabilising -0.88 Destabilising 1.35 3.11 <0.0001 <0.0001 ****
H445N drug 3.85 -0.39 Destabilising -1.02 Destabilising 1.06 2.66 <0.001 0.01 **
S431T drug 4.65 -0.27 Destabilising -0.96 Destabilising 0.02 2.41 0.5 0.86 ns
H674Q no 4.61 -0.51 Destabilising -0.60 Destabilising 0.02 2.41 0.5 0.86 ns
N487S drug 3.33 -1.28 Destabilising -0.81 Destabilising 0.05 2.41 0.5 0.86 ns
S431R drug 4.65 -1.06 Destabilising -0.47 Destabilising 0.06 2.41 0.59 0.94 ns
I491N drug 3.62 -1.45 Destabilising -0.72 Destabilising 0.01 1.21 >1 >1 ns
N437T no 5.34 0.17 Stabilising -0.87 Destabilising 0.03 1.21 >1 >1 ns
P483L drug 3.56 -0.87 Destabilising -0.78 Destabilising 0.03 1.21 >1 >1 ns
H1028L no 8.77 -0.13 Destabilising -0.55 Destabilising 0.03 1.21 >1 >1 ns
T427S no 5.26 -0.11 Destabilising -0.96 Destabilising 0.04 1.21 >1 >1 ns
S428T drug 4.35 -0.50 Destabilising -0.96 Destabilising 0.04 1.21 >1 >1 ns
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H1028N no 8.77 -0.29 Destabilising -0.53 Destabilising 0.04 1.21 >1 >1 ns
H1028R no 8.77 -0.28 Destabilising -0.78 Destabilising 0.15 1.21 >1 >1 ns
A603S no 7.98 -0.01 Destabilising -0.99 Destabilising 0.24 0.60 >1 >1 ns
T482S no 5.58 0.01 Stabilising -0.96 Destabilising 0.08 0.48 0.68 >1 ns
G442E no 8.85 -0.38 Destabilising -0.47 Destabilising 0.24 0.48 0.68 >1 ns
S450N drug 3.32 -0.92 Destabilising -1.03 Destabilising 0.03 0.40 0.56 0.91 ns
S458T drug 4.88 -0.55 Destabilising -0.96 Destabilising 0.09 0.24 0.33 0.61 ns
S441A no 6.97 0.52 Stabilising -0.93 Destabilising 0.95 0.17 <0.0001 <0.001 ***
E460D no 6.79 -0.06 Destabilising -0.80 Destabilising 0.51 0.11 0.01 0.06 ns
L449Q no 6.09 -0.69 Destabilising -1.17 Destabilising 0.53 0.04 <0.001 0.01 **
V168L no 7.19 0.78 Stabilising -0.92 Destabilising 0.01 NA NA NA ns
S171T no 6.10 0.76 Stabilising -0.96 Destabilising 0.01 NA NA NA ns
E423A no 9.71 -0.40 Destabilising -0.50 Destabilising 0.01 NA NA NA ns
Q429R drug 3.44 -1.43 Destabilising -0.78 Destabilising 0.01 NA NA NA ns
F433L drug 4.87 -0.20 Destabilising -0.89 Destabilising 0.01 NA NA NA ns
M434K no 6.61 -0.10 Destabilising -0.94 Destabilising 0.01 NA NA NA ns
D435L drug 3.10 -0.35 Destabilising -0.78 Destabilising 0.01 NA NA NA ns
Q436N no 7.38 0.04 Stabilising -1.06 Destabilising 0.01 NA NA NA ns
S441P no 6.97 0.55 Stabilising -0.73 Destabilising 0.01 NA NA NA ns
S441W no 6.97 0.13 Stabilising -0.43 Destabilising 0.01 NA NA NA ns
G442D no 8.85 -0.37 Destabilising -1.17 Destabilising 0.01 NA NA NA ns
K446T no 8.89 0.57 Stabilising -0.85 Destabilising 0.01 NA NA NA ns
L452M drug 3.46 -0.99 Destabilising -0.92 Destabilising 0.01 NA NA NA ns
L452R drug 3.46 -1.29 Destabilising -0.50 Destabilising 0.01 NA NA NA ns
R459H drug 6.34 -0.43 Destabilising -0.92 Destabilising 0.01 NA NA NA ns
T482A no 5.58 0.22 Stabilising -0.96 Destabilising 0.01 NA NA NA ns
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P486S no 5.73 -0.65 Destabilising -1.09 Destabilising 0.01 NA NA NA ns
S582L no 9.26 0.59 Stabilising -0.43 Destabilising 0.01 NA NA NA ns
A584P no 8.97 0.37 Stabilising -0.95 Destabilising 0.01 NA NA NA ns
A584S no 8.97 0.09 Stabilising -0.75 Destabilising 0.01 NA NA NA ns
N673H no 9.91 -0.33 Destabilising -0.52 Destabilising 0.01 NA NA NA ns
H674P no 4.61 -0.23 Destabilising -1.02 Destabilising 0.01 NA NA NA ns
H1028Q no 8.77 -0.33 Destabilising -0.94 Destabilising 0.01 NA NA NA ns
H1028Y no 8.77 -0.22 Destabilising -0.76 Destabilising 0.01 NA NA NA ns
E423G no 9.71 -0.40 Destabilising -0.59 Destabilising 0.02 NA NA NA ns
M434R no 6.61 -0.31 Destabilising -0.47 Destabilising 0.02 NA NA NA ns
G453A drug 4.32 -0.91 Destabilising -1.21 Destabilising 0.02 NA NA NA ns
T482I no 5.58 0.24 Stabilising -0.97 Destabilising 0.02 NA NA NA ns
G492S no 6.19 -0.57 Destabilising -1.07 Destabilising 0.02 NA NA NA ns
V168M no 7.19 0.35 Stabilising -0.92 Destabilising 0.03 NA NA NA ns
S450M drug 3.32 -0.48 Destabilising -0.58 Destabilising 0.03 NA NA NA ns
Q429L drug 3.44 -1.34 Destabilising -0.74 Destabilising 0.05 NA NA NA ns
S493T no 5.80 0.48 Stabilising -0.96 Destabilising 0.06 NA NA NA ns

Table 8.A.1: Mutations close to RFP
One hundred and sixty eight single amino acid variation (SAV) mutations lying within 10Å of RFP and their corresponding ligand affinity changes (log fold change)
measured by mCSM-Lig and mmCSM-lig. The estimated effect are categorised as Destabilising (log fold affinity change<0) and Stabilising (∆∆G>0). The genomic
measures of minor allele frequency (MAF), Odds Ratio (OR) , OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P
< 0.05, **P < 0.01, ***P < 0.001, ****P <0.0001, ns: >0.05. The table is arranged by Odds Ratio to show mutation with the highest OR at the top for mutations
close to RFP. Columns with NA indicate insufficient data to calculate OR. Abbreviations used: FDR: false discovery rate, ns: not significant, RFP: rifampicin.
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8.B Mutations close to the nucleic acid

Muta-
tion

Interacting
partner

NA-Dist
(Å)

mCSM-
NA

(∆∆G)

mCSM-NA
outcome

MAF
(%)

Odds
Ratio P-value

Adjusted
P-value

Adjusted P-value
significance

H445D drug 9.32 -3.67 Reduced_affinity 3.23 1,038.14 <0.0001 <0.0001 ****
D435V drug 6.61 0.38 Increased_affinity 6.40 863.35 <0.0001 <0.0001 ****
S450L drug 9.34 -3.56 Reduced_affinity 53.66 573.58 <0.0001 <0.0001 ****
H445Y drug 9.32 2.31 Increased_affinity 4.58 237.23 <0.0001 <0.0001 ****
H445C drug 9.32 0.25 Increased_affinity 0.42 145.63 <0.0001 <0.0001 ****
S441L no 8.98 -3.54 Reduced_affinity 0.42 135.87 <0.0001 <0.0001 ****
I488V no 9.20 0.01 Increased_affinity 0.26 111.51 <0.0001 <0.0001 ****
T400A no 6.27 -3.43 Reduced_affinity 0.27 106.64 <0.0001 <0.0001 ****
H445L drug 9.32 -3.35 Reduced_affinity 1.13 86.80 <0.0001 <0.0001 ****
H445Q drug 9.32 -1.70 Reduced_affinity 0.24 82.33 <0.0001 <0.0001 ****
S450F drug 9.34 2.07 Increased_affinity 0.52 77.69 <0.0001 <0.0001 ****
Q432L drug 8.61 -1.60 Reduced_affinity 0.23 67.76 <0.0001 <0.0001 ****
H445R drug 9.32 -1.04 Reduced_affinity 1.10 57.86 <0.0001 <0.0001 ****
S450W drug 9.34 4.91 Increased_affinity 1.43 57.07 <0.0001 <0.0001 ****
I491V drug 7.59 0.02 Increased_affinity 0.14 53.21 <0.0001 <0.0001 ****
Q432P drug 8.61 -1.62 Reduced_affinity 0.37 48.45 <0.0001 <0.0001 ****
D435G drug 6.61 0.34 Increased_affinity 1.31 46.33 <0.0001 <0.0001 ****
Q432K drug 8.61 1.35 Increased_affinity 0.27 46.02 <0.0001 <0.0001 ****
T399I no 6.28 -3.56 Reduced_affinity 0.09 38.68 <0.0001 <0.001 ***
S450Q drug 9.34 -1.90 Reduced_affinity 0.10 38.68 <0.0001 <0.001 ***
Q172R no 8.12 0.70 Increased_affinity 0.08 33.84 <0.001 0.01 **
I491L drug 7.59 0.03 Increased_affinity 0.07 29.00 <0.001 0.01 **
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D435A drug 6.61 0.35 Increased_affinity 0.19 26.60 <0.0001 <0.001 ***
E481A no 9.54 0.33 Increased_affinity 0.05 24.16 <0.001 0.02 *
G675D no 9.51 -0.27 Reduced_affinity 0.06 24.16 <0.001 0.02 *
H445P drug 9.32 -3.36 Reduced_affinity 0.08 24.16 <0.001 0.02 *
Q401R no 8.31 0.71 Increased_affinity 0.04 19.33 0.01 0.05 ns
E460G no 3.33 0.12 Increased_affinity 0.06 19.33 0.01 0.05 ns
D435E drug 6.61 0.05 Increased_affinity 0.08 19.33 0.01 0.05 ns
H674R no 6.48 -0.92 Reduced_affinity 0.09 19.33 0.01 0.05 ns
D435F drug 6.61 6.00 Increased_affinity 0.41 17.77 <0.0001 <0.0001 ****
I491T drug 7.59 3.63 Increased_affinity 0.08 14.50 <0.001 0.03 *
S441Q no 8.98 -1.91 Reduced_affinity 0.19 14.50 <0.001 0.03 *
S441M no 8.98 -3.55 Reduced_affinity 0.03 14.49 0.03 0.15 ns
R448Q drug 6.24 -0.63 Reduced_affinity 0.03 14.49 0.03 0.15 ns
G456S no 5.29 4.25 Increased_affinity 0.03 14.49 0.03 0.15 ns
I1035V no 7.66 -0.06 Reduced_affinity 0.04 14.49 0.03 0.15 ns
I491M drug 7.59 0.03 Increased_affinity 0.05 14.49 0.03 0.15 ns
A451V no 6.83 -0.03 Reduced_affinity 0.06 14.49 0.03 0.15 ns
N437D no 5.73 -1.81 Reduced_affinity 0.13 12.09 <0.001 0.01 **
D435N drug 6.61 2.01 Increased_affinity 0.06 12.08 0.01 0.07 ns
H445G drug 9.32 -3.40 Reduced_affinity 0.09 12.08 0.01 0.07 ns
L452P drug 9.24 0.02 Increased_affinity 3.04 11.41 <0.0001 <0.0001 ****
R219L no 3.80 -2.07 Reduced_affinity 0.02 9.66 0.09 0.35 ns
R224L no 2.59 -1.87 Reduced_affinity 0.02 9.66 0.09 0.35 ns
R225W no 7.40 6.41 Increased_affinity 0.02 9.66 0.09 0.35 ns
Q436P no 9.63 -1.58 Reduced_affinity 0.02 9.66 0.09 0.35 ns
S450A drug 9.34 -3.59 Reduced_affinity 0.02 9.66 0.09 0.35 ns

328



A451G no 6.83 -0.07 Reduced_affinity 0.02 9.66 0.09 0.35 ns
P483S drug 5.79 2.89 Increased_affinity 0.02 9.66 0.09 0.35 ns
R871H no 8.96 1.08 Increased_affinity 0.02 9.66 0.09 0.35 ns
Q1056R no 5.94 1.90 Increased_affinity 0.02 9.66 0.09 0.35 ns
T399A no 6.28 -3.59 Reduced_affinity 0.03 9.66 0.09 0.35 ns
T400N no 6.27 -1.75 Reduced_affinity 0.03 9.66 0.09 0.35 ns
N437S no 5.73 2.14 Increased_affinity 0.03 9.66 0.09 0.35 ns
N437H no 5.73 1.92 Increased_affinity 0.04 9.66 0.09 0.35 ns
H445T drug 9.32 0.24 Increased_affinity 0.04 9.66 0.09 0.35 ns
N673S no 8.42 1.98 Increased_affinity 0.06 9.66 0.09 0.35 ns
Q432E drug 8.61 -1.93 Reduced_affinity 0.09 9.66 0.09 0.35 ns
D435Y drug 6.61 6.00 Increased_affinity 2.96 8.92 <0.0001 <0.0001 ****
P280L no 5.44 0.04 Increased_affinity 0.06 7.25 0.08 0.35 ns
F93V no 9.45 -5.61 Reduced_affinity 0.01 4.83 0.29 0.58 ns
L173P no 5.75 -0.09 Reduced_affinity 0.01 4.83 0.29 0.58 ns
P177A no 8.91 -0.02 Reduced_affinity 0.01 4.83 0.29 0.58 ns
R219S no 3.80 1.51 Increased_affinity 0.01 4.83 0.29 0.58 ns
R225G no 7.40 -2.11 Reduced_affinity 0.01 4.83 0.29 0.58 ns
P280S no 5.44 3.63 Increased_affinity 0.01 4.83 0.29 0.58 ns
L293M no 4.03 0.00 Increased_affinity 0.01 4.83 0.29 0.58 ns
F294L no 8.47 -5.75 Reduced_affinity 0.01 4.83 0.29 0.58 ns
E391G no 8.41 0.30 Increased_affinity 0.01 4.83 0.29 0.58 ns
T399N no 6.28 -1.91 Reduced_affinity 0.01 4.83 0.29 0.58 ns
T400I no 6.27 -3.41 Reduced_affinity 0.01 4.83 0.29 0.58 ns
Q432H drug 8.61 1.75 Increased_affinity 0.01 4.83 0.29 0.58 ns
D435H drug 6.61 3.73 Increased_affinity 0.01 4.83 0.29 0.58 ns
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D435S drug 6.61 3.95 Increased_affinity 0.01 4.83 0.29 0.58 ns
Q436L no 9.63 -1.57 Reduced_affinity 0.01 4.83 0.29 0.58 ns
S441V no 8.98 -3.55 Reduced_affinity 0.01 4.83 0.29 0.58 ns
H445V drug 9.32 -3.36 Reduced_affinity 0.01 4.83 0.29 0.58 ns
R448K drug 6.24 0.68 Increased_affinity 0.01 4.83 0.29 0.58 ns
S450Y drug 9.34 2.08 Increased_affinity 0.01 4.83 0.29 0.58 ns
L452S drug 9.24 3.62 Increased_affinity 0.01 4.83 0.29 0.58 ns
G453R drug 7.91 2.39 Increased_affinity 0.01 4.83 0.29 0.58 ns
P454R no 6.14 2.37 Increased_affinity 0.01 4.83 0.29 0.58 ns
N604S no 4.39 1.35 Increased_affinity 0.01 4.83 0.29 0.58 ns
N673D no 8.42 -1.93 Reduced_affinity 0.01 4.83 0.29 0.58 ns
H1028D no 3.64 -2.21 Reduced_affinity 0.01 4.83 0.29 0.58 ns
K1034R no 2.88 0.86 Increased_affinity 0.01 4.83 0.29 0.58 ns
I1035T no 7.66 3.54 Increased_affinity 0.01 4.83 0.29 0.58 ns
Q1056H no 5.94 2.94 Increased_affinity 0.01 4.83 0.29 0.58 ns
R219C no 3.80 1.53 Increased_affinity 0.02 4.83 0.29 0.58 ns
R225P no 7.40 -2.07 Reduced_affinity 0.02 4.83 0.29 0.58 ns
N437Y no 5.73 4.19 Increased_affinity 0.02 4.83 0.29 0.58 ns
S450C drug 9.34 0.05 Increased_affinity 0.02 4.83 0.29 0.58 ns
S450G drug 9.34 -3.61 Reduced_affinity 0.02 4.83 0.29 0.58 ns
S450V drug 9.34 -3.57 Reduced_affinity 0.02 4.83 0.29 0.58 ns
I488L no 9.20 0.03 Increased_affinity 0.02 4.83 0.29 0.58 ns
I491S drug 7.59 3.62 Increased_affinity 0.02 4.83 0.29 0.58 ns
S188A no 4.30 -3.53 Reduced_affinity 0.03 4.83 0.29 0.58 ns
H674N no 6.48 -1.58 Reduced_affinity 0.03 4.83 0.29 0.58 ns
H445F drug 9.32 2.30 Increased_affinity 0.03 4.83 0.21 0.58 ns
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H674Y no 6.48 2.42 Increased_affinity 0.04 4.83 0.21 0.58 ns
T400S no 6.27 0.20 Increased_affinity 0.05 4.83 0.29 0.58 ns
R167H no 9.52 1.07 Increased_affinity 0.07 4.83 0.29 0.58 ns
P454H no 6.14 3.43 Increased_affinity 0.07 4.83 0.21 0.58 ns
P454L no 6.14 0.04 Increased_affinity 0.08 4.83 0.21 0.58 ns
H445S drug 9.32 0.23 Increased_affinity 0.16 3.22 0.21 0.58 ns
I491F drug 7.59 5.66 Increased_affinity 1.35 3.11 <0.0001 <0.0001 ****
H445N drug 9.32 -1.71 Reduced_affinity 1.06 2.66 <0.001 0.01 **
V403A no 9.84 0.01 Increased_affinity 0.02 2.41 0.5 0.86 ns
H674Q no 6.48 -1.57 Reduced_affinity 0.02 2.41 0.5 0.86 ns
V385L no 7.45 0.04 Increased_affinity 0.03 2.41 0.5 0.86 ns
N487S drug 6.50 2.00 Increased_affinity 0.05 2.41 0.5 0.86 ns
C1067G no 8.45 -3.42 Reduced_affinity 0.08 2.41 0.5 0.86 ns
D211V no 7.47 0.35 Increased_affinity 0.01 1.21 >1 >1 ns
R299C no 2.82 1.26 Increased_affinity 0.01 1.21 >1 >1 ns
D362H no 8.96 3.73 Increased_affinity 0.01 1.21 >1 >1 ns
L372P no 9.60 0.01 Increased_affinity 0.01 1.21 >1 >1 ns
M390I no 9.55 0.03 Increased_affinity 0.01 1.21 >1 >1 ns
I491N drug 7.59 1.68 Increased_affinity 0.01 1.21 >1 >1 ns
M601I no 6.26 -0.48 Reduced_affinity 0.01 1.21 >1 >1 ns
L879I no 9.25 0.03 Increased_affinity 0.01 1.21 >1 >1 ns
V1031I no 8.53 0.17 Increased_affinity 0.01 1.21 >1 >1 ns
D190A no 9.31 0.33 Increased_affinity 0.02 1.21 >1 >1 ns
R225Q no 7.40 -0.41 Reduced_affinity 0.02 1.21 >1 >1 ns
S388A no 6.44 -3.58 Reduced_affinity 0.02 1.21 >1 >1 ns
A609S no 8.70 3.75 Increased_affinity 0.02 1.21 >1 >1 ns
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H366N no 7.05 -1.85 Reduced_affinity 0.03 1.21 >1 >1 ns
V403I no 9.84 0.05 Increased_affinity 0.03 1.21 >1 >1 ns
N437T no 5.73 2.15 Increased_affinity 0.03 1.21 >1 >1 ns
P483L drug 5.79 -0.71 Reduced_affinity 0.03 1.21 >1 >1 ns
H1028L no 3.64 -1.89 Reduced_affinity 0.03 1.21 >1 >1 ns
F367L no 7.82 -5.90 Reduced_affinity 0.04 1.21 >1 >1 ns
H1028N no 3.64 -0.25 Reduced_affinity 0.04 1.21 >1 >1 ns
R225K no 7.40 0.90 Increased_affinity 0.09 1.21 >1 >1 ns
I1035M no 7.66 -0.05 Reduced_affinity 0.14 1.21 >1 >1 ns
H1028R no 3.64 0.41 Increased_affinity 0.15 1.21 >1 >1 ns
M390T no 9.55 3.62 Increased_affinity 0.10 0.97 >1 >1 ns
D190E no 9.31 0.05 Increased_affinity 0.59 0.69 0.61 0.98 ns
A880S no 8.30 3.63 Increased_affinity 0.02 0.60 >1 >1 ns
G463S no 5.83 3.52 Increased_affinity 0.04 0.60 >1 >1 ns
L372I no 9.60 0.02 Increased_affinity 0.05 0.60 >1 >1 ns
D1033E no 5.62 0.93 Increased_affinity 0.07 0.60 >1 >1 ns
L879M no 9.25 0.02 Increased_affinity 0.13 0.60 >1 >1 ns
A603S no 8.11 3.52 Increased_affinity 0.24 0.60 >1 >1 ns
T482S no 7.80 0.07 Increased_affinity 0.08 0.48 0.68 >1 ns
S450N drug 9.34 -1.91 Reduced_affinity 0.03 0.40 0.56 0.91 ns
S458T drug 6.48 0.24 Increased_affinity 0.09 0.24 0.33 0.61 ns
C1067V no 8.45 -3.38 Reduced_affinity 0.27 0.24 0.19 0.58 ns
L464M no 7.08 0.09 Increased_affinity 0.37 0.22 0.2 0.58 ns
S201G no 3.72 -4.79 Reduced_affinity 0.19 0.17 0.11 0.45 ns
S441A no 8.98 -3.57 Reduced_affinity 0.95 0.17 <0.0001 <0.001 ***
S388L no 6.44 -3.55 Reduced_affinity 1.79 0.17 <0.001 0.01 **
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E460D no 3.33 -0.15 Reduced_affinity 0.51 0.11 0.01 0.06 ns
V196A no 9.99 0.00 Reduced_affinity 0.01 NA NA NA ns
P200S no 5.11 -0.08 Reduced_affinity 0.01 NA NA NA ns
E207G no 7.00 0.59 Increased_affinity 0.01 NA NA NA ns
K212E no 4.26 -3.23 Reduced_affinity 0.01 NA NA NA ns
F294Y no 8.47 -0.10 Reduced_affinity 0.01 NA NA NA ns
K296N no 9.92 -1.28 Reduced_affinity 0.01 NA NA NA ns
D365E no 2.51 0.27 Increased_affinity 0.01 NA NA NA ns
L372M no 9.60 0.02 Increased_affinity 0.01 NA NA NA ns
R373H no 6.24 1.07 Increased_affinity 0.01 NA NA NA ns
V385T no 7.45 3.65 Increased_affinity 0.01 NA NA NA ns
Q401L no 8.31 -1.61 Reduced_affinity 0.01 NA NA NA ns
D402E no 7.31 0.05 Increased_affinity 0.01 NA NA NA ns
F433L drug 7.42 -5.61 Reduced_affinity 0.01 NA NA NA ns
D435L drug 6.61 0.39 Increased_affinity 0.01 NA NA NA ns
Q436N no 9.63 0.04 Increased_affinity 0.01 NA NA NA ns
S441P no 8.98 -3.55 Reduced_affinity 0.01 NA NA NA ns
S441W no 8.98 4.91 Increased_affinity 0.01 NA NA NA ns
L452M drug 9.24 0.03 Increased_affinity 0.01 NA NA NA ns
L452R drug 9.24 2.36 Increased_affinity 0.01 NA NA NA ns
R459H drug 7.60 1.09 Increased_affinity 0.01 NA NA NA ns
T482A no 7.80 -3.55 Reduced_affinity 0.01 NA NA NA ns
P486S no 5.36 3.79 Increased_affinity 0.01 NA NA NA ns
N597S no 9.75 1.99 Increased_affinity 0.01 NA NA NA ns
R671G no 8.35 -2.34 Reduced_affinity 0.01 NA NA NA ns
N673H no 8.42 1.76 Increased_affinity 0.01 NA NA NA ns
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H674P no 6.48 -3.24 Reduced_affinity 0.01 NA NA NA ns
H1028Q no 3.64 -0.24 Reduced_affinity 0.01 NA NA NA ns
H1028Y no 3.64 3.77 Increased_affinity 0.01 NA NA NA ns
I1035L no 7.66 -0.05 Reduced_affinity 0.01 NA NA NA ns
A1037S no 8.57 3.57 Increased_affinity 0.01 NA NA NA ns
C1067W no 8.45 5.10 Increased_affinity 0.01 NA NA NA ns
I220V no 8.15 0.02 Increased_affinity 0.02 NA NA NA ns
G453A drug 7.91 0.05 Increased_affinity 0.02 NA NA NA ns
T482I no 7.80 -3.51 Reduced_affinity 0.02 NA NA NA ns
L1027Q no 6.52 2.67 Increased_affinity 0.02 NA NA NA ns
S450M drug 9.34 -3.56 Reduced_affinity 0.03 NA NA NA ns
L464V no 7.08 0.08 Increased_affinity 0.03 NA NA NA ns
K1054R no 3.12 -0.62 Reduced_affinity 0.04 NA NA NA ns
G463A no 5.83 -0.10 Reduced_affinity 0.05 NA NA NA ns
I220L no 8.15 0.03 Increased_affinity 0.06 NA NA NA ns
E207K no 7.00 3.60 Increased_affinity 0.07 NA NA NA ns
N381H no 8.96 1.76 Increased_affinity 0.79 NA NA NA ns

Table 8.B.1: Mutations close to nucleic acid in RpoB RNA polymerase β subunit
One hundred and ninety five amino acid variation (SAV) mutations lying within 10Å of the Nucleic Acid (NA) and their corresponding PPI affinity changes (∆∆G)
measured by mCSM-NA. The estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures of minor allele frequency
(MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01, ***P < 0.001,
****P <0.0001, ns: >0.05. The table is arranged by OR to show mutation with the highest OR at the top. Columns with NA indicate insufficient data to calculate
OR. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant, RFP: rifampicin.
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8.C Mutations close to the protein-protein interface

Muta-
tion

Interacting
partner

PPI2-
Dist (Å)

mCSM-
PPI2

(∆∆G)

mCSM-
PPI2

outcome

MAF
(%)

