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Abstract

Infectious diseases such as malaria (caused by Plasmodium spp parasites) and tuberculosis (TB, caused
by Mycobacterium bacteria) are major public health challenges, being leading causes of death worldwide,
particularly in low-income countries. The genomes of the underlying causal pathogens contain valuable
information to guide clinical treatment and programmatic control decision making. Whole genome
sequencing (WGS) has therefore emerged as an increasingly common approach to characterize genetic
mutations (e.g., single nucleotide polymorphisms; SNPs) and understand the diversity of these
pathogens. However, WGS leads to high dimensional datasets (“big data”). Some established statistical
methods are less suited to such big data analysis, and machine learning (ML) approaches offer a

promising alternative for modelling and inference.

In this thesis, | explore the application of ML methods, including deep learning, to WGS datasets for
malaria parasites (P. falciparum and P. vivax) and M. tuberculosis bacteria. For M. tuberculosis (n=17k;
>100k SNPs; genome size 4.4 Mbp), | applied non-parametric classification-tree and gradient-boosted-
tree models to predict drug resistance across 14 anti-TB drugs. For established first-line drugs, the models
had high predictive ability (area under the receiver operating curve > 0.85), and included SNPs in
candidate genes linked to drug-resistance. For drugs with less established knowledge, | developed a
customized decision tree approach (“Treesist-TB”), which performs TB drug resistance prediction by
extracting and evaluating genomic variants across multiple studies. Treesist-TB revealed both known and
novel putative SNPs for resistance and had improved predictive sensitivity compared to a widely-used TB

mutation database (TB-Profiler tool).

For P. falciparum (n>1,100; >74k SNPs; genome size 26.8 Mbp) and P. vivax (n>350, >125k SNPs; genome
size 23.3 Mbp), | developed an image-based convolutional neural network (CNN) approach
(“DeepSweep”), with the aim of identifying genetic regions subject to recent positive selection, such as
those linked to the onset of antimalarial drug resistance. DeepSweep detected genetic regions proximal
to known and suspected drug resistance loci for both P. falciparum (e.g., pfcrt, pfdhps and pfmdr1) and
P. vivax (e.g., pvmrp1), and detected signals overlapping with those from two established extended
haplotype homozygosity methods. Finally, | applied ML approaches, including CNNs, to predict the
geographic origin of P. falciparum and P. vivax infections at different levels of geographic granularity
(continents, countries, GPS locations). Classification methods had the lowest distance errors, and >90%
accuracy at a country level, thereby demonstrating the utility of ML approaches for detecting imported

infections and the geo-classification of malaria parasites.

Overall, these applications demonstrate the potential of ML methods to extract new insights from large
WGS datasets and assist infection control. However, there are risks in applying ML methods on WGS data

“out of the box” without context-specific adaptation of the algorithms. My work demonstrates how
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adaptation of standard ML methods can lead to better predictions and more interpretable results,

offering greater assistance to infection control decision making.
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Introduction

Overview

This thesis explores the potential for machine learning methods to overcome the challenges presented
by traditional statistical methods in the analysis of whole genome sequencing data and how these
methods may help contribute to the global fight against infectious diseases such as malaria and
tuberculosis. In doing so, this introduction aims to set out the global burden of these infectious diseases
and the remaining challenges in addressing them, including how pathogen drug resistance can
challenge their control. It covers the growing importance of whole genome sequence data, and how
they can inform the study of loci linked to drug resistance. Further, it describes the challenges
encountered by traditional methods when applied to the analysis of “big” genomic datasets. Finally,
this chapter introduces machine learning methods, and in particular, the subset of methods applied to

the genomic datasets.

Infectious diseases

Infectious diseases are estimated to have inflicted a burden of 574 million Disability-Adjusted Life Years
(DALYs) on the world’s population in 2020 (1). Malaria and tuberculosis (TB) are among the highest-
burden infectious diseases in terms of mortality and morbidity, responsible for 0.6 million and 1.3
million deaths in 2021, respectively (2,3). For this reason, this thesis focuses on these two diseases and
their causal pathogens, with a particular focus on Plasmodium falciparum and Plasmodium vivax for
malaria and Mycobacterium tuberculosis for TB. It explores how machine learning methods, applied to
datasets of whole genome sequences, can contribute analytical insights to support better

programmatic and clinical outcomes.

Malaria

Human Malaria Plasmodia

Malaria is an infectious disease caused by protozoan parasites of the genus Plasmodium (4). The oldest
Plasmodium protozoa, extracted from mosquitoes that were entrapped in amber, stem from
approximately 30 million years ago (5). There are approximately 200 Plasmodia species, which infect
birds, reptiles and primates (6). Six parasite species infect humans: P. falciparum, P. vivax, Plasmodium
ovale curtesi, Plasmodium ovale wallikeri, Plasmodium malariae and Plasmodium knowlesi (4). P.
falciparum infections occur in tropical areas around the world, and cause most of the overall global
malaria mortality. P. vivax is less temperature sensitive and therefore more geographically widespread,
occurring across large parts of Southeast Asia and Central and South America, as well as Ethiopia (7). P.

ovale infections primarily occur in sub-Saharan Africa and islands in the western Pacific, and P. malariae
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infections occur across large areas of Sub-Saharan Africa, South America and South East Asia, including

in co-infections with P. falciparum (7).

Malaria parasites undergo a complex lifecycle, involving humans and Anopheles mosquitos, where the
parasites ultimately reach the human blood stream after a bite from an infected mosquito. The clinical
manifestations of malaria are linked to parasites invading red blood cells (erythrocytes), where they
multiply until the cells burst, upon which a subsequent cycle is started with the invasion of new red
blood cells. The characteristic malarial fever occurs at this phase of erythrocyte escape and invasion (4).
This can lead to severe anemia, and in addition, P. falciparum-infected erythrocytes can adhere to walls
of blood vessels, which, when occurring in cerebral microvasculature, can cause cerebral malaria, which

may be fatal (4).

Global malaria burden

Malaria has affected humanity for centuries. The Roman poet Livius already described how different
epidemics plagued the Romans, who had the suspicion that the disease arose from the swamps around
the city (8). Despite many decades of public health efforts to reduce the global malaria burden, malaria
continues to be a major public health problem. In 2020, there were an estimated 241 million malaria
cases worldwide, of which 627,000 cases resulted in death (2). Sub-Saharan Africa accounts for
approximately 95% of all global malaria cases and deaths. The vast majority of malaria deaths occur in

children less than five years old (2), principally due to P. falciparum infections.

The world has made progress in decreasing the burden of malaria in the last decades, although a
reversion has taken place in recent years. Between 2000 and 2015 global cases dropped from 241M to
224M and deaths declined from 896,000 to 562,000 (2). The downward trend can be attributed to
increased funding (e.g., through the creation of the Global Fund to Fight HIV/AIDS, TB and Malaria and
the President’s Malaria Initiative) and the accompanying scale-up of long-lasting insecticide-treated
nets, indoor residual spraying, rapid diagnostic tests, and artemisinin-based combination therapies
(ACTs) (9). However, since 2015 the downward trend has flattened out and even reverted in some
geographies. Between 2015 and 2019, the global case-load increased slightly (from 224M in 2015 to
227Min 2019) and the global deaths declined only slightly (from 562,000 in 2015 to 558,000 in 2019)
(2). This development, which puts the 2030 global malaria targets as formulated by the global health
community in 2016 at risk, has been attributed to a more difficult funding environment, conflict and
climate change, as well as to increasing levels of resistance to ACTs, bednets and insecticides (2).
Furthermore, in 2020 the global COVID-19 pandemic caused additional disruption to malaria control
efforts, causing an increase in malaria cases of 14M to 241M and an increase in malaria deaths of

47,000 to 627,000 (2).
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The Plasmodium genomes

This thesis involves the analysis of P. falciparum and P. vivax parasite genomic data. The P. falciparum
genome is 23 Mbp in length across 14 chromosomes, apicoplast and mitochondrial DNA, with a GC
content of 19.4%, and contains 5,300 genes. The first reference genome was Pf3D7 (10,11). The P. vivax
genome has a length of 29 Mbp across 14 chromosomes, apicoplast and mitochondrial DNA, with a GC
content 40.6% and contains 5,400 genes (10,11). There are two reference genomes P. vivax Salvador |

(Pvsall) and PvPO1 (from South East Asia) (10,11).

Genomic diversity studies in P. falciparum and P. vivax have shown that there is geographic clustering,
with strong genomic differences between continents, which coincide with loci and mutations linked to
drug resistance, response to mosquito vectors and (evasion of) the human immune system (12,13).
Molecular barcodes to classify species and geographic origin have been developed. These barcodes use
only a subset of the genome due the high-dimensionality of the full genome and the associated

computational cost (12,14).
Plasmodium drug resistance

Growing resistance to anti-malarial drugs poses a serious challenge to global efforts to reduce the
burden of malaria. Anti-malarial drugs are an essential tool for the treatment of infected individuals and
a critical pillar of malaria control programs. However, the usage of anti-malarials and the onset of
resistance are intimately intertwined. Quinine was the first modern malaria drug and was developed in
1820 by Pellentier and Caventou, with formal reports of in vivo resistance in Brazil and South East Asia
being published in the late 1950s (15). A new class of anti-malarials, four-amino quinolines, was
developed in the 1940s, with chloroquine being the key member of this class (16). However,
chloroquine-resistant infections (for P. falciparum) emerged independently in at least three locations,
namely the border between Thailand and Cambodia (1957), the Venezuelan-Colombian border (1960s)

and Papua New Guinea (1970s) (16), and chloroquine resistance is now widespread.

Sulfadoxine-pyrimethamine (SP), a combination drug which targets enzymes in the folate pathway,
replaced chloroquine as first-line treatment for malaria in the period from the 1960s to the 1980s, and
is currently used for preventative treatment in pregnancy and, in infants, as part of seasonal malaria
chemoprophylaxis in sub-Saharan Africa (2,16). However, resistance to SP first emerged in the late
1960s in Thailand and subsequently spread to Sub-Saharan Africa (16). In general, resistance has
emerged for each newly developed drug, with the first findings of resistance often arriving from the
Mekong region in South East Asia. Most worryingly, resistance to artemisinin-combination therapies,
the current first-line treatment for P. falciparum, has been observed in the form of delayed parasite

clearance in South East Asia, posing a threat to the effectiveness of the current control paradigm (17).
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Table 1: Time of widespread usage, time and location of onset of resistance for major anti-malarial drugs and associated genes

(18-24)

Drug Date of Date of Location of P. falciparum genes
widespread | detection | first in vivo involved in resistance
release of firstin- | resistance

vivo
resistance
Chloroquine 1946 1957 Thai- pfmrpl,pfmdrl, pfcrt
Cambodian
border

Sulfadoxine- 1967 1967 Thailand Pfdhfr, pfdhps

pyrimethanimine

(SP)

Pyronaridine 1970 1985 China

Artemisinin 1971 1989 Vietnam pfkelch13

monotherapy

Mefloquine 1977 1982 Thailand Pfmdr1

Piperaquine 1978 1981 China

Artesunate- 1992 2007 Thai- pfkelch13, Pfmdrl

mefloquine Cambodian

border

Artemether- 1999 2006 Thai- pfkelch13

lumefantrine Myanmar

border

Dihydroartemisinin- | 2007 2007 Western pfkelch13

piperaquine Cambodia

Pyronaridine- 2012 2012 Western pfkelch13

artesunate Cambodia

Anti-malarial resistance is triggered by genomic mutations, which might for example alter the transport
of the drug into or out of the parasite’s vacuole, or alternatively change the binding target of the drug
(25) (Table 1). For example, P. falciparum parasites can become resistant to chloroquine or
amodiaquine through mutations in the Pfcrt gene, which encodes a transporter that can transfer these
drugs out of the vacuole before they can exert their mechanism of action. Similarly, resistance against
SP occurs through mutations in the Pfdhps and Pfdhfr genes, inhibiting the activity of two key enzymes
in the folate pathway (25). The underlying mutations causing resistance for P. vivax are less well
defined than for P. falciparum (29) although putative genes for resistance to chloroquine (Pvmdr1,

Pvcrt), primaquine (Pvmrp1) and SP (pvdhps, pvdhfr) have been defined (26).

Drug resistance threatens to undo the progress made in the fight against malaria, at both a clinical and
population level. New research methods, such as those explored in this thesis, can play a role in
informing the fight against drug resistance by allowing us to better characterize and predict drug

resistance within individual patients and within populations at large.
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Detection and prediction of drug resistance for Malaria

The detection of drug-resistance against anti-malarial drugs was historically only possible through
observation of in-vivo treatment failure (27). The arrival of genomic sequencing opened the possibility to
make drug-resistance predictions based on the presence or absence of genomic markers. The lack of
labelled phenotypic data for P. vivax and P. falciparum, in contrast to M. tuberculosis bacteria where
phenotypic data is more readily available, does complicate training statistical models. It requires us to
look for genomic markers of drug resistance in an indirect manner, for example by finding signatures of
positive selection across the parasite genome, in the assumption that drug resistance leads to a selective

advantage.

A particular signature of interest is the so-called selective sweep. Selective sweeps arise as beneficial
alleles increase in frequency over time and “sweep” through populations. These sweeps leave tell-tale
genomic signatures in the site-frequency spectrum, the amount of population differentiation and the

pattern of linkage disequilibrium (28) (Figure 1).

Figure 1: Schematic illustration of the concept of selective sweeps, adapted from (29)
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The detection of these selective sweeps, and signatures of positive selection in general, has historically
been performed using a wide variety of methods and approaches for a wide variety of species (30-34).
There are at least three common approaches to detect positive selection sweeps in non-clonal species.
First, it is possible to assess the differentiation of genomic loci between populations, particularly
through differences in allele frequency. For example, populations that are exposed to different drugs
may be subject to different selection pressures, leading to differences in mutation frequency underlying
resistance. Second, one can assess differences in site-frequency distributions or spectra. Lastly, one can
assess the extent of linkage disequilibrium (or correlation between genetic markers) and extended

haplotype homozygosity at loci (28,35).
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These methods were originally pioneered on the human genome (30), but they have been subsequently
utilized for Plasmodium and helped to identify genetic markers associated with drug resistance (13,36).
Recently, efforts have been made to efficiently apply these methods to whole genome sequencing
libraries, such as REHH, SweeD and OmegaPlus (37-39). However, these tools and methods require
careful parameter definition and calculation, and the outcomes are sensitive to the SNPs included,

population structure and the chosen statistical significance thresholds.

Researchers have explored the potential of applying machine learning methods to the detection of
selective sweeps (40). To date, most of the methods aim to make predictions using pre-calculated
population genetic statistics as features (such as Tajima’s D and Fay and Wu's H statistics) (28,41,42).
Thus, this approach does not solve the challenge of defining and calculating these population genetic
statistics, which is a complex and time-consuming task, especially when working with many sub-
populations. As will be shown, a (deep) machine learning approach might provide an interesting
alternative, given its potential to learn from a relatively rudimentary set of base features that require

little to no pre-definition by the user (43).
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Tuberculosis

Mycobacterium tuberculosis

Tuberculosis (TB) is an infectious disease caused by members of the M. tuberculosis complex, which
includes M. tuberculosis, Mycobacterium bovis and Mycobacterium africanum (44). This thesis focuses
on M. tuberculosis. TB is spread through the inhalation of aerosols that contain M. tuberculosis
bacteria. Upon infection, the bacteria will invade and replicate within alveolar macrophages. In most
affected individuals, the subsequent immune response will lead to an immunological equilibrium and a
latent stage in which the bacteria are encapsulated in granulomas in the lungs (so-called primary
lesions). In some individuals however, an active TB infection might develop (post-primary disease),

which requires treatment with appropriate antibiotics to prevent potentially fatal outcomes (45).

Global tuberculosis burden

Until recently, TB was the leading cause of death from a single pathogen (until being overtaken by
COVID-19). In 2020, there were an estimated 1.3M global deaths caused by tuberculosis among HIV-
negative people (3). Worryingly, this number was up from 1.2M in 2019, with reductions in access to TB
screening, treatment and care due to the COVID-19 pandemic estimated to be one of the driving factors
(3). People living with HIV or infected with drug-resistant TB have significantly worse treatment
outcomes than other TB patients (3) (Figure 2). Drug resistant M. tuberculosis is one of the major
threats to effectively control the disease, especially resistance to first-line rifampicin (RR-TB) and
isoniazid drugs; in combination, called multi-drug resistance (MDR-TB). RR-TB and MDR-TB together
accounted for around 130,000 cases in 2020 (3). Additional resistance to second-line drugs can lead to
extensively drug-resistant strains (XDR-TB) (46). In recent years, there have been new definitions for
pre-XDR (now defined as MDR-TB and resistance to any fluoroquinolone) and for XDR-TB (now defined
as MDR-TB with additional resistance to any fluoroquinolone, and either bedaquiline or linezolid or
both. In this thesis, the old definition of XDR-TB is used (defined as MDR-TB with additional resistance
to fluoroquinolones and second-line injectables (47) for the reason that this this matches the definition

in use when the isolates were collected and when the treatment decisions were made.
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Figure 2: Treatment outcomes of TB over time (3)
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The M. tuberculosis genome

The M. tuberculosis genome is 4.4 Mbp long and encodes for approximately 4,000 genes (48). Gene
expression varies over the duration of an infection, with periods of slow growth and dormancy being
part of the characteristic features of M. tuberculosis (49). The mechanisms behind these characteristics

are not fully understood but likely contribute to the complication and lengthening of TB treatment.

Analysis of the M. tuberculosis genomic diversity has confirmed phylo-geographical groupings. There
are currently 9 main human lineages and 64 sub-lineages that exhibit strong geographic clustering (50).
Four lineages are dominant (lineages 1 to 4) (Figure 3, Figure 4), but the others are in isolated parts of
Africa (e.g., M. africanum lineages 5/6 in West Africa). Strain-specific genomic diversity is associated
with differences in virulence, pathogenicity and transmissibility (50). The genomic differences have

enabled the development of barcodes to facilitate the identification of lineage and sub-lineage (50).
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Figure 3: Global distribution of TB lineages) (50)
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The global distribution of the 35,208 Mycobacterium tuberculosis complex study isolates

Figure 4: TB phylogenetic tree with color coding by (sub)lineage (50)

m e s Tree scale: 0.0001 +4 ~1.3
Wy @an W 7 =
W @y e
W2 Weanz2 g
W @ens ez
Ws @ans ggaee
W sz a2 R

[T RREE) 4121 4622
[T RE} 41210 483
W21 413 464
[ 122 a4 485

1221 [ a2 o
131 a2 0
132 [ 42 W o

o2 422 W es2
W 22 4221 483
W 221 4222 | KX

W 2210 ggas W son
[0 2212 g a3t m:
22 @av e
m: W2 3
| KX !jua‘ e

Wi @

“\.RD105-RD207

— AN N\

N\ N
RD150\RP181

22 \polaz

[

! 9
[ 312 434 u

W Moous
| EAEA] 4341
B Moaprae
22 4342
Morygis
a2 43421 - -

W s PW

W i

[ CZER]

W aarns -

4ar2 N 3 - 4.4
4.3 - -
42 RD174
RD115
RD761

Phylogenetic tree of Mycobacterium tuberculosis complex isolates. A representative tree with a maximum of 10 isolates per sub-lineage (important regions
of difference (RDs) are also highlighted)

Analysis of phylogenetic data and strain-specific diversity has also led to the identification of drug
resistance mutations, sometimes appearing in multiple branches of the tree, and outbreaks and

transmission events may be identified by finding isolates with near-identical genetic variation, with

supporting epidemiological data (51-53).

M. tuberculosis drug resistance

As stated earlier, resistance against first-line tuberculosis treatments is hindering global efforts to
reduce the disease burden (WHO, 2018). Tuberculosis requires treatment with antibacterial drugs to
reduce morbidity and prevent potential mortality. First-line anti-TB therapy is centred around four

drugs: rifampicin (RMP), isoniazid (INH), ethambutol (EMB) and pyrazinamide (PZA) (54). However,

there is increasing resistance to these drugs, especially RR-TB and MDR-TB (54). Second-line drugs are

available to treat MDR cases, most importantly the fluoroquinolones (FQ; ciprofloxacin (CIP), ofloxacin

(OFL), moxifloxacin (MOX)) and the injectables (INJ; amikacin (AMK), kanamycin (KAN), capreomycin
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(CAP)). Treatment of drug-resistant TB is however far more complex, costly and time-consuming than
the first-line protocol (itself having a duration of 6 months) and includes the usage of drugs with severe

adverse effects (46).

The onset of resistance against TB drugs likely occurs predominantly through mutations (e.g. single
nucleotide polymorphisms (SNPs); small insertions and deletions) that modify drug targets (e.g. the
proteins synthesized by the rpoB gene for rifampicin) or alter the proteins involved in the activation of

pro-drugs (e.g. katG gene for isoniazid) (55-57) (Figure 5; Table 2).

Figure 5: Mechanisms associated with drug resistance (58)
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It is important to emphasize that the timely detection and treatment of drug-resistant TB is critical not
only for clinical outcomes at the individual patient level, but also for curbing the wider drug-resistant TB
epidemic. Modelling studies have indicated that the transmission of undetected or untreated DR-TB, also
in comparison to resistance potentially acquired during TB treatment, is a major contributor to the overall
global burden of drug-resistant TB (59). In this thesis, the aim is to help develop new methods to make
better predictions on whether patients carry drug-resistant TB strains, thereby providing these patients

with an earlier diagnosis and more appropriate and effective treatment.
Detection and prediction of drug resistance for Tuberculosis

The determination of the drug-resistance profile for M. tuberculosis isolates has historically been
performed in the laboratory by means of phenotypic testing, also called drug susceptibility testing (DST).

However, this method is relatively slow and expensive, and it comes with inherent challenges that affect
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accuracy and reproducibility (60). The phenotypic datasets for the M. tuberculosis studies described in

this paper are available upon request.

The challenges surrounding DST has fuelled interest in genotypic screening for drug resistance. However,
the ability to make predictions based sequenced genomes requires an understanding of the genomic
markers associated with resistance. Our knowledge of the genomic markers is unfortunately not
complete, both in terms of individual markers and in terms of possible epistatic effects between drug-

resistance markers or between these markers and compensatory mutations (61).

The sequencing of individual genes, and increasingly the sequencing of the entirety of pathogen
genomes, and the increased availability of large genomic datasets, has enhanced the potential to infer
these genomic markers. However, these data must be analyzed with appropriate statistical methods.
Genomic-Wide Association Studies (GWAS) have historically been used to this aim (62), but these models
need careful correction to account for population structure (e.g. lineages and sub-lineages in the case of
M. tuberculosis) and moreover are less well suited to detect epistatic effects. Convergent evolution
analysis (63) uses simple two-way table analysis methods to detect drug resistance mutations, but
requires an accurate phylogenetic tree to account for the population structure, which is computationally
more difficult to generate for large numbers of samples. In this thesis, the aim is to apply machine
learning methods in a manner that expands on the GWAS approach in several ways, including allowing

for more complex (epistatic) interactions between covariates.

Table 2: Genes associated with drug resistance for M. Tuberculosis (64)

Drug Genes
Rifampicin rpoB, rpoC
Isoniazid fabG1, inhA, katG, kasA, ahpC
Pyrazinamide pncA
Ethambutol embR, embC, embA, embB
Streptomycin rpsL, gid, rrs
Amikacin rrs
Capreomycin tlyA ,rrs
Kanamycin eis, rrs
Ciprofloxacin, Ofloxacin, Moxifloxacin gyrA, gyrB
Ethionamide fabG1, ethA
Cycloserine alr, ald

PAS folC, ribD, thyX, thyA

PAS = para-aminosalicylic acid

Whole genome sequencing (WGS) and bioinformatics

The first whole genomes were sequenced using labor intensive capillary sequencing techniques (65).
Subsequently, newer methods (e.g. shotgun sequencing and subsequently next-generation sequencing)

allowed to sequence whole genomes at much greater scale and at much lower cost (65). More recently,
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methods have also been developed to sequence genomes outside the standard laboratory settings (e.g.
Oxford Nanopore Technology sequencing) (65). The resulting datasets are typically analyzed using a
combination of bioinformatic tools. Typically, raw sequence data is assessed for quality, and
subsequently aligned to a reference genome or de novo assembled (reference-free), to allow the calling
of variants (e.g., SNPs, indels). This process typically results in a rectangular dataset with dimensions
based on the numbers of genomic variants and samples. The characterized dataset of genomic variation
subsequently requires (statistical) analysis to provide relevant information for clinical and

programmatic users.

M. tuberculosis, P. falciparum and P. vivax reference genomes were first sequenced in 1998, 2002 and
2008, respectively (10,11,48). WGS has emerged as an increasingly common approach to characterize
genomic isolates, in both clinical and research settings, and the number of M. tuberculosis, P.
falciparum and P. vivax isolates that have undergone WGS has grown steadily. The datasets used in the

project are summarized (Table 3).

Table 3: Overview of the genomic datasets used in this thesis

P. falciparum P. vivax M. tuberculosis
No. Isolates 5,957 658 32,689
No. countries 27 13 30
Median >30 fold genome coverage >50-fold genome >50-fold genome
Sequencing coverage coverage
coverage
No. SNPs ~750k ~588k ~640k
Reference Pf3D7 PvPO1 H37Rv
genome used

The availability of WGS datasets gives new possibilities to detect genomic drivers of resistance and
make other predictions of interest. However, new methods are likely needed to accommodate the size
of these datasets and to be able to detect epistatic interactions. The focus of my thesis is to understand
whether machine learning methods applied to the large SNP datasets of M. tuberculosis and

Plasmodium malaria pathogens can generate new insights and improve our ability to make predictions.

Machine learning

Machine learning (ML) is a sub-field within statistical learning, with the definition that a program or
algorithm (the “machine”) is said to learn from experience “E” with respect to some class of
tasks “T” and performance measure “P” if its performance at tasks in “T”, as measured by “P”, improves

with experience “E” (66).
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Over the past decade, there has been a growing interest in machine learning, fuelled by the increased
availability of large datasets and increased computational power. These changes have brought
attention to a specific set of models that allow for an alternative approach to analysing large datasets,
with relatively few underlying model assumptions about the distribution and functional relationships
between the included variables. These models have the potential to provide greater flexibility for
problems of prediction in high dimensional variable spaces, when each individual variable contains

limited information and with interactions between variables (67—69).

ML subdivides into the fields of supervised, unsupervised and reinforcement learning. My work focuses
on supervised learning, where the task to learn is a mapping from inputs to outputs, given a labelled
training set (i.e. the aforementioned experience) of input-output pairs (70). In contrast, unsupervised
learning uses an training dataset without labels and focuses on identifying and describing structures
within this dataset (71), and reinforcement learning aims to map decisions to situations or states by
learning to optimize rewards (72). Deep learning is a subset of machine learning where models learn in

a hierarchical layer-based manner with relatively simple features as the starting point (43).

The boundaries between the field of machine learning and the wider field of statistical learning are not
well defined. In practice, the focus of the machine learning community, at least initially, was heavily
centred on the topic of prediction, with a strong focus on predictive accuracy and computational speed,
and with only trailing interest in inferential questions and the linkage to the wider statistical field (73).
The main interest of many in the machine learning community was thus, phrased more informally, in
“whether and how well we can predict”, and much less in “why we can predict” and “why our models

work”.

The focus on prediction, together with the aforementioned increased availability of both computational
power and large datasets, led to a burst of activity to creatively apply, combine, modify and adapt
different statistical learning models, all with the aim to improve predictive performance. The popularity
of the prediction contests on Kaggle, and the methods deployed by winning teams, provide a vivid
illustration of this dynamic. The reasons, from a statistical theoretical perspective, on why certain
approaches were effective was not always initially understood and in some cases only became better

understood over time (73).

The development of convolutional neural nets provides a good example of this dynamic. The aim to
achieve best-in-class performance on standardized image datasets led to the pioneering of many
adaptations and modifications, such as for example the usage of max-pooling (74), drop-out (75), and
new optimizers and activation functions (76). Only over time did the theoretical underpinnings of some

of these innovations crystallize, explaining why they might be effective in improving predictive
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performance (as well as what the reasons might be that the entire class of convolutional neural nets

has shown such impressive performance on a wide range of tasks) (77).

It is possible that, over time, machine learning might become a less distinct field within statistical
learning, as the theoretical foundations and linkages to other statistical fields become better

understood (73).

ML methods have gained rapid traction in healthcare and biomedical settings, given the large amounts
of data generated and the key interest in questions around screening, diagnosis and prediction in these
settings (78). The range and depth of applications of ML methods in the field of healthcare and
bioinformatics is large, including prediction of acute kidney injury (79), the prediction of skin cancer
(80) and from the prediction of diabetic retinopathy (81) to the prediction of protein folding (82). An
overview of the use of ML and Deep learning in bioinformatics is given by Ravi and al (83). In the fields
of TB and malaria field there have been applications of ML outside the prediction of drug resistance,
including the classification of digital chest x-rays for TB (84), the detection of parasites for malaria in
microscope films (85—88), the prediction of TB infection from both digital x-rays (84) and serological
data (89), the classification of clinical malaria outcomes based on haematological indicators (90) and in

supporting drug development for both new TB drugs (91) and new anti-malarial drugs (92).
Machine learning for WGS datasets

As mentioned, ML is an emerging tool for the analysis of WGS datasets, with the high-dimensionality of
the data making the application of traditional methods more difficult, especially in settings where
infection control stakeholders require updated analyses to inform decision making. There are many
possible ML methods that one in principle could apply to WGS datasets. In this thesis, a pre-selection of
models was made that offer: a) the ability to incorporate the features that traditionally-used methods
struggle to include in a computationally efficient manner (e.g. epistatic interactions); b) a degree of
interpretability and transparency, also to maximize the likelihood of adoption and uptake in clinical
settings; and c) the possibility to use and apply these models in low-resource settings. With those
objectives in mind, in this thesis at least two models were applied on the each of the questions of
interest. The aim was to include one ML model that is highly interpretable, and at least one state-of-art
model which has shown very strong performance in similar settings (but often is far more complex and
less easy to interpret). The comparison between these two models moreover allows for the
quantification of the extent of predictive performance one forsakes by using a simpler machine learning

model.

For classification tasks where labelled data was available, decision trees (DTs) were used as the simpler

model. Gradient boosted trees (GBTs) were used as the more complex model, where they are a natural
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transition from decision tree models and they have a strong performance on other predictive tasks (93—

96). For the prediction of the geographic location of malaria isolates, (penalized) linear and logistic

regression models were applied as the simpler models, and their performance was compared to more

complex convolutional neural net (CNN) models. Finally, for the image-based detection of positive

selection and drug resistance in the malaria genome, only a CNN ML approach was adopted, given its

unique fit to the task at hand. The performance of this CNN model was compared against statistical

haplotype-based methods. A comparison of the approaches adopted is summarized (Table 4).

Table 4: Machine learning methods used in this thesis (61)

Machine learning method

Description

Penalized linear regression

Penalized linear regression is an adjustment of the traditional
regression approach by adding a regularization factor (either a L1
or a L2 term or a combination) to reduce the number of included
features and/or shrink their coefficients in order to reduce
variance (by inserting some bias) and improve the interpretability

of the model (71).

Penalized logistic regression

As per above, but taking a (logistic) classification approach

Decision Trees (DTs)

Decision trees are recursive, greedy, top-down partitioning
algorithms (71). Although they offer the benefit of easy
interpretation, decision trees can suffer from high variance due to

over-fitting of spurious features on small subsets of the data.

Gradient Boosted Trees

(GBTs)

Gradient boosted trees build an ensemble of individually weak
learners (often short and stumpy decision trees) in an adaptive
manner by optimizing the approximation of the gradient of the loss

function (71,97-99)

Convolutional neural nets

(CNNs)

Convolutional neural nets are a sub-set of neural Networks that
are often applied to image data. Convolutional networks
incorporate a mathematical operation called convolution that
facilitates the detection of features in an image in a location-

invariant manner (43)

Project structure
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The global disease control strategy for TB rests on accurate and cost-effective detection of drug resistant
TB. Current methods of drug-resistance testing are either relatively slow, expensive, or inaccurate. ML
methods that can predict known and unknown forms of drug resistance in WGS isolates may serve as a
valuable complementary tool. Chapter 2 discusses the prediction of drug-resistance and the discovery of
new SNPs using ML methods for M. tuberculosis. DT-based approaches were applied to 8,639 M.

tuberculosis WGS isolates that have accompanying DST data across 14 anti-TB drugs.

Chapter 3 utilizes the same dataset (as in Chapter 2) and develops a customized decision-tree algorithm
called Treesist-TB. This algorithm enhances standard DTs by allowing the incorporation of priors and
constraints on the features and sub-structures that can be included in the trees. The algorithm was
subsequently applied in a new ensemble-based manner across individual studies to discover genomic
variants that have support across multiple studies. The overall aim is ensuring robustness to the
presence of DST errors in individual studies, which can lead to genomic variants being undetected in the

analysis of aggregate datasets.

Chapter 4 discusses the development of a new method to detect selective sweeps for P. vivax and P.
falciparum. The detection of these signatures has historically been performed using a wide variety of
methods that require a high amount of pre-processing and domain-specific expertise to extract
features, or were not optimized for application on WGS libraries. Deep learning methods were applied,
which do not require feature extraction. This application appears to be the first time deep learning or
image-classifier-based methods have been applied to raw WGS data to detect selective sweeps. A novel
image-based deep learning approach was applied that does not require extensive feature extraction

using CNNs to identify selective sweeps.

Chapter 5 discusses the prediction of the geographic origins of malaria isolates for P. falciparum and P.
vivax. It explores the accuracy of both regular ML approaches as well as deep learning approaches,
across regression and classification methods, to make predictions at different levels of geographic

granularity.

Overall, this work shows the potential of applying ML approaches to WGS pathogen datasets to make
predictions that will improve clinical and programmatic decision making. It also shows the risks of not
adapting and customizing algorithms to the specific context of the pathogen in question, and the
additional power that can be harnessed if adaptation and customization is performed correctly. Much
of my work has been published in peer review journals. Specifically, the research papers included in this

thesis include:
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Background: Tuberculosis disease, caused by Mycobacterium tuberculosis, is a major
public health problem. The emergence of M. tuberculosis strains resistant to existing
treatments threatens to derail control efforts. Resistance is mainly conferred by mutations
in genes coding for drug targets or converting enzymes, but our knowledge of these
mutations is incomplete. Whole genome sequencing (WGS) is an increasingly common
approach to rapidly characterize isolates and identify mutations predicting antimicrobial
resistance and thereby providing a diagnostic tool to assist clinical decision making.

Methods: We applied machine learning approaches to 16,688 M. tuberculosis isolates
that have undergone WGS and laboratory drug-susceptibility testing (DST) across 14
antituberculosis drugs, with 22.5% of samples being multidrug resistant and 2.1% being
extensively drug resistant. We used non-parametric classification-tree and gradient-
boosted-tree models to predict drug resistance and uncover any associated novel putative
mutations. We fitted separate models for each drug, with and without “co-occurrent
resistance” markers known to be causing resistance to drugs other than the one of interest.
Predictive performance was measured using sensitivity, specificity, and the area under the
receiver operating characteristic curve, assuming DST results as the gold standard.