Odds
Ratio P-value

Adjusted
P-value

Adjusted P-value
significance

H445D drug 7.97 -0.43 Decreasing 3.23 1,038.14 <0.0001 <0.0001 ****
D435V drug 6.61 -0.31 Decreasing 6.40 863.35 <0.0001 <0.0001 ****
S450L drug 7.97 -0.15 Decreasing 53.66 573.58 <0.0001 <0.0001 ****
V170F no 9.21 1.05 Increasing 0.81 297.78 <0.0001 <0.0001 ****
R827C no 9.04 -0.20 Decreasing 0.87 292.85 <0.0001 <0.0001 ****
H445Y drug 7.97 0.19 Increasing 4.58 237.23 <0.0001 <0.0001 ****
I480V no 3.49 -0.67 Decreasing 0.38 150.51 <0.0001 <0.0001 ****
H445C drug 7.97 -0.46 Decreasing 0.42 145.63 <0.0001 <0.0001 ****
S441L no 8.98 -0.73 Decreasing 0.42 135.87 <0.0001 <0.0001 ****
E761D no 7.93 -0.45 Decreasing 2.55 123.88 <0.0001 <0.0001 ****
R552L no 7.55 0.03 Increasing 0.29 121.25 <0.0001 <0.0001 ****
A286V no 9.01 0.25 Increasing 0.38 116.38 <0.0001 <0.0001 ****
I488V no 3.83 0.08 Increasing 0.26 111.51 <0.0001 <0.0001 ****
I1106T no 3.10 -0.51 Decreasing 0.80 111.51 <0.0001 <0.0001 ****
T400A no 4.53 -0.13 Decreasing 0.27 106.64 <0.0001 <0.0001 ****
V970A no 6.43 -0.27 Decreasing 0.21 101.77 <0.0001 <0.0001 ****
H445L drug 7.97 -0.53 Decreasing 1.13 86.80 <0.0001 <0.0001 ****
H445Q drug 7.97 -0.17 Decreasing 0.24 82.33 <0.0001 <0.0001 ****
S450F drug 7.97 0.05 Increasing 0.52 77.69 <0.0001 <0.0001 ****
S874Y no 6.04 -0.10 Decreasing 0.14 67.76 <0.0001 <0.0001 ****
Q432L drug 6.63 -0.02 Decreasing 0.23 67.76 <0.0001 <0.0001 ****
Q409R no 3.14 -0.22 Decreasing 0.35 58.06 <0.0001 <0.0001 ****
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H445R drug 7.97 -0.15 Decreasing 1.10 57.86 <0.0001 <0.0001 ****
S450W drug 7.97 0.18 Increasing 1.43 57.07 <0.0001 <0.0001 ****
I491V drug 5.35 0.22 Increasing 0.14 53.21 <0.0001 <0.0001 ****
F971L no 3.55 -1.92 Decreasing 0.15 53.21 <0.0001 <0.0001 ****
Q432P drug 6.63 -0.02 Decreasing 0.37 48.45 <0.0001 <0.0001 ****
D435G drug 6.61 -0.55 Decreasing 1.31 46.33 <0.0001 <0.0001 ****
Q432K drug 6.63 -0.12 Decreasing 0.27 46.02 <0.0001 <0.0001 ****
S431G drug 9.51 0.00 Decreasing 0.11 43.52 <0.0001 <0.001 ***
I873F no 8.98 0.63 Increasing 0.11 43.52 <0.0001 <0.001 ***
R827H no 9.04 -0.03 Decreasing 0.19 43.52 <0.0001 <0.001 ***
H835R no 5.66 -0.10 Decreasing 0.21 38.73 <0.0001 <0.0001 ****
T399I no 4.44 -0.13 Decreasing 0.09 38.68 <0.0001 <0.001 ***
S428R drug 7.24 0.08 Increasing 0.10 38.68 <0.0001 <0.001 ***
S450Q drug 7.97 -0.13 Decreasing 0.10 38.68 <0.0001 <0.001 ***
L430R drug 8.96 -0.07 Decreasing 0.19 36.31 <0.0001 <0.0001 ****
N163K no 9.54 0.09 Increasing 0.07 33.84 <0.001 0.01 **
V562A no 3.66 -0.35 Decreasing 0.07 33.84 <0.001 0.01 **
Q172R no 8.12 -0.58 Decreasing 0.08 33.84 <0.001 0.01 **
R552H no 7.55 -0.11 Decreasing 0.06 29.00 <0.001 0.01 **
I491L drug 5.35 -0.50 Decreasing 0.07 29.00 <0.001 0.01 **
Q429H drug 3.39 0.02 Increasing 0.09 29.00 <0.001 0.01 **
D574E no 5.48 -0.51 Decreasing 0.09 29.00 <0.001 0.01 **
V970M no 6.43 -0.47 Decreasing 0.18 26.60 <0.0001 <0.001 ***
D435A drug 6.61 -0.54 Decreasing 0.19 26.60 <0.0001 <0.001 ***
E481A no 4.48 -0.72 Decreasing 0.05 24.16 <0.001 0.02 *
G675D no 9.51 -0.03 Decreasing 0.06 24.16 <0.001 0.02 *
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H445P drug 7.97 -0.60 Decreasing 0.08 24.16 <0.001 0.02 *
R827L no 9.04 -0.24 Decreasing 0.08 24.16 <0.001 0.02 *
M920V no 3.46 -1.17 Decreasing 0.08 24.16 <0.001 0.02 *
Y564H no 6.16 -0.18 Decreasing 0.09 24.16 <0.001 0.02 *
V170A no 9.21 -0.25 Decreasing 0.04 19.33 0.01 0.05 ns
Q401R no 7.77 0.04 Increasing 0.04 19.33 0.01 0.05 ns
R557H no 7.00 0.09 Increasing 0.04 19.33 0.01 0.05 ns
T427I no 5.91 -0.04 Decreasing 0.05 19.33 0.01 0.05 ns
S428G drug 7.24 -0.11 Decreasing 0.05 19.33 0.01 0.05 ns
D265G no 6.03 -0.21 Decreasing 0.06 19.33 0.01 0.05 ns
E460G no 3.33 -0.80 Decreasing 0.06 19.33 0.01 0.05 ns
D435E drug 6.61 0.20 Increasing 0.08 19.33 0.01 0.05 ns
H674R no 6.48 0.07 Increasing 0.09 19.33 0.01 0.05 ns
K799Q no 8.27 -0.33 Decreasing 0.13 19.33 0.01 0.05 ns
D435F drug 6.61 -0.48 Decreasing 0.41 17.77 <0.0001 <0.0001 ****
I491T drug 5.35 -0.34 Decreasing 0.08 14.50 <0.001 0.03 *
K891E no 4.42 -1.24 Decreasing 0.10 14.50 <0.001 0.03 *
S441Q no 8.98 -0.40 Decreasing 0.19 14.50 <0.001 0.03 *
S441M no 8.98 -0.71 Decreasing 0.03 14.49 0.03 0.15 ns
R448Q drug 4.52 -0.34 Decreasing 0.03 14.49 0.03 0.15 ns
G456S no 5.29 -0.11 Decreasing 0.03 14.49 0.03 0.15 ns
V1096M no 3.91 0.44 Increasing 0.03 14.49 0.03 0.15 ns
A753V no 8.76 0.11 Increasing 0.04 14.49 0.03 0.15 ns
I1035V no 3.41 -0.55 Decreasing 0.04 14.49 0.03 0.15 ns
I491M drug 5.35 -0.52 Decreasing 0.05 14.49 0.03 0.15 ns
G836S no 5.25 0.10 Increasing 0.05 14.49 0.03 0.15 ns
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A974V no 7.35 0.14 Increasing 0.05 14.49 0.03 0.15 ns
A451V no 6.83 -0.03 Decreasing 0.06 14.49 0.03 0.15 ns
V581M no 7.37 -0.62 Decreasing 0.07 14.49 0.03 0.15 ns
N437D no 5.73 -0.29 Decreasing 0.13 12.09 <0.001 0.01 **
D435N drug 6.61 -0.51 Decreasing 0.06 12.08 0.01 0.07 ns
H445G drug 7.97 -0.50 Decreasing 0.09 12.08 0.01 0.07 ns
L452P drug 6.98 -0.30 Decreasing 3.04 11.41 <0.0001 <0.0001 ****
Q975H no 4.27 0.17 Increasing 0.43 11.32 <0.0001 <0.0001 ****
K37R no 8.98 0.16 Increasing 0.13 9.67 <0.001 0.01 *
R219L no 3.80 -0.30 Decreasing 0.02 9.66 0.09 0.35 ns
R224L no 2.59 -0.36 Decreasing 0.02 9.66 0.09 0.35 ns
R225W no 7.40 -0.21 Decreasing 0.02 9.66 0.09 0.35 ns
Q436P no 9.63 -0.40 Decreasing 0.02 9.66 0.09 0.35 ns
S450A drug 7.97 -0.15 Decreasing 0.02 9.66 0.09 0.35 ns
A451G no 6.83 -0.30 Decreasing 0.02 9.66 0.09 0.35 ns
P483S drug 5.60 -0.22 Decreasing 0.02 9.66 0.09 0.35 ns
A538V no 6.50 0.02 Increasing 0.02 9.66 0.09 0.35 ns
S576L no 6.51 -0.12 Decreasing 0.02 9.66 0.09 0.35 ns
S582A no 9.74 -0.49 Decreasing 0.02 9.66 0.09 0.35 ns
A670D no 8.28 0.34 Increasing 0.02 9.66 0.09 0.35 ns
R754H no 3.08 0.11 Increasing 0.02 9.66 0.09 0.35 ns
P768L no 6.89 -0.03 Decreasing 0.02 9.66 0.09 0.35 ns
K832E no 6.62 -0.58 Decreasing 0.02 9.66 0.09 0.35 ns
L855S no 6.04 -0.18 Decreasing 0.02 9.66 0.09 0.35 ns
R871H no 7.28 0.04 Increasing 0.02 9.66 0.09 0.35 ns
E1011G no 2.93 -1.38 Decreasing 0.02 9.66 0.09 0.35 ns
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Q1056R no 4.16 0.26 Increasing 0.02 9.66 0.09 0.35 ns
T399A no 4.44 -0.11 Decreasing 0.03 9.66 0.09 0.35 ns
T400N no 4.53 0.08 Increasing 0.03 9.66 0.09 0.35 ns
N437S no 5.73 -0.19 Decreasing 0.03 9.66 0.09 0.35 ns
I480T no 3.49 -1.29 Decreasing 0.03 9.66 0.09 0.35 ns
A599V no 3.36 0.13 Increasing 0.03 9.66 0.09 0.35 ns
H723D no 3.26 -1.18 Decreasing 0.03 9.66 0.09 0.35 ns
E812G no 3.23 -0.78 Decreasing 0.03 9.66 0.09 0.35 ns
K1102T no 3.82 -0.43 Decreasing 0.03 9.66 0.09 0.35 ns
N437H no 5.73 -0.41 Decreasing 0.04 9.66 0.09 0.35 ns
H445T drug 7.97 -0.32 Decreasing 0.04 9.66 0.09 0.35 ns
I588V no 7.25 -0.20 Decreasing 0.04 9.66 0.09 0.35 ns
H593Y no 2.83 0.20 Increasing 0.04 9.66 0.09 0.35 ns
R824L no 6.56 -0.36 Decreasing 0.04 9.66 0.09 0.35 ns
N673S no 8.42 -0.24 Decreasing 0.06 9.66 0.09 0.35 ns
S493L no 7.37 -0.47 Decreasing 0.07 9.66 0.03 0.16 ns
D777N no 4.00 0.18 Increasing 0.07 9.66 0.09 0.35 ns
Q432E drug 6.63 0.03 Increasing 0.09 9.66 0.09 0.35 ns
Q980A no 3.65 -0.38 Decreasing 0.14 9.66 0.09 0.35 ns
D435Y drug 6.61 -0.43 Decreasing 2.96 8.92 <0.0001 <0.0001 ****
P280L no 4.60 -0.43 Decreasing 0.06 7.25 0.08 0.35 ns
L982M no 7.78 0.10 Increasing 0.20 7.25 0.08 0.35 ns
L430P drug 8.96 0.03 Increasing 1.78 5.07 <0.0001 <0.0001 ****
F93V no 9.45 -0.44 Decreasing 0.01 4.83 0.29 0.58 ns
D150E no 3.90 0.67 Increasing 0.01 4.83 0.29 0.58 ns
V170G no 9.21 -0.41 Decreasing 0.01 4.83 0.29 0.58 ns
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V170L no 9.21 -0.12 Decreasing 0.01 4.83 0.29 0.58 ns
L173P no 5.75 -1.03 Decreasing 0.01 4.83 0.29 0.58 ns
P177A no 8.91 -0.15 Decreasing 0.01 4.83 0.29 0.58 ns
R219S no 3.80 -0.15 Decreasing 0.01 4.83 0.29 0.58 ns
R225G no 7.40 -0.36 Decreasing 0.01 4.83 0.29 0.58 ns
D265A no 6.03 -0.15 Decreasing 0.01 4.83 0.29 0.58 ns
K274N no 8.09 -0.05 Decreasing 0.01 4.83 0.29 0.58 ns
P280S no 4.60 -0.13 Decreasing 0.01 4.83 0.29 0.58 ns
E284G no 7.39 -0.06 Decreasing 0.01 4.83 0.29 0.58 ns
L293M no 4.03 -0.03 Decreasing 0.01 4.83 0.29 0.58 ns
F294L no 8.47 -0.77 Decreasing 0.01 4.83 0.29 0.58 ns
E391G no 8.41 -0.21 Decreasing 0.01 4.83 0.29 0.58 ns
T399N no 4.44 0.09 Increasing 0.01 4.83 0.29 0.58 ns
T400I no 4.53 0.20 Increasing 0.01 4.83 0.29 0.58 ns
T427P no 5.91 -0.08 Decreasing 0.01 4.83 0.29 0.58 ns
Q429P drug 3.39 0.23 Increasing 0.01 4.83 0.29 0.58 ns
L430V drug 8.96 -0.13 Decreasing 0.01 4.83 0.29 0.58 ns
Q432H drug 6.63 0.26 Increasing 0.01 4.83 0.29 0.58 ns
D435H drug 6.61 -0.22 Decreasing 0.01 4.83 0.29 0.58 ns
D435S drug 6.61 -0.50 Decreasing 0.01 4.83 0.29 0.58 ns
Q436L no 9.63 -0.31 Decreasing 0.01 4.83 0.29 0.58 ns
S441V no 8.98 -0.53 Decreasing 0.01 4.83 0.29 0.58 ns
H445V drug 7.97 -0.51 Decreasing 0.01 4.83 0.29 0.58 ns
R448K drug 4.52 0.06 Increasing 0.01 4.83 0.29 0.58 ns
L449M no 8.82 -0.60 Decreasing 0.01 4.83 0.29 0.58 ns
S450Y drug 7.97 0.13 Increasing 0.01 4.83 0.29 0.58 ns
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L452S drug 6.98 -0.13 Decreasing 0.01 4.83 0.29 0.58 ns
G453R drug 7.91 -0.30 Decreasing 0.01 4.83 0.29 0.58 ns
P454R no 6.14 0.05 Increasing 0.01 4.83 0.29 0.58 ns
V469L no 2.33 -0.46 Decreasing 0.01 4.83 0.29 0.58 ns
Y474H no 3.68 -1.22 Decreasing 0.01 4.83 0.29 0.58 ns
P479S no 2.46 -1.30 Decreasing 0.01 4.83 0.29 0.58 ns
N539K no 5.65 -0.31 Decreasing 0.01 4.83 0.29 0.58 ns
L554Q no 5.21 -0.62 Decreasing 0.01 4.83 0.29 0.58 ns
A559V no 7.68 -0.03 Decreasing 0.01 4.83 0.29 0.58 ns
N604S no 4.39 -0.41 Decreasing 0.01 4.83 0.29 0.58 ns
R667L no 7.84 -0.05 Decreasing 0.01 4.83 0.29 0.58 ns
N673D no 8.42 -0.04 Decreasing 0.01 4.83 0.29 0.58 ns
D704Q no 9.80 -0.18 Decreasing 0.01 4.83 0.29 0.58 ns
N733S no 4.88 -0.41 Decreasing 0.01 4.83 0.29 0.58 ns
E750Q no 8.81 -0.51 Decreasing 0.01 4.83 0.29 0.58 ns
T756N no 7.81 -0.09 Decreasing 0.01 4.83 0.29 0.58 ns
E761A no 7.93 -0.08 Decreasing 0.01 4.83 0.29 0.58 ns
G793V no 3.43 -0.52 Decreasing 0.01 4.83 0.29 0.58 ns
E807A no 3.16 -1.22 Decreasing 0.01 4.83 0.29 0.58 ns
E807G no 3.16 -1.00 Decreasing 0.01 4.83 0.29 0.58 ns
E821V no 3.05 -0.36 Decreasing 0.01 4.83 0.29 0.58 ns
T829I no 8.39 -0.04 Decreasing 0.01 4.83 0.29 0.58 ns
K832Q no 6.62 -0.33 Decreasing 0.01 4.83 0.29 0.58 ns
P834T no 8.48 -0.23 Decreasing 0.01 4.83 0.29 0.58 ns
H835Q no 5.66 -0.59 Decreasing 0.01 4.83 0.29 0.58 ns
V867M no 6.98 -0.37 Decreasing 0.01 4.83 0.29 0.58 ns
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S874F no 6.04 -0.18 Decreasing 0.01 4.83 0.29 0.58 ns
H883Y no 8.51 -0.07 Decreasing 0.01 4.83 0.29 0.58 ns
I892F no 8.20 0.10 Increasing 0.01 4.83 0.29 0.58 ns
V895F no 4.60 0.08 Increasing 0.01 4.83 0.29 0.58 ns
H929Y no 3.07 -0.55 Decreasing 0.01 4.83 0.29 0.58 ns
V970G no 6.43 -0.44 Decreasing 0.01 4.83 0.29 0.58 ns
V970L no 6.43 -0.37 Decreasing 0.01 4.83 0.29 0.58 ns
G973S no 9.62 -0.25 Decreasing 0.01 4.83 0.29 0.58 ns
L979R no 4.42 -0.73 Decreasing 0.01 4.83 0.29 0.58 ns
G981D no 6.12 -0.14 Decreasing 0.01 4.83 0.29 0.58 ns
V996G no 9.64 -0.05 Decreasing 0.01 4.83 0.29 0.58 ns
H1028D no 3.64 -0.23 Decreasing 0.01 4.83 0.29 0.58 ns
K1034R no 2.88 -0.57 Decreasing 0.01 4.83 0.29 0.58 ns
I1035T no 3.41 -1.11 Decreasing 0.01 4.83 0.29 0.58 ns
Q1056H no 4.16 0.22 Increasing 0.01 4.83 0.29 0.58 ns
Q1080R no 3.16 -0.71 Decreasing 0.01 4.83 0.29 0.58 ns
K1095R no 6.21 0.05 Increasing 0.01 4.83 0.29 0.58 ns
A124S no 8.42 -0.23 Decreasing 0.02 4.83 0.29 0.58 ns
R219C no 3.80 -0.33 Decreasing 0.02 4.83 0.29 0.58 ns
R225P no 7.40 -0.31 Decreasing 0.02 4.83 0.29 0.58 ns
K274E no 8.09 0.02 Increasing 0.02 4.83 0.29 0.58 ns
N437Y no 5.73 -0.35 Decreasing 0.02 4.83 0.29 0.58 ns
S450C drug 7.97 -0.22 Decreasing 0.02 4.83 0.29 0.58 ns
S450G drug 7.97 -0.16 Decreasing 0.02 4.83 0.29 0.58 ns
S450V drug 7.97 0.00 Decreasing 0.02 4.83 0.29 0.58 ns
I488L no 3.83 -0.94 Decreasing 0.02 4.83 0.29 0.58 ns
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I491S drug 5.35 -0.50 Decreasing 0.02 4.83 0.29 0.58 ns
V562M no 3.66 -0.26 Decreasing 0.02 4.83 0.29 0.58 ns
V581L no 7.37 -0.21 Decreasing 0.02 4.83 0.29 0.58 ns
V736L no 3.56 -0.20 Decreasing 0.02 4.83 0.29 0.58 ns
H745Y no 6.85 0.18 Increasing 0.02 4.83 0.29 0.58 ns
E750G no 8.81 -0.10 Decreasing 0.02 4.83 0.29 0.58 ns
K891R no 4.42 0.22 Increasing 0.02 4.83 0.29 0.58 ns
G992R no 7.61 -0.21 Decreasing 0.02 4.83 0.29 0.58 ns
R1008C no 3.21 -1.16 Decreasing 0.02 4.83 0.29 0.58 ns
E1104D no 3.30 0.51 Increasing 0.02 4.83 0.29 0.58 ns
I1111V no 3.51 -0.03 Decreasing 0.02 4.83 0.29 0.58 ns
S188A no 4.30 -0.03 Decreasing 0.03 4.83 0.29 0.58 ns
I271V no 9.64 -0.19 Decreasing 0.03 4.83 0.29 0.58 ns
S431C drug 9.51 0.03 Increasing 0.03 4.83 0.29 0.58 ns
L554P no 5.21 0.08 Increasing 0.03 4.83 0.29 0.58 ns
R578H no 6.06 0.18 Increasing 0.03 4.83 0.29 0.58 ns
H674N no 6.48 -0.29 Decreasing 0.03 4.83 0.29 0.58 ns
T756A no 7.81 -0.22 Decreasing 0.03 4.83 0.29 0.58 ns
L862R no 9.78 -0.33 Decreasing 0.03 4.83 0.29 0.58 ns
G973D no 9.62 -0.30 Decreasing 0.03 4.83 0.29 0.58 ns
H445F drug 7.97 -0.02 Decreasing 0.03 4.83 0.21 0.58 ns
H835P no 5.66 0.22 Increasing 0.03 4.83 0.21 0.58 ns
H674Y no 6.48 0.03 Increasing 0.04 4.83 0.21 0.58 ns
C681G no 3.21 -0.66 Decreasing 0.04 4.83 0.21 0.58 ns
T400S no 4.53 0.06 Increasing 0.05 4.83 0.29 0.58 ns
I652L no 7.23 -0.20 Decreasing 0.05 4.83 0.21 0.58 ns
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S838T no 6.34 -0.27 Decreasing 0.05 4.83 0.29 0.58 ns
Q980R no 3.65 -0.11 Decreasing 0.06 4.83 0.29 0.58 ns
R167H no 9.02 -0.11 Decreasing 0.07 4.83 0.29 0.58 ns
P454H no 6.14 0.06 Increasing 0.07 4.83 0.21 0.58 ns
D997N no 6.79 0.08 Increasing 0.07 4.83 0.29 0.58 ns
P454L no 6.14 0.21 Increasing 0.08 4.83 0.21 0.58 ns
T1090V no 3.55 0.34 Increasing 0.11 4.83 0.29 0.58 ns
A977E no 5.77 1.08 Increasing 0.18 3.62 0.15 0.58 ns
D993E no 5.65 0.01 Increasing 0.23 3.62 0.15 0.58 ns
L995M no 8.12 -0.43 Decreasing 0.23 3.62 0.15 0.58 ns
P577A no 4.16 -0.75 Decreasing 0.08 3.22 0.21 0.58 ns
H445S drug 7.97 -0.34 Decreasing 0.16 3.22 0.21 0.58 ns
I491F drug 5.35 0.06 Increasing 1.35 3.11 <0.0001 <0.0001 ****
H445N drug 7.97 -0.35 Decreasing 1.06 2.66 <0.001 0.01 **
V403A no 9.84 0.16 Increasing 0.02 2.41 0.5 0.86 ns
S431T drug 9.51 0.05 Increasing 0.02 2.41 0.5 0.86 ns
N539H no 5.65 -0.11 Decreasing 0.02 2.41 0.5 0.86 ns
H674Q no 6.48 0.19 Increasing 0.02 2.41 0.5 0.86 ns
D779G no 8.59 0.06 Increasing 0.02 2.41 0.5 0.86 ns
R824S no 6.56 0.03 Increasing 0.02 2.41 0.5 0.86 ns
V385L no 7.45 -0.06 Decreasing 0.03 2.41 0.5 0.86 ns
I696L no 7.52 -0.46 Decreasing 0.03 2.41 0.5 0.86 ns
V740T no 8.04 0.03 Increasing 0.03 2.41 0.5 0.86 ns
L741F no 9.95 0.16 Increasing 0.03 2.41 0.5 0.86 ns
E807Q no 3.16 -0.60 Decreasing 0.04 2.41 0.5 0.86 ns
T585A no 6.55 0.05 Increasing 0.04 2.41 0.59 0.94 ns
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D270E no 7.39 -0.16 Decreasing 0.05 2.41 0.5 0.86 ns
N487S drug 4.11 -0.18 Decreasing 0.05 2.41 0.5 0.86 ns
I925V no 3.79 -0.06 Decreasing 0.05 2.41 0.59 0.94 ns
S431R drug 9.51 0.10 Increasing 0.06 2.41 0.59 0.94 ns
C1067G no 3.63 -0.72 Decreasing 0.08 2.41 0.5 0.86 ns
H723Y no 3.26 1.66 Increasing 0.12 2.41 0.5 0.86 ns
V109I no 9.64 -0.25 Decreasing 0.01 1.21 1 1 ns
M121I no 8.44 -0.50 Decreasing 0.01 1.21 1 1 ns
D211V no 7.47 -0.23 Decreasing 0.01 1.21 1 1 ns
V262F no 9.21 0.37 Increasing 0.01 1.21 1 1 ns
G263N no 9.92 -0.08 Decreasing 0.01 1.21 1 1 ns
R299C no 2.82 -0.62 Decreasing 0.01 1.21 1 1 ns
D362H no 8.96 0.16 Increasing 0.01 1.21 1 1 ns
L372P no 9.60 -0.78 Decreasing 0.01 1.21 1 1 ns
M390I no 5.71 -0.44 Decreasing 0.01 1.21 1 1 ns
M477V no 4.90 0.04 Increasing 0.01 1.21 1 1 ns
I491N drug 5.35 -0.46 Decreasing 0.01 1.21 1 1 ns
V555A no 4.73 -0.03 Decreasing 0.01 1.21 1 1 ns
M601I no 6.26 -0.19 Decreasing 0.01 1.21 1 1 ns
S615N no 8.32 -0.18 Decreasing 0.01 1.21 1 1 ns
V647L no 3.53 -0.81 Decreasing 0.01 1.21 1 1 ns
A649V no 2.81 -0.26 Decreasing 0.01 1.21 1 1 ns
M666T no 7.28 -0.54 Decreasing 0.01 1.21 1 1 ns
F669L no 3.24 -1.44 Decreasing 0.01 1.21 1 1 ns
P682T no 4.18 -0.51 Decreasing 0.01 1.21 1 1 ns
I683T no 3.73 -0.21 Decreasing 0.01 1.21 1 1 ns
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A697T no 8.91 0.45 Increasing 0.01 1.21 1 1 ns
I717Y no 3.15 2.12 Increasing 0.01 1.21 1 1 ns
S732C no 8.51 -0.19 Decreasing 0.01 1.21 1 1 ns
N733R no 4.88 -0.50 Decreasing 0.01 1.21 1 1 ns
E737G no 3.53 -0.69 Decreasing 0.01 1.21 1 1 ns
I744T no 3.68 -0.99 Decreasing 0.01 1.21 1 1 ns
P810A no 0.73 -1.05 Decreasing 0.01 1.21 1 1 ns
P810C no 0.73 -0.36 Decreasing 0.01 1.21 1 1 ns
P810R no 0.73 0.48 Increasing 0.01 1.21 1 1 ns
P834L no 8.48 -0.18 Decreasing 0.01 1.21 1 1 ns
D851G no 8.43 -0.42 Decreasing 0.01 1.21 1 1 ns
P856L no 4.64 -0.01 Decreasing 0.01 1.21 1 1 ns
A868V no 4.05 -0.05 Decreasing 0.01 1.21 1 1 ns
L879I no 7.31 -0.56 Decreasing 0.01 1.21 1 1 ns
L893R no 7.59 -0.28 Decreasing 0.01 1.21 1 1 ns
L893V no 7.59 0.03 Increasing 0.01 1.21 1 1 ns
V895D no 4.60 -0.10 Decreasing 0.01 1.21 1 1 ns
V895L no 4.60 -0.24 Decreasing 0.01 1.21 1 1 ns
P899A no 6.27 -0.63 Decreasing 0.01 1.21 1 1 ns
D903N no 3.29 0.74 Increasing 0.01 1.21 1 1 ns
P906L no 4.65 -0.57 Decreasing 0.01 1.21 1 1 ns
I910T no 8.15 -0.53 Decreasing 0.01 1.21 1 1 ns
S984L no 8.53 -0.05 Decreasing 0.01 1.21 1 1 ns
G992N no 7.61 0.04 Increasing 0.01 1.21 1 1 ns
M1003I no 7.85 -0.28 Decreasing 0.01 1.21 1 1 ns
F1005V no 3.74 -1.89 Decreasing 0.01 1.21 1 1 ns
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D1006G no 3.79 -1.75 Decreasing 0.01 1.21 1 1 ns
P1012L no 3.56 -0.51 Decreasing 0.01 1.21 1 1 ns
P1014S no 3.74 -0.32 Decreasing 0.01 1.21 1 1 ns
V1019T no 6.36 -0.17 Decreasing 0.01 1.21 1 1 ns
M1022L no 9.04 -0.14 Decreasing 0.01 1.21 1 1 ns
V1031I no 3.72 -0.14 Decreasing 0.01 1.21 1 1 ns
P1042S no 3.61 -0.32 Decreasing 0.01 1.21 1 1 ns
V1091I no 6.53 -0.11 Decreasing 0.01 1.21 1 1 ns
V1091S no 6.53 -0.22 Decreasing 0.01 1.21 1 1 ns
V1096A no 3.91 -1.06 Decreasing 0.01 1.21 1 1 ns
E1108A no 4.30 -1.08 Decreasing 0.01 1.21 1 1 ns
V1117L no 3.63 0.52 Increasing 0.01 1.21 1 1 ns
V1129A no 3.52 -1.41 Decreasing 0.01 1.21 1 1 ns
S1134C no 3.63 -0.21 Decreasing 0.01 1.21 1 1 ns
E1145G no 2.87 -0.99 Decreasing 0.01 1.21 1 1 ns
E1147Q no 2.89 -0.91 Decreasing 0.01 1.21 1 1 ns
D190A no 3.64 -0.23 Decreasing 0.02 1.21 1 1 ns
R225Q no 7.40 -0.20 Decreasing 0.02 1.21 1 1 ns
T261A no 8.15 -0.07 Decreasing 0.02 1.21 1 1 ns
S388A no 6.44 -0.01 Decreasing 0.02 1.21 1 1 ns
V418I no 4.66 -0.08 Decreasing 0.02 1.21 1 1 ns
A609S no 8.70 0.48 Increasing 0.02 1.21 1 1 ns
V613L no 3.64 0.41 Increasing 0.02 1.21 1 1 ns
A670N no 8.28 0.17 Increasing 0.02 1.21 1 1 ns
C681K no 3.21 0.37 Increasing 0.02 1.21 1 1 ns
P682A no 4.18 -1.20 Decreasing 0.02 1.21 1 1 ns
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D688E no 5.95 0.18 Increasing 0.02 1.21 1 1 ns
L714M no 8.95 -0.37 Decreasing 0.02 1.21 1 1 ns
E737S no 3.53 -0.44 Decreasing 0.02 1.21 1 1 ns
R791P no 2.82 -1.46 Decreasing 0.02 1.21 1 1 ns
D792G no 3.57 -0.31 Decreasing 0.02 1.21 1 1 ns
R813K no 3.00 0.92 Increasing 0.02 1.21 1 1 ns
E850D no 8.98 0.09 Increasing 0.02 1.21 1 1 ns
L901R no 4.65 -0.60 Decreasing 0.02 1.21 1 1 ns
F1005Y no 3.74 0.79 Increasing 0.02 1.21 1 1 ns
P1109S no 4.39 -0.04 Decreasing 0.02 1.21 1 1 ns
S1133A no 4.05 -0.60 Decreasing 0.02 1.21 1 1 ns
H366N no 7.05 -0.26 Decreasing 0.03 1.21 1 1 ns
V403I no 9.84 -0.23 Decreasing 0.03 1.21 1 1 ns
V418A no 4.66 -0.12 Decreasing 0.03 1.21 1 1 ns
N437T no 5.73 0.41 Increasing 0.03 1.21 1 1 ns
P483L drug 5.60 -0.70 Decreasing 0.03 1.21 1 1 ns
L735M no 7.63 -0.49 Decreasing 0.03 1.21 1 1 ns
R791C no 2.82 -0.76 Decreasing 0.03 1.21 1 1 ns
I795L no 6.22 -0.44 Decreasing 0.03 1.21 1 1 ns
I795V no 6.22 0.33 Increasing 0.03 1.21 1 1 ns
R882S no 9.03 -0.24 Decreasing 0.03 1.21 1 1 ns
P894A no 5.32 -0.45 Decreasing 0.03 1.21 1 1 ns
V895I no 4.60 0.07 Increasing 0.03 1.21 1 1 ns
H1028L no 3.64 -0.59 Decreasing 0.03 1.21 1 1 ns
P1107Q no 5.01 0.13 Increasing 0.03 1.21 1 1 ns
K1116N no 5.38 0.77 Increasing 0.03 1.21 1 1 ns
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F367L no 7.82 -0.18 Decreasing 0.04 1.21 1 1 ns
I414V no 3.58 -1.02 Decreasing 0.04 1.21 1 1 ns
T427S no 5.91 0.08 Increasing 0.04 1.21 1 1 ns
S428T drug 7.24 0.00 Decreasing 0.04 1.21 1 1 ns
A686E no 4.71 0.54 Increasing 0.04 1.21 1 1 ns
I889V no 3.63 0.27 Increasing 0.04 1.21 1 1 ns
H1028N no 3.64 -0.29 Decreasing 0.04 1.21 1 1 ns
D792T no 3.57 0.05 Increasing 0.05 1.21 1 1 ns
V1091L no 6.53 -0.17 Decreasing 0.05 1.21 1 1 ns
L831M no 10.00 -0.28 Decreasing 0.06 1.21 1 1 ns
A1002S no 7.69 0.38 Increasing 0.06 1.21 1 1 ns
M1003T no 7.85 -0.18 Decreasing 0.08 1.21 1 1 ns
R225K no 7.40 0.21 Increasing 0.09 1.21 1 1 ns
S495A no 7.86 -0.08 Decreasing 0.09 1.21 1 1 ns
A823S no 9.38 0.24 Increasing 0.10 1.21 1 1 ns
P719S no 3.30 -0.22 Decreasing 0.12 1.21 1 1 ns
I1035M no 3.41 0.69 Increasing 0.14 1.21 1 1 ns
E1108D no 4.30 0.54 Increasing 0.14 1.21 1 1 ns
H1028R no 3.64 0.40 Increasing 0.15 1.21 1 1 ns
Q975K no 4.27 0.12 Increasing 0.34 1.21 0.73 1 ns
T1040I no 3.63 0.75 Increasing 0.36 1.21 1 1 ns
T1018A no 3.09 -1.03 Decreasing 0.50 1.21 1 1 ns
V262A no 9.21 0.04 Increasing 0.59 1.01 1 1 ns
M390T no 5.71 -0.49 Decreasing 0.10 0.97 1 1 ns
V895Q no 4.60 0.46 Increasing 0.27 0.97 1 1 ns
C681S no 3.21 -0.22 Decreasing 0.28 0.97 1 1 ns
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M1003V no 7.85 -0.29 Decreasing 0.26 0.80 1 1 ns
D190E no 3.64 -0.01 Decreasing 0.59 0.69 0.61 0.98 ns
M121V no 8.44 -0.19 Decreasing 0.02 0.60 1 1 ns
N163D no 9.54 0.13 Increasing 0.02 0.60 1 1 ns
D265N no 6.03 -0.28 Decreasing 0.02 0.60 1 1 ns
R661Q no 8.39 -0.04 Decreasing 0.02 0.60 1 1 ns
E721K no 2.75 -0.96 Decreasing 0.02 0.60 1 1 ns
I783V no 9.24 -0.45 Decreasing 0.02 0.60 1 1 ns
I786V no 3.30 0.07 Increasing 0.02 0.60 1 1 ns
D875V no 4.18 0.57 Increasing 0.02 0.60 1 1 ns
A880S no 8.30 0.32 Increasing 0.02 0.60 1 1 ns
Q975R no 4.27 -0.09 Decreasing 0.02 0.60 1 1 ns
A998V no 5.22 -0.13 Decreasing 0.02 0.60 1 1 ns
S1124A no 3.27 -0.14 Decreasing 0.02 0.60 1 1 ns
K711Q no 8.61 0.01 Increasing 0.03 0.60 1 1 ns
D792S no 3.57 0.08 Increasing 0.03 0.60 1 1 ns
E854D no 3.92 0.02 Increasing 0.03 0.60 1 1 ns
G463S no 5.83 -0.14 Decreasing 0.04 0.60 1 1 ns
A977D no 5.77 0.56 Increasing 0.04 0.60 1 1 ns
L372I no 9.60 0.00 Decreasing 0.05 0.60 1 1 ns
A559G no 7.68 -0.21 Decreasing 0.05 0.60 1 1 ns
D1033E no 5.62 -0.07 Decreasing 0.07 0.60 1 1 ns
I644V no 7.49 -0.15 Decreasing 0.09 0.60 1 1 ns
E737Q no 3.53 -0.08 Decreasing 0.09 0.60 1 1 ns
D688Q no 5.95 -0.24 Decreasing 0.10 0.60 1 1 ns
C681R no 3.21 0.83 Increasing 0.11 0.60 1 1 ns
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L1119I no 4.67 0.29 Increasing 0.12 0.60 1 1 ns
L879M no 7.31 -0.01 Decreasing 0.13 0.60 1 1 ns
M1070L no 3.50 0.88 Increasing 0.18 0.60 0.73 1 ns
A998G no 5.22 -0.46 Decreasing 0.20 0.60 1 1 ns
A603S no 8.11 0.38 Increasing 0.24 0.60 1 1 ns
D704N no 9.80 -0.21 Decreasing 0.41 0.54 0.53 0.91 ns
T482S no 3.43 -0.55 Decreasing 0.08 0.48 0.68 1 ns
S450N drug 7.97 0.04 Increasing 0.03 0.40 0.56 0.91 ns
V613I no 3.64 0.46 Increasing 0.03 0.40 0.56 0.91 ns
S615P no 8.32 0.03 Increasing 0.03 0.40 0.56 0.91 ns
E616D no 9.62 -0.02 Decreasing 0.03 0.40 0.56 0.91 ns
P719T no 3.30 -0.56 Decreasing 0.03 0.40 0.56 0.91 ns
A857T no 3.27 0.20 Increasing 0.03 0.40 0.56 0.91 ns
V1091A no 6.53 -0.08 Decreasing 0.03 0.40 0.56 0.91 ns
Q409N no 3.14 -0.25 Decreasing 0.04 0.40 0.56 0.91 ns
P471T no 4.09 -0.61 Decreasing 0.04 0.40 0.56 0.91 ns
M666L no 7.28 0.36 Increasing 0.04 0.40 0.56 0.91 ns
E737A no 3.53 -0.73 Decreasing 0.04 0.40 0.56 0.91 ns
V740M no 8.04 -0.26 Decreasing 0.04 0.40 0.56 0.91 ns
S1009T no 2.64 1.39 Increasing 0.04 0.40 0.56 0.91 ns
S1134K no 3.63 0.01 Increasing 0.04 0.40 0.56 0.91 ns
A586S no 9.70 0.02 Increasing 0.06 0.40 0.56 0.91 ns
I717V no 3.15 -0.54 Decreasing 0.07 0.40 0.56 0.91 ns
E563D no 6.88 0.03 Increasing 0.08 0.40 0.56 0.91 ns
L1141M no 4.42 0.47 Increasing 0.08 0.40 0.56 0.91 ns
E1145D no 2.87 0.60 Increasing 0.09 0.40 0.56 0.91 ns
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E738D no 5.40 0.36 Increasing 0.11 0.40 0.56 0.91 ns
G890S no 3.55 0.59 Increasing 0.12 0.40 0.68 1 ns
M1022I no 9.04 -0.07 Decreasing 0.14 0.40 0.56 0.91 ns
T742S no 7.46 -0.05 Decreasing 0.16 0.40 0.56 0.91 ns
A670E no 8.28 0.34 Increasing 0.24 0.40 0.68 1 ns
Q1071E no 3.42 1.47 Increasing 0.38 0.37 0.26 0.58 ns
N733Q no 4.88 0.16 Increasing 0.19 0.34 0.45 0.82 ns
D108E no 8.30 0.06 Increasing 0.55 0.32 0.18 0.58 ns
V774S no 5.80 -0.11 Decreasing 0.04 0.30 0.33 0.61 ns
L735V no 7.63 -0.44 Decreasing 0.05 0.30 0.33 0.61 ns
I652V no 7.23 -0.24 Decreasing 0.07 0.30 0.33 0.61 ns
S874T no 6.04 -0.26 Decreasing 0.08 0.30 0.33 0.61 ns
Y1015D no 2.86 -1.14 Decreasing 0.09 0.30 0.33 0.61 ns
E1143D no 1.71 0.88 Increasing 0.09 0.30 0.33 0.61 ns
D107E no 6.02 -0.08 Decreasing 0.10 0.30 0.33 0.61 ns
V418T no 4.66 0.07 Increasing 0.10 0.30 0.33 0.61 ns
R791T no 2.82 -0.41 Decreasing 0.10 0.30 0.46 0.84 ns
D792A no 3.57 -0.31 Decreasing 0.15 0.30 0.46 0.84 ns
L1122M no 4.00 0.02 Increasing 0.15 0.30 0.33 0.61 ns
M1045L no 3.50 0.45 Increasing 0.48 0.30 0.33 0.61 ns
I1046V no 2.45 0.74 Increasing 0.48 0.30 0.33 0.61 ns
A902P no 2.59 0.41 Increasing 0.52 0.30 0.12 0.46 ns
T1018S no 3.09 -0.18 Decreasing 0.43 0.28 0.08 0.35 ns
T261I no 8.15 0.09 Increasing 0.08 0.24 0.33 0.61 ns
S458T drug 6.48 0.64 Increasing 0.09 0.24 0.33 0.61 ns
C1067V no 3.63 1.15 Increasing 0.27 0.24 0.19 0.58 ns
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E852D no 5.35 0.10 Increasing 0.40 0.24 0.19 0.58 ns
L464M no 3.19 -0.23 Decreasing 0.37 0.22 0.2 0.58 ns
H723L no 3.26 -1.00 Decreasing 0.09 0.20 0.19 0.58 ns
M1022T no 9.04 -0.01 Decreasing 0.16 0.20 0.13 0.48 ns
V784I no 7.29 -0.11 Decreasing 0.20 0.20 0.13 0.48 ns
I717F no 3.15 2.06 Increasing 0.21 0.20 0.19 0.58 ns
I770V no 6.00 0.00 Decreasing 0.88 0.20 <0.001 0.02 *
S201G no 3.72 -0.21 Decreasing 0.19 0.17 0.11 0.45 ns
S441A no 8.98 -0.38 Decreasing 0.95 0.17 <0.0001 <0.001 ***
S388L no 6.44 0.03 Increasing 1.79 0.17 <0.001 0.01 **
G890D no 3.55 -1.18 Decreasing 0.08 0.15 0.12 0.45 ns
V1017I no 4.27 0.77 Increasing 0.32 0.15 0.03 0.19 ns
T1078A no 2.40 -1.54 Decreasing 0.34 0.13 0.01 0.09 ns
V1091T no 6.53 -0.22 Decreasing 0.29 0.12 0.01 0.1 ns
V740I no 8.04 -0.42 Decreasing 0.16 0.11 0.04 0.23 ns
N1105D no 2.53 -0.20 Decreasing 0.30 0.11 0.01 0.06 ns
E460D no 3.33 0.52 Increasing 0.51 0.11 0.01 0.06 ns
D755E no 7.14 0.01 Increasing 0.13 0.10 0.02 0.15 ns
A596S no 3.49 0.64 Increasing 0.14 0.10 0.02 0.15 ns
I751V no 8.70 -0.27 Decreasing 0.62 0.10 <0.001 0.03 *
P810S no 0.73 -0.29 Decreasing 0.33 0.09 <0.001 0.02 *
L449Q no 8.82 -0.44 Decreasing 0.53 0.04 <0.001 0.01 **
D108G no 8.30 -0.11 Decreasing 0.01 NA NA NA ns
V129I no 8.13 0.16 Increasing 0.01 NA NA NA ns
N163I no 9.54 -0.07 Decreasing 0.01 NA NA NA ns
V196A no 9.99 -0.20 Decreasing 0.01 NA NA NA ns
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P200S no 5.11 0.22 Increasing 0.01 NA NA NA ns
E207G no 7.00 -0.28 Decreasing 0.01 NA NA NA ns
K212E no 4.26 -0.21 Decreasing 0.01 NA NA NA ns
G263S no 9.92 -0.06 Decreasing 0.01 NA NA NA ns
L269M no 4.33 -0.01 Decreasing 0.01 NA NA NA ns
S285A no 8.19 -0.02 Decreasing 0.01 NA NA NA ns
F294Y no 8.47 -0.06 Decreasing 0.01 NA NA NA ns
K296N no 9.92 0.05 Increasing 0.01 NA NA NA ns
D365E no 2.51 -0.33 Decreasing 0.01 NA NA NA ns
L372M no 9.60 -0.42 Decreasing 0.01 NA NA NA ns
R373H no 6.24 -0.03 Decreasing 0.01 NA NA NA ns
V385T no 7.45 -0.08 Decreasing 0.01 NA NA NA ns
Q401L no 7.77 -0.08 Decreasing 0.01 NA NA NA ns
D402E no 7.31 0.13 Increasing 0.01 NA NA NA ns
R415L no 3.60 -0.55 Decreasing 0.01 NA NA NA ns
A419T no 8.59 0.08 Increasing 0.01 NA NA NA ns
I421L no 7.81 -0.21 Decreasing 0.01 NA NA NA ns
E423A no 5.21 -0.15 Decreasing 0.01 NA NA NA ns
Q429R drug 3.39 0.13 Increasing 0.01 NA NA NA ns
F433L drug 7.42 -0.49 Decreasing 0.01 NA NA NA ns
D435L drug 6.61 -0.33 Decreasing 0.01 NA NA NA ns
Q436N no 9.63 -0.25 Decreasing 0.01 NA NA NA ns
S441P no 8.98 -0.47 Decreasing 0.01 NA NA NA ns
S441W no 8.98 -0.64 Decreasing 0.01 NA NA NA ns
L452M drug 6.98 -0.29 Decreasing 0.01 NA NA NA ns
L452R drug 6.98 -0.15 Decreasing 0.01 NA NA NA ns
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R459H drug 3.96 -0.07 Decreasing 0.01 NA NA NA ns
V469M no 2.33 -1.25 Decreasing 0.01 NA NA NA ns
P471H no 4.09 -0.28 Decreasing 0.01 NA NA NA ns
S472C no 5.62 -0.39 Decreasing 0.01 NA NA NA ns
P479T no 2.46 -0.87 Decreasing 0.01 NA NA NA ns
T482A no 3.43 -1.00 Decreasing 0.01 NA NA NA ns
P486S no 5.36 0.06 Increasing 0.01 NA NA NA ns
Q537K no 3.37 -0.54 Decreasing 0.01 NA NA NA ns
S540A no 8.43 -0.04 Decreasing 0.01 NA NA NA ns
S540P no 8.43 0.17 Increasing 0.01 NA NA NA ns
V553G no 8.26 -0.13 Decreasing 0.01 NA NA NA ns
L554V no 5.21 -0.18 Decreasing 0.01 NA NA NA ns
G560D no 4.83 -0.01 Decreasing 0.01 NA NA NA ns
R578C no 6.06 0.16 Increasing 0.01 NA NA NA ns
S582L no 9.74 -0.80 Decreasing 0.01 NA NA NA ns
F590C no 6.58 -0.84 Decreasing 0.01 NA NA NA ns
F590Y no 6.58 -0.32 Decreasing 0.01 NA NA NA ns
D594A no 2.83 -1.41 Decreasing 0.01 NA NA NA ns
D595E no 3.47 -1.06 Decreasing 0.01 NA NA NA ns
N597S no 3.14 -0.16 Decreasing 0.01 NA NA NA ns
S615A no 8.32 -0.23 Decreasing 0.01 NA NA NA ns
S615R no 8.32 0.01 Increasing 0.01 NA NA NA ns
R671G no 8.35 -0.32 Decreasing 0.01 NA NA NA ns
N673H no 8.42 -0.02 Decreasing 0.01 NA NA NA ns
H674P no 6.48 -0.35 Decreasing 0.01 NA NA NA ns
A686T no 4.71 0.20 Increasing 0.01 NA NA NA ns
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D704E no 9.80 -0.05 Decreasing 0.01 NA NA NA ns
V715A no 8.64 0.17 Increasing 0.01 NA NA NA ns
A728G no 4.05 -0.81 Decreasing 0.01 NA NA NA ns
S732N no 8.51 -0.15 Decreasing 0.01 NA NA NA ns
S732T no 8.51 -0.32 Decreasing 0.01 NA NA NA ns
N733H no 4.88 0.08 Increasing 0.01 NA NA NA ns
N733K no 4.88 -0.35 Decreasing 0.01 NA NA NA ns
E737K no 3.53 0.04 Increasing 0.01 NA NA NA ns
E738A no 5.40 -0.80 Decreasing 0.01 NA NA NA ns
E738Q no 5.40 -0.17 Decreasing 0.01 NA NA NA ns
V740E no 8.04 -0.09 Decreasing 0.01 NA NA NA ns
V740L no 8.04 -0.16 Decreasing 0.01 NA NA NA ns
D755A no 7.14 -0.11 Decreasing 0.01 NA NA NA ns
K757E no 4.20 -0.28 Decreasing 0.01 NA NA NA ns
V774A no 5.80 0.18 Increasing 0.01 NA NA NA ns
V774T no 5.80 -0.33 Decreasing 0.01 NA NA NA ns
L775I no 9.04 -0.30 Decreasing 0.01 NA NA NA ns
K799N no 8.27 -0.33 Decreasing 0.01 NA NA NA ns
T806S no 3.55 0.06 Increasing 0.01 NA NA NA ns
G836C no 5.25 -0.33 Decreasing 0.01 NA NA NA ns
G843D no 4.88 0.59 Increasing 0.01 NA NA NA ns
I844V no 7.87 -0.27 Decreasing 0.01 NA NA NA ns
P856A no 4.64 -0.02 Decreasing 0.01 NA NA NA ns
I892V no 8.20 -0.21 Decreasing 0.01 NA NA NA ns
L893N no 7.59 -0.31 Decreasing 0.01 NA NA NA ns
V895A no 4.60 -0.30 Decreasing 0.01 NA NA NA ns
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V895H no 4.60 0.25 Increasing 0.01 NA NA NA ns
P899L no 6.27 -0.56 Decreasing 0.01 NA NA NA ns
L901M no 4.65 0.47 Increasing 0.01 NA NA NA ns
A902T no 2.59 0.20 Increasing 0.01 NA NA NA ns
P906Q no 4.65 0.32 Increasing 0.01 NA NA NA ns
I922T no 3.45 -1.58 Decreasing 0.01 NA NA NA ns
L926F no 4.22 1.57 Increasing 0.01 NA NA NA ns
H935R no 8.27 -0.12 Decreasing 0.01 NA NA NA ns
P969S no 9.26 -0.14 Decreasing 0.01 NA NA NA ns
A977V no 5.77 0.01 Increasing 0.01 NA NA NA ns
Q980P no 3.65 -0.20 Decreasing 0.01 NA NA NA ns
R990C no 2.38 -0.77 Decreasing 0.01 NA NA NA ns
D993G no 5.65 -0.30 Decreasing 0.01 NA NA NA ns
D993H no 5.65 0.11 Increasing 0.01 NA NA NA ns
L995V no 8.12 -0.17 Decreasing 0.01 NA NA NA ns
A998T no 5.22 0.29 Increasing 0.01 NA NA NA ns
G1000S no 4.87 -1.40 Decreasing 0.01 NA NA NA ns
A1002T no 7.69 0.46 Increasing 0.01 NA NA NA ns
M1003Q no 7.85 -0.13 Decreasing 0.01 NA NA NA ns
E1011A no 2.93 -1.24 Decreasing 0.01 NA NA NA ns
E1011Q no 2.93 -1.07 Decreasing 0.01 NA NA NA ns
P1012K no 3.56 -0.06 Decreasing 0.01 NA NA NA ns
Y1015F no 2.86 -0.87 Decreasing 0.01 NA NA NA ns
Y1015S no 2.86 -0.74 Decreasing 0.01 NA NA NA ns
Y1021F no 8.55 -0.26 Decreasing 0.01 NA NA NA ns
M1022Q no 9.04 -0.10 Decreasing 0.01 NA NA NA ns
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H1028Q no 3.64 -0.25 Decreasing 0.01 NA NA NA ns
H1028Y no 3.64 0.17 Increasing 0.01 NA NA NA ns
I1035L no 3.41 -0.62 Decreasing 0.01 NA NA NA ns
A1037S no 3.52 0.46 Increasing 0.01 NA NA NA ns
C1067W no 3.63 0.19 Increasing 0.01 NA NA NA ns
A1072G no 3.20 -0.23 Decreasing 0.01 NA NA NA ns
Y1073S no 2.98 -2.45 Decreasing 0.01 NA NA NA ns
Y1077H no 2.79 0.31 Increasing 0.01 NA NA NA ns
Y1077W no 2.79 -0.15 Decreasing 0.01 NA NA NA ns
T1078I no 2.40 -0.87 Decreasing 0.01 NA NA NA ns
Q1080H no 3.16 0.16 Increasing 0.01 NA NA NA ns
L1082I no 3.19 -0.84 Decreasing 0.01 NA NA NA ns
L1082M no 3.19 0.36 Increasing 0.01 NA NA NA ns
L1083M no 3.40 -1.25 Decreasing 0.01 NA NA NA ns
I1085T no 5.07 -1.16 Decreasing 0.01 NA NA NA ns
I1085V no 5.07 0.87 Increasing 0.01 NA NA NA ns
V1091H no 6.53 0.15 Increasing 0.01 NA NA NA ns
V1091P no 6.53 -0.02 Decreasing 0.01 NA NA NA ns
R1093S no 4.66 -0.75 Decreasing 0.01 NA NA NA ns
V1096L no 3.91 -0.72 Decreasing 0.01 NA NA NA ns
P1107D no 5.01 0.43 Increasing 0.01 NA NA NA ns
P1107S no 5.01 -0.03 Decreasing 0.01 NA NA NA ns
G1110A no 3.88 -0.37 Decreasing 0.01 NA NA NA ns
G1110S no 3.88 -0.20 Decreasing 0.01 NA NA NA ns
Q1123R no 3.15 1.55 Increasing 0.01 NA NA NA ns
I1139V no 3.50 0.50 Increasing 0.01 NA NA NA ns
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E1147D no 2.89 0.53 Increasing 0.01 NA NA NA ns
K37T no 8.98 -0.04 Decreasing 0.02 NA NA NA ns
R105H no 9.80 0.00 Decreasing 0.02 NA NA NA ns
M148I no 5.27 0.40 Increasing 0.02 NA NA NA ns
I220V no 8.15 -0.05 Decreasing 0.02 NA NA NA ns
E423G no 5.21 -0.16 Decreasing 0.02 NA NA NA ns
G453A drug 7.91 -0.23 Decreasing 0.02 NA NA NA ns
T482I no 3.43 -0.81 Decreasing 0.02 NA NA NA ns
G492S no 6.34 -0.34 Decreasing 0.02 NA NA NA ns
R552C no 7.55 -0.29 Decreasing 0.02 NA NA NA ns
E592D no 3.46 -0.15 Decreasing 0.02 NA NA NA ns
E721D no 2.75 -0.28 Decreasing 0.02 NA NA NA ns
D752Y no 5.09 0.34 Increasing 0.02 NA NA NA ns
N769T no 3.64 -0.23 Decreasing 0.02 NA NA NA ns
V774E no 5.80 -0.07 Decreasing 0.02 NA NA NA ns
A776V no 5.83 0.03 Increasing 0.02 NA NA NA ns
L778Q no 6.91 -0.45 Decreasing 0.02 NA NA NA ns
L831R no 10.00 -0.30 Decreasing 0.02 NA NA NA ns
K840T no 3.92 0.30 Increasing 0.02 NA NA NA ns
V841A no 3.80 -1.04 Decreasing 0.02 NA NA NA ns
Q869N no 5.14 -0.48 Decreasing 0.02 NA NA NA ns
S874Q no 6.04 0.64 Increasing 0.02 NA NA NA ns
M1003R no 7.85 0.10 Increasing 0.02 NA NA NA ns
L1027Q no 6.52 -0.31 Decreasing 0.02 NA NA NA ns
V1094T no 4.16 0.06 Increasing 0.02 NA NA NA ns
D265V no 6.03 -0.09 Decreasing 0.03 NA NA NA ns
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S450M drug 7.97 -0.12 Decreasing 0.03 NA NA NA ns
L464V no 3.19 -0.62 Decreasing 0.03 NA NA NA ns
L815V no 3.90 -0.86 Decreasing 0.03 NA NA NA ns
A857P no 3.27 0.30 Increasing 0.03 NA NA NA ns
S1009C no 2.64 -1.31 Decreasing 0.03 NA NA NA ns
I767M no 8.87 -0.37 Decreasing 0.04 NA NA NA ns
G890A no 3.55 -0.28 Decreasing 0.04 NA NA NA ns
K1054R no 3.12 0.61 Increasing 0.04 NA NA NA ns
Q429L drug 3.39 -0.11 Decreasing 0.05 NA NA NA ns
G463A no 5.83 -0.40 Decreasing 0.05 NA NA NA ns
I696V no 7.52 -0.37 Decreasing 0.05 NA NA NA ns
E773D no 6.52 -0.01 Decreasing 0.05 NA NA NA ns
E789D no 0.68 -0.29 Decreasing 0.05 NA NA NA ns
R791G no 2.82 -0.64 Decreasing 0.05 NA NA NA ns
I220L no 8.15 -0.31 Decreasing 0.06 NA NA NA ns
P471S no 4.09 -0.56 Decreasing 0.06 NA NA NA ns
S493T no 7.37 -0.13 Decreasing 0.06 NA NA NA ns
V774M no 5.80 -0.24 Decreasing 0.06 NA NA NA ns
E207K no 7.00 -0.38 Decreasing 0.07 NA NA NA ns
Y725F no 3.28 0.56 Increasing 0.07 NA NA NA ns
D875I no 4.18 0.92 Increasing 0.07 NA NA NA ns
T1090I no 3.55 0.34 Increasing 0.07 NA NA NA ns
I1106L no 3.10 -1.01 Decreasing 0.07 NA NA NA ns
L1118V no 3.85 -1.68 Decreasing 0.10 NA NA NA ns
I1139T no 3.50 -1.02 Decreasing 0.12 NA NA NA ns
H593N no 2.83 0.82 Increasing 0.15 NA NA NA ns
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L796Q no 9.58 -0.43 Decreasing 0.22 NA NA NA ns
N381H no 8.96 0.26 Increasing 0.79 NA NA NA ns