Results: The predictive performance was highest for resistance to first-line drugs,
amikacin, kanamycin, ciprofloxacin, moxifloxacin, and multidrug-resistant tuberculosis
(area under the receiver operating characteristic curve above 96%), and lowest for third-
line drugs such as D-cycloserine and Para-aminosalisylic acid (area under the curve below
85%). The inclusion of co-occurrent resistance markers led to improved performance
for some drugs and superior results when compared to similar models in other large-
scale studies, which had smaller sample sizes. Overall, the gradient-boosted-tree models
performed better than the classification-tree models. The mutation-rank analysis detected
no new single nucleotide polymorphisms linked to drug resistance. Discordance between
DST and genotypically inferred resistance may be explained by DST errors, novel rare
mutations, hetero-resistance, and nongenomic drivers such as efflux-pump upregulation.
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Conclusion: Our work demonstrates the utility of machine learmning as a flexible approach
to drug resistance prediction that is able to accommodate a much larger number of
predictors and to summarize their predictive ability, thus assisting clinical decision
making and single nucleotide polymorphism detection in an era of increasing WGS data

generation.

Keywords: Mycobacterium tuberculosis, MDR-TB, XDR-TB, drug resistance, machine learning

INTRODUCTION

Tuberculosis (TB), caused by Mycobacterium tuberculosis bacteria,
remains a major global public health challenge, with over 10.0
million people infected with TB and an estimated 1.6 million
deaths in 2017 (World Health Organization, 2018a). An increasing
prevalence of drug resistance presents a serious challenge to effective
TB control (World Health Organisation, 2018b). First-line anti-TB
therapy is centered around four drugs: rifampicin (RIF), isoniazid
(INH), ethambutol (EMB), and pyrazinamide (PZA) (World Health
Organization, 2017). M. tuberculosis strains resistant to at least RIF
and INH are termed multidrug-resistant (MDR-TB), with >550,000
new resistant cases in 2017 (World Health Organisation, 2018b).
Additional resistance to second-line drugs, the fluoroquinolones
[EQ; ciprofloxacin (CIP), ofloxacin (OFL), or moxifloxacin
(MOX)] and injectables [IN]; amikacin (AMK), kanamycin (KAN),
capreomycin (CAP)], is termed extensively drug resistant (XDR-TB),
and such cases have been reported in >115 countries (World Health
Organisation, 2018b). Conventional TB treatment regimens
are relatively long (>6 months) and include the simultaneous
application of several drugs (World Health Organization, 2017).
Treatment of drug-resistant TB is even more prolonged and involves
drugs with severe side effects and with lower efficacy (World Health
Organization, 2018a).

Anti-TB drugs act on M. fuberculosis via three main mechanisms:
(i) blocking enzymes involved in the synthesis of components of the
cell wall (e.g., EMB), (ii) disrupting protein synthesis at the level
of the ribosomes [e.g., streptomycin (STM)] and (iii) hindering
various processes at a DNA level such as RNA/DNA synthesis (e.g.,
RIE, FQ) (Nasiri et al., 2017). While M. tuberculosis drug-resistance
mechanisms are not fully understood, they have been observed to
be driven mainly by single nucleotide polymorphisms (SNPs) or
other polymorphisms (e.g., small insertions and deletions, “indels”)
resulting in the modification of drug targets (e.g., rpoB gene for RIF,
gidB and rpsL genes for STM, embB gene for EMB, gyrA and gyrB
genes for FQ, rrs gene for INJ) or in the loss of an ability to activate
prodrugs (e.g., katG gene for INH, pncA gene for PZA) (Gygli
etal,, 2017). Mutations can be located within gene coding regions or
within promoters [e.g., the inhA promoter for INH and ethionamide
(ETH) resistance] (Palomino and Martin, 2014). A resistance
mutation can directly alter drug action or be compensatory via
activation of an alternative pathway. Mutations may cause resistance
to multiple drugs and contribute to complex gene-gene interactions
(Safi et al., 2013; Trauner et al,, 2014; Gygli et al,, 2017).

Drug resistance is traditionally diagnosed using bacterial
culture and phenotypic testing, where uncovering resistance to

first-linetreatmentsleadstoanassessmentofsecond-lineregimens.
However, this approach is relatively slow and expensive, and it
has inherent inaccuracies and reproducibility challenges (Farhat
et al,, 2016). Whole genome sequencing (WGS) is increasingly
being used as a diagnostic tool to rapidly identify a wider set
of mutations to inform clinical decision making (Dheda et al,
2017). WGS can also be used to identify new putative resistance
loci, for example, through genome-wide association (GWAS) and
phylogenetic-tree-based convergent evolution approaches (Coll
et al,, 2018). Classic regression methods, with and without the
incorporation of regularization techniques, have been applied
within a GWAS context to improve model generalizability and
prevent model overfitting. However, these methods may fail to
detect interactions among covariates and might be less suited to
the analysis of large and high-dimensional datasets that arise from
large-scale WGS projects (Lunetta et al., 2004; Hastie et al., 2009).
This issue is of special relevance, as prior studies have indicated
that there are likely to be as-yet undetected epistatic effects that
might influence resistance (Farhat et al., 2016).

Machine learning is concerned with the development and
application of computationally intensive analytical methods to
extract information from complex datasets, with an emphasis
on the task of prediction. With increasing numbers of M.
tuberculosis clinical isolates undergoing WGS and the expanding
numbers of loci implicated in resistance, machine learning offers
a complementary approach to regression-based GWAS, as it has
a superior capability to adapt to the growing body of clinical
and biological data. Compared with regression, nonparametric
machine learning methods such as classification trees (CTs)
and gradient-boosted trees (GBTs) have few underlying
model assumptions related to the distribution and functional
relationships between the included covariates or predictors. They
potentially provide greater flexibility for problems of prediction
in high-dimensional variable spaces, when each individual
covariate may contain limited information and covariate
interactions are important (Lunetta et al., 2004; Heidema et al.,
2007; Hastie et al., 2009). CTs and GBTs are recursive partitioning
methods that have outperformed other classification techniques
in genome-wide studies (Chen and Ishwaran, 2012) and provide
predictions and the ranked importance of predictors as outputs
(Efron and Hastie, 2017). GBTs in particular have achieved state-
of-the-art results on many standard classification benchmarks
and demonstrated scalability and speed, suggesting that they
may perform well in drug-resistance studies (Chen and Guestrin,
2016). We aim to leverage the great interpretability of CTs with
the superior prediction performance of GBTs.
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Machine learning methods have previously been applied in a
TB context, including to support digital X-ray analysis (Lakhani
and Sundaram, 2017) and drug development and to assess
antitubercular properties of compounds (Periwal et al., 2011). In
the context of predicting pathogen drug resistance, researchers
have looked to apply random forest classification and GBT
models (Farhat et al., 2016; Yang et al., 2018; Kouchaki et al.,
2018). For TB, different statistical models have been applied
to different drugs within the same study, rather than adopting
a single approach across all drugs (Kouchaki et al., 2018). Our
approach differs from these and other studies in one or more of
the following aspects. First, our dataset is one of the largest for
TB, consisting of nearly 17,000 M. tuberculosis isolates sourced
globally, and considers phenotypic data for a wider range of
drugs (n = 14), including for less often used ones such as para-
aminosalisylic acid (PAS), cycloserine (CYS), and ETH. Not only
do we focus on known drug-resistance SNPs or genes, but we
also analyze (640K) genome-wide SNPs with an opportunity to
inform new variant discovery. Therefore, our dataset provides
a unique opportunity to evaluate machine learning methods,
which could be rolled in a clinical setting, based on actual M.
tuberculosis “big data” Second, we use a combination of CTs
and GBTs to optimize resistance prediction and SNP discovery
(Hastie et al., 2009). Third, we assess the impact and implications
of including “co-occurrent resistance” markers in the prediction
models. These are mutations that are known to be causing
resistance to other drugs. Furthermore, we have developed a
new approach to graphically interpret and rank the results of
the GBT models and propose approximate novel SNP detection
thresholds, supporting the detection and interpretation of
putative new SNPs linked to drug resistance. In summary, we
investigate the potential of applying cutting-edge CT and GBT
machine learning methods to predict drug resistance and thereby
support surveillance and clinical decision making, as well as
assist the discovery of putative new SNPs linked to resistance.

RESULTS

M. Tuberculosis Sequence Data, Genetic
Diversity, and Drug Resistance
WGS and drug susceptibility testing data were available across
16,688 isolates (S1 Table), which cover the four main lineages
(L1, 11.1%; L2, 21.9%; L3, 17.0%; L4, 50.1%; S2 Table). Across
the isolates, 642,580 high-quality genome-wide SNPs were
identified, with the majority in genic regions (91.6%; 56.9% of
mutations leading to nonsynonymous amino acid changes). The
majority of SNPs (98.9%) have low minor allele frequencies (<
1%). We also included covariates representing the aggregation of
nonsynonymous mutations by locus within our machine learning
approach. A phylogenetic tree constructed using all genome-wide
SNPs revealed the expected clustering by lineage (Figure 1). The
CT and GBT approaches implemented also selected lineage-
specific markers to account for the phylogeographic-based
population stratification.

Laboratory drug susceptibility testing (DST) of anti-TB
drugs found that 35.5% of isolates had a resistance phenotype

(MDR-TB, 22.5%; XDR-TB, 2.1%; other, 11.0%; Table 1; 52 Table;
$3 Table). Due to oversampling, these rates are higher than those
typically seen in clinical or surveillance settings. Fourteen drugs
were included in the genome-wide analysis: INH, RIE ETH,
PZA, EMB, STM, AMK, CAP, KAN, CIP, OFL, MOX, CYS, and
PAS, as well as the composite MDR-TB phenotype. Phenotypic
DST data were not available for every isolate across each of the 14
drugs, as only those individuals resistant to first-line treatments
are typically tested for second-line resistance. Therefore, the
number of samples tested ranged from >16,000 for the most
commonly tested first-line drugs (INH and RIF; =98.0%) to <407
(<2.4%) for less often phenotypically assessed drugs such as
PAS, CYS, and CIP (S3 Table). Insufficient phenotypic data were
available for the inclusion of the new and repurposed drugs such
as bedaquiline, delamanid, and linezolid as well as for XDR-TB.

Machine Learning Models to Predict Drug
Resistance

CT and GBT approaches were used to predict drug resistance
and support new SNP discovery. We fitted CT models using
datasets either consisting of SNPs in genes known to be linked
to drug resistance (CT-KDG) or genome wide (CT-ALL). One
GBT model was fitted to datasets with all genome-wide SNPs
(GBT-ALL). All of these three models (CT-KDG, CT-ALL, and
GBT-ALL) excluded known co-occurrent resistance markers.
We fitted one additional approach (GBT-CRM) that included
all genome-wide SNPs and, therefore, potential co-occurrent
resistance markers in the model. Finally, for the purpose of
comparison, we fitted a logistic regression (LR) model on the
SNPs in genes known to be linked to drug resistance (LR-KDG).
For all approaches, we also included the aggregated count of
all nonsynonymous mutations per gene in the dataset, to allow
the models to use this covariate as a potential starting point
and potentially cover known resistance mutations that have
low frequency (Phelan et al., 2019). It should be noted that the
dataset did not contain large deletions, which we have found to
be present in some resistant isolates, but at very low frequency
overall (Coll etal., 2018). The resulting CT-KDG models included
between one and four SNPs or loci. For the CT-ALL and GBT-
ALL, the number of predictors selected varied from 1 to 10 and
from 30 to 134, respectively (Table 1), and included lineage or
strain-specific markers that are not causally linked to resistance.
All models overlapped with respect to known drug-resistance
loci (Table 1), confirming that they are the strongest predictors
of resistance. In some cases, the CT-KDG and CT-ALL models
were identical (e.g. RIF, EMB, AMK, CAP, CIP, OFL).

The Performance of the Machine Learning
Models

The predictive performance of the machine learning approaches
was assessed by calculating the sensitivity and specificity and the
area under the receiver operating characteristic curve (AUC),
assuming the laboratory DST result was the gold standard ( Table 2).
The GBT-CRM sensitivity for RIF (88.8%) and INH (91.1%) was
higher than for EMB (82.8%) and PZA (69.7%). The sensitivity
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FIGURE 1 | Phylogenetic tree*(attached as separate file)" The tree includes all 16,688 isolates, complemented by additional data from lineages 5-7 and M. bovis.
The tree was fitted using a maximum likelihood approach implemented in RAXML (Stamakis, 2014).

TABLE 1 | Drug-resistance loci identified in the machine learning models.

Drug N Resistant % CT-KDG (N) CT-ALL (N) GBT-ALL (N) Overlapping Loci
Isoniazid 16,422 5215 31.8 2 5 103 katG", fabG
Rifampicin 16,507 4,462 27.0 1 1 39 rpoB*
Pyrazinamide 11,968 1,813 151 2 4 116 pncA
Ethambutol 14,830 2,576 17.4 1 10 36 embB*
Streptomycin 5213 1,338 257 4 4 134 osL®, rpsl, rrs®, s
Amikacin 1,435 335 233 1 1 35 ms
Capreomycin 1,731 389 225 1 3 44 ms
Kanamycin 1,843 639 347 1 2 43 ms
Ciprofloxacin 400 63 15.8 1 1 30 gyrA*
Ofloxacin 1,993 506 254 1 1 42 agyrA*
Moxifloxacin 885 104 11.8 1 2 36 gyrA®
Ethionamide 940 329 35.0 3 1 60 fabG*
Cycloserine 391 105 26.9 1 5 44 alr

PAS 407 43 10.6 1 1 54 folC
MDR-TB - 3748 225 1 1 82 rpoB”, katG, fabG

PAS, para-aminosalisylic acid; CT-KDG is a classification tree (CT) applied to a dataset with SNPs that are known to be associated with drug resistance [derived from
Ref. (Phelan et al., 2019)]: CT-ALL and GBT-ALL are, respectively, a CT and gradient boosted tree (GBT) applied to a dataset that includes all genome-wide SNPs,
except those linked to resistance for other drugs (co-occurrent resistance markers); GBT-CRM is a GBT that is applied to all genome-wide SNPs; MDR-TB is multidrug
resistant TB, that is, resistance to isoniazid and rifampicin. *Total number of nonsynonymous mutations in that gene.

for fluoroquinolones was highest for CIP (85.7%), followed by
OFL (81.0%) and MOX (53.3%). The sensitivity for the injectables
was highest for KAN (82.2%), followed by AMK (80.5%) and CAP
(74.6%). The model sensitivity for the remaining drugs [ETH

(68.1%), CYS (50.0%), and PAS (20.0%)] is substantially lower. The
overall sensitivity for MDR-TB was 90.4%. The GBT-ALL model
tended to outperform the CT models, with respect to sensitivity
and specificity, and CT-ALL had stronger performance than
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TABLE 2 | Sensitivity, specificity, and accuracy for the models [maximum value per prediction measure is bolded).

Drug LR-KDG CT-KDG CT-ALL GBT-ALL GBT-CRM

Sens. Spec Acc. Sens Spec Acc Sens Spec Acc Sens Spec Acc Sens Spec Acc

INH 873 99.1 95.3 ar.3 99.14 953 87.3 99.1 95.3 88.0 99.0 85.4 91.1 98.8 96.3
RIF 828 99.6 95.1 82.8 99.6 95.1 82.8 99.6 95.1 82.8 99.6 951 88.8 98.9 96.2
PZA 216 100 87.2 216 100 B87.2 35.2 98.5 88.2 428 99.2 90.0 69.7 96.1 91.8
EMB 847 a3.1 91.6 80.9 94 916 80.9 94.0 916 81.7 94.7 92.4 828 94.2 921
ST™ 716 a7.8 911 72.3 96.5 90.3 72 97.3 90.6 723 97.3 80.9 798 96.0 91.9
AMK 805 9.5 95.1 80.5 99.5 95.1 80.5 99.5 951 80.5 99.5 85.1 80.5 99.5 95.1
CAP 69.6 85.5 806 60.6 95.5 896 69.6 955 896 721 958 80.4 746 96.2 91.3
KAN 4.4 99.1 89.7 744 99.14 B8a.7 822 97.8 91.8 0.8 97.8 1.3 822 98.2 921
ciP 928 98.5 97.5 92.8 98.5 975 92.8 98.5 97.5 85.7 985 98.2 85.7 98.5 98.2
OFL 80 97.7 935 80.0 97.7 936 80.0 97.7 93.5 81.0 97.7 93.7 81.0 97.0 93.2
MOX 66.6 a3.2 90.9 66.6 93.2 90.9 48.6 98.1 93.7 533 96.2 92.6 533 97.5 93.7
ETH 757 758 756 75.7 758 756 4.2 T79.6 T 66.6 926 83.5 68.1 934 846
cys* 576 888 784 384 981 784 30.7 943 734 48.1 924 772 50.0 924 784
PAS o] 100 87.8 20.0 100 90.2 0 100 87.8 10.0 100 89.0 20.0 100 90.2

MDR 859 95.9 94.4 859 96.9 944 85.9 96.9 94.4 86.2 97.5 85.0 90.4 96.9 95.5

“No known drug-resistance SNPs for CYS were included in the KDG modeis; reported outcomes are the performance on the test set; RIF rifampicin; INH, isoniazid;
EMB, ethambutol; PZA, pyrazinamide; CIF, ciprofloxacin; OFL, ofioxacin; MOX, moxifloxacin; AMK, amikacin; KAN, kanamycin; GAF, capreomycin; PAS, para-
aminosalisylic acid (PAS); CYS, cycloserine; ETH, ethionamide; CT-KDG is a classification tree (CT) fitted to a dataset with SNPs that are known to be associated
with drug resistance [derived from Ref. (Phelan et al., 2019)]; LR-KDG is a logistic regression model applied to the same SNP set as CT-KDG; CT-ALL and GBT-ALL
ars, respectively, a CT and gradient boosted tree (GBT) applied to a dataset that includes all genome-wide SNPs, except those linked to resistance for other drugs

{co-occurrent resistance markers); GBT-CRM is a GBT that is applied to all genome-wide SNPs; MDR is multidrug resistant TB.

CT-KDG. The AUC values for most major first- and second-line
drugs for the GBT model were above 90% (and often above 95%)
(84 Table). The overall predictive performance across models
for CYS and PAS was relatively weak. In general, larger datasets
with well-characterized PAS and CYS phenotypes will be needed
to assist with identifying the full repertoire of related resistance
mutations (Farhat et al., 2016; Coll et al., 2018).

Comparison Between GBT-CRM and Other Machine
Learning Models

Owing to the inclusion of co-occurrent resistance markers,
the GBT-CRM model was almost always the best in terms of
predictive accuracy and AUC, with a marked improvement for
PZA and PAS (S1 Table). The GBT-ALL model, which excludes
co-occurrent resistance markers, but can include marker
interactions and strain markers, also tended to outperform
the KDG models, but to a lesser extent than GBT-CRM. The
difference in predictive performance between the GBT-ALL and
the KDG models was especially large for ETH and CYS.

Comparison With an in Silico Panel of Known
Mutations and GWAS

We also compared the predictive abilities of GBT-ALL, CT-ALL,
and CT-KDG models to those from the TB-Profiler mutation
panel consisting of >1,300 markers across the 14 drugs (85 Table)
(Coll et al,, 2015; Phelan et al., 2019). First, we used only those
markers with minor allele frequency of >0.5% to predict resistance
(“TB Panel”; $6 Table) and attained a performance similar to KDG
models (Table 2). We then used the TB-Profiler (full) mutation
panel and software (Phelan et al., 2019), which rules in observed
frameshift mutations, large deletions, and missense mutations
in known resistance genes. As TB-Profiler includes mutations
occurring at low frequencies, the predicted accuracy was superior

than the machine learning approaches for most drugs. For five
drugs, where the resistance mechanisms are less understood,
including STM, ETH, and PAS, the GBT-CRM model had a
marginally better performance than the TB-Profiler (S6 Table).
We also compared the predictive abilities of the GBT-CRM to
those from an updated GWAS analysis [similar implementation to
(Colletal., 2018)] (S6 Table). Overall, the accuracy of both models
was in the same range (<1% difference) for most drugs, with the
exception for CAP, KAN, and CYS, where the performance of
GWAS was distinctively greater, and with exception for PZA,
MOX, and ETH, where the performance of GBT-CRM was better.

Comparison With Other Studies That Apply Machine
Learning Methods

We compared our models to the results of four recent studies
that have applied different machine learning models (Yang et al.,
2018; Kouchaki et al., 2018; Chen et al,, 2019; Yang et al., 2019).
Specifically, we compared both the average and maximum of the
reported results for each metric (sensitivity, specificity, AUC) for
each drug across the four studies (S7 Table; S8 Table). All the
comparator studies included co-occurrent resistance markers.
The specificities tended to be greater for the GBT-CRM model.
The sensitivities tended to be greater for one or more of the
models used in the other studies. However, overall, for six drugs
(PZA, AMK, CAP, KAN, CIP, and MOX), the AUC scores of the
GBT-CRM were higher than for the best model for that specific
drug in other studies.

Detection and Interpretation of Putative
New SNPs

The CT-ALL and GBT-based approaches did not discover any
putative new SNPs that met the stringent detection thresholds.
We present and display a new visual approach to mutation
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ranking that leverages the output of the GBT-ALL model
(S1 Fig). A number of known candidates (e.g., Rv1463 for RIF
resistance) presented with marginal evidence.

DISCUSSION

With the rollout of WGS-based TB diagnosis across many
countries (including UK) (PHE, 2018), there is a need to
develop global TB datasets and databases (Coll et al., 2018;
ReSeqTB, 2018), which in turn will require the implementation
of “big data” analytical approaches (e.g., machine learning
methods) to assist clinical and control program decision
making. We have shown that CT and GBT machine learning
approaches can play a value-adding role in predicting drug
resistance and the possible detection of new putative variants.
In general, the predictive performance of the CT models
was inferior to the GBT approaches, but they captured the
most common mutations driving resistance. When using
aggregated counts of nonsynonymous mutations in known
resistance genes as a predictor in the trees, the CT models
did not include any known individual SNPs in that respective
gene in an exclusionary manner as an additional predictor.
This observation provides not only support for the validity
and accuracy of the overall TB-Profiler lists but also the use
of aggregation as a first parse approach to identifying relevant
genes. The possible exception relates to KAN, CAP, and AMK,
where the machine learning models chose a subset of the list
of TB-Profiler SNPs.

The predictive performance of the GBT models, and
especially the GBT-CRM model, is similar or higher than that
of the models developed in other studies (Yang et al., 2018;
Kouchaki et al., 2018; Chen et al., 2019; Yang et al., 2019).
The performance of the more complex GBT models (GBT-
ALL and GBT-CRM) in some cases is worse than TB-profiler
(Phelan et al., 2019), but the comparison is affected by the
fact that the latter approach uses rare alleles and deletions for
prediction. For some drugs where the resistance mutations are
not fully established (e.g., CYS, STM, and PAS), the GBT-CRM
model had a similar or better predictive performance to the
TB-profiler panel. The improved performance of the GBT-CRM
over GBT-ALL and CT models may be explained by its ability to
capture covariate interactions and the inclusion of co-occurrent
resistance markers and strain-specific SNPs that may be
informative in resistance outbreaks but in themselves may be
related to transmissibility and not drug resistance. The inclusion
of co-occurrent resistance markers might lead to overoptimism
in the estimated performance that may not translate optimally
into clinical practice. This optimism bias affects both prediction
as well as detection (i.e., through mutation ranking) and may be
caused by an interplay between high DST measurement errors
(e.g., for pyrazinamide) (APHL, 2016), sequential testing,
data from settings where drug availability is unregulated, the
structure and stratification of the datasets, and differential
resistance mechanisms not captured in a database (e.g., Lisboa
strain types which have different MDR-TB mutations) (Coll
et al., 2018). Ideally, resistance predictions should be based

on underlying biological mechanisms, with co-occurring
mutations having little effect, thereby assisting with the
identification of novel putative markers and pathways. While
our machine learning analysis suggested no novel SNPs at the
importance thresholds used, in general, the approach ranks the
informativeness of SNP mutations, which assists the detection
of novel polymorphisms. As databases get larger with greater
numbers of well-characterized resistance samples, especially
for third-line drugs, there is improved potential to identify
novel resistance mutations using machine learning approaches.

As expected, the overall predictive ability of INH, RIF, and
MDR-TB resistance across the machine learning approaches
was high (~90% sensitivity) because the underlying mutations
and loci involved are well established. However, 10% of
resistance cases were not identified by the models. The
genotypic-phenotypic discordance, as measured with the
GBT-ALL model, was higher for other first-line (e.g., EMB,
~20% and PZA, ~60%) and second-line drugs (AMK and CAP,
~20-25%; ETH, ~35%; CYS, ~55%), and large discrepancies
point towards unknown genetic factors. However, other factors
potentially have an effect, including laboratory DST errors
or misspecified or truncated drug assay breakpoints (World
Health Organization, 2018c), efflux-pump upregulation
(Balganesh et al., 2012; Gygli et al., 2017), and epigenetic
and hetero-resistance effects (Folkvardsen et al., 2013; Farhat
etal, 2016). For example, the recent downward revision of the
critical concentrations for the fluoroquinolones and injectables
is likely to decrease specificity and increase sensitivity of
WGS-based analysis (World Health Organization, 2018c).
Future studies should aim to use quantitative minimum
inhibitory concentration scores as phenotypes (Farhat et al.,
2018). For heteroresistance, both resistance and wild-type
mutations occur in a mixed infection. If the resistant strain
has a relatively low abundance, the drug may be labeled
resistant according to the DST result but sensitive in genomic
sequencing (Folkvardsen et al., 2013; Farhat et al., 2016),
leading to false negative results. Across the 32 drug targets
in the TB-Profiler mutation library, 28 appear to have some
evidence of heteroresistance within the 17k dataset (Phelan
et al., 2019). With the lower error rates and higher depth of
WGS, the detection of such low frequency variants is possible;
therefore, combined with robust bicinformatic approaches,
sequencing is being viewed as the gold standard for drug
resistance characterization (Coll et al., 2018).

In summary, our approach has shown that machine
learning can robustly predict drug resistance and inform on
its underlying mutations. Furthermore, such approaches will
be scalable when WGS becomes routine and increasingly “big
data” analyses are required.

MATERIALS AND METHODS

Phenotypic and Sequencing Data

The dataset consists of 16,688 isolates (lineages 1-4) with WGS
data and phenotypic DST data (see S1 Table for accession
numbers). The laboratory drug susceptibility testing followed
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WHO recommended protocols and practice [see Ref. (Coll
etal,, 2018)]. The raw sequence data were mapped to the H3Rv
reference genome using bwa-mem software, and SNPs and
insertions and deletions (indels) called from the consensus of
GATK and samiools software. The final set of SNPs (N = 642,580)
and indels included those with low levels of missing genotypes
(<2%) and excluded those in the hypervariable PE/PPE gene
families. Missing values were imputed using a nearest neighbor
imputation approach. The dataset was augmented with covariates
that aggregated the number of nonsynonymous mutations
isolated in a locus.

Fitting the Machine Learning Models
CTs (Hastie et al., 2009) were created from two SNP sets: one
based on those in known drug resistance genes (Coll et al., 2015)
(N = 1,421 SNPs; “CT-KDG”) and the other using all SNPs in
the dataset (N = 641,159, “CT-ALL"). CT algorithms produce
only one easy to interpret tree as output. GBT models (Friedman,
2000; Hastie et al, 2009) were fitted to a genome-wide SNP
dataset (GBT-ALL), leading to an ensemble of short and stumpy
decision trees constructed in an adaptive manner. The GBT
models allowed us to move beyond binary inclusion of SNPs
in the final model and assess, for the purpose of SNP discovery,
the weight and importance of the SNPs included. The LR model
was applied to the same set of SNPs as the CT-KDG model. As
mentioned, we excluded known resistance markers for drugs that
were not the phenotype of interest in each individual model in
the logistic regression LR-KDG, CT-KDG, CT-ALL, and GBT-
ALL, but included these markers in the GBT-CRM approach.
We created a split in the dataset where 80% was used as a
training and validation set, and 20% was used as a test set. We
applied five-fold cross-validation to the training set to calculate
the prediction accuracy and used this to select the maximum
depth parameter of the CT and GBT models. (Hastie et al,
2009). The penalized LR model was cross-validated on the
regularization strength C for the L1 penalty. The final models
were trained on the training set and were subsequently applied
to the test set, with those outcomes reported in the Results
section. For the CT models, the maximum depth parameter
was selected as the smallest value that was within one standard
error from the best performing maximum depth setting. We
followed this “one-standard-error” rule to further induce the
selection of parsimonious models and to mitigate the risk
of over-fitting (Hastie et al., 2009). In both the GBT and CT
models, the predictions in the final leaf nodes of the tree were
determined by the majority class in those nodes. The reported
scores (sensitivity, specificity, accuracy, positive predicted value,
negative predicted value, and AUC) were calculated after fitting
the model to the training dataset with the maximum depth as
described per above and other parameter values (described
in 89 Table). The GBT models are based on an ensemble of 50
trees (to facilitate a consistent comparison across drugs with
regards to the mutation ranking) with a subsampling of 60% of
isolates to fit each tree. These models provide a score for weight,
coverage, and importance. The “weight” refers to the number of
times a feature (covariate) appears in a tree/forest; “coverage” is

the relative quantity of observations affected by a feature (which
would be higher for covariates that are higher up in the tree), and
“importance” is the average gain in the predictive accuracy when
a SNP is chosen to split a tree node. SNP discovery using GBTs
was assisted by construction of a two-dimensional mutation-
ranking graph (see S1 Figure) displaying importance gain versus
weight, with coverage as the bubble size. Those SNPs with high
importance and weight are more likely to be predictive in a large
number of trees across different subsamples of the data and,
therefore, more generalizable. The suggested thresholds for the
importance and weight were chosen pragmatically based on the
inclusion of known and established resistance markers. These
thresholds are shown as dotted lines on the graphs (S1 Figure).

The core packages used in the analysis included the SHAP
(Lundberg and Lee, 2017) to visualize the relative contribution
of each predictor, the decision tree classifier in sklearn (version
0.19.1), and the Xgboost implementation (version 0.70) was
used to construct the CTs and GBTs (Chen and Guestrin,
2016). The default settings were used for the implementation
of these machine learning algorithms, with the exception of
the parameters as specified (see $9 Table). The plausibility of
putatively causal SNPs identified was assessed through a search
of the literature, including for gene function on Mycobrowser
(Kapopoulou et al,, 2011).

Comparisons to Mutation Libraries,

GWAS, and Other Studies.

We compared our machine learning prediction results to those
from using a set of known SNPs associated with drug resistance
on a rule-in basis. A first comparison was made with predictions
based on mutations in the TB-Profiler panel (Phelan et al., 2019)
that were common (minor allele frequency > 0.5%) in our dataset
(TB-Panel). A second comparison was made with the application
of the TB-Profiler software and its full mutation library (Phelan
et al,, 2019) to the dataset. We also compared our results to the
application of a mixed-model regression GWAS approach (Coll
et al,, 2018) to the ~17k dataset, as well as other studies that
applied machine learning methods (Yang et al., 2018; Kouchaki
et al., 2018; Chen et al., 2019; Yang et al., 2019).
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S1Table

Sources of sequence data, and drug resistance phenotypes

Project N Susceptible Drug-resistant MDR-TB XDR-TB
Mixed 8128 5005 744 2379
PRINA282721 1840 1471 277 87 5
PRIEB2794 1306 1219 79 8 0
PRIEB7056 1088 874 173 41 0
PRJEB9680 1031 710 73 246 2
PRJEB10385 682 98 193 296 g5
PRJEB2221 356 331 19 6 0
PRINA183624 331 85 41 138 67
PRJEB2358 325 293 30 2 0
PRJEB7669 232 0 3 218 11
PRINA235852 208 155 33 20 0
PRJEB5162 191 175 14 2 0
PRINA187550 157 43 0 91 23
PRJEB11653 126 14 77 35 0
PRINA200335 126 23 5 43 55
PRJEB14199 123 0 34 14 75
PRIEB2777 98 98 0 0 0
PRIEB7281 95 38 15 41 1
PRJEB6945 46 46 0 0 0
PRJEB2424 45 3 2 40 0
PRJEB15857 38 18 5 15 0
PRIEB2138 37 9 4 14 10
PRINA49659 30 30 0 0 0
PRIEB7727 28 12 11 5 0
PRINA376471 18 11 0 7 0
PRIEB6276 3 3 0 0 0
Total 16688 10764 1832 3748 344

* https://www.ebi.ac.uk/ena; Drug-resistant refers to non-MDR-TB/-XDR-TB resistance; MDR-TB is
defined as resistance to isoniazid and rifampicin; XDR-TB is defined as MDR-TB, and resistance to any

fluoroquinolone, and to any of the three second-line injectables (amikacin, capreomycin, and

kanamycin).
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9 S2 Table
10 Phenotypic drug susceptibility tests status by lineage

11
Lineage N %  Susceptible &  MDRTE  XDR-TB
resistant
1 1851 111 1492 203 150 6
2 3653 21.9 1445 479 1572 157
3 2830 17.0 2162 215 425 28
4 8354 50.1 5665 935 1601 153
Overall 16688  100.0 10764 1832 3748 344
64.5% 11.0% 22.5% 2.1%
12 Drug-resistant refers to non-MDR-TB/-XDR-TB resistance; MDR-TB is defined as resistance to isoniazid
13

and rifampicin; XDR-TB is defined as MDR-TB, and resistance to any fluoroquinolone, and to any of the

14  three second-line injectables (amikacin, capreomycin, and kanamycin).
15

16
17
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24

S3 Table

Phenotypic drug susceptibility testing results

% of

Drug No. tests 16,688 Resistant %
Rifampicin 16507 98.9 4462 27.0
Isoniazid 16422 98.4 5215 31.8
Ethambutol 14830 88.9 2576 17.4
Pyrazinamide 11968 71.7 1813 15.1
Streptomycin 5213 31.2 1338 25.7
Ofloxacin 1993 11.9 506 25.4
Kanamycin 1843 11.0 639 34.7
Capreomyecin 1731 10.4 389 22.5
Amikacin 1435 8.6 335 23.3
Ethionamide 940 5.6 329 35.0
Moxifloxacin 885 5.3 104 11.8
PAS 407 2.4 43 10.6
Ciprofloxacin 400 2.4 63 15.8
Cycloserine 391 2.3 105 26.9

PAS = para-aminosalisylic acid

(V3]
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25 S4 Table

26 Predictive accuracy and Area under the ROC Curve (AUC) for models (maximum value per prediction

27 measure is bolded)