Table 8.C.1: Mutations close to RpoB RNA polymerase β subunit PPI
Six hundred and seventy four single amino acid variation (SAV) mutations lying within 10Å of the Protein-Protein interface (PPI) and their corresponding PPI affinity
changes (∆∆G) measured by mCSM-PPI2. The estimated effect are categorised as Destabilising (∆∆G<0) and Stabilising (∆∆G>0). The genomic measures of minor
allele frequency (MAF), Odds Ratio (OR), OR related P-values, and FDR adjusted P-values are shown. Statistical significance is indicated as: *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001, ns: >0.05. The table is arranged by OR to show mutation with the highest OR at the top. Columns with NA indicate insufficient data
to calculate OR. Abbreviations used: ∆∆G: change in Gibbs free energy in Kcal/mol, FDR: false discovery rate, ns: not significant, RFP: rifampicin.
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8.D Average stability comparisons for lineages

Lineage
comparisons Samples (n)

Adjusted
P-values

Adjusted P-values
Significance

L1 vs L2 L1 (737), L2 (5121) <2.2e-16 ****
L1 vs L3 L1 (737), L3 (1341) <0.0001 ****
L1 vs L4 L1 (737), L4 (6861) <0.0001 ****
L2 vs L3 L2 (5121), L3 (1341) <2.2e-16 ****
L2 vs L4 L2 (5121), L4 (6861) <2.2e-16 ****
L3 vs L4 L3 (1341), L4 (6861) <0.0001 ****

Within Lineage comparisons
L1: R vs S R (n=366), S (n=371) <0.0001 ****
L2: R vs S R (n=4487), S (n=634) <2.2e-16 ****
L3: R vs S R (n=796), S (n=545) <2.2e-16 ****

Table 8.D.1: Lineage comparisons for rpoB mutations
Kolmogorov-Smirnoff (KS) test reporting the statistical differences in distributions between M. tuberculosis lin-
eages when assessed based on average stability changes (∆∆G) measured by mCSM-DUET, FoldX, DeepDDG,
and Dynamut2. Lineage comparisons were performed for samples containing mutations associated with sensi-
tivity (R: Resistant, S: Sensitive). These comparisons were performed for R and S samples between and within
lineages. Statistical significance thresholds used are *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Abbre-
viations used: ∆∆G: change in Gibbs free energy in Kcal/mol, Adj. P-values: Bonferroni adjusted P-values, n:
number of samples, ns: not significant.

362



Chapter 9

Combined

summary of all six

gene-targets
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In this chapter, I aim to integrate and summarise the findings from the individual exploration of the

six gene-targets in Chapters 3-8 to present an overview of mutational effects across the genes, their

association with resistance and how these affect the protein structure with respect to stability and

various (drug, NA, PPI) binding affinities. An attempt is made to understand the SAV driven resis-

tance landscape in M. tuberculosis across the six structural genes in the following manner: 1) relating

the findings to gene-targets classed as essential (direct targets for drug-binding) and non-essential

(indirect targets for drug binding), 2) relating mutational hotspots and active sites, 3) connecting the

findings to discuss the potential role of compensatory mutations, and 4) understanding the mutational

effects in light of the biological unit of the gene-target (monomer, dimer, etc.).

While Alr, EmbB, and RpoB RNAP are considered essential proteins as they are the direct targets for

the drugs DCS, EMB, and RFP respectively, the ancillary protein GidB along with PncA and KatG

are the indirect targets for STR, PZA, and INH respectively. When considering the biological unit,

GidB and PncA are monomers (single chain proteins), Alr and KatG are a homo-dimers (2 identical

chains), EmbB is a hetero-trimer (3 non-identical chains), and RpoB RNAP is a hetero-hexamer (6

non-identical chains).

9.1 Direct and indirect targets

Most (≥55%) mutational consequences resulted in electrostatic changes across all gene targets, as

previously observed for alr, katG, and rpoB,1 and observed here for the first time for embB and gidB.

These observations affirm the understanding that SAV mutations affect protein folding, binding, and

other biological functions as electrostatic interactions are known to play a crucial role in protein

structures.2,3

Similarly, the majority (≥80%) of SAVs resulted in destabilising the overall protein, as well as reducing

the binding affinity to their respective drugs. This may be expected since mutations are known to alter

protein stability and drug binding affinity, potentially affecting protein and bacterial fitness.4,5 The

relationship between protein stability and activity (protein function, drug-binding, etc.) is largely

context dependent.6,7 Mutational impact that results in a less stable protein increases its entropy.

This less stable protein, when bound to the ligand in a particular conformation, decreases the overall

entropy (i.e. increases global stability), but in turn may bind less effectively to the ligand, result-

ing in a deleterious effect on the ∆G of binding (i.e. reduced binding affinity). Thus, there is a

clear trade-off between global stability, binding affinity, and the normal function of the protein,8 com-

pounding the difficulties associated with understanding the mutational impact on protein function.
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The mutational consequences on drug binding affinity were largely destabilising as mentioned above,

however predictions from mmCSM-lig (David Ascher, personal communication) were always destabil-

ising for all mutations across all gene targets. It would be prudent to consider the methodological

differences between mCSM-lig and mmCSM-lig to rule out any technical discrepancies in the resulting

estimates.

The predicted functional consequences based on conservation trends from protein sequence variations,

however, were different for essential and non-essential proteins. Most mutations occurred in the highly

variable regions of the essential structural genes (Alr, EmbB, RpoB RNAP), with neutral functional

consequences predicted on protein despite the destabilising mutational impact on all three protomers.

In contrast, for non-essential structural genes (GidB, PncA, and KatG), most mutations occurred in

the highly conserved regions, with predicted detrimental protein functional effects based on sequence

variations,9,10 likely associated with destabilising protomer stability. This supports the understanding

that the large fitness penalty associated with detrimental functional consequences is alleviated for

non-essential genes, but not necessarily for essential ones. This has been observed for essential genes

alr and rpoB, and non-essential genes katG1 and pncA (published paper as part of this project), but

being reported for the first time in this manner for embB and gidB.

9.2 Active site, hotspots, and compensatory effects

SAV heterogeneity at active site residues (including co-factors and binding partners) was prominent

for gidB, pncA and katG, owing to low fitness penalty due to their non-essential role in the TB

bacillus. The reverse was observed for essential genes alr and embB, where mutational promiscuity at

active site residues is thought to be accompanied by large fitness penalties reflected in their low SAV

diversity.

Mutation hotspots in alr did not involve DCS and co-factor PLP residues, highlighting the large

fitness burden associated with these sites. An interesting observation made regarding the SAV L113R

which occurred most frequently and was strongly associated with DCS resistance: it occurred at a site

with only a single mutation and was present only in lineages 2 and 4, which are located on different

branches on the M. tuberculosis phylogenetic tree.11 Together, these findings suggest this is convergent

evolution for mutation L113R, occurring at a highly conserved site involved in DCS resistance. The

next most frequent and prominent SAV in alr associated with DCS resistance was Y388D, an active

residue involved in DCS and PLP binding. It is known that the active site residue Y388 forms a

2.7Å gate with residue Y295 of the opposite chain,12 where the smaller mutant residue aspartic acid
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is thought to destabilise this gate reducing PPI affinity, and the loss of van der Waals interaction with

PLP is thought to reduce DCS binding affinity,1 resulting in the resistant phenotype as observed in

this analysis. Further, mutation M343T involved with DCS binding is thought to affect DCS inhibition

by disrupting interactions with nearby active site residue Y388. Other prominent hotspots beyond

the active site such as R397 and T399 were present at the dimer interface, and are thought to impact

DCS binding by disrupting the nearby active site residues M343 and D344. All SAVs mentioned above

either occur close to the drug and/or the PPI, implicating the synergistic effects of high frequency and

high resistance conferring mutations. It is reasonable to consider the involvement of compensatory

mutations restoring any fitness deficit associated with resistant phenotypes and those required to

maintain the functioning Alr homo-dimer. With the limited DST data available for DCS, it is difficult

to reason effectively on the role of selective pressure exerted by DCS and the outcome of its other SAVs.

With only a small minority (<4%) of samples displaying SAVs in alr lent support to the slow evolution

of Alr’s resistance profile,13 it was interesting to note that multiple SAVs in Alr extended beyond the

active site and were associated with resistance, suggesting resistance acquisition by mechanisms other

than direct DCS binding inhibition. Further, it would appear that compensatory mutations in both

DCS targets (alr, Ddl), as well as concomitant mutations in clinical isolates need to be considered

systematically to gain better insights into the resistance evolution of Alr.

Similarly for embB, hotspots were prominent for non-active site residues, with limited involvement of

active site residues (M306, F330, A439, and V456). PPI sites involving CDL were largely budding

resistance hotspots. The crucial active site residue M306 contained multiple SAVs (M306 →T/V/L/I)

and retained the resistant phenotype, akin to observations made by other studies.14–18 Despite this the

resistance-fitness landscape is seldom as straightforward. Plinke, et. al.15 found no association of SAVs

at M306 with EMB resistance in MDR-TB strains, highlighting its limited use as a resistance marker

only in pan-susceptible M. tuberculosis strains. With most (85%, n=731) mutations classed as sensitive

according to DST, and the mutational ubiquity in embB, it appears that resistance development in

embB involves compensatory interactions between SAVs in embB, as well as in the embBAC operon

(embB, embA, and embC genes). This perhaps explains the occurrence of most (95%, n=18) CDL

interacting residues at the PPI with single mutations or as budding resistance hotspots. Compensatory

effects have been noted to occur between distant sites (>20Å),19 and with EmbB being part of a larger

hetero-trimer complex, it is logical to consider the potential role of compensatory mutations in allaying

detrimental effects of resistance associated SAVs. Thus, it appears that the mutational ubiquity owing

to selective pressure exerted by EMB, and the biophysical consequences of SAVs on the EmbB protein,

would be better understood by considering all mutations (and their effects) in the embBAC operon.
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More recent reports, however, present additional views on the acquisition and evolution of high-level

resistance in EMB. Additional gene loci G406 and Q497, associated with EMB resistance with evidence

for mutations accumulating in a stepwise manner, have been elucidated by Safi, et. al..20 Further,

Pawar, et. al.21 suggested glutamate racemase, which is involved in the peptidoglycan synthesis of the

bacterial cell wall, as an additional target for embB. Extending this further, resistance to EMB (used

alongside other first-line drugs) is likely to be acquired as part of a multi-step process20 with sites

beyond the active site (A201, D328), including those interacting with EmbB substrate DPA (F330,

K511) displaying similar mutational heterogeneity, as observed in this study.

A similar adaptation in rpoB involving compensatory effects across the rpoBAC operon have been

widely reported by others.22–25 In this analysis, rpoB exhibited the greatest mutational diversity in

the rifampicin resistance determining region (RRDR), as well as overall, compared with all other

genes. As rpoB is part of the larger hetero-hexamer complex, this observation is strongly reflective

of the known putative compensatory effects from rpoC and rpoA genes22–24 in the RRDR region,

and those extending beyond it.25 Mutations in rpoB loci 435, 445, and 450 are among the most

frequently reported and associated with RFP resistance26,27 owing to fitness penalties being mitigated

by compensatory mutations as mentioned. This was similarly observed in my current analyses, where

rpoB S450L was the most frequent mutation associated with RFP resistance, and H445D showed the

strongest association with RFP resistance, while R448E, a mutation with a severe fitness penalty,28

was not observed in this analysis.

Additionally, rpoB and katG exhibited a much higher peak SAV count (9 for katG and 13 for rpoB)

than other targets. An explanation for this is perhaps best achieved by considering the prevalence

of MDR-TB strains,29 with selection pressures exerted by multiple drugs at the same time. For

example, the combinations of low-fitness cost resistance mutations: rpoB S450L and katG S315T in

MDR strains, which frequently occur in clinical isolates,30 contributes to the widespread MDR-TB

burden. It stands to reason, then, that mutations becoming ‘fixed’ in this manner pervade, and

acquire additional mutations, manifesting as mutational heterogeneity at active sites and beyond.

This subsequently allows mutations to work in tandem with certain combination of mutations in

resistant isolates retaining their fitness just as much and possibly more than their drug sensitive

counterparts.31
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9.3 Mutational impact around protein-protein interface and nucleic

acid sites

Mutational impact on the PPI and NA affinity presented some interesting observations. Irrespective

of the protein size, the prominent effects at the PPI for Alr and RpoB RNA polymerase β subunit

proteins were largely destabilising. In contrast, the mutational effects on the PPI for EmbB was

largely stabilising, likely due to the molecular interactions involving co-factor CDL present at the

interface. For NA binding affinity in GidB and RpoB RNA polymerase β subunit proteins, sites

around the NA are highly conserved, with prominent mutational impact on NA affinity being largely

stabilising. Together, these findings suggest that residues involved with NA interactions play a crucial

role in complex stability and protein function accompanied by a high fitness burden of resistance

inducing SAV mutations in GidB,32 and RpoB RNA polymerase β subunit. When linked to the

respective mutational phenotype, these sites mostly consisted of sensitive mutations for the essential

gene rpoB while for the non-essential gene gidB, these predominantly consisted of resistant mutations.

For the essential rpoB gene, sensitive mutations around the NA site are thought to confer local fitness

advantages helping to compensate for resistant mutational phenotype beyond the NA sites. Whereas

for the ancillary protein GidB, fitness penalties for resistant SAVs around the conserved NA site are

mitigated by its non-essential role, as well as the possibility of compensatory mutations reported in

clinical aminoglycoside resistant strains, contributing to the spread of resistance.33

9.4 Overview of the resistance landscape

Differences in genomic and biophysical properties of resistant and sensitive SAV mutations were com-

pared for all gene targets except alr, due to only two SAVs being present in the resistant group. In all

other gene targets except GidB, resistant mutations occurred less frequently, evolved at a slower rate

and were more conserved. Similarly, resistant mutations tend to be destabilising for protomer stability

and occur closer to the drug without affecting binding affinity. For RpoB RNA polymerase β subunit

and KatG proteins which include a PPI, resistant mutations were closer to their interface resulting

in marginal reduced binding affinity of the complex. The same, however, was not observed in the

EmbB PPI. As mentioned previously this is likely due to the prominent stabilising mutational impact

in the presence of co-factor CDL at the interface. For GidB and RpoB RNA polymerase β subunit,

resistant mutations were also closer to the NA without affecting its binding affinity, consistent with

other findings in these analyses. Similar differences have been previously reported in PncA,34 and,
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RpoB RNA polymerase β subunit,35 and can be confirmed here for the first time in EmbB, GidB and

KatG.

It has been suggested that frequently occurring mutations do not confer extreme changes to protomer

stability or ligand affinity, with mildly stabilising mutations conferring fitness advantages, allowing

them to become fixed in a population.1 Empirical assessment based on a much larger 35,000 clinical

isolate dataset supports this. While these are prominent for the non-essential gene katG, where

mutational impact on protomer stability changes are mild, the same is not observed for similar non-

essential genes like pncA and gidB, where the resistant mutations have extreme impact. The fitness

landscape in terms of protomer stability appears to be a gene-specific phenomenon rather than the

common non-essential functionality of these genes. An additional observation is that both PncA and

GidB are monomeric proteins while KatG, RpoB RNA polymerase β subunit, and EmbB have multiple

chains. Therefore, it could be that these non-monomeric complexes follow a different adaptation

paradigm due to the balanced interplay of molecular interactions required to maintain these functional

protein complexes.

Effects related to protein flexibility at mutational sites in essential proteins were mainly low-to-mild,

compared with the mild-to-moderate effects observed in non-essential proteins. For the latter, GidB

displayed the highest flexibility overall, as well as around all binding partner sites. It would appear

that this ancillary protein, indirectly involved with STR binding, offers greater susceptibility towards

mutational tolerance as well as resistance, confirmed by observed mutational heterogeneity at these

sites and with most (93%, n=493) SAVs being sensitive to STR according to DST. For KatG and PncA,

mutational sites around binding partners were similarly associated with mild-to-moderate flexibility,

allowing for mutational diversity at these sites without affecting drug binding affinity. When comparing

mutational association with resistance at these flexible sites, sites with exclusively resistant mutations

were associated with moderate flexibility in KatG, but not for PncA. It is thought that PPI interactions

in the KatG homo-dimer play an important role in these dynamics, while for the monomeric protein

PncA, protein flexibility allows for mutational diversity without affecting resistance. For the essential

proteins, visual inspection highlighted that exclusively resistant mutation sites were associated with

low flexibility, as compared with those with sensitive mutations. This suggests that for essential

proteins, sites susceptible to flexibility tend to consist of sensitive mutations.

Of the four M. tuberculosis lineages, the largest proportion of samples across most targets came

from the geographically widespread lineages 2 and 4, which are associated with greater virulence and

increased transmission.36 The exception to this was EmbB, which had a slightly greater number of
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samples from lineage 1 compared with lineage 2, though retaining the highest number of samples

from lineage 4. Lineages 2 and 4 also presented with limited SAV diversity compared with the more

geographically restricted lineages 1 and 3, which showed higher mutation diversity except for KatG

which showed low diversity overall. While lineage 1 is less virulent in relation to clinical severity than

lineages 2 and 4, the relationship between lineage 3 and virulence with respect to clinical severity is

less clear.36 The lack of mutational heterogeneity in the more virulent strains potentially indicates the

optimised fitness of SAVs driving resistance. On the other hand, mutational diversity in lineages 1 and

3 indicates potential adaptive processes for functional innovation in the underlying M. tuberculosis

genome. External factors like drug concentration and host immune response could influence the

number of mutations available to certain lineages, which in turn influences resistance evolution.30

Overall, the minimal SAV diversity across lineages displayed by KatG suggests a few selected mutations

that optimise the fitness landscape to promote INH resistance development. This becomes more

apparent when looking at the distribution of resistant and sensitive mutations with respect to changes

in protomer stability. The distribution of resistance mutations, with marginal stability consequences

is dominated by the most frequent S315T mutation associated with INH resistance with little-to-no

fitness cost,30 along with the equivalent highly frequent sensitive mutation R463L showing a marginal

stabilising impact. In a similar trend, the protomer stability impact for RpoB RNA polymerase

β subunit is marginal, with the highly frequent S450L mutation associated with RFP resistance

stabilising the protomer. This observation is suggestive of any fitness deficits being corrected by

multiple compensatory mutations from its rpoA/B/C genes.30 Subsequently, the protomer stability

impact of resistant mutations was marginal for essential genes like embB and rpoB (excluding alr

due to lack of DST data). Together these findings support the fitness advantages conferred by a

lack of extreme mutational effects reported previously for katG and rpoB1 and observed currently in

embB.

Resistance mutations showed a more extreme effect for non-essential genes like gidB and pncA. The

mutational impact on protomer stability was extremely destabilising across all four lineages in GidB,

but only restricted to lineage 1 for PncA. Where the fitness cost for highly destabilising resistance

mutations is abated in GidB due to STR not directly binding to GidB. For PncA, it appears that there

are lineage 1-specific SAV mutations driving this unique pattern for resistance mutations. Furthermore,

lineage 1 is associated with less clinical severity, with certain sub-lineages having limited transmission

capability.37 Altogether, it appears that this ‘ancient’ lineage 1, with PncA specific resistant mutations,

is reaching a distinct protomer stability equilibrium, making way for other ‘modern’ lineages, which

would be worth investigating further.

370



The systematic gene-target explorations were undertaken to help improve our understanding of the

interrelationship of factors associated with SAV mutational effects: local and global impact on protein

structures, mutational frequency and heterogeneity, resistance hotspots, and lineage information. This

investigation highlighted that resistance development involves interaction between genes including co-

occurring and compensatory mutations in individual or across multiple genes, which are important

to consider in understanding resistance evolution in M. tuberculosis. This in-depth investigation laid

the groundwork for downstream ML analyses described in Chapter 11. Additionally, the analysis also

afforded the opportunity to explore the SAV associated resistance landscape with respect to lineage,

in part attempted in the following chapter (Chapter 10) as a pilot study.
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Chapter 10

Sensitivity by lineage

results

An exploratory analysis
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10.1 Background

The relationships between M. tuberculosis lineages and virulence are being increasingly reported1–4

including lineage specific associations with drug resistance.5–7 Consequently, the genetic background

in which mutations develop becomes important, and has been shown to play a vital role in resistance

development in M. tuberculosis.8–11

Consequences of the genetic background on mutational effects can influence the level of resistance

conferred for a given mutation, or include the involvement of multiple interacting genes influencing

the resulting phenotype. In the context of resistance, phenotype refers to the ability of a given mutation

to confer drug resistance. For example, lineage 2 strains with mutations in katG and inhA confer high

and low level INH resistance respectively, compared with lineage 1 stains which predominantly show

mutations in inhA.10 This phenomenon of genetic influences on a mutation’s phenotypic effects is

known as epistasis or genetic interactions.12

Epistasis has important consequences on organismal fitness, which is defined as the ability of an or-

ganism to survive and reproduce in a given environment. Epistatic interactions can result in beneficial

or deleterious phenotypes, and are classed into positive, negative, sign, and reciprocal sign epistasis.

Epistasis for fitness is defined in relation to the difference between fitness of a double (or multiple)

mutant bacterial isolate compared with the fitness of the constituent single mutants.

Positive epistasis results in net higher fitness, while negative epistasis results in a net lower fitness,

while for sign epistasis, the genetic background of the mutations plays a central role with the resulting

effects being deleterious, beneficial, or neutral. Interaction between compensatory and drug resistance

mutations serves as an example of sign epistasis.13,14 Furthermore, reciprocal sign epistasis highlights

an extreme form of sign epistasis, where individually deleterious mutations become beneficial in com-

bination, while individually beneficial mutations are rendered deleterious in combination.12,15

Although it is recognised that epistasis plays an important role in resistance development in M. tuber-

culosis, studies investigating this systematically have been mainly limited to compensatory mutations

in RFP16–18 and STR resistance,19,20 with a recent study demonstrating the role of epistasis in four

important anti-TB drugs used for MDR-TB treatment.11

Motivated by this growing interest in M. tuberculosis strain diversity, and its consequences on drug

resistance development,8,21 the project sought to conduct a pilot analysis to investigate mutations

with differing drug sensitivities (resistant/sensitive) across lineages. The aim was to highlight if, and

which, mutations confer resistance in one lineage but not in a different lineage. Only mutations in
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lineages 1-4 were considered, as other lineages had a low number of samples (<20). This was an

exploratory, qualitative analysis carried out in the interest of exploring the resistance landscape and

to inform future work related to AMR in TB.

10.2 Methods

Mutations with differing sensitivities, defined as a given mutation showing both resistant and sensitive

phenotypes, across the four M. tuberculosis lineages, were extracted from the six antibiotic target genes

analysed in the project. There was no minimum threshold used to determine these mutations, and as

such the list of mutations displaying these differing sensitivities is exhaustive.

For each mutation, proportions of resistant and sensitive samples across the four lineages were com-

pared using the Fisher’s exact test to identify statistically significant mutations. Statistical significance

thresholds used were: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. No correction for

multiple testing was performed due to the exploratory nature of this work. Irrespective of the statis-

tical significance, and in line with the qualitative nature of this analysis, emphasis was placed upon

identifying mutations that were represented equivalently with respect to their drug sensitivity across

the lineages. This would highlight the importance of considering strain diversity, i.e. lineage, to assess

mutational effects on drug resistance.

10.3 Results

A summary of the number of mutations with differing drug sensitivity across lineages in each gene-drug

combination is shown in Table 1.

Mutations with differing drug sensitivity in pncA: Nearly 30% (125/419) of mutations were

found to be different with respect to PZA sensitivity across the four lineages (Figure 1A and 1B),

which included all active site residues but were not limited to them. Eleven mutations were statistically

significant with respect to differing PZA sensitivity across the lineages (P<0.05), and these were

predominantly resistant (Figure 1) in contrast to what is seen in sections below (embB, gidB, katG,

and rpoB) where mutations are seen that lead to resistance in one strain (lineage), but the identical

mutation doesn’t lead to resistance in another strain.
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L1-L4 (n)

gene-drug Total
SAVs

SAVs with
different

sensitivities

Statistically
significant
(P<0.05)

alr-cycloserine (DCS) 240 3 1
embB-ethambutol (EMB) 744 67 11
gidB-streptomycin (STR) 520 94 5

katG-isoniazid (INH) 772 68 3
pncA-pyrazinamide (PZA) 419 125 11

rpoB-rifampicin (RFP) 1046 138 9
Total 3741 495 40

Table 1: Number of SAVs in M. tuberculosis lineages 1-4
Number of single amino acid variations (SAV) with differing respective drug sensitivity (resistant/sensitive).
Abbreviations used: L1-L4: Lineage 1-Lineage 4.

Figure 1: Mutations in pncA with differing sensitivities
Mutations in M. tuberculosis gene pncA, with different sensitivities across lineages 1-4. Red denotes resistant and
blue denotes sensitive samples. Fisherss exact test was used to compare mutation proportions across lineages,
and statistical significance was assessed according to the thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001,
****P<0.0001 A) Statistically significant mutations, B) Mutations that did not meet statistical significance.
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Mutations with differing drug sensitivity in alr: A very small percentage (1.3%, 3/240) of

mutations were found to be different with respect to DCS sensitivity across the four lineages (Fig-

ure 2A and 2B). These were mutations: M343T, L113R and Y388D, where M343 and Y388 wild-type

residues are involved in the active site, while L113R though not an active site residue (Figure 2B), is

the most frequent mutation with the highest association with DCS resistance. Only a single mutation

M343T was statistically significant with respect to DCS sensitivity across the lineages (P<0.05), and

it was predominantly resistant (Figure 2).

Figure 2: Mutations in alr with differing sensitivities
Mutations in M. tuberculosis gene alr, with different sensitivities across lineages 1-4. Fisherss exact test was
used to compare mutation proportions across lineages, and statistical significance was assessed according to the
thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 A) Statistically significant mutations,
B) Mutations that did not meet statistical significance.
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Mutations with differing drug sensitivity in embB: For embB, only 9% (67/744) of muta-

tions were found to be different with respect to EMB sensitivity across the four lineages (Figure 3A

and 3B) which included EMB binding residues M306 and Y334, but others were mainly residues not

involved with the active site. There were 11 mutations that were statistically significant (P<0.05)

with respect to differing EMB sensitivity across the lineages, and these were predominantly resis-

tant (Figure 3A). Irrespective of the statistical significance, and despite very low numbers, it was

interesting to note that mutations Y319D, A962P, D354N, S651N, and A201S were represented ap-

proximately equally in their differing drug sensitivity to EMB. This highlights that mutational effects

differ depending on the genetic background of the bacterial stain (Figure 3C).
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Figure 3: Mutations in embB with differing sensitivities
Mutations in M. tuberculosis gene embB, with different sensitivities across lineages 1-4. Fisherss exact test was
used to compare mutation proportions across lineages, and statistical significance was assessed according to the
thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 A) Statistically significant mutations,
B) Mutations that did not meet statistical significance, C) Selected mutations showing prominent differing
sensitivities across lineages.
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Mutations with differing drug sensitivity in gidB: Nearly 18% (94/520) of mutations were

found to be different with respect to STR sensitivity across the four lineages (Figures 4A and 4B).

Though some of these were gidB interacting residues, a majority (n=81) did not interact with any of

the gidB binding partners. There were 5 mutations that reached statistical significance (P<0.05) with

respect to differing STR sensitivity across the lineages, none of which were involved with gidB binding

partners (Figure 4A), though mutation P75R (P<0.01) showed comparable numbers of resistant

and sensitive samples (Figure 4A). Further, irrespective of the statistical significance, and despite

very low numbers, it was interesting to note that mutations A133P, A19G, R118L, and R154W were

represented equally in their differing drug sensitivity to STR, highlighting the need to consider lineage

effects on mutations associated with resistance (Figure 4C).
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Figure 4: Mutations in gidB with differing sensitivities
Mutations in M. tuberculosis gene gidB, with different sensitivities across lineages 1-4. Fisherss exact test was
used to compare mutation proportions across lineages, and statistical significance was assessed according to the
thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 A) Statistically significant mutations,
B) Mutations that did not meet statistical significance, C) Selected mutations showing prominent differing
sensitivities across lineages.
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Mutations with differing drug sensitivity in katG: Approximately 9% (68/772) of mutations

were found to be different with respect to INH sensitivity across the four lineages (Figure 5A and 5B)

which included only two active site residues, with a majority being residues extending beyond the active

site. Among these, only 3 mutations (D714E, M257I, R463L) reached statistical significance (P<0.05)

with respect to differing INH sensitivity across the lineages, none of which were active site residues

(Figure 5A) and all three mutations were predominantly sensitive across the lineages. Despite very

low numbers, and irrespective of the statistical significance, it was interesting to note that mutations

G490S, H116F, H97N, M257V, R249C, S383A, V320L, and W300R were represented equally in their

differing drug sensitivity to INH, underscoring the importance of accounting for strain diversity in

understanding mutational effects linked to resistance development (Figure 5C). In a recent (2023)

analysis by Napier, et. al.,22 a list of co-occurring mutations in katG was published to help inform

genotypic drug-resistance profiling. This was based on the rationale that compensatory mutational

effects of the putative resistance markers will help accurately estimate INH resistance. Compensatory

effects are known to play a role in mitigating fitness costs associated with resistant mutations, allowing

mutations to become fixed in a population. This can result from concomitant mutational effects in

the same or multiple genes like katG, inhA, ahpC,22,23 and positive epistasis of low-cost resistance-

conferring mutations influenced by M. tuberculosis strain diversity.24 To the best of our knowledge,

the mutations identified in this analysis have not been reported on previously. These mutations were

also not identified in the analysis conducted by Napier, et. al.,22 which is based on a subset of the

data used in this thesis. It would appear that since strain diversity was only considered indirectly in

the 2023 Napier, et. al. study, with mutational analysis being undertaken at the genome level with

multiple genes, rather than investigating individual SAVs in a given gene across the lineages, these

mutations were not observed in their study. The said mutations also did not appear to cluster on the

protein, and did not involve any INH binding residues. A systematic approach starting with extracting

mutations from the same isolate, and then proceeding to investigate lineage effects, may offer better

insights accounting for the combination of compensatory mutations and strain diversity.12,20,25

It was noted that the R463L mutation, a known lineage-specific mutation, was found in all non-lineage

4 isolates. As this mutation is present in all lineage 1, 2 and 3 isolates the statistical test is effectively

comparing the rates of isoniazid resistance between the three lineages. Many of the lineage 2 samples

are sourced from countries where resistance levels are high and, as such, the Fisher’s exact test picks

up a significant association (Figure 5A).
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Figure 5: Mutations in katG with differing sensitivities
Mutations in M. tuberculosis gene katG, with different sensitivities across lineages 1-4. Fisherss exact test was
used to compare mutation proportions across lineages, and statistical significance was assessed according to the
thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 A) Statistically significant mutations,
B) Mutations that did not meet statistical significance, C) Selected mutations showing prominent differing
sensitivities across lineages.
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Mutations with differing drug sensitivity in rpoB: For rpoB, 13% (138/1047) of mutations

were found to be different with respect to RFP sensitivity across the four lineages (Figure 6A and

6B), which included residues in and beyond the active site. Among these, 9 mutations reached statis-

tical significance (P<0.05) with respect to differing RFP sensitivity across the lineages, none of which

were active site residues (Figure 6A), with mutations D435Y, H445N, H445R, H445S, and S450L

being predominantly resistant and mutations D777N, H749Y, and K799Q being predominantly sensi-

tive. The mutation I491F showed comparable resistant and sensitive sample numbers (Figure 6A).

Further, despite very low numbers and irrespective of the statistical significance, it was interesting

to note that mutations E807Q, H674Q, I696L, P439S, Q287E, S188A, S195R, S239R, S431T (active

site residue), T756A, V243I, V385L, V403A, and V517K represented equally in their differing drug

sensitivity, bringing to the fore the influence of the genetic background in shaping mutational effects

on resistance development (Figure 6C).
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Figure 6: Mutations in rpoB with differing sensitivities
Mutations in M. tuberculosis generpoB, with different sensitivities across lineages 1-4. Fisherss exact test was
used to compare mutation proportions across lineages, and statistical significance was assessed according to the
thresholds: .P<0.10, *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 A) Statistically significant mutations,
B) Mutations that did not meet statistical significance, C) Selected mutations showing prominent differing
sensitivities across lineages.

387



10.3.1 Summary of sensitivity effects across lineages

As an example, for rifampicin resistance, many of the mutations classified as statistically significant

are located in codon 445. Mutations in this codon have previously been classed as disputed resistance

mutations due to their ability to produce low-level resistance. A study in 2018 by Miotto, et. al.26

found that these mutations are associated with a delayed growth on Mycobacteria Growth Indicator

Tube (MGIT). They also considered the structural effects of disputed vs. undisputed mutations, but

did not find any difference, concluding that all mutations affect drug binding. A point that was not

considered was the lineage of the strains, which showed a differential resistance threshold. These

results show that lineage could potentially be a factor and should be taken into account in future

studies.

These findings offer insight into the potential existence of lineage effects on mutational sensitivity.

To the best of our knowledge, such an analysis has not yet been performed, with data shown in its

raw form with respect to drug sensitivity across lineages. With 13% (40/495) of mutations, over

six gene-drug targets displaying differing sensitivities, these findings support the occurrence and role

of epistasis in M. tuberculosis, where the sequence background in which mutations develop affects

the resulting phenotype. Epistatic interactions involving compensatory mutations are recognised to

influence mutational evolutionary trajectory towards resistance development,16,18,24,27–29 whereas some

lineages have been shown to display intrinsic resistance to specific drugs due to mutations that have

become fixed in the lineage populations.30 Despite these interactions, efforts to investigate resistance

development systematically in an epistasis informed manner have been limited.

A consensus and concerted effort into pursuing this route of investigation through genetic and phe-

notypic testing, as well as computational approaches including mathematical modelling will allow us

to apply a systems biology approach towards predicting resistance more accurately and in a targeted

manner. Accumulation of mutations considered in a step-wise manner opens up further avenues of

understanding resistance development in terms of protein evolution, and will allow development of

new phylogenetic models to leverage epistatic interactions.31

The implication for such considerations may have a direct impact on therapy and treatment management,8,32

especially with personalised medicine for TB patients.33,34 For example, since the M. tuberculosis iso-

lates in this project represent clinical samples, the implication for lineage specific effects on mutation

sensitivity can be of great benefit in tailoring therapy for personalised medicine.

A further point is that these differential resistance effects were stratified by lineage, while there is a
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possibility that epistatic effects could be seen at the sub-lineage level. For example, lineage 4 is a

diverse lineage that contains many subclades (labelled as 4.1, 4.2 etc.). The statistical significance

of epistatic effects present due to mutations that are fixed in only one of these subclades would be

dampened by only analysing the main lineage. Future work could look into these relationships using

sub-lineage stratification.

Despite the low numbers, these insights warrant further investigation and future work to consider

strain diversity in understanding the evolution of drug resistance.12,35 In the context of relating the

mutational impact on biophysical measures (e.g. stability, drug binding affinity) these insights may

call for the use of lineage specific protein structure models. The pursuit of such an approach is

necessitated in the interest of informing therapy and improving patient compliance (personalised

medicine). Laboratory assessment of the different drugs for DST can be further differentiated by

lineage to help determine drug sensitivity and resistance profile in M. tuberculosis strains to inform

clinical management.

There is also potential in the use of such approaches to predict the future trajectories of DR-TB

(MDR/XDR-TB). The widespread use of sequencing technology can rapidly help identify co-occurring

mutations in clinical isolates. Computational and statistical methods exploiting genomics, protein

structure, and lineage data can be used for assessing mutational impact of concomitant mutations and

compensatory mutations, including their association with drug resistance. Utilising the learnings from

these systematic assessments, mathematical models attempting to quantify information related to the

different measures of resistance can be developed. Together with the help of lineage specific mutations

and putative resistance markers identified from such analyses, existing or new computational models

can be exploited to predict resistance for multiple mutations in a given sequence background. In this

manner, potential resistance routes (combination of mutations) in light of the phylogenetic background

(strain) of M. tuberculosis can be identified. This will help predict future trajectories of resistance

mutations in single or multiple genes, and ultimately help to mitigate the emergence of drug resistance

in TB.

10.4 Results dashboard

An interactive dashboard, available at https://thesis.tunstall.in, was built as part of this thesis to

explore each of the six gene-drug target pairs. The dashboard has three parts: ‘Gene-Drug Target

Explorer’ is the main dashboard and provides several views of the data for my thesis.

The ‘MSA’ explorer was constructed to explore a high-level overview of sequence alignment and
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provides an easy way to see which positions experience high mutational frequency, and uses the

enrichment depletion (ED) score to visualise MSA information.36 The ED score is an improvement

over standard Logo plots as it includes empirical Bayes methods to stabilise estimates of enrichment

and depletion, and to highlight the most significant patterns in data. Screenshots are in appendices

10.A.1 and 10.B.1.
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10.A Gene-drug targets dashboard

Figure 10.A.1: Gene-drug targets web interface
The web interface for gene-drug targets allows the user to switch between the multiple drug/gene combinations
(highlighted in green), view multiple plot types as used in this thesis (highlighted in yellow) and dynamically
adjust various parameters for the current plot (highlighted in orange). A 3D view of the current target molecule
is also visible (highlighted in red). Mutation positions can be added to the 3D view by searching for and
highlighting them by clicking on the entries in the data table (highlighted in blue).

10.B Multiple Sequence Alignment dashboard

Figure 10.B.1: Multiple Sequence Alignment interface
The web interface for Multiple Sequence Alignment allows the user to dynamically explore a Logo Plot for each
of the gene-drug targets (highlighted in green). The bottom part of the plot indicates the wild-type residues by
position. The upper part indicates the Enrichment Depletion score.36 Due to the number of gene positions, it
is necessary to adjust the range of visible positions using the slider (highlighted in magenta). As per the figures
in other chapters, the ligand distance and presence of drug and other interacting partners (where applicable)
are reflected beneath each position (highlighted in blue). The colour scheme can also be changed to reflect
different residue properties: Chemistry, hydrophobicity, “clustalx” and “taylor” (highlighted in cyan). The key
(highlighted in red) changes according to the colour scheme selected.
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11.1 Machine Learning

11.1.1 Methods

The scikit-learn package version 1.1.11 was used to perform all Machine Learning (ML)-based tasks.

Estimates related to SAVs from the computational tools (biophysical measures) and calculated mea-

sures (genomics and residue level properties) mentioned above together with numerical measures from

AAindex2–6 formed the set of comprehensive features used for all ML tasks. AAindex calculations

return numerical values corresponding to various physicochemical and biochemical properties of amino

acids and pairs of amino acids from a database curated from published literature. AAindex consists

of three sections: AAindex1 for the amino acid index of 20 numerical values, AAindex2 for the amino

acid mutation matrix, and AAindex3 for the statistical protein contact potentials. All three indices

were used in our analyses.2–6 AAindex was run using a combination of Bash and Python scripts on

all six gene-drug targets.

A supervised learning approach to classify mutational effect as ‘Sensitive’ or ‘Resistant’ was employed.