Drug LR-KDG CT-KDG CT-ALL GBT-ALL GBT-CRM

NPV PPV AUC NPV PPV AUC NPV PPV AUC NPV PPV AUC NPV PPV AUC

INH 942 | 979 93.7 94.2 97.9 934 | 942 | 979 | 934 94.5 97.7 95.8 95.8 974 96.7
RIF 94.1 | 98.7 91.2 941 98.7 912 | 941 | 98.7 | 912 94.1 98.7 95.3 96.0 96.8 97.9
PZA 86.7 | 100.0 | 60.7 86.7 | 100.0 | 60.8 | 886 | 828 | 737 89.8 91.8 87.0 94.2 78.0 95.5
EMB | 965 | 729 89.9 95.7 74.5 874 | 957 | 745 | 874 95.9 77.2 94.0 96.1 758 95.8
STM 909 | 91.8 87.3 91.0 87.7 87.1 90.8 | 90.0 | 884 91.1 90.2 92.2 93.3 87.3 94.0
AMEK | 944 | 981 91.1 94.4 98.1 90.0 | 944 | 98.1 90.0 94.4 98.1 94.5 94.4 98.1 96.4
CAP 914 | 820 84.0 914 82.0 825 | 914 | 820 | 825 92.1 83.8 90.2 92.38 85.5 93.4
KAN 86.3 | 98.1 88.5 86.3 98.1 86.7 | 89.9 | 958 | 904 89.2 95.7 92.9 90.0 96.6 96.8
clp 985 | 92.8 95.6 98.5 92.8 956 | 985 | 928 | 958 97.0 92.3 92.9 97.0 92.3 99.7
OFL 940 | 915 88.8 94.0 91.5 888 | 940 | 915 | 888 94.3 91.6 92.0 94.2 89.5 93.3
MOX | 96.7 | 476 79.9 96.7 476 799 | 952 | 70.0 | 93.0 95.7 571 974 95.7 66.6 97.2
ETH 853 | 625 79.7 85.3 62.5 756 | 852 | 66.2 | 804 83.8 83.0 854 84.5 84.9 88.4
CYs* - - - - - - 735 | 727 | 698 77.8 75.0 80.6 79.0 76.5 83.8

pAS** | 87.8 - 50.0 90.0 100.0 | 60.0 | 87.8 - B67.9 88.9 | 100.0 | 82.6 90.0 100.0 | 825
MDR | 96.0 | 88.9 96.5 96.0 88.9 914 | 96.0 | 889 | 914 96.0 91.0 97.1 97.2 89.5 97.4
28 * Mo known drug resistance SNPs for CYS were included in the KDG models; CT-KDG is a classification tree (CT)

29 fitted to a dataset with SNPs that are known to be associated with drug resistance (derived from (24)); LR-KDG is a

30 Logistic Regression model applied to the same SNP set as CT-KDG; CT-ALL and GBT-ALL are respectively a CT and

31 Gradient Boosted Tree (GBT) applied to a dataset that includes all genome-wide SNPs, except those linked to

32 resistance for other drugs (“co-occurrent resistance markers”); GBT-CRM is a GBT that is applied to all genome-

33 wide SNPs; PPV=Positive Predicted Value, NPV=Negative Predicted Value, AUC=Area under the ROC Curve; ** PPV

34 for PAS for LR-KDG and CT-ALL could not be calculated as sensitivity was 0. Reported outcomes are the

35 performance on the test-set; RIF=rifampicin, INH=isoniazid, EMB=ethambutol, PZA=pyrazinamide,

36 CIP=ciprofloxacin,OFL= ofloxacin, MOX=moxifloxacin, AMK=amikacin, KAN=kanamycin, CAP=capreomycin,

37 PAS=para-aminosalisylic acid (PAS), CYS=cycloserine, ETH=ethionamide; MDR is multi-drug resistant TB.
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41
42

S5 Table

Summary of drugs and mutations in TBProfiler library* used in this study

Drug Locus Gene SNPs Indels
Rifampicin Rv0667 rpoB 94 25
Rv0668 rpoC 8 -
Rv1483 fabG1 11 -
Rv1484 inhA 13 -
Isoniazid Rv1908¢c katG 226 37
Rv2245 kasA 4 -
Rv2428 ahpC 21 -
Rvi267c embR 20 -
Ethambutol Rv3793 embC 25 -
Rv3794 embA 9 6
Rv3795 embB 127 1
Rv1630 rpsA 3 -
Pyrazinamide  Rv2043c pncA 280 87
Rv3601c panD 10 1
Rv0682 rpsL 16 -
Streptomycin Rv3919¢ gid 2 26
rrs rrs 19 -
Rv1483 fabG1 -
Ethionamide Rv1484 inhA )
Rv3854c ethA 33 42
Rv3855 ethR i}
Amikacin rrs rrs -
: Rv1694 tlyA 16 13
Capreomycin
rrs rrs 4 B
. Rv2416¢ eis 10 -
Kanamycin
rrs rrs 4 )
FQ Rv0005 gyrB 26 -
Rv0006 gyrA 21 B
Rv2447c folC 18 -
PAS Rv2671 ribD 1 :
Rv2754c thyX 1 -
Rv2764c thyA 19 5
. Rv2780 ald - 12
Cycloserine
Rv3423c alr 3 -

* https://github.com/iodyphelan/tbdb;; indels = insertions and deletions, FQ = Fluoroquinolones, PAS = Para-

aminosalicylic acid

N
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43 S6 Table
44 Comparison between Gradient Boosted Tree model (GBT-CRM), TB-Panel, TB-Profiler and GWAS
45 study

Drug TB-Panel* TB-Profiler** GWAS*** GBT-CRM*#***
Sens Spec Acc. Sens | Spec | Acc. | Sens Spec Acc. Sens Spec Acc.
INH 88.0 97.0 94.1 93.7 | 981 | 96.7 | 92.2 98.6 96.6 | 91.1 98.8 96.3
RIF 84.1 99.4 95.3 959 | 982 | 976 | 929 98.6 97.1 | 88.8 98.9 96.2

PZA 19.9 98.8 86.4 87.6 | 96.7 | 953 | 394 98.2 89.0 | 69.7 96.1 91.8

EMB 84.1 933 91.7 92.1 | 91.7 | 91.8 | 89.0 92.9 92.2 | 828 94.2 92.1

STM 81.4 81.5 81.5 78.0 | 963 | 91.6 | 70.2 98.1 90.9 79.8 96.0 91.9
AMK 82.3 86.5 85.5 86.0 | 98.3 | 954 | 86.0 98.6 95.7 80.5 99.5 95.1
CAP 76.3 84.9 83 84.7 | 959 | 93.4 | /8.7 96.7 92.6 74.6 96.2 91.3
KAN 84.9 86.9 86.2 92.0 | 96.8 | 95.1 | 86.2 98.2 94.0 82.2 98.2 92.1

CIP 80.9 98.2 95.5 90.6 | 98.0 | 96.8 | 84.1 98.8 96.5 | 85.7 98.5 96.2

OFL 81.0 97.4 93.2 90.1 | 965 | 94.9 | 83.8 97.6 94.1 | 81.0 97.0 93.2

MOX 81.7 92.7 91.4 86.0 | 919 | 91.2 | 817 93.6 92.2 | 53.3 97.5 93.7

ETH 76.5 75.4 75.8 895 | 674 | 75.1 | 55.7 86.6 75.7 68.1 93.4 84.6
CYs - - - 43.0 | 925 | 79.2 | 333 98.3 80.8 50.0 92.4 78.4
PAS 9.3 97.8 88.4 238 | 96.7 | 89.0 | 48.8 95.3 90.4 20.0 | 100.0 | 90.2

MDR 79.7 97.7 93.8 94.1 | 983 | 97.3 | 89.8 98.7 96.5 | 90.4 96.9 95.5

46 GBT-CRM is a Gradient Boosted Tree (GBT) that is applied to all genome-wide SNPs (including co-occurrent

47 resistance markers); * List of TB Profiler panel mutations with minor allele frequency » 0.5% in the dataset, and
48 applied on a “rule-in” basis; ** TB-Profiler prediction (24); *** GWAS approach as described in (12) but re-run on
49 the 17k dataset used in this study; ****Reported outcomes for GBT-CRM is based on the performance when

50 applied to the test-set; RIF=rifampicin, INH=isoniazid, EMB=ethambutol, PZA=pyrazinamide,

51 CIP=ciprofloxacin,OFL= ofloxacin, MOX=moxifloxacin, AMK=amikacin, KAN=kanamycin, CAP=capreomycin,

52 PAS=para-aminosalisylic acid (PAS), CYS=cycloserine, ETH=ethionamide, Sens=Sensitivity, Spec=Specificity,
Acc=Accuracy, MDR = multi-drug resistant TB.



56
57
58

S7 Table

Comparison between Gradient Boosted Tree model (GBT-CRM) and average scores across other
machine learning studies*

Sens Spec AUC Sens Spec | AUC- . . .

GBT- G[:BT- GBT- Other ther Other Difference | Difference | Difference

CRM CRM CRM (avg.) | (avg.) | (avg.) (Sens) (Spec) (AUC)
INH 91.1 98.8 96.7 934 96.1 97.6 -2.3 2.7 -0.9
RIF 88.8 98.9 97.9 94.7 97.0 98.4 -5.9 1.9 -0.5
PZA 69.7 96.1 95.5 83.7 90.3 92.9 -14.0 5.8 2.6
EMB 82.8 94.2 95.8 93.5 93.8 97.4 -10.7 0.4 -1.6
STM 79.8 96.0 94.0 88.2 91.3 935 -8.4 4.8 0.5
AMK 80.5 99.5 96.4 834 90.3 93.2 -2.9 9.2 3.2
CAP 74.6 96.2 934 68.2 89.2 831 6.4 7.0 10.3
KAN 82.2 98.2 96.8 80.8 915 90.2 1.4 6.7 6.6
CIP 85.7 98.5 99.7 87.9 91.7 93.8 -2.2 6.8 5.9
OFL 81.0 97.0 93.3 81.6 92.2 91.3 -0.6 4.8 2.0
MOX 53.3 97.5 97.2 87.3 90.4 91.8 -34.0 7.1 5.4
ETH 68.1 934 88.4 90.6 85.6 92.2 -22.5 7.8 -3.8
MDR 80.4 96.9 97.4 96.2 96.5 99.4 -5.8 0.4 -1.9

GBT-CRM is a Gradient Boosted Tree (GBT) that is applied to all genome-wide SNPs (including co-occurrent

resistance markers); * other studies with results found in references (22,23,26,27). For study (27) the

performance is the DeepAMR model. Note: Not all studies included all drugs; Reported outcomes for the GBT-
CRM is the performance based on the application to the test-set ; RIF=rifampicin, INH=isoniazid,
EMB=ethambutol, PZA=pyrazinamide, CIP=ciprofloxacin,OFL= ofloxacin, MOX=moxifloxacin, AMK=amikacin,

KAN=kanamycin, CAP=capreomycin, PAS=para-aminosalisylic acid (PAS), CYS=cycloserine, ETH=ethionamide, Sens

= Sensitivity, Spec = Specificity, AUC=Area under the ROC Curve
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68
69

S8 Table

Comparison between Gradient Boosted Tree model (GBT-CRM) and maximum scores in other

machine learning studies*

ZEBTI'F: Z’;ﬁ 2:_'(_:_ C?::esr gf::r C!:t :(e:r Difference | Difference | Difference

CRM CRM | CRM | (max) | (max) | (max) San sl eoe
INH 91.1 98.8 96.7 97.0 98.4 99.0 -5.9 0.4 -2.3
RIF 88.8 98.9 g7.9 97.0 97.8 99.0 -8.2 1.1 -1.1
PZA 69.7 96.1 85.5 88.1 91.2 95.0 -18.4 4.9 0.5
EMB 82.8 94.2 95.8 97.0 96.0 99.0 -14.2 -1.8 -3.2
STM 79.8 96.0 94.0 90.1 94.2 95.2 -10.3 1.8 -1.2
AMK 80.5 99.5 96.4 88,5 90.8 95.0 -9.0 8.7 1.4
CAP 74.6 96.2 934 71.9 92.7 85.5 2.7 3.5 7.9
KAN 82.2 98.2 96.8 81.1 93.5 92.5 1.1 4.7 4.3
CIP 85.7 98.5 99.7 96.0 98.0 98.0 -10.3 0.5 1.7
OFL 81.0 97.0 93.3 96.0 93.7 95.0 -15.0 3.3 -1.7
MOX | 53.3 97.5 97.2 95.0 93.0 95.0 -41.7 4.5 2.2
ETH 68.1 93.4 88.4 90.6 85.6 92.2 -22.5 7.8 -3.8
MDR 904 96.9 S7.4 96.3 98.0 100 -5.9 -1.1 -2.6

GBT-CRM is a Gradient Boosted Tree (GBT) that is applied to all genome-wide SNPs (including co-occurrent
resistance markers); ¥ other studies with results found in references (22,23,26,27). For study (27) the
performance is the DeepAMR model. Note: Not all studies included all drugs; Reported outcomes for the GBT-
CRM is the performance based on the application to the test-set ; RIF=rifampicin, INH=isoniazid,
EMB=ethambutol, PZA=pyrazinamide, CIP=ciprofloxacin,OFL= ofloxacin, MOX=moxifloxacin, AMK=amikacin,
KAN=kanamycin, CAP=capreomycin, PAS=para-aminosalisylic acid (PAS), CYS=cycloserine, ETH=ethionamide, Sens
= Sensitivity, Spec = Specificity, AUC=Area under the ROC Curve
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79 S9 Table

80  The machine learning parameter settings

Classifier Parameters

Decision Tree Function to measure the quality of a split = Gini,
Classifiers Minimum of samples required before making splits=3,
(“CT") Minimum of samples required for leaf nodes=3,

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf nod =0,

The number of covariates to consider when looking for the best split=None,
max_leaf_nodes=None,

Minimum impurity decrease required for splits=0.0,

Minimum impurity threshold=0,

Class weighting=None.

Gradient Boosted | Boosting learning rate=0.1

Tree Classifier Booster='gbtree'

(“GBT”) Min. loss reduction required for further partition on a leaf node =0
Minimum sum of instance weight(hessian) needed in a child =1
Maximum delta step we allow each tree’s weight estimation to be=0
Subsample ratio of columns when constructing each tree=1
Subsample ratio of columns for each split, in each level=1

L1 regularization term on weights=0

L2 regularization term on weights=1

Global bias=0.5.

Logistic Penalty="L1"
Regression (“LR”) | Tolerance=0.0001
Maximum iterations=100

81 * see Methods for those parameters that were chosen by cross-validation



51 Figure

A two-dimensional mutation ranking across drugs created from the outputs of the gradient boosted tree

(GBT) models, using the proportion of GBT trees within the overall ensemble they appear in and the

information gain associated with their presence. The orange points refer to previously known SNPs (TB-

profiler), with the dotted green box as a suggested detection threshold determined by optimizing the

discrimination between previously known SNPs and other SNPs across drugs.
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A modified decision tree approach o

to improve the prediction and mutation
discovery for drug resistance in Mycobacterium
tuberculosis
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Abstract

Background: Drug resistant Mycobacterium tuberculosis is complicating the effective treatment and control of
tuberculosis disease (TB). With the adoption of whole genome sequencing as a diagnostic tool, machine learning
approaches are being employed to predict M. tuberculosis resistance and identify underlying genetic mutations. How-
ever, machine learning approaches can overfit and fail to identify causal mutations if they are applied out of the box
and not adapted to the disease-specific context. We introduce a machine learning approach that is customized to the
TB setting, which extracts a library of genomic variants re-occurring across individual studies to improve genotypic
profiling.

Results: We developed a customized decision tree approach, called Treesist-TB, that performs TB drug resistance
prediction by extracting and evaluating genomic variants across multiple studies. The application of Treesist-TB to
rifampicin (RIF), isoniazid (INH) and ethambutol (EMB) drugs, for which resistance mutations are known, demaonstrated
a level of predictive accuracy similar to the widely used TB-Profiler tool (Treesist-TB vs. TB-Profiler toal: RIF 97.5% vs.
97.6%:; INH 96.8% vs. 96.5%; EMB 96.8% vs. 95.8%). Application of Treesist-TB to less understood second-line drugs

of interest, ethionamide (ETH), cycloserine (CYS) and para-aminosalisylic acid (PAS), led to the identification of new
variants (52, 6 and 11, respectively), with a high number absent from the TB-Profiler library (45, 4, and 6, respectively).
Thereby, Treesist-TB had improved predictive sensitivity (Treesist-TB vs. TB-Profiler tool: PAS 64.3% vs. 38.8%; CYS 45.3%
vs. 30.7%; ETH 72.19% vs. 71.1%).

Conclusion: Our work reinforces the utility of machine learning for drug resistance prediction, while highlighting
the need to customize approaches to the disease-specific context. Through applying a modified decision learning
approach (Treesist-TB) across a range of anti-TB drugs, we identified plausible resistance-encoding genomic variants
with high predictive ability, whilst potentially overcoming the overfitting challenges that can affect standard machine
learning applications.

| Keywords: Mycobacterium tuberculosis, Ethionamide, Cycloserine, PAS, Drug resistance, Machine learming

Introduction
Tuberculosis (TB), caused by Mycobacterium tubercu-
losis, is a pressing global health problem, with > 10 mil-
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and pyrazinamide (PZA) [2]. Drug-resistance requires
switching to second-line therapies combined in custom-
ized treatment protocols, which might include fluoro-
quinolones and injectable drugs, as well as ethionamide
(ETH), cycloserine (CYS) and para-aminosalisylic acid
(PAS), among others. Historically, a cascade of resist-
ance has been defined, from resistance to RIF (RR-TB), to
additional resistance to INH leading to multidrug resist-
ance (MDR-TB), further leading to an extensively drug
resistant (XDR-TB) class that is MDR-TB with additional
resistance to fluoroquinolones and second-line injecta-
bles. Recently, there was a new definition of pre-XDR
(MDR-TB and resistance to any fluoroquinolone) and an
updated definition of XDR-TB (pre-XDR and resistance
to least one additional Group A drug, including levo-
floxacin or moxifloxacin, bedaquiline and linezolid) [3].
These updates provide a framework for increasing pro-
gression of the severity of disease linked to resistance to
additional anti-TB drugs [3].