A total of 23 representative classification models (classifiers) were used. These employ distinct strate-

gies: Linear Classifiers: Gaussian Process, Linear Discriminant Analysis (LDA), Logistic Regression,

Logistic Regression CV, Passive Aggressive, Ridge Classifier, Ridge Classifier CV, Stochastic Gradient

Descent (SGD), Support Vector Classifier (SVC); Tree based classifiers: Decision Tree, Extra Trees,

Extra Tree; Bagging based classifiers: Bagging Classifier, Random Forest; Boosting based classifiers:

Adaptive Boosting Classifier (AdaBoost), Gradient Boosting Classifier, Extreme Gradient Boosting

(XGBoost); Naive Bayes (NB) classifiers: Gaussian NB, Multinomial NB, Complement NB; Other

classifiers: Quadratic Discriminant Analysis (QDA), K-Nearest Neighbours (KNN), and the artificial

neural network based Multi Layer Perceptron (MLP). A summary description of the models used is

provided in Appendix Table 11.A.1. The outcome of the aggregate DST for each mutation (designated

as 0: Sensitive, 1: Resistant) was used as the ‘target’ variable, which is the outcome feature a given

model attempts to predict.

Results obtained from all in silico predictors were used as input features. Oversampling methods (ran-

dom oversampling,7 random undersampling,8 combined random over-and-undersampling,7,8 and syn-

thetic minority oversampling technique (SMOTE)9) were used to address the imbalanced distribution

of these mutational classes. SMOTE uses the nearest-neighbour technique to generate oversampled

data. Both 70/30 and 80/20 train-test split thresholds were applied, along with the train-test split

according to the scaling law method.10 In the scaling method, the size of the test set is inversely pro-
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portional to the square root of the number of input features (excluding the target). All input features

were scaled as part of the data pre-processing pipeline before running ML models. A stratified K-fold

cross validation (CV) strategy was used. CV is a common technique used in ML to mitigate over-

fitting and issues related to a single train-test split. In cross validation, training data is divided into n

subsets, where the n-1 set is used for training and the remaining set is used for testing. This procedure

is repeated n times to ensure each subset is used for both training and testing. Stratification with CV

ensures that the distribution of the target variable is preserved during training. All models were run

using a 10-fold stratified cross validation (CV) on the training data, and validated on the test data.

Models were optimised using the Matthews Correlation Coefficient (MCC) metric. MCC is a single

value that summarises a confusion matrix (summary table for ML classification predictions), and as

such is currently the most balanced metric in use when evaluating model performance. Evaluation

metrics for ML models are summarised below. Since there was no independent blind test data in our

project, model performance was assessed using the validation set, and different CV folds of 3, 5, and

10. Initial ML models were built for each gene-drug target, followed by a combined approach to build

a gene-agnostic ML model to classify mutations. The latter was done with the intention of identi-

fying the underlying common molecular mechanisms in resistance development. As a first attempt

to generate a combined model predicting resistance, a test MCC score of at least 0.4, along with an

absolute difference of ≤0.1 between train and test MCC, would indicate the potential of pursuing such

a gene-agnostic approach in predicting resistance. The latter criteria was also applied to individual

gene-target model predictions.

11.1.1.1 Feature selection

Second only to data cleaning, feature selection is one of the most important and time consuming

parts of the machine learning process. The two feature selection methods used in the ML workflow

were the Recursive Feature Elimination CV (RFECV) and the Boruta feature selection method.11 As

RFECV is a greedy algorithm which iteratively add or drops features, it can become computationally

expensive when used with large datasets. It is therefore usually preceded by a pre feature selection

step, where a knowledge-based approach is used to remove any redundant features, or statistical tests

are carried out to include only significant features for use in RFECV. On the other hand, Boruta is an

algorithm designed to take the “all-relevant” approach to feature selection, where it attempts to find

all features that contribute to model performance, rather than finding the minimal subset of features

that are important in a model. Boruta was originally written as an R package,11 and has subsequently

been been ported to Python and made available as part of the scikit-learn (BorutaPy12) with some
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additional improvements to allow additional user control. It is an efficient algorithm with faster run

times, and offers a neat and easy way to interpret the model output. It displays the number of features

selected and rejected at each iteration, and provides feature rankings for all features used as the

process. Boruta works by creating copies of the original features and randomly shuffles them to create

a number of randomly shuffled shadow attributes, while removing correlated features with the target

variable. This adds a further sanity check to the ML process by ensuring that no highly correlated

features dominate the model performance. This helps establish a baseline performance for the model.

This is followed by testing the hypothesis at a default significance threshold (0.05) to determine the

statistical significance (i.e. importance) of the feature with respect to the target. This is achieved

using the random forest classifier. This iterative process is then able to accept and reject features

according to the significance threshold. As Boruta iteratively removes uninformative variables, the

noise introduced by other features is removed leading to improvements in model performance.

11.1.1.2 Evaluation metrics

Performance for classification models in ML is evaluated using the common metrics listed below:

1. Confusion Matrix: Tabular visualisation of actual values (ground truth) versus model predic-

tions. Rows and columns represent instances of actual and predicted classes. Though not an evaluation

metric as such, the confusion matrix is the basis from which all other metrics are derived.

Predicted
Confusion Matrix

False True
False True Negative (TN) False Positive (FP)

Actual
True False Negative (FN) True Positive (TP)

TN: Observation is negative, and is predicted negative.

FP: Observation is negative, and is predicted positive.

FN: Observation is positive, and is predicted negative.

TP: Observation is positive, and is predicted positive.

2. Accuracy: Ratio of number of correct predictions to the total number predictions

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

3. Precision: Ratio of true positives to total predicted positives. Also known as the positive
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predictive value.

Precision =
TP

(TP + FP )

4. Recall: Ratio of predicted positives to actual number of positives. Also known as Sensitivity or

the true positive rate.

Recall =
TP

(TP + FN)

5. F1-score: The F1-score or the F-score is the harmonic mean of two metrics: Precision and

Recall.

F1 =
2

(Recall−1) + (Precision−1)

6. Matthews Correlation Coefficient (MCC): MCC accounts for true and false positives and

negatives, and is regarded as a balanced measure irrespective of class size.

MCC =
(TP×TN)(FP×FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

7. Jaccard Index or Jaccard score (JCC): A similarity metric used to compare the set of

predicted labels for a given class to the corresponding complete set of labels. It may be a poor metric

if there are no positives for some samples or classes.

Jaccard(A,B) =
A ∩B

A ∪B

A and B denote data classes
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11.1.2 Results

Each of the six gene targets was tested individually using several ML models to predict resistance for

the corresponding drug, before proceeding to combine data across the genes to predict resistance in

a gene-agnostic manner. A panel of ML models was trained and tested to predict resistance for each

gene-drug target individually, using several train-test split strategies in the absence of independent

blind test sets. The same models were used with the combined data across all genes to predict

resistance for a given drug used as the ‘test’ set for gene agnostic predictions.

Table 1 summarises the data collected and the number of mutations in the sensitive and resistant

groups as per aggregate DST. More than 150 features were used to train several ML models (see

Appendix Table 11.B.1), followed by a feature selection step (See Methods section above for details),

to identify which features were making the largest contribution towards the model performance in

predicting resistance. The MCC scoring function was chosen to evaluate model performance as it is

the most balanced metric accounting for all categories of prediction in its score (True Positive, True

Negative, False Positive and False Negative) (See Methods section above for details). Models which

showed the least difference (≤0.1) between the train and test MCC scores were considered to be reliable,

as big differences between train and test scores imply that the ‘learning’ is more influenced by a given

train-test split rather than any discernible patterns in the data. While there is no consensus regarding

a minimum MCC threshold to be a good/strong predictor, the higher the absolute value of MCC

(ranges between -1 and 1), the better the model is considered at making predictions. It is generally

considered that an MCC>0.6 is considered a good result, MCC of 0.5 is considered a moderate result,

0.3<MCC<0.5 is considered to be an acceptable result, while an MCC<0.3 is considered to be a poor

result.
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gene-drug Sensitive (%) Resistant (%) Total
Individual models

alr-DCS 269 (99.26) 2 (0.74) 271
embB-EMB 731 (85.20) 127 (14.80) 858
gidB-STR 493 (92.84) 38 (7.16) 531
katG-INH 448 (54.83) 369 (45.17) 817
pncA-PZA 174 (41.04) 250 (58.96) 424
rpoB-RFP 803 (70.94) 329 (29.06) 1133

Combined model
Data from five genes

(excludes alr)
2649 (70.94) 1133 (29.06) 3762

Table 1: Summary of data used for machine learning
Numbers of sensitive and resistant mutations used for machine learning analysis. Abbreviations used: DCS:
cycloserine, EMB: ethambutol, STR: streptomycin, INH: isoniazid, PZA: pyrazinamide, RFP: rifampicin.

11.1.3 Individual gene-drug model

Due to the presence of only two resistant mutations in alr, data from alr could not be used for individual

gene-target ML analysis (Table 1). Further, running ML models on gidB-STR revealed inconclusive

results due to most predictors (ML models) returning training scores ∼0 (Appendix Table 11.C.2)

irrespective of how the data was split, highlighting the heavily imbalanced mutation class distribution

with less than 10% of resistant mutations in the data available. The imbalanced distribution may

suggest the difficulty associated with using DST data to classify drug sensitivity for GidB.

The train-test split achieved by the scaling law principle (see Methods above for details) was consis-

tently the best across all gene targets. Further, the choice of resampling type (random oversampling,

random undersampling, over and undersampling, and SMOTE) improved the training MCC scores (up

to 0.89 for embB-EMB with SMOTE resampling) but did not make any significant improvements to

reduce the difference between train-test MCC scores. Thus, data without any resampling consistently

performed the best across the gene targets analysed. There is no consensus in the literature with

respect to the need to consider train-test MCC score differences. However, in these analyses, a train-

test MCC score difference (absolute value ≤0.1) was considered important in ensuring a conservative

approach to the interpretation of results, and to allow stochastic differences between train and test

splits during ML model runs.

Predicting EMB resistance

For embB-EMB when considering all features, the Bagging Classifier achieved a comparable train and

test MCC score of 0.40 and 0.42 respectively. With feature selection included, a similar performance

was achieved though by a different model, XGBoost with MCC scores of 0.4 and 0.42 for train and test

sets respectively (Table 2). When the test scores are higher than the train scores, this usually suggests
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inaccuracies with respect to train-test split where a random test set chosen during the model run can

perform better than the training data by chance. However, in this case the difference of -0.02 between

the train-test MCC scores is considered acceptable as per our criteria established in the section above.

The nine contributing features were: ConSurf, SNAP2, PROVEAN, DeepDDG, distance from EMB,

residue depth, MAF, SAV frequency, as well as site frequency in the dataset (Appendix Table 11.C.6).

The relatively modest MCC score of 0.4 indicates effects due to either imbalanced data (since MCC

accounts for true and false positives and negatives), with only 15% resistant mutations (Table 1),

or potentially a lack of consensus among different data sources for classifying EMB sensitivity as per

DST.

A summary table of all classification model predictions for EMB with all features appears in Appendix

Table 11.C.1, and results after feature selection are available in Appendix Table 11.C.6. Features used

in ML analyses are described in Appendix Table 11.B.1.

Test gene-drug
target

Best model post
feature selection

Train
MCC

Test
MCC

Difference
(Train and
Test MCC)

Features
selected

A) Individual models
embB-EMB XGBoost 0.40 0.42 -0.02 9
katG-INH LDA and Ridge 0.37 0.42 -0.05 11
pncA-PZA MLP 0.50 0.52 -0.02 14

rpoB-RFP XGBoost and Extra
Trees

0.45
0.44

0.49
0.48 -0.04 22

B) Combined model
embB-EMB Random Forest 0.47 0.34 0.13 32
katG-INH Stochastic Descent 0.41 0.31 0.10 31
pncA-PZA Extra Trees 0.40 0.46 -0.06 24
rpoB-RFP MLP 0.46 0.39 0.07 30

Table 2: Summary of ML predictions post feature selection
Best performing models using a 10-fold stratified cross validation. The higher the MCC score, the greater
the confidence associated with the model prediction. The smaller the difference between the train and test
MCC scores, the greater the consistency in model performance. A negative value indicates that the test MCC
score is higher than the training MCC. A) Individual gene-target model using a scaling law train/test split,
B) Combined model consisting of data from genes embB, gidB, katG, pncA, and rpoB following a ‘leave-one-
gene-out’ approach to test predictions on the ‘left out’ (i.e. test) gene. Only pncA-PZA prediction achieved a
higher test MCC score compared with training. Abbreviations used: DCS: cycloserine, EMB: ethambutol, INH:
isoniazid, PZA: pyrazinamide, RFP: rifampicin.

Predicting INH resistance

Performance of XGBoost (an extreme form of Gradient Boosting, see Appendix Table 11.A.1) and
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Gradient Boosting models achieved similar MCC scores for train (≥0.32) and test (≥0.35) sets with

all features present in the model. This was slightly lower than the embB-EMB MCC scores (∼0.4).

With feature selection included, however, LDA and Ridge classifier models were the best with train

MCC score of 0.37 and test MCC score of 0.42 for both (Table 2). The 11 contributing features

were: ConSurf, SNAP2, PROVEAN, DeepDDG, FoldX, average stability, distance from INH and

PPI, residue depth, and AAindex properties (BENS940104 and GIAG010101: defined in AAindex2

related to amino acid mutation matrices) (Appendix Table 11.C.8). BENS940104 assigns a numerical

value to an amino acid using an amino acid substitution matrix based on functionally constrained

divergent evolution of protein sequences,13 and GIAG010101 assigns a value to amino acids using

an amino acid substitution matrix calculated on the temperature dependant structural adaptation

of enzymes.14 Similar to EMB prediction, the MCC score of 0.4 in the final model(s) are modest,

despite the more balanced DST categorised dataset with 54% sensitive and 45% resistant mutations

(Table 1). It may be that interactions between mutations in katG, or the presence of a few mutations

with prominent effects, not reflected in the features captured here, may be stronger drivers of INH

resistance.

A summary table of all classification model predictions for INH with all features appears in Appendix

Table 11.C.3, and results after feature selection are available in Appendix Table 11.C.8. Features used

in ML analyses are described in Appendix Table 11.B.1.

Predicting PZA resistance

Random Forest was the best model when considering all features, and achieved a train MCC score

of 0.49 and a test MCC score of 0.58. With feature selection included, however, the MLP model

performed best with comparable MCC score of 0.50 and 0.52 between train and test sets respectively

(Table 2). Other models with comparable performance were Logistic Regression, Gaussian Process,

LDA, and Ridge Classifier with a difference of 0.07 between their train and test MCC scores of ∼0.45

and ∼0.52 respectively. The 14 contributing features were: ConSurf, SNAP2, PROVEAN, DeepDDG,

FoldX, distance from PZA, residue depth, relative surface area, AAindex properties (DOSZ010103 and

RISJ880101: defined in AAindex2 related to amino acid mutation matrices), MAF, SAV frequency

and site frequency in the dataset, as well as the frequency of mutational sites in the gene (Appendix

Table 11.C.9). AAindex2 DOSZ010103 assigns a numerical value to each amino acid using a similarity

matrix based on the THREADER force field,15 and AAindex2 RISJ880101 derives its numerical value

based on a scoring matrix of amino acid substitutions in structurally related proteins.16

A summary table of all classification model predictions for PZA with all features appears in Appendix
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Table 11.C.4, and results after feature selection are available in Appendix Table 11.C.9. A consistent

and comparable performance between MCC scores with all features and post feature selection delivers

high confidence in the use of ML approach to predict PZA resistance. Features used in ML analyses

are described in Appendix Table 11.B.1.

Predicting RFP resistance

Logistic Regression was the best model when considering all features, and achieved a train MCC

score of 0.40 and a test MCC score of 0.47. With feature selection included, however, XGBoost and

Extra Trees showed equivalent performance with an MCC difference of 0.04 between train and test sets.

XGBoost achieved a train MCC score of 0.45 and a test MCC score of 0.49, while Extra Trees achieved

a train MCC score of 0.44 and a test MCC score of 0.48 (Table 2). The 22 contributing features

were: ConSurf, SNAP2, PROVEAN, mCSM-DUET stability change, DeepDDG, FoldX intermolecular

interactions, distance from RFP and RFP binding affinity changes, distance from NA and NA binding

affinity changes, distance to PPI, relative surface area, AAindex property (MIYT790101: defined

in AAindex2 related to amino acid mutation matrices), site frequency in the dataset, as well as

the frequency of mutational sites in the gene, lineage and active site residue contribution (Appendix

Table 11.C.10). AAindex2 MIYT790101 uses two types of amino acid substitution matrices to calculate

amino acid pair distance based on evolution to account for physicochemical differences.17

A summary table of all classification model predictions for RFP with all features appears in Appendix

Table 11.C.5, and results after feature selection are available in Appendix Table 11.C.10 Features used

in ML analyses are described in Appendix Table 11.B.1.

11.1.3.1 Individual gene-drug model ML analysis summary

Irrespective of the target, all measures of evolutionary conservation (ConSurf, SNAP2, PROVEAN),

protomer stability changes from DeepDDG, and distance from the drug were the common features

chosen as part of the feature selection process, underscoring the importance of these measures in

predicting drug resistance. PZA and RFP resistance predictions were the best among the individual

gene-target models with test MCC score of ∼0.5. Drug binding affinity changes was among the features

selected for RFP resistance prediction, but not for PZA. Since pncA is a non-essential gene, changes

in PncA-PZA binding affinity are unlikely to contribute to resistance. For RFP, as it binds to RpoB

RNA polymerase β subunit, part of the large RNA polymerase complex, distance to RNA, and PPI

were among the features chosen. Mutational change in NA binding affinity in RpoB RNA polymerase

β subunit was among the chosen features that highlight the importance of these sites, while changes

in the PPI was not. Another interesting observation was that the active site residues (RRDR region)
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of RpoB RNA polymerase β subunit, as well as those beyond the active site, were together chosen as

part of the feature selection process, stressing the importance of mutational effects extending beyond

the RRDR, impacting RFP binding and contributing to resistance development. Together, these

findings suggest that the features selected by the ML models for predicting individual drug resistance

are meaningful as they offer biological insights that link with observations made in the individual

exploratory analyses. The poor performance of INH resistance prediction could perhaps be explained

by the dominant role played by the single mutation S315T which masks all other mutational effects,

which are given equal weight in the ML analysis. For embB, the low reliability of DST data (owing

to a lack of consensus to classify EMB drug sensitivity) is likely to be a bigger contributor compared

with the imbalanced data for its low performance, since RFP also has imbalanced data, but is able to

achieve an MCC of 0.5.

11.1.4 Combined model

The combined model, with a ‘leave-one-gene-out’ approach, was adopted to investigate the feasibility

of developing a gene-agnostic ML predictor. Data for each gene was iteratively excluded, and training

was performed on data from all other genes. In this way, performance of multiple ML models was

evaluated. Considering the limited resistant mutations (n=2) in the alr dataset (Table 1), alr was

excluded as a test gene.

When alr data was included in the training set, all models performed consistently worse, on indi-

vidual train and test MCC scores, as well as at minimising the difference between train and test

MCC scores. This is indicative of the poor quality of aggregate DST data used for classifying alr

mutations. Therefore, alr was excluded from training data, and ML models were developed from

the remaining five genes (embB, gidB, katG, pncA, and rpoB). Further, like the individual gene-drug

target model, the choice of resampling type (random oversampling, random undersampling, over and

undersampling, and SMOTE) improved the training MCC scores, but did not make any improvements

to reduce the difference between train-test MCC scores. As resampling is applied only to training data,

naturally the training scores are expected to improve as observed in our analyses. The performance

on the test set revealed that the differences between the train-test MCC scores were much greater

for all genes than initially specified (train-test difference ≤0.1). Hence, data without any resampling

consistently performed the best for the combined model. Full results for these analyses showing the

comparative performance for all models and all genes are best viewed via the interactive ML dash-

board which can be accessed via https://thesis.tunstall.in, while the individual drug prediction results

from a combined approach are indicated below. A description of the the ML dashboard is available
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in Appendix 11.D.1.

As a first attempt to generate a combined model predicting resistance, a test MCC score of at least

0.4, along with a ≤0.1 difference between train and test MCC, would indicate the potential of pursuing

such a gene-agnostic approach in predicting resistance.

Model evaluation with all features: Most models achieved a training MCC score of at least 0.4

across all the test genes. The test MCC scores, however, were mostly lower (≤0.3) compared with

the respective train MCC score for all genes except for the single model Stochastic Descent, used in

predicting PZA resistance. The model achieved train and test MCC scores of 0.34 and 0.39 respectively.

There were others models, namely: Bagging Classifier, Gradient Boosting, and XGBoost, with train

and test MCC scores ∼0.4, with the test MCC score being marginally lower than the train MCC score

as expected. Similar to the individual gene models, GidB results were inconclusive due to most test

MCC scores being close to zero (Appendix Table 11.C.12). Summary tables of all classification models

used in the combined approach to predict resistance are available in Appendix tables: EMB (Appendix

Table 11.C.11), INH (Appendix Table 11.C.13), PZA (Appendix Table 11.C.14), and RFP (Appendix

Table 11.C.15). Features used in ML analyses are described in Appendix Table 11.B.1.

Model evaluation with feature selection: Model performance generally improved with feature se-

lection, though this did not occur consistently across all gene-drug targets (https://thesis.tunstall.in).

Prediction of INH resistance was the poorest (most test MCC scores <0.25), followed by prediction

of EMB resistance (most test MCC scores <0.3). The best resistance prediction was for PZA, with

RFP resistance prediction also showing potential (test MCC score approaching 0.4) in this combined

approach (Table 2). Summary tables of all classification models used in the combined approach to

predict resistance are available in Appendix tables: EMB (Appendix Table 11.C.16), INH (Appendix

Table 11.C.18), PZA (Appendix Table 11.C.19), and RFP (Appendix Table 11.C.20).

The combined model approach performed the best for PZA resistance prediction. Extra Trees was the

best model with the highest test MCC score of 0.46 (train MCC score of 0.4) (Table 2), followed by

Random Forest test MCC score of 0.44 (train MCC score of 0.42) and XGBoost train and test sets

with MCC scores of 0.4. There were a total of 24 features selected: ConSurf, PROVEAN, SNAP2,

mCSM-DUET, FoldX, DeepDDG, Dynamut2, average stability changes, FoldX interactions, distance

and binding affinity changes related to drugs (EMB, INH, RFP and STR), relative surface area,

residue depth and hydrophobicity, AAindex property (OVEJ920102: defined in AAindex2 related to

amino acid mutation matrices), SAV and site frequency in the dataset, frequency of mutational sites

in the gene, and lineage contribution. Features used in ML analyses including the selected AAindex
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properties are described in Appendix Table 11.B.1.

11.1.4.1 Combined model ML analysis summary

The combined model performance achieved the minimum threshold (MCC of 0.4) defined at the start

of the analysis, and the training performance was consistently on par with this threshold for most

models across the five genes, highlighting the combined model’s potential to learn across different

gene-drug targets. The test performance, however, was variable across the five genes with EMB

and INH resistance predictions among the poorest for most models: test MCC <0.3, a difference

of >0.1 between train and test MCC scores. The drug with the best predictions was PZA, with

close agreement between the train and test MCC scores (<0.1) for most models. This highlights

that prediction of PZA resistance by a gene-agnostic ML approach offers promise. RFP prediction

followed closely with test MCC scores for most models approaching 0.4 but with test scores being

lower than training. Considering that EMB and RFP directly bind to their respective proteins while

INH and PZA are prodrugs, the inconsistency in model predictions is independent of the underlying

fundamental functional roles associated with the genes (i.e. essential vs. non-essential genes). It

is more likely that the data integrity for EMB (low reliability of EMB DST data) and a lack of

adequate weighting strategy to compensate for the dominant effect of katG S315T, a highly frequent

and resistant mutation, contribute to their poor predictions. Similar to the individual gene models,

gidB-STR ML analyses were inconclusive due to most predictors returning test scores ∼0 suggesting

low reliability of DST data leading to a heavily imbalanced mutation class distribution with less than

10% resistant mutations available in the data. Ultimately, a combined model that is able to ‘learn’

across targets in order to predict resistance is of great utility as evinced by these analyses. However,

further improvements with inclusion of additional gene-target data requires careful consideration of

DST data quality and knowledge-based approaches for model optimisations.

11.1.5 Chapter Summary

PZA resistance prediction using ML models performed consistently in the individual gene-drug target

(PncA-PZA) model, as well as in a combined model. Measures of evolutionary conservation, residue

depth and relative surface area, distance from drug, mutational frequency and mutational position

frequency, along with stability effects from DeepDDG were shared between the two ML approaches

indicating the strong association of these features with resistance prediction. Naturally, additional

features that are applicable for individual genes like PPI and NA distances, along with changes in

molecular interactions and lineage contribution to a given mutation (measured by how many distinct
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lineages contribute to a given mutation), are some of the more general features chosen during the

feature selection process. This reveals some of the shared molecular features and their utility in

predicting resistance. An advantage of using a gene-agnostic ML approach for building a general

AMR predictor is that it allows smaller diverse datasets to be exploited in a more targeted manner

provided that data integrity is maintained. For example, if the aggregate DST data across the targets

were consistent, predicting DCS resistance in alr would have been possible.

11.2 ML results dashboard

An interactive dashboard, available at https://thesis.tunstall.in, was built as part of this thesis to

explore each of the six gene-drug target pairs as well as the ML analysis results. A screenshot of this

dashboard is available in Appendix 11.D.1.
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11.A Classification models used for supervised machine learning

Linear classifiers
Models using a linear combination of its input features to make a classification decision.

Logistic Regression
scikit-learn-LR

Logistic Regression CV
scikit-learn-LRCV

Despite the name, it is a classification algorithm. Instead of
fitting a straight line like in a simple linear regression model, an
S shaped logistic function is fitted to predict a binary outcome.
The curve indicates the likelihood of the occurrence of a given
event. While less prone to over-fitting, it is weak in learning
complex patterns. An extended version with cross validation
called Logistic Regression CV is also available in scikit-learn.

Stochastic Gradient Descent
(SGD)
scikit-learn-SGD

Gradient descent refers to descending the slope (gradient) to
reach the lowest/minimum point where stochastic refers to a
process linked with a random probability. It is an iterative
algorithm which starts from a random point on a function and
descends down its slope in steps until it reaches the lowest point
of that function. The step size is an important parameter in
this process. With SGD, a few samples are randomly selected
instead of the entire input data in each iteration. SGD requires
a number of iterations, and is sensitive to feature scaling (an
important data-preprocessing step).

Gaussian Processes Classifier
scikit-learn-GPC

A non-parametric algorithm applied to classification tasks.
Stochastic in nature, Gaussian Processes are a type of kernel
model (methods using a linear classifier to solve a non-linear
problem) which are a generalisation of the Gaussian proba-
bility distribution. Rather than summarising the distribution
of random variables like in a Gaussian probability distribution,
Gaussian Processes summarise the properties of the parameters
of the functions, which jointly have a Gaussian distribution.

Passive Aggressive Classifier
scikit-learn-PAC

A type of online-learning algorithm where input data arrives
sequentially and the model is updated step-by-step, contrary
to batch learning where the entire input data is processed at
once. This is particularly useful in scenarios where training on
an entire dataset is computationally infeasible. The name of
the algorithm is based on the models behaviour where Passive
implies keeping the model without any changes if the prediction
is correct, while Aggressive refers to making some changes to
the model if the prediction is incorrect.

Ridge Classifier
scikit-learn-RC
Ridge Classifier CV
scikit-learn-RCCV

Adapted from linear regression with an added penalty term in
its loss function. Where linear regression is not penalised for
its choice of weights assigned to features, Ridge penalises the
model for the sum of squared value of the weights. This results
in smaller absolute values for weights with extreme weights be-
ing penalised to ensure an even distribution of weights. An
extended version with cross validation called Ridge Classifier
CV is also available in scikit-learn.
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Support Vector Classification
(SVC)
scikit-learn-SVC

Aims to find the best hyperplane in an n-dimensional space (n
is the number of input features) that best separates the classes.
Best is defined as the hyperplane that has the maximum dis-
tance between the data points from both classes. It is a memory
efficient algorithm as it uses a subset of training data points in
its decision function.

Linear Discriminant Analysis
(LDA)
scikit-learn-LDA

Used as a dimensionality reduction as well as classification tool.
It works by maximising the separability among the known cat-
egories rather than maximising the variation like in Principal
Component Analysis (PCA).

Tree based methods
These use a series of if-then rules to generate predictions from one or more decision trees.

Decision tree
scikit-learn-DT

The foundation of all tree-based models, where data is divided
into smaller and smaller subsets or nodes as the tree develops.
It has three main parts; a root node (starting point of the
tree), leaf node (decision criteria) and branches. Both the root
and leaf node contain criteria to be answered with branches
denoting the flow from question to answer. They are simple
and fast, but are very sensitive to changes in input data.

Extra Trees
scikit-learn-ETS

An ensemble method composed of a large number of decision
trees where the final result accounts for predictions from every
tree. It uses the entire input data at the start with the num-
ber of split nodes being randomly chosen unlike in the Random
Forest model. At each node split, it fits randomised decision
trees (i.e. extra trees) on sub samples of the data with av-
eraging to improve accuracy and control over-fitting. In this
way, it adds randomisation as well as optimisation to improve
model performance.

Extra Tree
scikit-learn-ET

An extremely randomised tree-based classifier. It differs from
Decision Trees in their construction where the best split to
separate the samples of a node into two groups is chosen based
on random splits for the pre specified number of features to
consider to obtain the best split.

Bagging based methods
Bagging is the technique of constructing multiple decision tree models at a time by randomly sampling
with replacement, or bootstrapping from the input data. It is one of the oldest and simplest ensemble-
based methods applied to tree-based algorithms to enhance performance by reducing variance and
over-fitting.

Bagging classifier
scikit-learn-BC

Base classifiers are fitted on random subsets of the input data.
The final prediction is an aggregate of all the individual pre-
dictions calculated either by voting or averaging. Introducing
randomisation in this manner is intended to reduce variance
due to ensemble predictions being generated from random sub-
sets of the data.
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Random forest
scikit-learn-RF

Constructing several decision trees which can be trained in par-
allel, where a group of trees is referred to as a forest. The final
output is either the mean of all decision trees in a regression
task or majority voting in a classification problem. Builds on
the bagging method, where, on top of building several trees
from the sampled dataset, each node is split on a random se-
lection of the models input features.

Boosting based methods
Boosting is a strategy where multiple simple models are combined into a single model, as such a
combination is thought to result in a stronger predictor. In boosting terminology, the simple models
are called weak models or weak learners. These algorithms are tree-based ensemble methods where
trees are built sequentially. The most common algorithm used is a decision tree model.

Adaptive Boosting Classifier
(AdaBoost)
scikit-learn-ABC

Starts by assigning equal weights to all data points, followed by
assigning higher weights to points that are wrongly classified.
Thus, all data points with higher weights are given more im-
portance iteratively in subsequent models. As such the method
focuses on training misclassified observations. The weak learn-
ers in this method are a basic form of decision tree, also known
as stumps. Each learners prediction is weighted by its indi-
vidual accuracy, with the final prediction based on a majority
vote.

Gradient Boosting Classifier
scikit-learn-GBC

Sequentially built models, with every subsequent model aimed
at reducing the errors of the previous one. The new model is
built on the errors or residuals of the previous model, with the
aim of minimising the loss function of a learner. Weak learners
are decision trees constructed in a greedy manner using the loss
function and have equal weights.

Extreme Gradient Boosting
(XGBoost)
scikit-learn-nb-XGBoost

One of the most popular variants of gradient boosting which
is optimised and distributed for efficiency and portability. It
uses a pre-sorted and histogram-based algorithm for comput-
ing the best split, and implements parallel boosting. All data
points for a given feature are split into discrete bins in order
to find the split value of the histogram. The trees can have a
varying number of terminal nodes, with proportional shrinkage
applied. An extra randomisation parameter is added to reduce
correlation between trees.

Naive Bayes (NB) Methods
As the name implies, the algorithms in this family are predicated on Bayes theorem. However, they
are based on simple (i.e. naive) assumptions, where each feature assumes independence, a feat seldom
true in reality. NB Classifiers are easy and fast to implement.
Gaussian NB
scikit-learn-GNB

Computationally lightweight and built by calculating the mean
and standard deviation of the training data.

Multinomial NB
scikit-learn-MNB

Implements the NB algorithm for multinomially distributed
data. The distribution is parametrised according to probability
of a given feature belonging to a certain class.

Complement NB
scikit-learn-CNB

Adaptation of the Multinomial NB algorithm designed to cor-
rect the severe assumptions made by the standard Multinomial
NB model. It is particularly suited for imbalanced data.
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Others

Quadratic Discriminant Analy-
sis (QDA)
scikit-learn-QDA

A variant of LDA where an individual covariance matrix is es-
timated for every observation class. It has a quadratic decision
boundary, but unlike LDA cannot be used as a dimensionality
reduction technique.

K Nearest neighbours (KNN)
scikit-learn-KNN

Uses the technique of nearest neighbours or feature similarity
to predict which cluster the new data will fit into. An integer
value of K is required to decide how many nearest data points
the algorithm needs to consider, as well as a distance metric
(Euclidean, Manhattan, Minkowski) to calculate the nearest
neighbour. The standard value of K used is 5 with Euclidean
as the distance metric. While computationally expensive, and
sensitive to irrelevant features and imbalanced datasets, it is
easy to implement.

Multi-Layer Perceptron Classi-
fier (MLP)
scikit-learn-MLP

A perceptron is a linear classifier. MLP is composed of more
than one perceptron (multi-layer) and is a deep, artificial neural
network (ANN). The layers are typically an input layer (receives
input), output layer (makes the prediction) and an arbitrary
amount of hidden layers. These hidden layers are the engine of
this algorithm, with 100 being the default in scikit-learn.

Table 11.A.1: Summary of the classification models used in machine learning from scikit-learn, version 1.1.1
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Feature name Feature type Feature category Features (n) Tools Comment

mCSM-DUET stability change numerical

Structure 35

mCSM-lig

A table with web URLs is
available in Chapter 2,

Methods, Appendix Table
2.A

FoldX stability change numerical FoldX
DeepDDG stability change numerical DeepDDG
Dynamut2 stability change numerical Dynamut2

Drug binding affinity change numerical mCSM-ligDrug binding affinity change numerical
PP interface binding affinity

change numerical mCSM-PPI2

RNA binding affinity change numerical mCSM-NA
Distance to drug numerical mCSM-lig

Distance to PP interface numerical mCSM-PPI2
Distance to RNA numerical mCSM-NA

Molecular contacts numerical FoldX interaction components
electro: rr, mm, sm, ss numerical FoldX interaction components

disulfide: rr, mm, sm, ss numerical FoldX interaction components
hbonds: rr, mm, sm, ss numerical FoldX interaction components

partcov: rr, mm, sm numerical FoldX interaction components
vdwclashes: sm, ss, rr, mm numerical FoldX interaction components
volumetric: ss: rr, mm, ss numerical FoldX interaction components

Relative Surface Area numerical

Residue level properties 4

DSSP
Residue Depth numerical RD depth server

Residue hydrophobicity numerical Exapsy: Kyte & Doolittle 
Active site and binding partner

residue indication numerical LigPlus, Arpeggio, PLIP

ConSurf numerical
Evolutionary conservation 3

ConSurf
SNAP2 numerical SNAP2

PROVEAN numerical PROVEAN
Average mutational frequency numerical Genomics 6 Calculated
Mutational position frequency numerical Calculated
Lineage contribution: count of

distinct no. of lineages numerical Calculated

Lineage contribution: total
number of lineage occurrences numerical Calculated

Lineage contribution: count of numerical Calculated

11.B Features used in machine learning
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distinct lineages/all possible
lineages

Lineage contribution: total
number of lineage

occurrence/total number of
samples for the gene

numerical Calculated

AA index property numerical

AA index properties >120 AA index

Selected during feature selection
from AAindex2

https://www.genome.jp/aaindex/AAindex/list_of_matrices
 BENS940104: Genetic code

matrix 

numerical

DOSZ010103:An amino acid
similarity matrix based on the

THREADER force field 
GIAG010101:Residue

substitutions 
MIYT790101:Amino acid pair

distance 
OVEJ920102: Environment-

specific amino acid substitution
matrix for alpha residues

RISJ880101: Scoring matrix
Secondary structure information categorical Secondary structure 1 DSSP

Residue property: water categorical

Amino acid properties 4 Amino acid properties
Residue property: polarity categorical
Residue property: charge categorical

Residue property: any change categorical
 

Table 11.B.1: Summary of features used in machine learning
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11.C ML Model Tables

Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.22 0.57 0.29 0.63 0.84 0.89 0.24 0.60 0.39 0.67 0.17 0.46
Bagging Classifier 0.40 0.42 0.39 0.43 0.88 0.88 0.28 0.30 0.75 0.75 0.25 0.27
Complement NB 0.27 0.23 0.39 0.37 0.73 0.74 0.57 0.50 0.30 0.29 0.25 0.23
Decision Tree 0.24 0.40 0.35 0.47 0.80 0.86 0.38 0.40 0.35 0.57 0.23 0.31
Dummy Classifier 0.00 0.00 0.00 0.00 0.85 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.09 0.23 0.22 0.37 0.77 0.74 0.24 0.50 0.22 0.29 0.13 0.23
Extra Trees 0.12 0.11 0.14 0.15 0.84 0.83 0.09 0.10 0.36 0.33 0.08 0.08
Gaussian NB 0.24 0.35 0.37 0.45 0.73 0.82 0.53 0.50 0.29 0.42 0.23 0.29
Gaussian Process 0.08 0.29 0.07 0.18 0.85 0.86 0.04 0.10 0.38 1.00 0.04 0.10
Gradient Boosting 0.31 0.52 0.33 0.53 0.86 0.89 0.24 0.40 0.59 0.80 0.20 0.36
K-Nearest Neighbors 0.09 -0.05 0.09 0.00 0.85 0.83 0.06 0.00 0.32 0.00 0.06 0.00
LDA 0.12 0.40 0.23 0.47 0.80 0.86 0.21 0.40 0.27 0.57 0.13 0.31
Logistic Regression 0.16 0.42 0.18 0.33 0.85 0.88 0.12 0.20 0.41 1.00 0.10 0.20
Logistic RegressionCV 0.03 0.29 0.04 0.18 0.85 0.86 0.02 0.10 0.12 1.00 0.02 0.10
MLP 0.18 0.20 0.25 0.27 0.83 0.83 0.20 0.20 0.37 0.40 0.15 0.15
Multinomial NB 0.12 -0.05 0.10 0.00 0.85 0.83 0.06 0.00 0.43 0.00 0.06 0.00
Passive Aggressive 0.14 0.29 0.19 0.18 0.77 0.86 0.24 0.10 0.36 1.00 0.11 0.10
QDA -0.03 -0.08 0.03 0.00 0.82 0.82 0.02 0.00 0.12 0.00 0.01 0.00
Random Forest 0.22 0.42 0.16 0.33 0.86 0.88 0.09 0.20 0.67 1.00 0.09 0.20
Ridge Classifier 0.12 0.42 0.15 0.33 0.84 0.88 0.10 0.20 0.33 1.00 0.09 0.20
Ridge ClassifierCV 0.12 0.29 0.12 0.18 0.85 0.86 0.07 0.10 0.42 1.00 0.06 0.10
Stochastic GDescent 0.17 0.23 0.25 0.33 0.78 0.82 0.30 0.30 0.34 0.38 0.15 0.20
SVC 0.00 0.00 0.00 0.00 0.85 0.85 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost 0.33 0.52 0.34 0.53 0.86 0.89 0.25 0.40 0.62 0.80 0.22 0.36

Table 11.C.1: Individual model evalutation metrics for ethambutol resistance prediction: all features
Data with 178 embB features for 858 SAVs was split into train and test sets using the scaling law principle, and model performance assessed using a stratified 10-fold
cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic
discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.03 -0.07 0.09 0.00 0.88 0.88 0.08 0.00 0.10 0.00 0.05 0.00
Bagging Classifier 0.04 0.00 0.05 0.00 0.92 0.92 0.03 0.00 0.10 0.00 0.03 0.00
Complement NB 0.08 -0.11 0.17 0.08 0.56 0.45 0.59 0.33 0.10 0.05 0.10 0.04
Decision Tree 0.06 0.00 0.13 0.00 0.86 0.92 0.14 0.00 0.13 0.00 0.08 0.00
Dummy Classifier 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.02 0.18 0.08 0.25 0.88 0.85 0.08 0.33 0.08 0.20 0.05 0.14
Extra Trees 0.07 0.00 0.08 0.00 0.92 0.92 0.06 0.00 0.15 0.00 0.05 0.00
Gaussian NB 0.10 0.04 0.17 0.15 0.45 0.42 0.78 0.67 0.10 0.08 0.09 0.08
Gaussian Process 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Gradient Boosting 0.06 0.00 0.08 0.00 0.91 0.92 0.06 0.00 0.15 0.00 0.05 0.00
K-Nearest Neighbors -0.01 0.00 0.00 0.00 0.92 0.92 0.00 0.00 0.00 0.00 0.00 0.00
LDA 0.03 0.22 0.08 0.29 0.89 0.88 0.06 0.33 0.13 0.25 0.05 0.17
Logistic Regression 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Logistic RegressionCV 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
MLP -0.03 0.00 0.00 0.00 0.90 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Multinomial NB -0.04 0.00 0.00 0.00 0.89 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Passive Aggressive -0.00 0.00 0.04 0.00 0.83 0.92 0.11 0.00 0.03 0.00 0.02 0.00
QDA 0.16 -0.08 0.19 0.00 0.92 0.85 0.18 0.00 0.22 0.00 0.13 0.00
Random Forest 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Ridge Classifier 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Ridge ClassifierCV -0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Stochastic GDescent -0.01 0.00 0.01 0.00 0.90 0.92 0.03 0.00 0.01 0.00 0.01 0.00
SVC 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost 0.09 0.00 0.09 0.00 0.92 0.92 0.06 0.00 0.20 0.00 0.06 0.00

Table 11.C.2: Individual model evalutation metrics for streptomycin resistance prediction: all features
Data with 178 gidB features for 531 SAVs was split into train and test sets using the scaling law principle, and model performance assessed using a stratified 10-fold
cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic
discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.27 0.35 0.59 0.64 0.64 0.68 0.57 0.64 0.61 0.64 0.42 0.47
Bagging Classifier 0.33 0.26 0.62 0.61 0.67 0.63 0.60 0.64 0.65 0.58 0.45 0.44
Complement NB 0.21 0.25 0.59 0.63 0.60 0.61 0.63 0.71 0.55 0.56 0.42 0.45
Decision Tree 0.20 0.11 0.55 0.56 0.60 0.55 0.55 0.64 0.56 0.50 0.39 0.39
Dummy Classifier 0.00 0.00 0.00 0.00 0.55 0.55 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.12 -0.03 0.51 0.47 0.56 0.48 0.50 0.50 0.52 0.44 0.34 0.30
Extra Trees 0.29 0.17 0.59 0.58 0.65 0.58 0.57 0.64 0.62 0.53 0.42 0.41
Gaussian NB 0.28 0.40 0.62 0.69 0.63 0.69 0.68 0.75 0.58 0.64 0.46 0.52
Gaussian Process 0.23 0.20 0.56 0.59 0.62 0.60 0.53 0.64 0.59 0.55 0.39 0.42
Gradient Boosting 0.32 0.38 0.61 0.65 0.66 0.69 0.59 0.64 0.64 0.67 0.45 0.49
K-Nearest Neighbors 0.15 0.20 0.51 0.59 0.58 0.60 0.49 0.64 0.55 0.55 0.35 0.42
LDA 0.30 0.25 0.61 0.60 0.65 0.63 0.62 0.61 0.61 0.59 0.44 0.42
Logistic Regression 0.35 0.31 0.63 0.62 0.68 0.66 0.62 0.61 0.66 0.63 0.47 0.45
Logistic RegressionCV 0.33 0.22 0.62 0.57 0.67 0.61 0.60 0.57 0.65 0.57 0.45 0.40
MLP 0.31 0.19 0.62 0.56 0.65 0.60 0.62 0.57 0.62 0.55 0.45 0.39
Multinomial NB 0.21 0.30 0.57 0.65 0.61 0.65 0.58 0.71 0.56 0.59 0.40 0.48
Passive Aggressive 0.16 0.39 0.50 0.40 0.55 0.66 0.68 0.25 0.56 1.00 0.36 0.25
QDA 0.13 0.03 0.63 0.61 0.50 0.47 0.94 0.93 0.47 0.46 0.46 0.44
Random Forest 0.34 0.23 0.62 0.60 0.67 0.61 0.59 0.64 0.65 0.56 0.45 0.43
Ridge Classifier 0.33 0.28 0.62 0.61 0.67 0.65 0.61 0.61 0.64 0.61 0.46 0.44
Ridge ClassifierCV 0.36 0.28 0.64 0.61 0.68 0.65 0.63 0.61 0.66 0.61 0.48 0.44
Stochastic GDescent 0.27 0.22 0.55 0.62 0.61 0.60 0.64 0.71 0.62 0.54 0.40 0.44
SVC 0.32 0.23 0.62 0.60 0.66 0.61 0.60 0.64 0.63 0.56 0.45 0.43
XGBoost 0.32 0.35 0.61 0.64 0.66 0.68 0.60 0.64 0.63 0.64 0.44 0.47

Table 11.C.3: Individual model evalutation metrics for isoniazid resistance prediction: all features
Data with 178 katG features for 817 SAVs was split into train and test sets using the scaling law principle, and model performance assessed using a stratified 10-fold
cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic
discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.37 0.17 0.74 0.65 0.70 0.59 0.74 0.63 0.74 0.67 0.59 0.48
Bagging Classifier 0.45 0.40 0.77 0.78 0.73 0.72 0.78 0.84 0.77 0.73 0.63 0.64
Complement NB 0.29 0.37 0.70 0.72 0.65 0.69 0.71 0.68 0.70 0.76 0.55 0.57
Decision Tree 0.28 0.35 0.70 0.74 0.65 0.69 0.71 0.74 0.70 0.74 0.55 0.58
Dummy Classifier 0.00 0.00 0.74 0.75 0.59 0.59 1.00 1.00 0.59 0.59 0.59 0.59
Extra Tree 0.19 -0.09 0.67 0.62 0.61 0.50 0.67 0.68 0.67 0.57 0.50 0.45
Extra Trees 0.38 0.26 0.76 0.74 0.71 0.66 0.80 0.84 0.73 0.67 0.62 0.59
Gaussian NB 0.31 0.63 0.71 0.83 0.66 0.81 0.70 0.79 0.72 0.88 0.55 0.71
Gaussian Process 0.18 -0.04 0.70 0.65 0.62 0.53 0.76 0.74 0.66 0.58 0.54 0.48
Gradient Boosting 0.45 0.54 0.78 0.82 0.73 0.78 0.79 0.84 0.77 0.80 0.64 0.70
K-Nearest Neighbors 0.06 0.22 0.66 0.68 0.56 0.62 0.72 0.68 0.61 0.68 0.49 0.52
LDA 0.35 0.30 0.73 0.70 0.68 0.66 0.74 0.68 0.73 0.72 0.58 0.54
Logistic Regression 0.39 0.40 0.76 0.78 0.71 0.72 0.81 0.84 0.73 0.73 0.62 0.64
Logistic RegressionCV 0.40 0.40 0.77 0.78 0.71 0.72 0.82 0.84 0.73 0.73 0.63 0.64
MLP 0.30 0.22 0.72 0.68 0.66 0.62 0.73 0.68 0.71 0.68 0.56 0.52
Multinomial NB 0.28 0.42 0.72 0.76 0.66 0.72 0.76 0.74 0.69 0.78 0.57 0.61
Passive Aggressive 0.26 0.21 0.65 0.19 0.62 0.47 0.68 0.11 0.72 1.00 0.50 0.11
QDA 0.07 -0.15 0.72 0.72 0.59 0.56 0.91 0.95 0.60 0.58 0.57 0.56
Random Forest 0.49 0.58 0.80 0.84 0.75 0.78 0.82 1.00 0.78 0.73 0.67 0.73
Ridge Classifier 0.36 0.40 0.75 0.78 0.69 0.72 0.79 0.84 0.72 0.73 0.60 0.64
Ridge ClassifierCV 0.41 0.40 0.77 0.78 0.72 0.72 0.83 0.84 0.73 0.73 0.63 0.64
Stochastic GDescent 0.29 0.22 0.72 0.76 0.66 0.62 0.76 1.00 0.69 0.61 0.56 0.61
SVC 0.39 -0.01 0.78 0.63 0.71 0.53 0.86 0.68 0.71 0.59 0.64 0.46
XGBoost 0.40 0.33 0.76 0.76 0.71 0.69 0.76 0.84 0.75 0.70 0.61 0.62

Table 11.C.4: Individual model evalutation metrics for pyrazinamide resistance prediction: all features
Data with 176 pncA features for 424 SAVs was split into train and test sets using the scaling law principle, and model performance assessed using a stratified 10-fold
cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic
discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.41 0.44 0.56 0.60 0.77 0.78 0.52 0.56 0.62 0.64 0.40 0.42
Bagging Classifier 0.37 0.53 0.51 0.65 0.76 0.81 0.42 0.60 0.64 0.71 0.34 0.48
Complement NB 0.25 0.25 0.51 0.51 0.64 0.64 0.64 0.64 0.42 0.42 0.34 0.34
Decision Tree 0.21 0.30 0.45 0.53 0.67 0.67 0.46 0.64 0.44 0.46 0.29 0.36
Dummy Classifier 0.00 0.00 0.00 0.00 0.71 0.71 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.30 0.23 0.49 0.45 0.71 0.68 0.49 0.44 0.51 0.46 0.33 0.29
Extra Trees 0.37 0.41 0.50 0.57 0.76 0.76 0.42 0.52 0.64 0.62 0.34 0.39
Gaussian NB 0.31 0.30 0.52 0.51 0.71 0.71 0.53 0.52 0.51 0.50 0.35 0.34
Gaussian Process 0.26 0.26 0.33 0.38 0.73 0.73 0.23 0.28 0.64 0.58 0.20 0.23
Gradient Boosting 0.43 0.53 0.55 0.65 0.78 0.81 0.47 0.60 0.68 0.71 0.38 0.48
K-Nearest Neighbors 0.23 0.23 0.38 0.42 0.72 0.71 0.30 0.36 0.53 0.50 0.24 0.26
LDA 0.35 0.43 0.51 0.60 0.75 0.76 0.45 0.60 0.59 0.60 0.34 0.43
Logistic Regression 0.40 0.47 0.51 0.61 0.77 0.79 0.42 0.56 0.68 0.67 0.35 0.44
Logistic RegressionCV 0.37 0.48 0.49 0.63 0.76 0.79 0.40 0.60 0.66 0.65 0.33 0.45
MLP 0.39 0.44 0.54 0.62 0.75 0.75 0.51 0.68 0.61 0.57 0.37 0.45
Multinomial NB 0.31 0.23 0.50 0.43 0.72 0.69 0.49 0.40 0.52 0.48 0.34 0.28
Passive Aggressive 0.31 0.32 0.42 0.36 0.71 0.75 0.38 0.24 0.67 0.75 0.27 0.22
QDA 0.11 -0.06 0.46 0.43 0.37 0.32 0.94 0.88 0.31 0.29 0.30 0.28
Random Forest 0.38 0.55 0.47 0.65 0.77 0.82 0.36 0.56 0.71 0.78 0.31 0.48
Ridge Classifier 0.37 0.50 0.50 0.64 0.76 0.80 0.41 0.60 0.65 0.68 0.33 0.47
Ridge ClassifierCV 0.38 0.52 0.48 0.62 0.77 0.81 0.37 0.52 0.70 0.76 0.32 0.45
Stochastic GDescent 0.31 0.36 0.43 0.58 0.72 0.64 0.45 0.84 0.55 0.44 0.29 0.40
SVC 0.31 0.37 0.34 0.44 0.75 0.76 0.22 0.32 0.77 0.73 0.21 0.29
XGBoost 0.45 0.41 0.59 0.57 0.79 0.76 0.52 0.52 0.68 0.62 0.42 0.39

Table 11.C.5: Individual model evalutation metrics for rifampicin resistance prediction: all features
Data with 180 rpoB features for 1132 SAVs was split into train and test sets using the scaling law principle, and model performance assessed using a stratified 10-fold
cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic
discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.

422



Model Name MCC
Train

MCC
Test

F1
Train

F1
Test

Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test

JCC
Train

JCC
Test

Features
Selected (n=9)

AdaBoost Classifier 0.31 0.27 0.34 0.40 0.86 0.72 0.26 0.60 0.56 0.30 0.22 0.25

ConSurf,
SNAP2,
PROVEAN,
DeepDDG,
MAF,
SAV frequency,
Residue depth,
EMB distance,
Mutation site
frequency in dataset

Bagging Classifier 0.36 0.32 0.38 0.42 0.87 0.83 0.27 0.40 0.66 0.44 0.24 0.27
Complement NB 0.27 0.30 0.39 0.41 0.72 0.65 0.62 0.80 0.29 0.28 0.25 0.26
Decision Tree 0.27 0.35 0.38 0.45 0.80 0.82 0.41 0.50 0.36 0.42 0.24 0.29
Dummy Classifier 0.00 0.00 0.00 0.00 0.85 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.23 0.29 0.34 0.41 0.80 0.74 0.37 0.60 0.33 0.32 0.21 0.26
Extra Trees 0.38 0.32 0.37 0.42 0.87 0.83 0.26 0.40 0.76 0.44 0.23 0.27
Gaussian NB 0.24 0.49 0.31 0.57 0.84 0.86 0.27 0.60 0.40 0.55 0.19 0.40
Gaussian Process 0.13 0.42 0.10 0.33 0.86 0.88 0.06 0.20 0.45 1.00 0.06 0.20
Gradient Boosting 0.35 0.45 0.37 0.53 0.87 0.86 0.28 0.50 0.63 0.56 0.24 0.36
K-Nearest Neighbors 0.21 0.52 0.25 0.46 0.85 0.89 0.18 0.30 0.45 1.00 0.15 0.30
LDA 0.14 0.25 0.13 0.29 0.85 0.85 0.08 0.20 0.42 0.50 0.07 0.17
Logistic Regression 0.11 0.29 0.08 0.18 0.85 0.86 0.04 0.10 0.40 1.00 0.04 0.10
Logistic RegressionCV 0.12 0.42 0.10 0.33 0.85 0.88 0.06 0.20 0.40 1.00 0.06 0.20
MLP 0.23 0.36 0.23 0.40 0.86 0.86 0.15 0.30 0.50 0.60 0.14 0.25
Multinomial NB 0.10 0.42 0.06 0.33 0.86 0.88 0.03 0.20 0.40 1.00 0.03 0.20
Passive Aggressive 0.17 0.26 0.17 0.35 0.82 0.83 0.20 0.30 0.40 0.43 0.10 0.21
QDA 0.17 0.28 0.20 0.36 0.84 0.46 0.15 1.00 0.42 0.22 0.11 0.22
Random Forest 0.38 0.26 0.35 0.35 0.88 0.83 0.24 0.30 0.82 0.43 0.22 0.21
Ridge Classifier 0.10 0.00 0.06 0.00 0.85 0.85 0.03 0.00 0.40 0.00 0.03 0.00
Ridge ClassifierCV 0.09 -0.05 0.06 0.00 0.85 0.83 0.03 0.00 0.35 0.00 0.03 0.00
SVC 0.11 0.00 0.06 0.00 0.86 0.85 0.03 0.00 0.40 0.00 0.03 0.00
Stochastic GDescent 0.09 -0.05 0.06 0.00 0.85 0.83 0.03 0.00 0.35 0.00 0.03 0.00
XGBoost 0.41 0.40 0.45 0.47 0.87 0.86 0.35 0.40 0.66 0.57 0.29 0.31

Table 11.C.6: Individual model evalutation metrics for ethambutol resistance prediction: post feature selection
Data with 178 embB features for 858 SAVs was split into train and test sets using the scaling law principle followed by the Boruta feature selection process11 which
identified 9 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive
Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MAF: minor allele frequency, MCC: Matthews correlation coefficient, JCC: jaccard
similarity coefficient, SAV: single amino acid variation, EMB: ethambutol.
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Model Name MCC
Train

MCC
Test

F1
Train

F1
Test

Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test

JCC
Train

JCC
Test

Features
Selected (N/A)

AdaBoost Classifier -0.03 0.37 0.00 0.40 0.91 0.92 0.00 0.33 0.00 0.50 0.00 0.25
Bagging Classifier 0.03 0.56 0.04 0.50 0.93 0.95 0.03 0.33 0.05 1.00 0.02 0.33
Complement NB 0.04 0.08 0.15 0.17 0.53 0.50 0.54 0.67 0.08 0.10 0.08 0.09
Decision Tree 0.08 0.56 0.12 0.50 0.89 0.95 0.14 0.33 0.13 1.00 0.07 0.33
Dummy Classifier 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.04 -0.07 0.09 0.00 0.88 0.88 0.12 0.00 0.08 0.00 0.06 0.00
Extra Trees 0.04 0.00 0.05 0.00 0.92 0.92 0.03 0.00 0.10 0.00 0.03 0.00
Gaussian NB 0.13 0.37 0.14 0.40 0.91 0.92 0.09 0.33 0.30 0.50 0.09 0.25
Gaussian Process 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Gradient Boosting 0.06 0.37 0.08 0.40 0.92 0.92 0.09 0.33 0.07 0.50 0.05 0.25
K-Nearest Neighbors -0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
LDA 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Logistic Regression 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Logistic RegressionCV 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
MLP 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Multinomial NB 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Passive Aggressive 0.01 0.00 0.02 0.00 0.85 0.92 0.10 0.00 0.01 0.00 0.01 0.00
QDA -0.01 0.00 0.00 0.00 0.92 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Random Forest 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Ridge Classifier 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Ridge ClassifierCV 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
SVC 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
Stochastic GDescent 0.00 0.00 0.00 0.00 0.93 0.92 0.00 0.00 0.00 0.00 0.00 0.00
XGBoost 0.06 0.00 0.08 0.00 0.91 0.92 0.07 0.00 0.13 0.00 0.05 0.00

Table 11.C.7: Individual model evalutation metrics for streptomycin resistance prediction: post feature selection
Data with 178 gidB features for 531 SAVs was split into train and test sets using the scaling law principle followed by the Boruta feature selection process11 which
identified 2 features optimised for the MCC score. However, since most MCC scores were ∼0.0, results from this analysis were inconclusive and not considered further.
Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC:
support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC
Train

MCC
Test

F1
Train

F1
Test

Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test

JCC
Train

JCC
Test

Features
Selected (n=11)

AdaBoost Classifier 0.29 0.21 0.60 0.60 0.65 0.60 0.58 0.68 0.62 0.54 0.43 0.43

ConSurf,
SNAP2,
PROVEAN,
DeepDDG,
FoldX,
PPI,
Residue depth,
Average stability,
INH distance,
AAindex2:
BENS94010413

GIAG01010114

Bagging Classifier 0.34 0.28 0.63 0.61 0.68 0.65 0.61 0.61 0.65 0.61 0.46 0.44
Complement NB 0.34 0.22 0.66 0.62 0.66 0.60 0.74 0.71 0.60 0.54 0.50 0.44
Decision Tree 0.28 -0.03 0.60 0.39 0.64 0.50 0.60 0.36 0.60 0.43 0.43 0.24
Dummy Classifier 0.00 0.00 0.00 0.00 0.55 0.55 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.16 0.15 0.53 0.54 0.58 0.58 0.53 0.54 0.54 0.54 0.37 0.37
Extra Trees 0.32 0.32 0.61 0.64 0.67 0.66 0.59 0.68 0.64 0.61 0.45 0.48
Gaussian NB 0.33 0.25 0.65 0.63 0.66 0.61 0.69 0.71 0.61 0.56 0.48 0.45
Gaussian Process 0.36 0.29 0.64 0.63 0.68 0.65 0.64 0.68 0.65 0.59 0.48 0.46
Gradient Boosting 0.33 0.12 0.62 0.51 0.67 0.56 0.61 0.50 0.64 0.52 0.45 0.34
K-Nearest Neighbors 0.24 0.12 0.58 0.53 0.63 0.56 0.57 0.54 0.59 0.52 0.41 0.36
LDA 0.37 0.42 0.65 0.71 0.69 0.69 0.66 0.82 0.66 0.62 0.49 0.55
Logistic Regression 0.37 0.32 0.65 0.64 0.69 0.66 0.65 0.68 0.65 0.61 0.49 0.48
Logistic RegressionCV 0.35 0.42 0.65 0.71 0.68 0.69 0.65 0.82 0.64 0.62 0.48 0.55
MLP 0.33 0.28 0.63 0.65 0.67 0.63 0.62 0.75 0.64 0.57 0.46 0.48
Multinomial NB 0.28 0.25 0.54 0.57 0.65 0.63 0.46 0.54 0.66 0.60 0.37 0.39
Passive Aggressive 0.15 0.19 0.43 0.63 0.56 0.56 0.54 0.82 0.43 0.51 0.31 0.46
QDA 0.37 0.14 0.64 0.60 0.69 0.55 0.61 0.75 0.67 0.50 0.47 0.43
Random Forest 0.33 0.26 0.63 0.61 0.67 0.63 0.63 0.64 0.64 0.58 0.46 0.44
Ridge Classifier 0.37 0.42 0.66 0.71 0.69 0.69 0.66 0.82 0.65 0.62 0.49 0.55
Ridge ClassifierCV 0.37 0.29 0.66 0.62 0.69 0.65 0.66 0.64 0.65 0.60 0.49 0.45
SVC 0.35 0.32 0.63 0.63 0.68 0.66 0.61 0.64 0.65 0.62 0.46 0.46
Stochastic GDescent 0.32 0.38 0.58 0.65 0.65 0.69 0.61 0.64 0.66 0.67 0.42 0.49
XGBoost 0.34 0.19 0.63 0.58 0.67 0.60 0.62 0.61 0.64 0.55 0.46 0.40

Table 11.C.8: Individual model evalutation metrics for isoniazid resistance prediction: post feature selection
Data with 178 katG features for 817 SAVs was split into train and test sets using the scaling law principle followed by the Boruta feature selection process11 which
identified 11 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive
Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, SAV: single
amino acid variation, INH: isoniazid.
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Model Name MCC
Train

MCC
Test

F1
Train

F1
Test

Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test

JCC
Train

JCC
Test

Features
Selected (n=14)

AdaBoost Classifier 0.44 0.40 0.77 0.79 0.73 0.72 0.77 0.89 0.77 0.71 0.63 0.65

ConSurf,
SNAP2,
PROVEAN,
DeepDDG,
FoldX,
MAF,
SAV frequency,
Residue depth,
PZA distance,
RSA,
Mutation site frequency
in the dataset,
Mutation site frequency
in gene, AAindex2:
DOSZ010103,15