The mechanisms that cause M. tuberculosis drug resist-
ance are linked to genomic variants in drug targets or
pro-drug activators, including single nucleotide poly-
morphisms (SNPs) and small insertions and deletions
(indels), some occurring in gene-gene interactions. Pro-
drug activators convert mycobacterial enzymes that
convert pro-drugs, such as INH and ETH, into their
active form. If these enzymes (e.g., catalase peroxidase
(KatG) for INH) are not essential, their coding genes
can acquire mutations such as frameshifts which lead to
loss of function, and consequently, the respective drug is
not converted and resistance is caused. However, not all
resistance mechanisms are well understood [4—6], espe-
cially for second-line drugs (e.g. PAS). Drug-resistance
has been traditionally assessed through bacterial cul-
ture-based phenotypic drug susceptibility testing (DST),
which can be time-consuming and resource intensive,
with reproducibility and inhibitory concentration cut-
oft challenges for particular drugs [7]. Whole-genome
sequencing (WGS) offers an alternative approach to
infer resistance through the identification of associated
genomic mutations [8], called “genotypic resistance” pro-
filing. TB-Profiler software [9, 10] uses a curated library
of >1000 mutations to predict genotypic resistance
across 14 anti-TB drugs. The use of WGS can reaffirm
known resistance mutations and uncover new candi-
dates through genome-wide association studies (GWAS)
and convergent evolution analysis [11]. However, GWAS
approaches typically focus on single variants at a time in
regression models, whereas resistance phenotype pre-
diction from WGS is a classification problem with high-
dimensional input and potential complex interactions,
a standard task in machine learning [12]. Therefore, the
ongoing generation of large datasets using WGS is highly
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suited to the application of machine learning methods to
improve “genotypic resistance” profiling [12].

The application of machine learning methods to M.
tubercuilosis has shown some impressive performances
in genotypic profiling [13-17]. However, these models
have several drawbacks that could affect their application
in clinical settings, including their interpretability and an
optimism bias related to the inclusion of non-associated
cross-resistance and bacterial lineage markers; both lead-
ing to reduced predictive performance in hospital and
other clinical settings [15]. The performance of machine
learning models has also been relatively poor for a subset
of second-line drugs (CYS, PAS, ETH), which in general
are less often studied and analysed [11, 15]. The gener-
ally lower performance for CYS, PAS and ETH suggests
that mechanisms of resistance are less well understood,
and that potentially rare alleles are being missed and
excluded from models [15]. Our study aims to attempt
to detect new genomic variants that might cause resist-
ance for CYS, PAS, and ETH. The approach involves a
customized (decision tree) machine learning algorithm,
called Treesist-TB, which detects genomic variants in
individual studies within the aggregated datasets, and can
model variant interactions. It attempts to be robust to the
presence of DST errors in some of the individual studies,
which can lead to genomic variants being undetected in
the analysis of the aggregate dataset.

Results

Genomic and phenotypic data

WGS data was available for 32,689 (32k) M. tuberculo-
sis samples, which covered the main lineages 1 (9.6%), 2
(25.2%), 3 (11.4%) and 4 (51.0%) (S1 Table). Most sam-
ples were pan-susceptible (77.9%), but RR-TB (1.3%),
MDR-TB (13.0%) and XDR-TB (2.3%) phenotypes were
also represented. Phenotypic DST data was not avail-
able for all isolates, with limited data generation for PAS
(n=1114, 8.8% resistant), CYS (»=2833, 18.0% resistant),
and ETH (n=2138, 32.2% resistant) (S2 Table; Table 1),
as these drugs are mostly prescribed to and assessed in
patients with RR-TB and MDR-TB.

Application of Treesist-TB to first-line drugs

Treesist-TB is a python-based machine learning algo-
rithm that fits customized decision trees across individ-
ual studies and combines the extracted features to make
final resistance predictions. It can also, if desired, be run
assuming all data is from a single study (referred to as a
“single optimised tree”). The algorithm was first applied
to well-understood first-line drugs, using a subset of iso-
lates that had complete DSTs (RIF: n=2045, 8.1% resist-
ant, 7 studies; INH n=1835, 16.2% resistant; 6 studies;
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Table 1 Predictive performance across algorithms
Drug Total tests % resistance TB-Profiler Treesist-TB?

Sens Spec Acc AUC Sens Spec Acc AUC
INH 1835 162 862 984 965 923 842 002 958 917
RIF 2045 81 903 98.2 976 94.2 86.1 985 975 923
EMB 1999 35 714 96.7 958 4.1 57.1 98.2 95.8 717
PAS 1114 g8 388 95.7 90.7 67.2 643 906 882 774
CYS 833 18.0 307 95.2 836 629 453 937 850 69.5
ETH 2118 322 7 786 76.2 748 721 758 746 739

Regular Decision Tree Single optimized Tree®

Sens Spec Acc AUC Sens Spec Acc AUC
INH 1835 162 856 100 G7.7 929 80.2 99.2 95.1 808
RIF 2045 g1 812 100 985 915 873 998 98.8 936
EMB 1999 35 329 99.7 a7.3 829 343 995 97.2 83
PAS 1114 g8 64.3 100 969 855 50 978 936 741
CYS 833 180 333 994 875 673 353 a8 86.7 66.7
ETH 2118 322 488 4.3 79.7 775 496 925 78.7 76.2

INH Isoniazid, RIF Rifampicin, PAS para-aminosalisylic acid, CYS cycloserine, ETH ethionamide, EMB Ethambutol, Sens Sensitivity, Spec Specificity, Acc Accuracy, AUC Area

under the ROC Curve
? default application of Treesist-TB
® application of Treesist-TB with a single combined study dataset

EMB: n=1999, 3.5% resistant, 5 studies; S2 Table) across
second-line drugs.

We fitted a default Treesist-TB tree assuming individ-
ual studies, as well as, for comparison purposes, single
optimised and regular decision trees. The single opti-
mized trees were simpler and contained fewer implausi-
ble sub-structures than regular decision trees (S2 Figure)
while maintaining relevant structures such as double
mutations and gene-gene interactions. In particular, the
optimized trees contain fewer genes (INH: 27 vs. 5; RIF:
6 vs. 4; EMB: 5 vs. 4) but generally more individual var-
iants (INH: 29 vs. 6; RIF: 15 vs. 20; EMB: 6 vs. 5) than
regular decision trees. However, single optimized trees
do include some unlikely features that might arise from
overfitting on DST errors or other artefacts in the aggre-
gated dataset (S2 Figure), so we applied the default Tree-
sist-TB algorithm, which incorporates information from
individual sub-studies.

The Treesist-TB algorithm identified several predictive
genomic variants for resistance of RIF (n=20; 7 unre-
ported in the TB-Profiler library), INH (n=20, 13 unre-
ported) and EMB (r=10, 2 unreported) (S1 Figure, 52
Figure, Table 2; S4 Table). These included mutations in
established loci such as rpoB (=18, RIF), katG (n=17,
INH), and embB (n="7, EMB). A confirmation analysis of
the Treesist-TB mutations in the set of validation isolates
(n=~30k of 32k, not analysed by Treesist-TB), revealed
that none were present in susceptible strains, but they
were frequent in both MDR-TB (median (maximum): RIF

1.6% (65.3%); INH <0.1% (79.2%); EMB 2.1 (23.8)) and
XDR-TB (RIF 0.8% (70.7%); INH <0.1% (78.6%); EMB
3.1% (35.3%)) isolates. The predictive accuracy of resist-
ance from Treesist-TB was similar to the TB-Profiler tool
(Treesist-TB vs. TB-Profiler: RIF 97.5% vs. 97.6%; INH
96.8% vs. 96.5%; EMB 96.8% vs. 95.8%), and like those
from the single optimized and regular decision trees
(Table 1), whose models include mutations not associ-
ated with resistance.

Application to selected second-line drugs

Given the strong performance for first-line drugs, Tree-
sist-TB was then implemented for PAS, CYS and ETH,
for which predictive accuracy has historically been
poor and resistance mutations are only partially known
[10]. Again, for comparison purposes, we fitted a single
optimized tree for each drug and contrasted the perfor-
mance and structure with regular classification trees (53
Figure; Table 2). The results revealed that the optimized
trees contain both fewer genes (PAS: 33 vs. 4; CYS: 7 vs.
3; ETH: 11 vs. 3) and variants (PAS: 37 vs. 7; CYS: 7 vs.
3; ETH: 13 vs. 5) than regular decision trees. The sin-
gle optimized trees were simpler and contained fewer
implausible sub-structures than regular decision trees,
which appeared to be over-fitted (S2 Figure).

For PAS, the default application of Treesist-TB
detected 11 genomic variants across three genes (folC 6,
Rv2670c 1, thyX 4) (Table 2). Six of the variants are unre-
ported in TB-Profiler, occurring in folC (R49Q, Ser98G),
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Table 2 The Treesist-TB inferred variants

Page 4 of 7

Drug Gene # variants Treesist-TB Mutations™**
inthe 32k
dataset*
RIF  rpoB 757 N163K,\/170F, L430R Q432K, Q432L, D435Y, D435V, 54411, H445D, H445D, H445N, H445Y, H445R, H445L, 5450L
L452P, 1491F
RIF  rpoC 700 N1239D, Q1289A
INH  ahpC 31 -57C>T, —48G=A
INH  fabGi 26 -126G>A
INH  katG 648 Y597D, T568P, A476V, 52151, S315N, S302R, W300C, G297V, P193fs, L159F, G156D, A144V, D142G, L141F,

N138D, A109V, Y98C
EMB  embA 743 -31delC, —16C>T, =16C> A

EMB  embB 762

M306V, M306L, M3061, G406A, Q497K, Q497R, D1024N

PAS  Rv2670c 191 A5V

PAS  folC 262 Q153G, Q1534, 5150G, 598G, R49Q, 143T
PAS  thyX 148 -4C>T, =9G>A —16C>T, =18G>T
cYs  alr 239 Y388D, L283P, L113R, T20M

¥S poC 700 DA485Y 14917

ETN  ethA 494

W455%, KA48fs, P436fs, A352fs, P334A, F3205, L295fs, C294*, R279%, Q269*, M2601, W256*, C253F, T236fs,

Y235fs, W228*%, N226fs, K224*, A222V, 5208L, R207G, V202F, L194P, T186P, P164R, P160fs, C137R, C137R,
W116%, K103fs, W45, K37fs, L35R, Q24*, D6fs

ETN  fabGl 26

ETN  gyrA 764 AS0V, 591P DA4A, DA4G
ETN  inhA 108 1217, R27W, | 1941 P251R

ETN  mshA 250 A133fs, H175fs, V2371, A422V

-118C>G, —34C>T, =15C>T, —8T>C, =8T>A

*32kM. tuberculosis isolates [18]

** Bolded if not in TB-Profiler in https://github.com/jodyphelan/tbdb/blob/master/tbdb.csv; * stop codon

INH |soniazid, RIF Rifampicin, PAS para-aminosalisylic acid, CYS cycloserine, ETH ethionamide, EME Ethambutol
** Mutations underlined if they are in > 5% of MDR-TE or XDR-TB strains in the 32 kM. tuberculosis isolates

Rv2670c (A5V), and thyX (three indels: -4C>T, —9G > A,
—18G>T) (S5 Table). These PAS mutations were pre-
sent in XDR-TB samples in the validation set (frequency:
median 0.2%, max. 6.1%) (S5 Table). For PAS, compared
to TB-Profiler, the Treesist-TB mutation set leads to
a higher sensitivity (64.3% vs. 38.8%), lower specific-
ity (90.6% vs. 95.7%) and similar overall accuracy (88.2%
vs. 90.7%) for drug resistance prediction (Table 1). For
CYS, Treesist-TB identified six variants across two genes
(rpeC 2, 1 unreported; alr 4, 3 unreported). RpoC is a
locus linked to compensatory effects in RIF resistance.
The CYS mutations were present in XDR-TB samples in
the validation set (frequency: median<0.1, max. 8.5%)
(S5 Table). Compared to TB-Profiler, the set of Treesist-
TB mutations had a higher sensitivity (45.3% vs. 30.7%),
and similar specificity (93.7% vs. 95.2%) and overall accu-
racy (85.0% vs. 83.6%) for resistance prediction. For ETH,
Treesist-TB identified 52 genomic variants, more than
half in ethA (35; 67.3%), with others found across four
genes (inhA 4, gyrA 4, mshA 4, fabG1 promoter 5). Most
variants are not present in the TB-Profiler library (ethA
34, inhA 2, mshA 4, fabG1 promoter 5). EthA, fabG1 pro-
moter and inhA are established ETH related loci, but

gyrA is linked to fluoroquinolone resistance, and mshA is
known to encode a glycosyl-transferase enzyme involved
in mycothiol biosynthesis that can aftect ETH activation.
These mutations for ETH were present in XDR-TB sam-
ples in the validation set (frequency: median <0.1%, max.
36.5%) (S5 Table). For ETH, compared to TB-Profiler,
Treesist-TB has a marginally higher sensitivity (72.1% vs.
71.1%), lower specificity (75.8% vs. 78.6%) and a similar
overall accuracy (74.6% vs. 76.2%) for drug resistance
prediction.

Discussion

The relatively poor knowledge of underlying mutations
for second-line anti-TB drug resistance will make pros-
pects for WGS-informed clinical and infection control
more difficult. Whilst machine learning has the promise
to fill any gaps in “genetic” knowledge, some implemen-
tations for M. tuberculosis “genotypic profiling” have led
to over-optimistic predictive abilities and models with
mutations that are not biologically plausible or unrelated
to the resistance of interest. Our work describes a deci-
sion tree machine learning approach, called Treesist-TB,
which attempts to account for inter-study differences
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and constrains the size of models, thereby minimising
the risk of over-fitting due to phylogenetic or false resist-
ance-associated mutations. Its application to RIF, INH
and EMB drugs, with known resistance mechanisms,
detected both established and unreported mutations in
functional pathways, and had predictive abilities simi-
lar to other machine learning implementations and the
TB-Profiler tool. Application of Treesist-TB to CYS, PAS
and ETH drugs, whose underlying resistance variants are
less established and are less often studied, detected puta-
tive non-synonymous SNPs and frameshift mutations
in activation pathways. For the PAS drug, genomic vari-
ants were found in the folC gene, which interrupts bio-
activation within the folate biosynthetic pathway [19].
Similarly, mutations were found in the alr gene encod-
ing alanine racemase that compensates for the inhibi-
tory effect of CYS [20]. Finally, for ETH, the majority of
mutations were detected in the ethA gene that activates
ETH by the NADPH-specific flavin adenine dinucleo-
tide-containing monooxygenase EthA [21]. Importantly,
integrated WGS and DST studies for relatively new anti-
TB drugs (e.g., bedaquiline, clofazimine and delamanid)
are much-needed, as current low sample sizes make the
determination of mutations underlying their resistance
difficult [22].

Treesist-TB detects SNPs by working with the larg-
est datasets possible, where some of the reported per-
formance problems for second-line drugs are due to the
exclusion of rare alleles. More importantly, Treesist-TB
considers individual sub-studies that make up the large
dataset, implicitly adjusting for potential DST or mis-
labelling errors in individual studies, which are poten-
tially more common in some laboratories or drug assays.
Treesist-TB also incorporates existing knowledge on
which sub-structures in the decision trees are biologi-
cally less plausible, such as reversion mutations, and can
prune these structures. If required, the approach can give
preference to known resistance genomic variants in tree
model building and control its complexity by placing a
ceiling on the number of previously unknown resistance
mutations. In this sense, Treesist-TB can take advan-
tage of prior knowledge and insights specific to TB drug
resistance, thereby providing a counterweight against the
increasing usage of machine learning “out of the box’,
which can lead to models that do not generalize well in
clinical practice.

Our analysis revealed that standard machine learning
approaches could, even after regular cross-validation,
overfit in subtle manners that lead to an upward bias in
performance and not translate into a high out-of-train-
ing-set performance. Although, a robust simulation study
that considers a number of machine learning approaches
is beyond the scope of our work, previous studies have
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shown that some implementations have boosted perfor-
mance through the selection of cross-resistance markers
that are unlikely to be causally related to resistance to the
drug under investigation [15]. These unrelated markers
might get selected as features by machine learning mod-
els due to the unique structure of TB datasets, including
arising from M. tuberculosis phylogenetic structures and
sequential drug testing practices. Similarly, fitted tree
structures with features that are biologically unrelated to
resistance might lead to impressive performance within
the training set, but may be inappropriate for predictions
in clinical practice. These problems will be exacerbated
for more complex models that have a greater number of
parameters, such as convolutional neural nets [23].

Conclusions

In general, with the increasing application of WGS data
in a clinical or research setting, there is a need for robust
and interpretable machine learning models that take
advantage of the resulting large and growing datasets,
whilst being robust to data errors. One important appli-
cation is in antimicrobial resistance (AMR) genotypic
profiling, which could ultimately replace phenotypic DST
approaches. However, any AMR models derived must be
reliable in terms of prediction, generalize across clinical
settings, and adapt to increasing data and knowledge. In
addition, such models need to account for the idiosyncra-
sies of pathogens and infections, where M. tuberculosis
is highly clonal and has no horizontal gene transfer, but
for other pathogens there may be plasmid derived AMR.
In conclusion, we have developed Treesist-TB, which can
assist with identifying mutations and prediction drug
resistance in a TB context. Through providing software
for its implementation, the utility beyond TB can be
evaluated, and the approach potentially refined for other
AMR settings.

Materials and methods

Phenotypic and sequencing data

The main dataset consists of 32,689 (32k) isolates with
whole genome sequencing (WGS) and phenotypic drug
susceptibility test (DST) data (see S1 Table [18];). The
laboratory DST followed WHO recommended proto-
cols and practice (see [11]). XDR-TB was defined using
the recently replaced definition, that is, being MDR-TB
with additional resistance to fluoroquinolones and sec-
ond-line injectables. This is because the isolates were
collected, processed, and resistance patterns inter-
preted for treatment options before the new definitions
were introduced [3]. DST data was not available for
every isolate across all drugs, as only those individu-
als resistant to first-line treatments are typically tested
for second-line resistance. All isolates with PAS, CYS
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and ETH DST were included in the analysis (see S2
Table for sample sizes). A subset with complete INH,
RIF and EMB DST data and with similar characteris-
tics in terms of sample size and number of individual
studies were chosen for Treesist-TB benchmark analy-
sis (S2 Table). The residual 31k isolates were used for
validation through the analysis of mutation frequen-
cies across susceptible and resistance groups. The raw
sequence data were mapped to the H3Rv reference
genome using bwa-mem software, and genomic vari-
ants (SNPs, indels) were called from the consensus of
GATK and samtools software. Most genomic variants
(98.9%) have low minor allele frequencies (<1%), and
we excluded SNPs in hypervariable PE/PPE gene fami-
lies and with synonymous mutations (see [18]).

Treesist-TB model

The Treesist-TB model is a major extension of a sim-
ple decision tree approach (sklearn implementation,
v0.23.1) with the following meodifications: (1) incorpora-
tion of prior parameters on which features to prioritize
in the tree building in case of ties; 2) incorporation of
tree pruning to limit interactions in the tree that are a
priori determined to be unlikely (e.g. double mutations
that compensate resistant mutations and restore drug
sensitivity); (3) incorporation of prior parameters for the
maximum number of genes (not genomic variants) in a
tree. Although Treesist-TB is compatible with regular
cross-validation methods (e.g., leave k-fold out), these
approaches may lead to unstable results for trees in gen-
eral. To prevent trees from having excessive depth, the
setting of priors for the maximum number of new genes
outside known resistance genes (not variants) has been
implemented. We extracted a set of genomic variants
using a consensus rule that variants were only included
when in genes that were more than once detected across
sub-datasets (S1 Figure).

Model fitting

The predictive performance of the final models fitted to
the entire dataset was measured using sensitivity, speci-
ficity, accuracy, and area under the ROC curve (AUC)
metrics, assuming DST results as the gold standard.
We compared the performance of the (default) Treesist-
TB model primarily with the TB-Profiler software and
mutation library (> 1000 SNPs, indels or large deletions)
[9, 10]. In addition, for comparison, we fitted a regular
decision tree model and Treesist-TB (labelled as “Single
optimized Tree”) on aggregate datasets. The depth of the
regular decision tree was set by 5-fold cross-validation up
to a maximum of 15.
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Packages

The pipeline was implemented in Python (v3.7), building
on the tree algorithm from sklearn (v0.23.1). The plausi-
bility of putatively causal genomic variants identified was
assessed using Mycobrowser [24].

Supplementary Information

The online version contains supplementary material available at https://doi.
org/10.1186/512864-022-08291-4.
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S1 Figure

Heatmap of included variant features in different sub-studies with colour-coding for subset of shared

variants. The studies are highlighted on the x-axis. The y-axis has format of (gene, genomic position).
The darker green colour are genomic variants that are in genes that were detected more than once

across different studies (i.e. the gene has two or more filled cells in different columns in the diagram)
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S2 Figure

Tree diagrams of regular classification tree (left) and Treesist-TB (right). The nodes in the trees are
colour coded as blue (resistant) and orange (susceptible). Each node indicates the splitting variable, the

improvement in purity (Gini), the total number of samples and the split over the left and the right
nodes
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Regular decision-tree 8 Tree

S3 Figure

Tree diagrams of regular classification tree (left) and Treesist-TB (right). The nodes in the trees are
colour coded as blue (resistant) and orange (susceptible). Each node indicates the splitting variable, the
improvement in purity (Gini), the total number of samples and the split over the left and the right
nodes
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S1 Table
Phenotypic drug susceptibility tests status by lineage

Lineage N % Susc. RR-TB MDR-TB XDR-TB  Other DR
1 3155 9.6 2758 14 164 8 211
2 8260 252 5243 200 1913 473 431
3 3745 11.4 3053 19 439 37 197
4 16700 51.0 13686 191 1732 239 852
5 253 0.7 245 0 2 0 6
7 148 0.4 142 0 2 0
8 52 0.1 52 0 0 0 0
9 3 0 3 0 0 0 0
Other 373 1.1 283 0 3 0 87
Total 32689 100 25465 424 4255 757 1788
(%) (77.9%) (1.3%) (13.0%)  (2.3%) (5.5%)

RR-TB rifampicin resistant; MDR-TB is defined as resistance to isoniazid and rifampicin; XDR-TB is
defined as MDR-TB, with additional resistance to a fluoroquinolone and second-line injectable drug
(pre-2021 definition).



S2 Table

Sources of sequence data, and drug resistance phenotypes

Drug Total # # % # Study Lineage PMID
tests susc. resist. resist. studies countries
INH 1835 1537 298 16.2 6 Malawi, Philippines, 1-6 26116186,25336729,
Thailand 25854485,25336729,3
1234910,31243306
RIF 2045 1880 165 8.1 7 Russia, Peru, South 1-6 PM(C3939361,2611618
Korea, Philippines, 6, 25854485,
Thailand 31234910,31243306,2
7005572,27005572
EMB 1999 1929 70 3.5 5 Russia, Philippines, 1-6 PM(C3939361,2611618
Thailand 6, 25854485,
31234910,31243306
PAS 1114 1016 98 8.8 7 Portugal, South 1-4 30321294,29358649,2
Africa, Uzbekistan, 9460750,26116186,28
Russia, China, 109869,PMC6685394,2
Belarus 7903602
CYs 833 683 150 18.0 5 Portugal, China, 1-4 30321294,29358649,2
Belarus, South 8109869,27903602,30
Africa 948181
ETN 2118 1437 681 32.2 16 Russia, Tunisia, 1-4 30321294,29358649,2

China, Pakistan,
Portugal, South
Africa, Belarus

9460750,26116186,28
109869,PMC6685394,2
7903602,30948181,30
789128,PMC(C3939361,2
9358649,29358649,26
418737,23995137,PMC
3939361,PMC3939361

Susc. Susceptible; INH = Isoniazid, RIF = Rifampicin, PAS=para-aminosalisylic acid, CYS=cycloserine,

ETH=ethionamide, EMB = Ethambutol
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S3 Table

Summary of drugs and loci in TB-Profiler library

Drug Locus Gene No. TB-Profiler ~ TB-Profiler
variants* SNPs Indels
Rifampicin Rv0667 rpoB 115 94 25
Rv0668 rpoC 92 8 -
Isoniazid Rv1483 fabG1 22 11 -
Rv1484 inhA 22 13 -
Rv1908c katG 93 226 37
Rv2245 kasA 16 4 -
Rv2428 ahpC 32 21 -
Ethambutol Rv1267c embR 34 20 -
Rv3793 embC 85 25 -
Rv3794 embA 112 9 6
Rv3795 embB 125 127 1
Rv1483 fabG1 20 3 -
Ethionamide Rv1484 inhA 15 3 -
Rv3854c ethA 208 33 42
Rv3855 ethR 25 2 -
Rv2447¢ folC 23 18 -
PAS Rv2671 ribD 7 1 -
Rv2754c thyX 7 1 -
Rv2764c thyA 25 19 5
. Rv2780 ald 54 - 12
Cycloserine
Rv3423c alr 22 3 -

* Number of genomic variants in the individual studies used



S4 Table

Frequency of Treesist-TB inferred variants in rifampicin, isoniazid, and ethambutol across 32k
Mycobacterium tuberculosis isolates

TB- MDR-TB  XDR-TB Other
Drug Gene Mutation Profiler**  Susc. % % % resist. %
RIF rpoB N163K no - <0.1 - -
RIF rpoB V170F Yes - 1.0 <0.1 0.3
RIF rpoB L430P Yes - 1.7 1.3 0.7
RIF rpoB Q432K yes - 0.3 - 0.1
RIF rpoB Q432L yes <0.1 0.3 0.3 <0.1
RIF rpoB D435Y yes - 34 2.0 1.9
RIF rpoB D435V yes - 7.9 11.0 0.7
RIF rpoB S441L yes - 0.6 0.3 0.1
RIF rpoB H445D yes - 4.1 1.8 0.9
RIF rpoB H445N yes - 1.3 0.4 0.4
RIF rpoB H445Y yes - 5.5 2.5 2.2
RIF rpoB H445R yes - 2.1 0.9 0.2
RIF rpoB H445L yes - 1.4 0.8 0.2
RIF rpoB S450L yes <0.1 65.3 70.7 4.9
RIF rpoB L452P yes - 2.9 5.9 0.6
RIF rpoB 1491F yes - 1.4 0.6 0.6
RIF rpoC N1239D no <0.1 - - -
RIF rpoC E1289A no <0.1 - - -
INH fabG1 -126G>A no <0.1 16.8 34.6 12.6
INH katG Y597D no - - - <0.1
INH katG T568P no <0.1 <0.1 - -
INH katG A476V no <0.1 - - -
INH katG S315T yes <0.1 79.2 78.6 28.8
INH katG S315N yes - 1.8 1.3 1.1
INH katG S302R yes - <0.1 <0.1 0.1
INH katG W300C no - - - <0.1
INH katG G297V yes <0.1 <0.1 - <0.1
INH katG P193fs no - - - <0.1
INH katG L159F no <0.1 - - -
INH katG G156D no - <0.1 - -
INH katG Al44V no <0.1 - - -
INH katG D142G no <0.1 <0.1 - <0.1
INH katG L141F yes <0.1 <0.1 - 0.1
INH katG N138D yes - <0.1 - <0.1
INH katG A109V yes - <0.1 - <0.1
INH katG Y98C no <0.1 <0.1 - 0.2
INH ahpC -4359G>A no - 0.4 - <0.1
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EMB
EMB
EMB
EMB
EMB
EMB

ahpC
embA
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embA
embB
embB
embB
embB
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-31delC
-16C>T
-16C>A
M306V
M306L
M306l
G406A
Q497K
Q497R

D1024N
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1.2
0.2
2.1
0.8

23.8

1.3

20.2

6.6
1.2
5.6

2.0

1.2
<0.1
4.4
0.7
35.3
1.2
26.7
6.5
0.9
8.0
1.8

0.4

0.2

<0.1

1.6
0.3
3.0
0.4
0.3
0.5
0.1

* from (50); INH = Isoniazid, RIF = Rifampicin, EMB = Ethambutol; RR-TB rifampicin resistant; MDR-TB
multidrug resistant; XDR-TB Extensively drug resistant; ** underlined if mentioned in

www.who.int/publications/i/item/9789240028173 as a high confidence (group 1) resistance

mutation (sourced Nov. 2021)


http://www.who.int/publications/i/item/9789240028173

S5 Table

Frequency of Treesist-TB inferred variants in para-aminosalisylic acid, cycloserine, and
ethionamide across 32k Mycobacterium tuberculosis isolates*

TB- MDR-TB  XDR-TB Other

Drug Gene mutation Profiler**  Susc. % % % resist. %
PAS folC E153G yes - 0.3 0.4 0.0
PAS folC E153A yes - 0.2 0.3 <0.1
PAS folC $150G yes - 0.9 1.4 0.3
PAS folC S98G no - 0.0 0.3 0.0
PAS folC R49Q no - 0.8 0.3 0.2
PAS folC 143T yes - 0.7 3.1 0.2
PAS Rv2670c A5V no <0.1 4.5 6.1 0.8
PAS thyX -4C>T no <0.1 0.4 1.7 <0.1
PAS thyX -9G>A no <0.1 0.6 0.5 0.1
PAS thyX -16C>T yes <0.1 1.8 3.6 0.5
PAS thyX -18G>T no - <0.1 0.2 <0.1
CYS rpoC D485Y no - 0.5 1.5 <0.1
CYS rpoC 1491T yes - 1.3 4.3 <0.1
CYS alr Y388D no - 0.5 1.1 -
CYS alr L283P no <0.1 - - -
CYS alr L113R yes - 0.8 8.5 <0.1
CYS alr T20M no - 0.1 0.4 <0.1
ETH gyrA A90V yes <0.1 4.6 32.0 1.4
ETH gyrA S91P yes - 0.9 8.7 0.6
ETH gyrA D94A yes <0.1 2.3 12.8 0.4
ETH gyrA D94G yes <0.1 5.9 36.5 2.3
ETH mshA A133fs no - <0.1 - -
ETH mshA H175fs no - <0.1 - -
ETH mshA V237L no - <0.1 - -
ETH mshA A422V no - <0.1 - -
ETH fabG1 -23G>C no - <0.1 - -
ETH fabG1 -107G>A no <0.1 0.4 1.3 <0.1
ETH fabG1 -126G>A no <0.1 16.8 34.6 12.6
ETH fabG1 -133A>G no - 1.3 4.2 0.8
ETH fabG1 -133A>T no - 14 5.7 0.3
ETH inhA 21T yes - 1.2 1.0 0.3
ETH inhA R27W no - <0.1 - -
ETH inhA 1194T yes - 2.0 53 0.3
ETH inhA P251R no 13 1.6 1.4 1.1
ETH ethA W455 no - 0.1 0.6 <0.1
ETH ethA K448fs no - 0.1 <0.1 <0.1
ETH ethA P436fs no - <0.1 - -
ETH ethA A352fs no - 0.2 0.6 0.1
ETH ethA P334A no 0.4 0.9 1.0 0.4
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ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH
ETH

ethA
ethA
ethA
ethA
ethA
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ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA
ethA

F320S
L295fs
C294
R279
Q269
M260lI
W256
C253F
T236fs
Y235fs
W228
N226fs
K224
A222V
S208L
R207G
V202F
L194P
T186P
P164R
P160fs
C137R
C137R
W116
K103fs
W45
K37fs
L35R
Q24
Dé6fs

no
no
no
no
yes
no
no
no
no
no
no
no
no
no
no
yes
no
no
no
no
no
no
no
no
no
no
no
no
no
no

<0.1

0.2
<0.1
<0.1

0.2
<0.1

0.6

<0.1
0.2

<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
<0.1
0.4
0.3
0.3
<0.1
<0.1
0.1
1.4
0.2
0.8
<0.1

<0.1
<0.1

0.2
<0.1

2.0
0.2

0.6

<0.1
<0.1

0.2
0.2

<0.1

<0.1

* from (50); - refers to a frequency of zero; PAS=para-aminosalisylic acid, CYS=cycloserine,
ETH=ethionamide; RR-TB rifampicin resistant; MDR-TB multidrug resistant; XDR-TB Extensively drug
resistant; ** underlined if mentioned in www.who.int/publications/i/item/9789240028173 as a high

confidence (group 1) resistance mutation (sourced Nov. 2021)
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Abstract

Background: Malaria, caused by Plasmodium parasites, is a major global public health problem. To assist an under-
standing of malaria pathogenesis, including drug resistance, there is a need for the timely detection of underlying
genetic mutations and their spread. With the increasing use of whole-genome sequencing (WGS) of Plasmedium
DNA, the potential of deep learning models to detect loci under recent positive selection, historically signals of drug
resistance, was evaluated.

Methods: A deep learning-based approach (called "DeepSweep’) was developed, which can be trained on haplotypic
images from genetic regions with known sweeps, to identify lod under positive selection. DeepSweep software is
available from https://github.com/WDee/Deepsweep.

Results: Using simulated genomic data, DespSweep could detect recent sweeps with high predictive accuracy (areas
under ROC curve = 0.95). DeepSweep was applied to Plasmodium falciparum (n=1125; genome size 23 Mbp) and Plas-
modium vivax (n=368; genome size 29 Mbp) WGS data, and the genes identified overlapped with two established
extended haplotype homozygosity methods (within-population iHS, across-population Rsk) (~80-75% overlap of hits
at P <0.0001). DeepSweep hits included regions proximal to known drug resistance loci for both P falciparum (e.q. pfert,
pfdhps and pfmdrl) and P vivax (e.q. pvmpl).

Conclusion: The deep learning approach can detect positive selection signatures in malaria parasite WG5S data. Fur-
ther, as the approach is generalizable, it may be trained to detect other types of selection. With the ability to rapidly
generate WG5S data at low cost, machine learning approaches (e.g. DeepSweep) have the potential to assist parasite
genome-based surveillance and inform malaria control decision-making.

Keywords: Plasmodium falciparum, Plasmodium vivax, Population genomics, Drug resistance, Machine learning,
Positive selection

Background

Malaria, caused by Plasmodium parasites, is a major
global health burden, with an estimated 229 million cases
and 409,000 deaths in 2019 alone [1]. Plasmodium fal-
ciparum causes almost half of all malaria cases, and the
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' Lendon School of Hygiene & Tropical Medicine, Keppel Street, Plasmodium vivax accounts for 65% of malaria cases in
London WCIE 7HT, UK Asia and South America [1]. Malaria control involves a
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combination of case management using diagnosis and
treatment, and prevention using insecticide-treated nets,
indoor residual spraying, and intermittent preventive
treatment.