Bagging Classifier 0.52 0.25 0.80 0.76 0.77 0.66 0.79 0.89 0.81 0.65 0.67 0.61
Complement NB 0.43 0.40 0.77 0.79 0.72 0.72 0.77 0.89 0.77 0.71 0.62 0.65
Decision Tree 0.35 0.13 0.72 0.68 0.68 0.59 0.71 0.74 0.75 0.64 0.57 0.52
Dummy Classifier 0.00 0.00 0.74 0.75 0.59 0.59 1.00 1.00 0.59 0.59 0.59 0.59
Extra Tree 0.29 0.21 0.68 0.70 0.65 0.62 0.67 0.74 0.72 0.67 0.53 0.54
Extra Trees 0.47 0.46 0.79 0.81 0.74 0.72 0.80 1.00 0.78 0.68 0.65 0.68
Gaussian NB 0.48 0.64 0.76 0.86 0.74 0.81 0.72 1.00 0.81 0.76 0.62 0.76
Gaussian Process 0.45 0.52 0.79 0.83 0.73 0.75 0.85 1.00 0.74 0.70 0.66 0.70
Gradient Boosting 0.53 0.33 0.80 0.77 0.77 0.69 0.80 0.89 0.81 0.68 0.67 0.63
K-Nearest Neighbors 0.36 0.58 0.75 0.84 0.69 0.78 0.78 1.00 0.72 0.73 0.60 0.73
LDA 0.45 0.52 0.79 0.83 0.73 0.75 0.85 1.00 0.74 0.70 0.66 0.70
Logistic Regression 0.46 0.52 0.79 0.83 0.74 0.75 0.84 1.00 0.75 0.70 0.66 0.70
Logistic RegressionCV 0.45 0.46 0.79 0.81 0.74 0.72 0.85 1.00 0.74 0.68 0.66 0.68
MLP 0.50 0.52 0.80 0.83 0.76 0.75 0.83 1.00 0.78 0.70 0.67 0.70
Multinomial NB 0.44 0.35 0.80 0.78 0.73 0.69 0.91 0.95 0.71 0.67 0.66 0.64
Passive Aggressive 0.29 0.37 0.77 0.72 0.67 0.69 0.95 0.68 0.65 0.76 0.63 0.57
QDA 0.45 0.42 0.75 0.80 0.72 0.72 0.71 0.95 0.80 0.69 0.61 0.67
Random Forest 0.51 0.46 0.80 0.81 0.76 0.72 0.80 1.00 0.80 0.68 0.66 0.68
Ridge Classifier 0.45 0.52 0.79 0.83 0.73 0.75 0.85 1.00 0.74 0.70 0.66 0.70
Ridge ClassifierCV 0.42 0.52 0.78 0.83 0.72 0.75 0.86 1.00 0.73 0.70 0.65 0.70
SVC 0.42 0.52 0.79 0.83 0.72 0.75 0.87 1.00 0.72 0.70 0.65 0.70
Stochastic GDescent 0.38 0.39 0.65 0.79 0.67 0.69 0.68 1.00 0.79 0.66 0.52 0.66
XGBoost 0.51 0.33 0.79 0.77 0.76 0.69 0.80 0.89 0.80 0.68 0.66 0.63

Table 11.C.9: Individual model evalutation metrics for pyrazinamide resistance prediction: post feature selection
Data with all 176 pncA features for 424 SAVs was split into train and test sets using the scaling law principle followed by 14 features optimised for the MCC score.
Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC:
support vector classification, MCC: Matthews correlation coefficient, JCC: jaccard similarity coefficient, RSA: relative surface area, SAV: single amino acid variation,
PZA: pyrazinamide.
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Model Name MCC
Train

MCC
Test

F1
Train

F1
Test

Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test

JCC
Train

JCC
Test

Features
Selected (n=22)

AdaBoost Classifier 0.38 0.58 0.53 0.67 0.76 0.84 0.47 0.56 0.61 0.82 0.36 0.50

ConSurf,
SNAP2,
PROVEAN,
mCSM-DUET,
DeepDDG,
Four FoldX
interactions,
RFP distance,
RFP affinity,
NA distance,
NA affinity,
PPI distance,
RSA,
Mutation site
frequency in
gene,
Mutation site
frequency in
dataset,
Lineage,
Active site,
Non-active site,
AAindex2:
MIYT79010117

Bagging Classifier 0.43 0.55 0.55 0.65 0.78 0.82 0.47 0.56 0.68 0.78 0.39 0.48
Complement NB 0.39 0.45 0.55 0.62 0.76 0.76 0.51 0.64 0.61 0.59 0.38 0.44
Decision Tree 0.28 0.30 0.49 0.53 0.70 0.67 0.49 0.64 0.49 0.46 0.32 0.36
Dummy Classifier 0.00 0.00 0.00 0.00 0.71 0.71 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.25 0.07 0.46 0.39 0.69 0.56 0.45 0.48 0.47 0.33 0.30 0.24
Extra Trees 0.44 0.48 0.55 0.63 0.79 0.79 0.45 0.60 0.72 0.65 0.38 0.45
Gaussian NB 0.33 0.23 0.45 0.50 0.75 0.62 0.35 0.64 0.64 0.41 0.30 0.33
Gaussian Process 0.42 0.45 0.52 0.57 0.78 0.79 0.42 0.48 0.71 0.71 0.36 0.40
Gradient Boosting 0.41 0.49 0.54 0.62 0.77 0.80 0.46 0.56 0.67 0.70 0.37 0.45
K-Nearest Neighbors 0.38 0.41 0.53 0.57 0.76 0.76 0.46 0.52 0.62 0.62 0.36 0.39
LDA 0.42 0.34 0.53 0.46 0.78 0.75 0.43 0.36 0.71 0.64 0.37 0.30
Logistic Regression 0.40 0.39 0.51 0.52 0.77 0.76 0.41 0.44 0.69 0.65 0.35 0.35
Logistic RegressionCV 0.36 0.48 0.49 0.59 0.76 0.80 0.40 0.48 0.65 0.75 0.33 0.41
MLP 0.41 0.41 0.54 0.57 0.77 0.76 0.46 0.52 0.67 0.62 0.37 0.39
Multinomial NB 0.32 0.41 0.30 0.42 0.75 0.78 0.19 0.28 0.84 0.88 0.18 0.27
Passive Aggressive 0.31 0.40 0.48 0.60 0.66 0.67 0.59 0.84 0.55 0.47 0.33 0.43
QDA 0.37 0.19 0.49 0.49 0.76 0.49 0.40 0.84 0.66 0.35 0.33 0.33
Random Forest 0.44 0.55 0.55 0.67 0.79 0.82 0.46 0.60 0.71 0.75 0.39 0.50
Ridge Classifier 0.41 0.30 0.50 0.42 0.78 0.74 0.39 0.32 0.72 0.62 0.34 0.27
Ridge ClassifierCV 0.40 0.30 0.50 0.42 0.78 0.74 0.39 0.32 0.71 0.62 0.34 0.27
SVC 0.34 0.37 0.41 0.44 0.76 0.76 0.30 0.32 0.70 0.73 0.27 0.29
Stochastic GDescent 0.35 0.30 0.42 0.42 0.76 0.74 0.36 0.32 0.71 0.62 0.29 0.27
XGBoost 0.45 0.49 0.59 0.60 0.78 0.80 0.54 0.52 0.65 0.72 0.42 0.43

Table 11.C.10: Individual model evalutation metrics for rifampicin resistance prediction: post feature selection
Data with 180 rpoB features for 1132 SAVs was split into train and test sets using the scaling law principle followed by the Boruta feature selection process11 which
identified 22 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis, MLP: multilayer perceptron, NB:
naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, NA: nucleic acid, PPI: protein-protein interface, MCC: Matthews correlation
coefficient, JCC: jaccard similarity coefficient, RSA: relative surface area, SAV: single amino acid variation, RFP: rifampicin.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.45 0.23 0.62 0.33 0.76 0.82 0.58 0.31 0.68 0.36 0.45 0.20
Bagging Classifier 0.47 0.29 0.63 0.39 0.77 0.82 0.57 0.39 0.70 0.40 0.46 0.24
Complement NB 0.18 0.09 0.51 0.27 0.57 0.60 0.67 0.50 0.42 0.19 0.35 0.16
Decision Tree 0.32 0.14 0.55 0.29 0.69 0.70 0.57 0.43 0.54 0.22 0.38 0.17
Dummy Classifier 0.00 0.00 0.00 0.00 0.66 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.25 0.06 0.50 0.24 0.66 0.68 0.51 0.33 0.50 0.18 0.34 0.13
Extra Trees 0.41 0.26 0.57 0.35 0.75 0.83 0.49 0.31 0.69 0.40 0.40 0.21
Gaussian NB 0.27 0.15 0.55 0.31 0.63 0.67 0.67 0.51 0.47 0.22 0.38 0.19
Gaussian Process 0.31 0.14 0.46 0.24 0.72 0.81 0.36 0.20 0.65 0.30 0.30 0.14
Gradient Boosting 0.49 0.28 0.64 0.38 0.78 0.83 0.59 0.36 0.71 0.41 0.47 0.24
K-Nearest Neighbors 0.21 0.09 0.44 0.24 0.67 0.73 0.38 0.29 0.51 0.21 0.28 0.14
LDA 0.44 0.24 0.62 0.35 0.76 0.81 0.57 0.34 0.67 0.36 0.45 0.21
Logistic Regression 0.44 0.24 0.61 0.33 0.76 0.82 0.56 0.30 0.67 0.38 0.44 0.20
Logistic RegressionCV 0.00 0.00 0.00 0.00 0.66 0.85 0.00 0.00 0.00 0.00 0.00 0.00
MLP 0.45 0.17 0.62 0.29 0.75 0.79 0.60 0.30 0.67 0.29 0.45 0.17
Multinomial NB 0.21 0.07 0.49 0.24 0.64 0.72 0.52 0.29 0.47 0.20 0.33 0.13
Passive Aggressive 0.32 0.03 0.46 0.26 0.70 0.15 0.46 1.00 0.63 0.15 0.32 0.15
QDA 0.09 0.03 0.51 0.26 0.37 0.18 0.98 0.98 0.35 0.15 0.35 0.15
Random Forest 0.46 0.27 0.60 0.34 0.77 0.85 0.50 0.26 0.73 0.47 0.42 0.20
Ridge Classifier 0.45 0.25 0.61 0.35 0.76 0.83 0.55 0.31 0.69 0.39 0.44 0.21
Ridge ClassifierCV 0.44 0.24 0.61 0.34 0.76 0.83 0.55 0.30 0.68 0.39 0.44 0.20
SVC 0.43 0.26 0.58 0.36 0.76 0.82 0.50 0.33 0.70 0.39 0.41 0.22
Stochastic GDescent 0.40 0.24 0.57 0.35 0.72 0.82 0.59 0.33 0.64 0.37 0.40 0.21
XGBoost 0.44 0.27 0.61 0.38 0.76 0.81 0.56 0.39 0.67 0.37 0.44 0.23

Table 11.C.11: Combined model evaluation metrics for ethambutol resistance prediction: all features
Data comprised of 178 features, with the training set consisting of 2904 SAVs combined from four genes (gidB, katG, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 858 SAVs from embB. Train-test data split was undertaken using the scaling law
principle, and model performance assessed using a stratified 10-fold cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis,
MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC:
jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.45 0.09 0.61 0.17 0.77 0.67 0.56 0.47 0.68 0.10 0.44 0.09
Bagging Classifier 0.45 0.05 0.61 0.15 0.76 0.61 0.55 0.47 0.68 0.09 0.43 0.08
Complement NB 0.24 0.07 0.54 0.15 0.61 0.36 0.68 0.79 0.44 0.08 0.37 0.08
Decision Tree 0.27 0.03 0.52 0.14 0.67 0.49 0.52 0.58 0.51 0.08 0.35 0.08
Dummy Classifier 0.00 0.00 0.00 0.00 0.67 0.93 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.23 -0.03 0.48 0.10 0.66 0.57 0.48 0.34 0.49 0.06 0.32 0.05
Extra Trees 0.40 0.01 0.56 0.12 0.75 0.63 0.48 0.37 0.67 0.07 0.39 0.07
Gaussian NB 0.30 0.04 0.56 0.14 0.66 0.24 0.64 0.87 0.50 0.08 0.39 0.08
Gaussian Process 0.35 -0.00 0.49 0.12 0.73 0.66 0.39 0.32 0.67 0.07 0.33 0.06
Gradient Boosting 0.48 -0.03 0.63 0.10 0.78 0.60 0.56 0.32 0.72 0.06 0.46 0.05
K-Nearest Neighbors 0.25 -0.02 0.45 0.11 0.69 0.65 0.39 0.29 0.55 0.07 0.29 0.06
LDA 0.43 -0.07 0.60 0.02 0.76 0.82 0.54 0.03 0.67 0.02 0.43 0.01
Logistic Regression 0.45 -0.02 0.60 0.07 0.76 0.81 0.55 0.11 0.68 0.06 0.43 0.04
Logistic RegressionCV 0.41 -0.05 0.57 0.07 0.75 0.74 0.49 0.13 0.68 0.05 0.40 0.04
MLP 0.42 0.01 0.58 0.11 0.75 0.76 0.53 0.21 0.66 0.07 0.41 0.06
Multinomial NB 0.27 0.04 0.53 0.14 0.67 0.45 0.55 0.63 0.50 0.08 0.36 0.08
Passive Aggressive 0.29 -0.04 0.38 0.00 0.67 0.91 0.38 0.00 0.70 0.00 0.25 0.00
QDA 0.09 0.03 0.51 0.13 0.37 0.08 0.98 1.00 0.34 0.07 0.34 0.07
Random Forest 0.45 -0.01 0.59 0.11 0.77 0.62 0.51 0.34 0.72 0.07 0.42 0.06
Ridge Classifier 0.44 -0.03 0.59 0.06 0.76 0.82 0.53 0.08 0.68 0.05 0.42 0.03
Ridge ClassifierCV 0.43 -0.04 0.59 0.07 0.76 0.76 0.52 0.13 0.68 0.05 0.42 0.04
SVC 0.42 0.00 0.56 0.12 0.76 0.69 0.47 0.29 0.70 0.07 0.39 0.06
Stochastic GDescent 0.31 -0.01 0.40 0.09 0.69 0.77 0.39 0.16 0.72 0.06 0.26 0.05
XGBoost 0.44 0.03 0.60 0.13 0.76 0.61 0.55 0.42 0.67 0.08 0.43 0.07

Table 11.C.12: Combined model evaluation metrics for streptomycin resistance prediction: all features
Data comprised of 176 features, with the training set consisting of 3231 SAVs combined from four genes (embB, katG, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 531 SAVs from gidB. Train-test data split was undertaken using the scaling law
principle, and model performance assessed using a stratified 10-fold cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis,
MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC:
jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.46 0.22 0.57 0.38 0.81 0.62 0.49 0.27 0.68 0.70 0.40 0.24
Bagging Classifier 0.48 0.19 0.57 0.30 0.82 0.60 0.48 0.19 0.71 0.71 0.40 0.18
Complement NB 0.20 0.17 0.45 0.59 0.59 0.58 0.66 0.66 0.34 0.53 0.29 0.41
Decision Tree 0.32 0.22 0.50 0.47 0.74 0.62 0.51 0.37 0.48 0.64 0.33 0.31
Dummy Classifier 0.00 0.00 0.00 0.00 0.75 0.55 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.21 0.07 0.41 0.38 0.70 0.55 0.42 0.30 0.41 0.51 0.26 0.23
Extra Trees 0.42 0.17 0.50 0.27 0.81 0.59 0.38 0.17 0.72 0.68 0.33 0.16
Gaussian NB 0.25 0.24 0.48 0.57 0.65 0.63 0.63 0.54 0.39 0.60 0.31 0.39
Gaussian Process 0.29 0.12 0.31 0.17 0.78 0.57 0.20 0.10 0.71 0.69 0.19 0.10
Gradient Boosting 0.50 0.20 0.59 0.27 0.83 0.60 0.50 0.17 0.73 0.74 0.42 0.16
K-Nearest Neighbors 0.21 0.10 0.34 0.28 0.74 0.57 0.27 0.18 0.49 0.57 0.21 0.16
LDA 0.46 0.22 0.56 0.38 0.81 0.61 0.49 0.26 0.67 0.69 0.39 0.23
Logistic Regression 0.46 0.22 0.56 0.37 0.81 0.61 0.47 0.25 0.69 0.71 0.39 0.23
Logistic RegressionCV 0.40 0.19 0.48 0.33 0.81 0.60 0.39 0.22 0.64 0.69 0.33 0.20
MLP 0.43 0.16 0.54 0.26 0.80 0.59 0.47 0.16 0.66 0.67 0.37 0.15
Multinomial NB 0.22 0.17 0.42 0.45 0.71 0.60 0.41 0.36 0.42 0.59 0.26 0.29
Passive Aggressive 0.32 0.30 0.38 0.60 0.73 0.65 0.42 0.59 0.67 0.62 0.25 0.43
QDA 0.07 0.14 0.41 0.63 0.29 0.49 0.98 0.98 0.26 0.47 0.26 0.46
Random Forest 0.47 0.17 0.53 0.13 0.82 0.58 0.41 0.07 0.78 0.90 0.37 0.07
Ridge Classifier 0.46 0.20 0.55 0.31 0.82 0.60 0.45 0.20 0.71 0.70 0.38 0.18
Ridge ClassifierCV 0.45 0.20 0.54 0.31 0.81 0.60 0.43 0.20 0.72 0.70 0.37 0.18
SVC 0.39 0.15 0.42 0.19 0.80 0.58 0.29 0.11 0.77 0.74 0.27 0.10
Stochastic GDescent 0.36 0.35 0.45 0.65 0.73 0.67 0.48 0.68 0.63 0.63 0.29 0.49
XGBoost 0.50 0.18 0.60 0.28 0.82 0.59 0.53 0.18 0.71 0.71 0.43 0.16

Table 11.C.13: Combined model evaluation metrics for isoniazid resistance prediction: all features
Data comprised of 176 features, with the training set consisting of 2945 SAVs combined from four genes (embB, gidB, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 817 SAVs from katG. Train-test data split was undertaken using the scaling law
principle, and model performance assessed using a stratified 10-fold cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis,
MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC:
jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.38 0.23 0.50 0.68 0.78 0.62 0.42 0.66 0.62 0.69 0.33 0.51
Bagging Classifier 0.42 0.38 0.53 0.78 0.80 0.71 0.44 0.88 0.66 0.70 0.36 0.64
Complement NB 0.16 0.24 0.43 0.73 0.56 0.65 0.65 0.82 0.33 0.66 0.28 0.58
Decision Tree 0.29 0.17 0.47 0.69 0.72 0.61 0.48 0.73 0.47 0.65 0.31 0.52
Dummy Classifier 0.00 0.00 0.00 0.00 0.74 0.41 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.15 0.13 0.38 0.57 0.67 0.55 0.38 0.50 0.37 0.66 0.23 0.40
Extra Trees 0.34 0.29 0.42 0.60 0.78 0.62 0.32 0.48 0.64 0.78 0.27 0.43
Gaussian NB 0.24 0.17 0.47 0.60 0.64 0.58 0.62 0.53 0.38 0.68 0.31 0.42
Gaussian Process 0.21 0.24 0.24 0.37 0.76 0.53 0.15 0.23 0.60 0.87 0.14 0.22
Gradient Boosting 0.43 0.39 0.53 0.77 0.80 0.71 0.43 0.83 0.69 0.72 0.36 0.63
K-Nearest Neighbors 0.17 0.20 0.32 0.50 0.73 0.55 0.25 0.38 0.45 0.74 0.19 0.33
LDA 0.39 0.31 0.50 0.73 0.79 0.67 0.42 0.74 0.64 0.71 0.34 0.57
Logistic Regression 0.39 0.34 0.49 0.74 0.79 0.68 0.39 0.78 0.66 0.71 0.32 0.59
Logistic RegressionCV 0.00 0.00 0.00 0.00 0.74 0.41 0.00 0.00 0.00 0.00 0.00 0.00
MLP 0.38 0.20 0.48 0.68 0.79 0.62 0.39 0.70 0.64 0.67 0.32 0.52
Multinomial NB 0.17 0.23 0.35 0.59 0.70 0.59 0.31 0.49 0.41 0.73 0.22 0.41
Passive Aggressive 0.26 0.20 0.35 0.48 0.66 0.55 0.46 0.35 0.61 0.75 0.22 0.32
QDA 0.06 0.06 0.42 0.74 0.29 0.59 0.97 0.99 0.26 0.59 0.26 0.59
Random Forest 0.36 0.37 0.42 0.70 0.79 0.68 0.30 0.63 0.72 0.78 0.27 0.53
Ridge Classifier 0.37 0.32 0.46 0.71 0.79 0.67 0.35 0.70 0.67 0.73 0.30 0.56
Ridge ClassifierCV 0.36 0.35 0.43 0.73 0.79 0.69 0.32 0.73 0.69 0.74 0.28 0.58
SVC 0.25 0.24 0.23 0.43 0.77 0.54 0.14 0.30 0.76 0.81 0.13 0.28
Stochastic GDescent 0.34 0.39 0.41 0.79 0.77 0.71 0.36 0.91 0.66 0.69 0.27 0.65
XGBoost 0.43 0.41 0.54 0.78 0.80 0.72 0.46 0.82 0.65 0.73 0.37 0.63

Table 11.C.14: Combined model evaluation metrics for pyrazinamide resistance prediction: all features
Data comprised of 176 features, with the training set consisting of 3338 SAVs combined from four genes (embB, gidB, katG, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 424 SAVs from pncA. Train-test data split was undertaken using the scaling law
principle, and model performance assessed using a stratified 10-fold cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis,
MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC:
jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.45 0.29 0.60 0.42 0.78 0.74 0.55 0.32 0.66 0.60 0.43 0.26
Bagging Classifier 0.48 0.31 0.61 0.39 0.79 0.75 0.54 0.27 0.71 0.68 0.44 0.24
Complement NB 0.20 0.25 0.49 0.50 0.58 0.65 0.68 0.58 0.38 0.43 0.33 0.33
Decision Tree 0.32 0.19 0.53 0.43 0.71 0.67 0.54 0.43 0.52 0.42 0.36 0.27
Dummy Classifier 0.00 0.00 0.00 0.00 0.70 0.71 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.20 0.12 0.44 0.35 0.66 0.66 0.45 0.31 0.44 0.39 0.29 0.21
Extra Trees 0.41 0.31 0.53 0.37 0.77 0.75 0.44 0.25 0.68 0.70 0.37 0.23
Gaussian NB 0.28 0.26 0.53 0.48 0.65 0.70 0.67 0.48 0.44 0.48 0.36 0.32
Gaussian Process 0.28 0.22 0.37 0.23 0.74 0.73 0.26 0.14 0.65 0.69 0.23 0.13
Gradient Boosting 0.50 0.35 0.62 0.43 0.80 0.76 0.55 0.30 0.72 0.71 0.45 0.27
K-Nearest Neighbors 0.22 0.20 0.41 0.32 0.70 0.72 0.34 0.23 0.50 0.53 0.26 0.19
LDA 0.42 0.29 0.58 0.40 0.77 0.74 0.53 0.30 0.63 0.62 0.41 0.25
Logistic Regression 0.45 0.36 0.59 0.46 0.78 0.76 0.54 0.35 0.66 0.68 0.42 0.30
Logistic RegressionCV 0.39 0.33 0.52 0.45 0.77 0.75 0.47 0.35 0.59 0.64 0.37 0.29
MLP 0.41 0.33 0.56 0.49 0.76 0.74 0.52 0.42 0.62 0.58 0.39 0.32
Multinomial NB 0.21 0.25 0.44 0.40 0.67 0.72 0.44 0.32 0.45 0.54 0.29 0.25
Passive Aggressive 0.30 0.30 0.46 0.46 0.65 0.73 0.59 0.40 0.56 0.56 0.31 0.30
QDA 0.06 0.09 0.46 0.46 0.32 0.35 0.98 0.96 0.30 0.30 0.30 0.30
Random Forest 0.45 0.35 0.56 0.37 0.79 0.76 0.45 0.24 0.73 0.80 0.39 0.23
Ridge Classifier 0.43 0.33 0.57 0.41 0.78 0.76 0.50 0.29 0.67 0.69 0.40 0.26
Ridge ClassifierCV 0.43 0.33 0.57 0.41 0.78 0.76 0.50 0.29 0.67 0.69 0.40 0.26
SVC 0.40 0.34 0.52 0.41 0.77 0.76 0.41 0.28 0.70 0.72 0.35 0.25
Stochastic GDescent 0.37 0.28 0.50 0.26 0.74 0.74 0.51 0.16 0.62 0.81 0.35 0.15
XGBoost 0.48 0.33 0.61 0.43 0.79 0.76 0.55 0.31 0.69 0.67 0.44 0.27

Table 11.C.15: Combined model evaluation metrics for rifampicin resistance prediction: all features
Data comprised of 176 features, with the training set consisting of 2630 SAVs combined from four genes (embB, gidB, katG, and pncA) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 1132 SAVs from rpoB. Train-test data split was undertaken using the scaling law
principle, and model performance assessed using a stratified 10-fold cross validation method. Abbreviations used: CV: cross validation, LDA: linear discriminant analysis,
MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews correlation coefficient, JCC:
jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.45 0.25 0.62 0.34 0.76 0.83 0.57 0.31 0.67 0.39 0.45 0.21
Bagging Classifier 0.45 0.28 0.61 0.39 0.76 0.82 0.55 0.38 0.69 0.40 0.44 0.24
Complement NB 0.35 0.28 0.59 0.40 0.68 0.77 0.68 0.53 0.53 0.32 0.42 0.25
Decision Tree 0.32 0.18 0.55 0.32 0.69 0.72 0.55 0.45 0.55 0.25 0.38 0.19
Dummy Classifier 0.00 0.00 0.00 0.00 0.66 0.85 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.30 0.10 0.54 0.27 0.68 0.67 0.54 0.42 0.54 0.20 0.37 0.16
Extra Trees 0.46 0.28 0.61 0.37 0.77 0.84 0.54 0.31 0.71 0.44 0.44 0.22
Gaussian NB 0.36 0.24 0.57 0.36 0.71 0.81 0.56 0.36 0.58 0.35 0.40 0.22
Gaussian Process 0.44 0.25 0.61 0.35 0.75 0.82 0.56 0.32 0.66 0.39 0.44 0.21
Gradient Boosting 0.49 0.28 0.64 0.37 0.78 0.83 0.58 0.33 0.71 0.42 0.47 0.23
K-Nearest Neighbors 0.41 0.21 0.60 0.34 0.74 0.78 0.57 0.39 0.63 0.30 0.43 0.21
LDA 0.42 0.30 0.59 0.39 0.75 0.84 0.54 0.35 0.67 0.45 0.42 0.24
Logistic Regression 0.44 0.27 0.61 0.36 0.76 0.83 0.55 0.31 0.67 0.41 0.44 0.22
Logistic RegressionCV 0.36 0.24 0.48 0.32 0.74 0.84 0.39 0.26 0.64 0.41 0.33 0.19
MLP 0.43 0.25 0.60 0.36 0.75 0.82 0.55 0.34 0.67 0.38 0.43 0.22
Multinomial NB 0.15 0.16 0.24 0.15 0.67 0.85 0.16 0.09 0.57 0.50 0.14 0.08
Passive Aggressive 0.32 0.00 0.55 0.26 0.61 0.15 0.74 1.00 0.54 0.15 0.39 0.15
QDA 0.35 0.17 0.52 0.29 0.73 0.79 0.44 0.29 0.65 0.30 0.35 0.17
Random Forest 0.47 0.34 0.62 0.40 0.77 0.86 0.55 0.31 0.72 0.54 0.45 0.25
Ridge Classifier 0.43 0.31 0.59 0.39 0.75 0.84 0.53 0.34 0.68 0.46 0.42 0.24
Ridge ClassifierCV 0.45 0.29 0.60 0.38 0.76 0.84 0.53 0.33 0.70 0.44 0.43 0.23
SVC 0.44 0.27 0.61 0.36 0.76 0.83 0.54 0.33 0.69 0.40 0.43 0.22
Stochastic GDescent 0.41 0.24 0.55 0.30 0.73 0.85 0.53 0.22 0.68 0.46 0.39 0.18
XGBoost 0.46 0.29 0.62 0.39 0.76 0.82 0.58 0.38 0.68 0.40 0.45 0.24

Table 11.C.16: Combined model evaluation metrics for ethambutol resistance prediction: post feature selection
Data comprised of 178 features, with the training set consisting of 2904 SAVs combined from four genes (gidB, katG, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 858 SAVs from embB. Train-test data split was undertaken using the scaling law
principle, followed by the Boruta feature selection process11 which identified 32 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA:
linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews
correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.45 0.08 0.62 0.16 0.77 0.63 0.57 0.50 0.68 0.10 0.45 0.09
Bagging Classifier 0.44 -0.03 0.60 0.10 0.76 0.60 0.52 0.32 0.69 0.06 0.42 0.05
Complement NB 0.41 0.04 0.62 0.14 0.72 0.47 0.68 0.63 0.57 0.08 0.45 0.08
Decision Tree 0.29 -0.04 0.53 0.11 0.68 0.42 0.54 0.50 0.52 0.06 0.36 0.06
Dummy Classifier 0.00 0.00 0.00 0.00 0.67 0.93 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.25 0.04 0.50 0.14 0.67 0.59 0.51 0.47 0.50 0.08 0.34 0.08
Extra Trees 0.44 -0.00 0.59 0.12 0.76 0.60 0.52 0.37 0.70 0.07 0.42 0.06
Gaussian NB 0.39 0.06 0.59 0.14 0.73 0.12 0.58 1.00 0.60 0.07 0.42 0.07
Gaussian Process 0.45 -0.03 0.60 0.09 0.76 0.71 0.54 0.21 0.68 0.06 0.43 0.05
Gradient Boosting 0.47 -0.04 0.62 0.10 0.77 0.60 0.55 0.32 0.71 0.06 0.45 0.05
K-Nearest Neighbors 0.38 0.03 0.57 0.14 0.73 0.59 0.53 0.45 0.62 0.08 0.40 0.07
LDA 0.43 0.00 0.59 0.10 0.76 0.77 0.53 0.18 0.68 0.07 0.42 0.05
Logistic Regression 0.43 -0.02 0.59 0.09 0.76 0.77 0.53 0.16 0.67 0.06 0.42 0.05
Logistic RegressionCV 0.42 -0.00 0.58 0.11 0.76 0.75 0.52 0.21 0.67 0.07 0.41 0.06
MLP 0.42 -0.02 0.59 0.09 0.76 0.76 0.52 0.16 0.67 0.06 0.42 0.05
Multinomial NB 0.26 -0.06 0.33 0.07 0.71 0.70 0.22 0.16 0.69 0.04 0.20 0.04
Passive Aggressive 0.27 -0.01 0.31 0.06 0.70 0.87 0.24 0.05 0.74 0.06 0.20 0.03
QDA 0.34 0.06 0.56 0.15 0.69 0.69 0.57 0.39 0.58 0.09 0.39 0.08
Random Forest 0.47 -0.03 0.61 0.11 0.77 0.59 0.53 0.34 0.72 0.06 0.44 0.06
Ridge Classifier 0.43 0.00 0.59 0.11 0.76 0.78 0.52 0.18 0.68 0.07 0.42 0.06
Ridge ClassifierCV 0.43 0.00 0.59 0.11 0.76 0.78 0.52 0.18 0.68 0.07 0.42 0.06
SVC 0.42 -0.04 0.58 0.08 0.76 0.70 0.49 0.18 0.69 0.05 0.41 0.04
Stochastic GDescent 0.38 0.01 0.51 0.11 0.73 0.81 0.46 0.16 0.69 0.08 0.35 0.06
XGBoost 0.44 -0.03 0.60 0.11 0.76 0.52 0.54 0.42 0.68 0.06 0.43 0.06

Table 11.C.17: Combined model evaluation metrics for streptomycin resistance prediction: post feature selection
Data comprised of 176 features, with the training set consisting of 3231 SAVs combined from four genes (embB, katG, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 531 SAVs from gidB. Train-test data split was undertaken using the scaling law
principle, followed by the Boruta feature selection process11 which identified 39 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA:
linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews
correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.

434



Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.46 0.23 0.57 0.33 0.81 0.61 0.49 0.21 0.68 0.75 0.40 0.19
Bagging Classifier 0.50 0.16 0.60 0.28 0.83 0.59 0.51 0.18 0.72 0.67 0.43 0.16
Complement NB 0.34 0.28 0.53 0.63 0.71 0.64 0.65 0.67 0.45 0.59 0.36 0.46
Decision Tree 0.33 0.13 0.50 0.40 0.74 0.58 0.51 0.31 0.49 0.56 0.33 0.25
Dummy Classifier 0.00 0.00 0.00 0.00 0.75 0.55 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.33 0.10 0.50 0.39 0.75 0.57 0.51 0.31 0.50 0.53 0.34 0.25
Extra Trees 0.50 0.15 0.58 0.19 0.83 0.58 0.48 0.11 0.75 0.74 0.41 0.10
Gaussian NB 0.36 0.28 0.52 0.49 0.76 0.64 0.52 0.38 0.52 0.69 0.35 0.33
Gaussian Process 0.47 0.23 0.56 0.42 0.82 0.62 0.46 0.30 0.72 0.68 0.39 0.27
Gradient Boosting 0.50 0.16 0.59 0.25 0.83 0.59 0.50 0.15 0.73 0.70 0.42 0.14
K-Nearest Neighbors 0.42 0.15 0.54 0.42 0.79 0.59 0.49 0.33 0.62 0.57 0.37 0.27
LDA 0.48 0.24 0.57 0.39 0.82 0.62 0.48 0.27 0.70 0.71 0.40 0.24
Logistic Regression 0.45 0.26 0.55 0.44 0.81 0.63 0.45 0.32 0.70 0.71 0.38 0.28
Logistic RegressionCV 0.45 0.26 0.54 0.42 0.81 0.63 0.44 0.30 0.71 0.72 0.37 0.27
MLP 0.45 0.20 0.55 0.37 0.81 0.61 0.46 0.25 0.69 0.67 0.38 0.23
Multinomial NB 0.20 0.11 0.25 0.14 0.76 0.57 0.16 0.08 0.58 0.69 0.14 0.08
Passive Aggressive 0.34 0.17 0.43 0.33 0.71 0.59 0.51 0.22 0.61 0.65 0.28 0.20
QDA 0.31 0.14 0.50 0.43 0.71 0.59 0.54 0.35 0.48 0.57 0.33 0.28
Random Forest 0.51 0.18 0.59 0.15 0.83 0.58 0.47 0.08 0.78 0.88 0.41 0.08
Ridge Classifier 0.44 0.21 0.52 0.31 0.81 0.61 0.42 0.20 0.72 0.74 0.36 0.18
Ridge ClassifierCV 0.45 0.23 0.52 0.32 0.81 0.61 0.41 0.20 0.74 0.77 0.35 0.19
SVC 0.46 0.20 0.53 0.32 0.82 0.60 0.41 0.21 0.75 0.70 0.36 0.19
Stochastic GDescent 0.41 0.31 0.45 0.58 0.80 0.66 0.35 0.53 0.77 0.66 0.30 0.41
XGBoost 0.50 0.11 0.60 0.24 0.82 0.57 0.53 0.15 0.70 0.61 0.43 0.14

Table 11.C.18: Combined model evaluation metrics for isoniazid resistance prediction: post feature selection
Data comprised of 176 features, with the training set consisting of 2945 SAVs combined from four genes (embB, gidB, pncA, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 817 SAVs from katG. Train-test data split was undertaken using the scaling law
principle, followed by the Boruta feature selection process11 which identified 31 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA:
linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews
correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.40 0.27 0.51 0.71 0.79 0.65 0.43 0.74 0.64 0.69 0.34 0.55
Bagging Classifier 0.42 0.40 0.52 0.79 0.80 0.71 0.44 0.88 0.66 0.71 0.36 0.65
Complement NB 0.31 0.40 0.52 0.79 0.67 0.71 0.68 0.95 0.42 0.68 0.35 0.66
Decision Tree 0.27 0.17 0.47 0.68 0.72 0.61 0.48 0.70 0.46 0.66 0.30 0.51
Dummy Classifier 0.00 0.00 0.00 0.00 0.74 0.41 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.25 0.17 0.45 0.64 0.71 0.59 0.46 0.61 0.44 0.67 0.29 0.47
Extra Trees 0.40 0.46 0.49 0.79 0.80 0.74 0.38 0.82 0.69 0.76 0.33 0.65
Gaussian NB 0.30 0.31 0.46 0.76 0.74 0.68 0.44 0.88 0.50 0.67 0.30 0.62
Gaussian Process 0.39 0.33 0.48 0.74 0.79 0.68 0.38 0.78 0.66 0.71 0.32 0.59
Gradient Boosting 0.43 0.40 0.52 0.78 0.80 0.72 0.43 0.86 0.68 0.72 0.36 0.64
K-Nearest Neighbors 0.36 0.26 0.49 0.68 0.77 0.63 0.42 0.66 0.59 0.70 0.32 0.52
LDA 0.38 0.42 0.48 0.78 0.79 0.72 0.38 0.82 0.66 0.74 0.32 0.63
Logistic Regression 0.39 0.39 0.48 0.76 0.79 0.71 0.37 0.79 0.67 0.73 0.31 0.61
Logistic RegressionCV 0.05 0.00 0.05 0.00 0.75 0.41 0.03 0.00 0.15 0.00 0.03 0.00
MLP 0.39 0.31 0.49 0.77 0.79 0.68 0.40 0.89 0.65 0.67 0.33 0.62
Multinomial NB 0.04 0.00 0.02 0.00 0.74 0.41 0.01 0.00 0.40 0.00 0.01 0.00
Passive Aggressive 0.25 0.04 0.32 0.01 0.73 0.41 0.35 0.00 0.50 1.00 0.21 0.00
QDA 0.29 0.27 0.43 0.73 0.76 0.66 0.36 0.78 0.54 0.68 0.28 0.57
Random Forest 0.42 0.44 0.50 0.79 0.80 0.73 0.39 0.83 0.72 0.75 0.34 0.65
Ridge Classifier 0.37 0.36 0.44 0.73 0.79 0.69 0.32 0.72 0.70 0.74 0.28 0.58
Ridge ClassifierCV 0.36 0.37 0.42 0.72 0.79 0.69 0.30 0.69 0.72 0.76 0.26 0.57
SVC 0.36 0.40 0.41 0.74 0.79 0.70 0.29 0.71 0.72 0.77 0.26 0.59
Stochastic GDescent 0.33 0.32 0.38 0.59 0.77 0.62 0.30 0.47 0.72 0.80 0.24 0.42
XGBoost 0.40 0.40 0.53 0.78 0.78 0.72 0.47 0.85 0.60 0.72 0.36 0.64

Table 11.C.19: Combined model evaluation metrics for pyrazinamide resistance prediction: post feature selection
Data comprised of 176 features, with the training set consisting of 3338 SAVs combined from four genes (embB, gidB, katG, and rpoB) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 424 SAVs from pncA. Train-test data split was undertaken using the scaling law
principle, followed by the Boruta feature selection process11 which identified 24 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA:
linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews
correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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Model Name MCC Train MCC Test F1 Train F1 Test Accuracy
Train

Accuracy
Test

Recall
Train

Recall
Test

Precision
Train

Precision
Test JCC Train JCC Test

AdaBoost Classifier 0.46 0.35 0.60 0.45 0.79 0.76 0.55 0.33 0.67 0.68 0.43 0.29
Bagging Classifier 0.31 0.40 0.75 0.29 0.67 0.25
Complement NB 0.38 0.35 0.59 0.54 0.68 0.73 0.76 0.55 0.48 0.53 0.42 0.37
Decision Tree 0.37 0.23 0.56 0.46 0.73 0.68 0.57 0.46 0.55 0.45 0.39 0.30
Dummy Classifier 0.00 0.00 0.00 0.00 0.70 0.71 0.00 0.00 0.00 0.00 0.00 0.00
Extra Tree 0.29 0.19 0.50 0.44 0.70 0.65 0.50 0.48 0.50 0.41 0.33 0.28
Extra Trees 0.45 0.34 0.58 0.42 0.78 0.76 0.51 0.30 0.69 0.70 0.41 0.27
Gaussian NB 0.37 0.30 0.56 0.45 0.73 0.74 0.58 0.37 0.55 0.57 0.39 0.29
Gaussian Process 0.45 0.37 0.59 0.48 0.78 0.77 0.53 0.37 0.67 0.68 0.42 0.31
Gradient Boosting 0.50 0.40 0.62 0.47 0.80 0.78 0.55 0.34 0.72 0.75 0.45 0.31
K-Nearest Neighbors 0.38 0.31 0.54 0.45 0.75 0.74 0.49 0.37 0.61 0.58 0.37 0.29
LDA 0.46 0.35 0.59 0.44 0.78 0.76 0.53 0.32 0.68 0.69 0.42 0.28
Logistic Regression 0.46 0.37 0.59 0.48 0.79 0.77 0.53 0.36 0.69 0.69 0.42 0.31
Logistic RegressionCV 0.45 0.37 0.58 0.47 0.78 0.77 0.51 0.35 0.68 0.70 0.41 0.31
MLP 0.46 0.39 0.60 0.48 0.79 0.77 0.55 0.36 0.68 0.72 0.43 0.32
Multinomial NB -0.02 0.20 0.00 0.11 0.70 0.73 0.00 0.06 0.00 1.00 0.00 0.06
Passive Aggressive 0.32 0.38 0.48 0.58 0.66 0.70 0.62 0.73 0.53 0.49 0.34 0.41
QDA 0.37 0.22 0.54 0.38 0.75 0.71 0.49 0.30 0.60 0.52 0.37 0.23
Random Forest 0.49 0.36 0.61 0.42 0.80 0.77 0.52 0.29 0.73 0.75 0.43 0.27
Ridge Classifier 0.45 0.36 0.58 0.44 0.79 0.77 0.50 0.32 0.69 0.71 0.41 0.28
Ridge ClassifierCV 0.44 0.38 0.57 0.47 0.78 0.77 0.49 0.34 0.68 0.72 0.40 0.30
SVC 0.45 0.38 0.59 0.47 0.78 0.77 0.51 0.35 0.69 0.71 0.41 0.31
Stochastic GDescent 0.45 0.39 0.57 0.45 0.77 0.77 0.56 0.32 0.66 0.76 0.41 0.29
XGBoost 0.45 0.39 0.59 0.47 0.78 0.77 0.54 0.35 0.67 0.72 0.42 0.31

Table 11.C.20: Combined model evaluation metrics for rifampicin resistance prediction: post feature selection
Data comprised of 176 features, with the training set consisting of 2630 SAVs combined from four genes (embB, gidB, katG, and pncA) based on the ‘leave-one-gene-out’
approach to test predictions on the ‘left out’ (i.e. test) gene. The test set comprised of 1132 SAVs from rpoB. Train-test data split was undertaken using the scaling law
principle, followed by the Boruta feature selection process11 which identified 30 features optimised for the MCC score. Abbreviations used: CV: cross validation, LDA:
linear discriminant analysis, MLP: multilayer perceptron, NB: naive Bayes, QDA: quadratic discriminant analysis, SVC: support vector classification, MCC: Matthews
correlation coefficient, JCC: jaccard similarity coefficient, SAV: single amino acid variation.
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11.D AI/ML Model Explorer dashboard

Figure 11.D.1: AI/ML Model Explorer interface
The web interface for the AI/ML Model Explorer makes it easy to visually compare the various ML approaches
applied to the gene-specific and gene-agnostic data. The upper plot shows the ‘baseline’ model with all features
(highlighted in red). The lower plot shows models after feature selection (highlighted in blue). On the sidebar
(highlighted in green) are controls appropriate to the current graph model (‘Combined’ or ‘Gene’, highlighted
in yellow). Several resampling techniques (also highlighted in green) may be explored to illustrate differences
in model performance. Note that the Feature Selection plot is not affected by this option.
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Chapter 12

Discussion,

Conclusion, and

Future Work
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12.1 Discussion

The thesis focussed on three aspects of understanding resistance development in six structural M.

tuberculosis genes: 1) investigating the relationship between genomic and biophysical measures of

SAV mutations in six structural M. tuberculosis genes, with a web-based visualisation tool developed

to investigate these multiple targets interactively, 2) resistance profiling of SAVs by lineage, and 3)

resistance prediction in a machine learning framework in a gene-target as well as a gene-agnostic

manner. To the best of our knowledge, this project is the first attempt to combine genomic and

structural impacts of SAV mutations to further the understanding of resistance development in M.

tuberculosis. The project utilised the largest dataset available to date incorporating over 35,000 clinical

isolates from more than 100 countries containing 12,935 unique SAVs in the protein coding region of

the recorded genes in the dataset. Nearly 80% (n=28,217) of the isolates displayed over 4000 SAVs

across the six genes investigated in this thesis. The thesis also explored the GidB and EmbB protein

structural landscape in a manner not previously attempted. Standard statistical and machine learning

techniques were used systematically to explore these dynamics individually as well as in a combined

manner. While some individual genes and their structural mutational landscapes have been explored

by others,1–5 this thesis brings together a large genomic dataset, protein structure and machine learning

for a comprehensive insight into the genotype-phenotype relationship.

Chapters 3-8 elucidate the complex genotype-phenotype relationship related to resistance develop-

ment. Computational tools based on different underlying methodologies provide different information

with respect to mutational effects. Sequence based methods (ConSurf, PROVEAN, and SNAP2) rely

on evolutionary conservation and substitution matrices to estimate impact on protein function, while

structure based methods (DeepDDG, Dynamut2, mCSM-DUET, and FoldX) consider the protein

structural environment to assess mutational impact on structure stability. The evolutionary-based

methods are aimed at predicting pathogenic effects of variants while the structure-based tools are

aimed at predicting structure stability consequences without regard for pathogenicity. Hence, a vari-

ant classified as ‘deleterious’ to protein conservation may display gain-of-function in the presence

of a drug through optimised protein stability. Therefore, when assessing specific proteins, different

methodological strategies should be used as these benefit from distinct and complementary insights

to understand the genotype-phenotype interrelationship.6–8

With SAVs distributed across the protein and extending beyond the active site in all six structural

genes, allosteric mutational effects becomes necessary to consider. Allostery is defined as the transmis-

sion of information spatially from one site to another in a protein.9 In the context of drug resistance,
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these are those phenotypically resistant mutations that occur outside the active site. Allosteric ef-

fects are brought about by conferring protomer stability and non-ligand interaction affinities without

directly affecting the drug binding affinity. Further, it also appeared that SAVs imparting drastic

enthalpic changes associated with high fitness penalty for one biophysical measure (e.g. protein sta-

bility) is compensated by more favourable effects on other measures (e.g. NA affinity). In this way

compensatory effects related to different enthalpic changes for a given SAV, as well compensatory

effects between SAVs play a role in acquisition of resistance. Another notion that emerged was that

selection pressure from multiple drugs owing to treatment regimens may also contribute to the re-

sistance development. For example, it has been reported that the embB 306 mutation predisposes

strains to acquire resistance to INH and RFP.10

In the course of these analyses, it became apparent that DST data currently used to confirm resistance

in TB diagnosis is suboptimal. This is primarily due to the time-consuming culture-based methods for

DST, as well as the difficulty in quantifying resistance thresholds, for certain drugs like EMB (poor

solubility11 and DCS (poor reliability).12 DST is recognised to be highly variable with respect to the

cut-off thresholds for different drugs as well as in a drug for a given mutation from different strains13,14

highlighting major issues in its widespread use for classifying mutations. It would appear that DST

data results would benefit from including corresponding MIC values that help quantify the extent of

drug resistance.

Another important consideration brought to light was the need to consider multiple SAVs (in the same

gene or across multiple genes) occurring in the same clinical isolate. This becomes especially important

when warranting the use of whole genome sequencing or GWAS based resistance inference, as a way of

substituting DST in M. tuberculosis. In the context of estimating the biophysical impact of SAVs, an

improved strategy might include modelling the protein structure with co-occurring mutations to get a

better and direct estimates of protomer stability and drug/PPI/NA binding affinities. Alternatively,

computational tools predicting local and global biophysical changes of multiple mutations (concomitant

or haplotype combinations) can improve mutational effect predictions. In general, it is thought that

mutations with a low bacterial or protein fitness cost get ‘fixed’ in the population. A classic example is

that of katG S315T mutation, that has a selection advantage, where it is low fitness and high resistance

–the ‘sweet spot’, and thus becomes enriched or abundant in the bacterial population.15 If certain

combination of mutations occur frequently in a population, it implies that concomitant haplotypes

for such gene-drug combinations improve protein and bacterial fitness especially in the presence of a

drug. Conversely, if a mutation always occurs with compensatory mutations, it is thought to have

a high fitness cost. Protein fitness and resistance acquisition thus operates in a complex landscape
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involving interactions of different enthalpic measures, concomitant and compensatory mutations, and

mutational frequency in interacting proteins.

The assumption of independence of individual polymorphisms is important at first to help establish

the ‘baseline’ understanding of mutational impact on protein structure and binding partner affinity.

As such, in these analyses, Odds Ratio for each SAV was calculated based on a contingency table

used to classify outcomes (resistance) in rows and columns from the entire data set. The number

in each cell indicates the frequency, whether a given SAV is resistant or sensitive according to DST.

Such an approach is not able to account for concomitant mutations. Appropriate statistical meth-

ods akin to logistic regression and the kinship matrix can help account for the dependency among

SAVs correlated with phenotypes due to the underlying M. tuberculosis population structure. Further

improvements can be made where DST results are accompanied by corresponding MIC values that

help quantify the extent of resistance. Furthermore, the strengths of GWAS studies could be better

utilised by incorporating added measures (dN/dS: rate of non-synonymous to synonymous mutations)

able to quantify selection pressures, to improve the combined genomics and structure approach to

understanding resistance development.

With the identified need to account for the underlying population structure of M. tuberculosis, an

initial attempt was made to investigate mutational effects across lineages. Chapter 10 extended the

lineage information to explore the epistatic landscape of M. tuberculosis with respect to the six gene

targets. While only a preliminary analysis, the insights gained were valuable and highlighted that a

given mutation can potentially be resistant in one lineage but sensitive in another. Consequently, strain

diversity (i.e. lineage effects) becomes important to consider, not only for a holistic understanding

of resistance development,16–19 but also for clinical management and personalised therapy in TB.20,21

Taken together, these insights from Chapter 10 help to illustrate the complex resistance landscape

and the importance of considering the genetic background in understanding resistance evolution in

TB. Ultimately, the work in this thesis resonates with other findings that suggest that the relevance of

lineage and strain effects are more pronounced in M. tuberculosis than originally believed. Pervasive

epistatic interactions involving compensatory mutations invariably affect the fitness of drug resistant

strains,16,17,22 as well as evidence for seemingly incompatible mutations becoming fixed in different

lineages in general.23 Altogether, these observations and inferences warrant the need to understand

resistance development in response to phenotypic pressure exerted by treatment regimens, lineage

information and co-occurring SAVs in clinical isolates. The analysis performed here presents a frame-

work to analyse mutational data with respect to M. tuberculosis lineages, and to inform resistance

profiling of DST data to utilise M. tuberculosis strain diversity.
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Building on the detailed analyses of mutations and their effects explored in Chapters 9, and the

importance of considering strain diversity in Chapter 10, the work in Chapter 11 sought to leverage

all observations (features) analysed across the multiple targets to build machine learning models to

predict resistance in a gene-target, as well as in a combined, gene-agnostic manner. There are several

resistance prediction tools for M. tuberculosis exploiting WGS data directly13,24–27 with TB-Profiler25

and Mykrobe26 currently being the two leading ones. Additionally, ML driven approaches have built

on these advancements of resistance prediction27,28 while others have furthered these by including

additional data (features) like protein stability, binding affinity (drug, nucleic acid, PPI), residue level

properties (surface area, depth, etc.) towards resistance prediction.2,4,29,30

Most ML tools reporting on the performance of their respective resistance predictions primarily focus

on accuracy and ROC curves,28,29 and to a lesser extent on precision and recall scores,27,31 with only a

handful of tools reporting the more balanced MCC metric.2,30 The SUSPECT-PZA2 and SUSPECT-

RIF30 tools are freely available, fast and easy to use and of great benefit to the wider scientific

community. The ML analysis performed in this project optimised for the MCC score. Considering

that existing tools such as SUSPECT-PZA2 and SUSPECT-RIF30 are closely aligned due to using

shared features like protein stability, binding affinity changes, and residue level properties, comparing

performance with these tools serves as a good indicator of the overall reliability in the method for

building individual gene-drug target models, as well as the potential of a combined model. While

both these tools marginally outperform the PncA-PZA and RpoB-RFP individual models developed

during this project, their differences brought useful insights to the fore. Firstly, ML features used

in my analysis included estimates from other computational stability predictor tools like FoldX and

DeepDDG, as well as from genomic features like allele frequency, lineage information, and mutational

site frequency. In SUSPECT-PZA,2 the final model performance achieved an MCC score of 0.6,

however the authors do not separately report the train and test MCC scores to inform about the

‘learning’ capacity of the model. If we consider the baseline model with all features included and

do not apply the <0.1 difference in train-test MCC scores, then the PncA-PZA model implemented

here is equally able to achieve an MCC score of 0.64 using Random Forest, the same model used

in SUSPECT-PZA. However, when respecting the criteria set out in the current analysis, the MCC

score of 0.5 is thought to be comparable. Additionally, the features generated in these analyses span

a wide range of different tools and include genomics features to allow an inter-disciplinary approach

to predicting resistance.

Similarly, SUSPECT-RIF,30 an ML driven RFP resistance predictor, also achieved a final MCC score

of 0.6 using the KNN model. The study generated additional structural features and then performed
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a ‘greedy’ feature selection via in-house scripts. Greedy feature selection is time consuming and

computationally intensive as it needs to iteratively add or drop features at each stage to derive the

final model. Due to its exhaustive nature, it is therefore more effective when used on smaller data sets.

The final MCC score in my analysis for RpoB-RFP was 0.5 using XGBoost, which, when including the

non-overlapping features and the use of a different and efficient feature selection strategy (BoruatPy,

see Chapter 11, methods section) used, is comparable. When the RFECV greedy feature selection

algorithm (available from Python scikit-learn32) was attempted in this analysis, major run-time issues

were encountered, with some algorithms taking >15 hours to run on a 96 core Xeon workstation with

128 GiB of RAM. This was for a single gene-target and single train-test split type, making it unfeasible

to attempt multiple iterations for streamlining the ML pipeline.

The mCSM based SUSPECT studies mentioned above generate a multitude of protein structure-

related features using mCSM-graph based signatures (both the overall estimate as well as the individual

graph-based signatures e.g. changes in the pi-pi interaction, hydrogen-bond donors, etc.). This process

has the advantage of acutely capturing all the small-to-large scale molecular interactions contributing

to resistance prediction. However, the models may only be reproduced by running the in-house scripts

that generate the individual graph-based features, and the additional greedy feature selection. The

analysis presented here, however, shows that by using a breadth of different features, it is possible to

achieve comparable performance, with insight into complementary features like mutational frequency

and lineage contribution to advance the understanding of resistance prediction. An example of when

different contributing features could be better suited at resistance prediction is illustrated as follows:

Discovery of a novel variant with no mutational or lineage frequency information, tools exploiting the

structural features will initially be most useful. However, as the mutation becomes a circulating variant

in a population, its evolution across the lineages, interaction with other genes, mutational frequency,

and co-occurrence with other mutations becomes much more relevant in dictating its trajectory towards

resistance, making ML tools informed by genomic measures better suited.

As currently a general AMR predictor in M. tuberculosis, does not exist, to the best of our knowledge,

I have attempted to develop a combined model facilitating ‘learning’ across targets, to reveal the

potential of pursuing a gene-agnostic approach towards resistance prediction. The success of this

approach would lend support for ‘cross-learning’, and would enhance our understanding of the complex

genotype-phenotype relationship. The combined model achieved the target MCC score of at least 0.4,

offering the promise of cross-learning between genes. The modelling also revealed, however, that the

test MCC score is biased towards the quality of the ‘test’ gene data (Chapter 11). As is the case

with first version of anything, the combined model requires further optimisations, focused around
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establishing DST data integrity, preferably using resistance inference from WGS data, or alternatively

pursuing regression-based (using MIC values from DST) and unsupervised ML learning. Further

improvements could come from the application of knowledge-based weighting strategies to specific

gene-targets (Chapter 11) and the inclusion of an independent blind test dataset, a limitation of the

current analysis. Harnessing the efforts led by the CRyPTIC consortium, diverse GWAS datasets can

certainly improve the data integrity, and for drugs like DCS, where predicting resistance has proven

to be challenging, a general AMR predictor can help.

Overall, ML driven solutions are powerful, scalable, and easily integrable with big-data in the post-

genomics era. Developing accurate, and explainable ML/AI solutions, and using open-access tools

and technology, can speed up digital transformation in healthcare and clinical research. However, it

is important to raise awareness regarding some ML fundamentals. A lack of consensus on the use of

a unified score metric when evaluating ML based classification tasks, despite it being a crucial issue,

highlights the need for caution when evaluating ML powered solutions in clinical decision making.33

For example, in the context of supervised ML classification tasks, the MCC score makes use of all

four categories of a confusion matrix (true and false positive and negatives), and as such is a more

‘truthful’ and informative score, but seldom ends up being reported.33 This may well depend on the

field and the research question at hand, and thus it is recognised that different metrics are useful in

different cases. For example, the recall or sensitivity score is the metric of choice to optimise for when

the use case warrants maximisation of true positives (true and false), for instance when developing

clinical screening tests. Whereas when the use case involves administering a drug with potential side

effects, the metric to optimise for would be specificity that reduces false positives. When a use case

is not as straightforward and requires a combination of both, the F1 score is used (see Chapter 11,

methods section for more details).

Similarly, the widely reported ‘accuracy’ score metric is only valid when measured relative to a Dummy

Classifier. As the name suggests, a Dummy Classifier is a model that makes predictions without finding

any patterns in the data. Typically it predicts the most frequent class in the data, although this can be

changed to predict the class of interest. A Dummy Classifier helps establish a baseline from which to

assess other model performances, in the absence of which, imbalanced data risks being misrepresented

in an overly optimistic way. Despite this, and for the reasons mentioned above, adoption of the MCC

score in assessing model performance has been limited across the wider scientific community. There

are also extended metrics such as the Brier score,34 which help quantify the ‘confidence’ of a model

using predicted probabilities, for example if two models have the same accuracy or MCC scores, the

Brier score will assist in choosing the appropriate model.
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In general, the thesis supports the efforts of the CRyPTIC consortium (Comprehensive Resistance

Prediction for Tuberculosis) aimed at replacing culture-based DST testing for TB with whole genome

sequencing to allow faster and more accurate identification and management of DR TB. The thesis

has also identified the need to extend resistance prediction from binary classification to a regression

(extent of resistance) based approach, with emphasis placed on the need to include strain diversity,

concomitant and compensatory mutations.

12.2 Conclusion

This thesis has contributed to the development of an integrated approach using protein structure and

genomics data to investigate and predict drug resistance in M. tuberculosis. Specifically, the thesis

has contributed in three key areas:

• A large-scale detailed analysis of the consequences of mutations associated with resistance across

a wide range of TB drug targets. The results of these analyses with respect to protein structure

including protein stability changes in lineages can be interrogated in an interactive visualisation

tool.

• The importance of considering strain diversity in understanding the resistance landscape.

• Development of a gene-specific and gene-agnostic ML-driven resistance prediction tool.

Chapters 3-8 systematically investigated the impact of SAV mutations on the protein structure and

binding affinities of six drugs used in TB treatment, including mutational impact on nucleic acid,

protein-protein interface binding affinity, and functional effects. Chapters 9 integrated the findings

from these chapters and clarified the relationship between biophysical and genomic measures, estab-

lishing that frequently occurring mutations have fitness advantages, while the relationship of resistant

mutations and protein stability is influenced by additional factors requiring further investigation.

Building on this, Chapter 10 provided preliminary yet important insights on the importance of con-

sidering strain diversity, epistasis and compensatory mutations in resistance development. The intent

is to inform personalised TB treatment regimens to limit the spread of resistance. Such personalised

therapy can be tailored to the genotypic and phenotypic data based on clinical isolates identified from

individual patients. Where genotypic data from sequencing technologies can rapidly help identify mu-

tations and lineage in specific genes, phenotypic data is then able to associate DST to M. tuberculosis

lineage to determine specific drug resistance outcome. Thus, the ability to determine factors (lineage

specific mutations) in isolates extracted from patients, and relating these to appropriate DST, will help
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to accurately tailor treatment regimens to improve disease and thus resistance outcome. Chapter 11

explored the development of a gene-focussed and gene-agnostic, ML driven resistance prediction tool.

Further improvements in refining this have the potential to inform resistance prediction for gene-drug

targets with mutations that are especially challenging to assay using DST.

With poor reliability and other challenges with DST, rapid turnaround from sequencing technologies

is increasingly guiding clinical management. With this wealth of data to exploit, ML approaches are

likely to become the mainstay in TB healthcare. However, the effective delivery of ML/AI powered

solutions can only come about from systematic and more fundamental research into resistance evolution

in M. tuberculosis. Therefore, it is incumbent upon us to engage effectively with existing global

efforts like the CRyPTIC consortium for TB at mapping and predicting variants in M. tuberculosis by

developing standard protocols in line with the FAIR principles35 for aiding Findability, Accessibility,

Interoperability and Reproducibility in research data management and delivery. In line with this, the

variant data analysed in this thesis, along with its biophysical estimates, is intended to be integrated

into the Protein Data Bank in Europe-Knowledge Base (PDBe-KB)36 for the wider benefit of the

scientific community. As such, this thesis contributes to this wider context, with the promise of a

general AMR predictor in TB informed by mutational interactions between several genes.

12.3 Future Work

Future avenues of research that could follow from this work might be to develop lineage-specific struc-

tural models to assess mutational impact. Mutational impact could in turn be further improved by in-

cluding epistasis and compensatory mutation modelling. There are also opportunities to both leverage

WGS datasets in improving existing supervised ML tools, and to develop new unsupervised learning

approaches for resistance prediction. Emphasis should also be placed on using regression based ML

models as compared with classification models to the assessment of samples for resistance prediction.

The general methodology used in this work can be further extended to other AMR pathogens.
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