Resistance to anti-malarial medicines is a threat to the
global efforts to control and eliminate malaria. Resist-
ance originates from Plasmodium genetic mutations that
increase in frequency over time and “sweep” through
populations. During the past fifty years, several first-line
treatments for P falciparum malaria, including chloro-
quine and sulfadoxine-pyrimethamine (SP), have been
rolled-out and then subsequently replaced due to the
emergence of resistance. Recently, resistance to arte-
misinin has been reported in the form of delayed parasite
clearance in Southeast Asia, posing a threat to the cur-
rent first-line artemisinin-based combination therapy [2,
3]. For P vivax, the spread of resistance to chloroquine,
primaquine, mefloquine, and SP has been reported in
various regions of the world [4, 5]. The underlying muta-
tions causing resistance for P vivax are less well defined
than for B falciparum [4-6].

Protecting and monitoring the efficacy of antimalarial
treatments is a top priority for malaria endemic countries.
There is a need to not only continuously monitor for drug
resistance, which includes clinical reporting, but also to
screen the parasite genome for known resistance muta-
tions (e.g. in P falciparum: pfert (PF3D7_0709000), pfd-
hfr (PF3D7_0417200), pfdhps (PF3D7_0810800), pfmdrl
(PF3D7_0523000), and pfkelch13 (PF3D7_1343700)
[3]) and to identify potentially novel loci under puta-
tive positive selection. These insights are being facili-
tated by the characterization of genomic variation using
whole-genome sequencing (WGS) across many Plas-
modiwm isolates, and the subsequent application of
statistical and population genomics methods to detect
sweeps. In particular, sweeps can be identified through
statistical approaches considering population differen-
tiation, site-frequency spectra, or linkage disequilibrium
and extended haplotype homozygosity (e.g. the within
population integrated haplotype score (iHS), and the
between population ratio (Rsb)) [7]. Whilst these meth-
ods have been developed for the human genome [8], they
have been applied to Plasmodium and identified known
genetic mutations contributing to drug resistance [9, 10].
Recently tools have been developed for the efficient com-
putation of these statistics from WGS libraries, such as
REHH, SweeD and OmegaPlus [11-13], but they require
parameter optimization and their results are sensitive to
the SNPs included, population definition, and to the sta-
tistical significance thresholds used to make inferences.

In recent years, researchers have explored the possibil-
ity of augmenting traditional approaches to the detection
of selective sweeps with machine learning methods [14].

Page 2 0f9

To date, sweep detection algorithms have been applied to
pre-calculated population genetic statistics (e.g. Tajima’s
D, Fay and Wu's H) [7]. Gradient boosted decision trees
and random tree classifiers have been trained on simu-
lated data and applied to human 1000 Genomes Project
data [15]. However, these methods do not solve the chal-
lenge of defining and calculating the population genetic
statistics used as predictors of selection, a task which can
be complex and time-consuming, especially when there
are multiple sub-populations for cross-comparison. Deep
(machine) learning methods may provide a viable alter-
native, and allow algorithms to learn through a hierar-
chy of features, where their definition and relationships
can be inferred by the algorithm rather than externally
defined [16]. The application of neural networks and deep
learning has been explored within population genet-
ics [17-19]. More generally, these methods are gaining
traction in healthcare and biomedical settings, where
enormous amounts of data are being generated, which
contain extremely valuable signals and information, at a
pace far surpassing what “traditional” methods of analy-
sis can process [19].

The detection of recent positive selection seems ame-
nable to deep learning approaches, where learning to rec-
ognize features in raw SNP data, such as the length and
shape of shared haplotypes in genes with known sweeps
within and between populations, may help to identify
sweeps across the genome. The work presented applies a
deep learning image-classification approach, which does
not require prior extraction or selection of population-
genetic statistics, to classify selective sweeps from "hap-
lotypic” images. Using large P, falciparum (n=1125) and
P vivax (n=2368) WGS datasets, partitioned into training
and validation sets, the analysis shows that a deep learn-
ing approach (called “DeepSweep”) calibrates well with
other haplotype-based methods and other studies, and
has the potential to detect novel signatures of positive
selection.

Methods

Deep learning approach

DeepSweep is a deep learning model to detect instances
of positive selection. It creates and analyses standard-
ized images of the nearby genomic region around a given
SNP. In brief, for each SNP of interest, and across all iso-
lates, DeepSweep selects neighbouring SNPs at regularly
spaced intervals, and subsequently sorts the remaining
genomic matrix in alignment with the longest common
haplotype, grouped for each population and for the ref-
erence and alternative alleles. The intuition is that SNPs
that have undergone recent selective sweeps have a dif-
ferent haplotype structure resulting in distinct images
(Additional file 1: Figure S1).
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Model structure

DeepSweep uses a convolutional neural network (CNN)
architecture, implemented using the Keras library (ver-
sion 2.2.4) [20] in Python. The model was based on the
AlexNet Classifier architecture, widely used for image
analysis [21]. Through optimization, it was aimed to fit
the smallest sized model (in terms of number of trainable
parameters) that showed good predictive performance
with low validation loss and high validation accuracy, but
also detected features of interest, avoided overfitting, and
minimized computational burden. Informally, overfit-
ting is the training of a model that is too specifically tai-
lored to (artefacts in) the training dataset and does not
generalize well to unseen data. Statistically, within the
framework of the bias—variance trade-oftf of a model,
overfitting occurs where there is excessive variance
resulting from an algorithm modelling the random noise
in the training data [22]. The approach optimized over
various hyper-parameters, including the number of con-
volutional layers (ranging from 1 to 5 layers), the number
of filters (ranging from 2 to 96) and convolutional field
sizes (ranging from 3 x 3 to 40 x 40). Regularization tech-
niques (e.g. dropout [22]) were applied to prevent over-
fitting and support transferability. The model was trained
to reduce binary cross-entropy between actual labels
and estimated probabilities on images of known- and
non-sweeps. The model structure was validated for 500
epochs. The final model has one convolutional layer, two
dense layers, four convolutional filters, and a large con-
volutional field (40x9). The haplo-imaging algorithm
and the machine learning analyses (Additional file 1:
Figures S1, §2) were conducted in Python (version 2.7).
The core packages for the machine learning were SnpEff
(for annotating effect size) [23], SnpSift (for filtering VCF
files) [24], PyVCF (for adjusting and creating VCF files)
[25], SciPy and matplotlib (for image manipulation) and
Tensorflow (version 1.15).

Simulated data

Sequence data was generated using SFS_Code software
[26], which is a forward population genetic simulator.
Simulated data corresponded to four sweep types ((i)
recent—strong; (ii) recent—weak; (iii) historic—strong;
(iv) partial) and compared to a Wright-Fisher “neu-
tral” setting. The parameter settings are outlined (Addi-
tional file 1: Table S1), and lead to plausible scenarios for
Plasmodium parasites [10]. For each comparison, 160
simulated datasets (128 training; 32 validation) were gen-
erated, each dataset with 4 populations of 100 parasite
sequences (50% sweep, 50% neutral) and a locus length
of at least 1kbp, where the mutation under selection was
in the centre of the region. For the combined analysis of
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the sweep types, 640 simulated datasets (512 training,
128 validation) were used. These data were subsequently
transformed into the aforementioned “haplotype images”
that serve as input to the image classifier (Additional
file 1: Figure S1). These haplo-images showed qualita-
tively discernible difterences in features, with stronger or
more recent sweeps leading to more “block-like” features
(Additional file 1: Figure S3). The image classifier was
trained on the simulated data, and classification accuracy
and reduction of binomial loss were estimated. Simulated
data was also used to illustrate the impact of changes in
a subset of hyperparameters and confirmed that the final
model had low validation loss and high validation accu-
racy (Additional file 1: Table §2).

Plasmodium sequencing data

Publicly available raw Illumina WGS data for P falcipa-
rum (n=1125) [27] and P vivax (n=368) [28], repre-
senting 11 malaria endemic countries (Additional file 1:
Table S3; accession numbers in Additional file 1: Tables
54, S5). All samples were assessed by estMOI software
[29] as either monoclonal or polyclonal samples with only
a major dominant clone, to minimize the effects on anal-
ysis of multiplicity of infection. The P falciparum and P
vivax sequences were mapped to the Pf3D7 (23Mbp) and
PvP0I (29Mbp) reference genomes, respectively, using
bwa-mem software (version 0.7.12; using default param-
eter settings) [30]. From the resulting alignments, SNPs
and insertions and deletions (indels) were called from the
consensus of GATK (version 4.1.4.1) [31] and samtools
(version 1.9) [32] software (using default parameter set-
tings), as applied in previous studies [4, 10]. SNPs were
retained if they had < 10% missing alleles and a minor
allele count greater than 4. The resulting dataset com-
prised of parasite genomes of P falciparum (1,125 iso-
lates, 74,757 SNPs) and of P vivax (368 isolates, 126,596
SNPs). The number of missing values was 1,179,202
(2.9%) for P vivax and 649,337 (1.2%) for P. falciparum.
Missing alleles were imputed using the isolate with the
longest shared haplotype around the missing position.
An overview of the analytical approach is summarized
(Additional file 1: Figure S2). The SnpEft tool (https://
peingola.github.io/SnpEft/) was used to annotate SNP
variants and predict their effects on genes.

For DeepSweep model training, the presumed posi-
tive examples of positive selection are regions sur-
rounding SNPs that are linked to drug resistance with
an established scientific literature. For P falciparum,
these included regions around established SNPs in pfert
(K76T, 1356T; chloroquine), pfdhfr (N511, C59R, S108N,
[164L, S306F)/pfdhps (1431V, S436A, A437G, K540E/N,
AS581G, 5613S) (SP), pfmdrl (N86Y; mefloquine, chlo-
roquine), and pfkelchl13 (F4461, Y493H, P574L, R539T,
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and C580Y; artemisinin) [27]. For P vivax, these included
regions around some known SNPs in pvdhps (A553G,
G383A, S382C/A) / pvdhfr (N50I, F57I/L, S/K58R,
T61M, N117T/S) (putative SP) and pvmdrl (F1076L,
Y976F, 5698G, S513R; putative chloroquine) [4, 6]. This
could be considered a relatively small number of training
exemplars, which may lead to an increased risk that the
implemented machine learning algorithm overfits due
to potential artefacts in the training data. Therefore, for
each Plasmodium species, “leave-one-group-out” cross-
validation was implemented to understand the influence
of individual training genes, where each single gene of
the positive training examples was omitted in turn, with
the model trained on the remaining genes [33]. The final
model was fit on 80% of the data (split by SNPs), with
20% left as a hold-out set. The DeepSweep approach was
compared to traditional haplotype-based statistics (iHS
[34] and Rsb [35]), as calculated with the REHH package
[36].

Results

Simulation study

Across the 4 diftferent types of sweep simulations, the
predictive accuracy was highest for more recent strong
selection (97.1%), followed by weak selection (96.8%) and
historic selection (88.2%) and partial selection (86.7%)
(Table 1, Additional file 1: Figure S4). The total sensitivity
across all sweeps combined was 89.1%, with a specificity
of 93.8%, and an overall classification accuracy of 91.4%.
The areas under the ROC curve were high for all simu-
lations involving recent selection (>0.95; maximum 1),
consistent with the high predictive ability of DeepSweep.
The simulation results showed the potential utility of the
approach when combining data across populations with
common sweeps at difference stages.

Plasmodium falciparum DeepSweep analysis

The dataset comprised of 1,125 isolates and 74,757 SNPs.
Most of these SNPs are in genic regions (76.5%), with
63.0% non-synonymous amino acid changes. Most SNPs
have low minor allele frequencies (SNPs with MAF < 1%:
94.6%) (Additional file 1: Figure S5). The image classifier

Table 1 Model performance based on simulated data

Acc Sens Spec AUC

% % %
Stronger selection—recent sweep 7.1 938 100 1
Stronger selection—historic sweep 882 938 833 0858
Weaker selection—recent sweep 96.8 100 933 1
Partial sweep 86.7 875 857 0851
All sweeps combined 914 891 038 0.944

Acc accuracy, Sens. Sensitivity, Spec. specificity, AUC Area under the ROC Curve
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was trained on regions covering the established resist-
ance SNPs in five genes, and found the models validated
well using a leave-one-group-out approach. In particular,
the overall accuracy was 83.6% (standard deviation 6.0%),
where the performance was lower when pfdhfr was omit-
ted (75.0%) and was higher when pfdhps (92.3%) was left
out. One interpretation is that pfdhfr is under stronger
selection than pfdhps, which would be consistent with
pfdhfr N511, C59R, S108N, 1164L and S306F mutations
underpinning key haplotypes underlying SP resistance
[37]. The final model was fitted on 80% of the data, with
20% of the data used as a validation set, and demon-
strated a strong performance both in terms of classifica-
tion accuracy and reduction of binomial loss (Additional
file 1: Figure S6). The trained classifier was then used to
make predictions for the entire dataset of P falciparum
SNPs.

The deep learning model identified 387 SNPs in 160
genes (or~2.9% of genes) as putatively under positive
selection pressure in the wider dataset (Fig. 1). Further
analysis focused on the subset of 11 genes that have>6
hits (Table 2; see Additional file 1: Table S6 for the 26
genes with>3 SNPs). Several peaks were in the vicinity
of known drug-resistance genes in the training set, with
nearby genes likely to be swept along (e.g. on pfdhfr on
chromosome 4, pfindrl on chromosome 5, pfert on
chromosome 7, pfdhps on chromosome 8 and pfkelch13
on chromosome 13). There is an additional peak on
chromosome 6 that includes Pk4 (PF3D7_0628200)
and the HECT domain (PF3D7 0628100). Transcrip-
tion of Pk4 has been related to artemisinin-induced
latency [38], and the HECT domain is thought to alter
quinine and quinidine response, and likely co-selected
with pfcrt [39]. There is a small peak on chromosome 10
(PF3D7_1013500) in the close vicinity of the gene encod-
ing the autophagy-related protein 18 (PF3D7_1012900),
which has been associated with artemisinin resistance.
There is a peak on chromosome 12 (PF3D7_1223500)
which has been putatively associated with SP resistance
[40]. Smaller peaks were observed on chromosome 14
around PF3D7_1462400, which has been associated with
chloroquine resistance [41].

Plasmodium vivax DeepSweep analysis

The dataset comprised of 368 isolates and 126,596 SNPs.
Most of these SNPs are in genic regions (77.6%), with
42.5% non-synonymous amino acid changes. Many SNPs
have low minor allele frequencies (SNPs with MAF < 1%:
77.6%) (Additional file 1: Figure S5). The image classi-
fier was trained on the sixteen SNP mutations in the
three genes. Using a leave-one-group-out validation
approach, the overall accuracy was 79.7% (standard
deviation 17.6%), and the performance was lower when
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Fig. 1 Number of DeepSweep Hits per locus across the 14
chromosomes and the relationship to the number of Rsb (top panel;
blue line) and iHS (top panel; orange line) hits. a P falciparum. Blue
line is the running average of Rsb hits (p < 0.0001) over the nearest
100 locations. The orange line is the running average of iHS hits
(p<0.0001) aver the nearest 100 locations. The vertical blue lines
indicate pfdhfr (Chr. 4: 749,001, pfmdr! (Chr. 5: 960,020), pfcrt (Chr. 7:
404,770), pfdhps (Chr. 8: 549,408); pfkelch13 (Chr. 13: 1,724,817). The
tick-marks on the x-axis are chromosomal mid-points. b 2 vivax. Top
panel: Blue line is the running average of Rsb hits (p < 0.0001) over
the nearest 100 locations. The orange line is the running average of
iHS hits (p<0.0001) over the nearest 100 locations. The vertical blue
lines indicate pvdhfr (Chr. 5), pvmdrT (Chr. 10), pvdhps (Chr. 14). The
tick-marks on the x-axis are chromosomal mid-points

pvimdrl was omitted (57.1%) and was higher when pvd-
hfr was left out (100%). This difference is consistent with
pvimdrl residues being strongly associated with chloro-
quine resistance [5] and, although, pvdhfir may contribute
to SP drug resistance, there are very few published stud-
ies that associate genotypes of this locus with anti-folate
susceptibility phenotypes [6]. As with P falciparum, the
trained model had strong performance both in terms of
classification accuracy and reduction of binomial loss
(Additional file 1: Figure $6). The model identified 577
hits in 237 genes (or ~4.3% of genes) as putatively under
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Table 2 Plasmodium falciparum loci identified by DeepSweep
(DS; with > 6 SNPs)

Chr Gene ID (PF3D7_) DS iHS hits Rsb hits
hits

& 627800% 20 1 39
& 628100% 18 1 30
5 522400+ 13 8
7 700100 n 38
7 708200% 9 14
] 809600+ 9 3 29
4 417400% 8 37
5 522900 8

12 1223500% 8 n
7 709300 7 46
8 811200%* 7 n

Chr Chromosome; iHS and Rsb counts defined as the number of SNPs ina

gene that have an |iH5| or |Rsb| scare with a p-value <0.0001; pfdhfr (Chr. 4:
749,001, pfmdr1 (Chr. 5: 960,020), pfcrt (Chr. 7: 404,770), pfdhps (Chr. 8: 549,408; *
previously identified; ** close to known gene

positive selection pressure in the wider dataset (Fig. 1).
Further analysis focused on the subset of 19 genes that
have>6 hits (Table 3; see Additional file 1: Table S7 for
the 35 genes with=>3 SNPs). Several loci are near the

Table 3 Plasmodium vivax loci identified by DeepSweep (DS;
with 6 SNPs)

Chr Gene D DS iHS Rsh
(PVPO1_) Hits hits hits

14 1430700 21

5 526800%* 19 4 12
n 1101300 14 2
14 1428700** 13 1 5
2 202000 1 4
7 709800 1 0
10 1011000** 1 1
14 1432900 1 1 1
5 526400% 10 1 12
7 701100 10 8
9 948800 10 5
5 526300% 9 2 4
10 1034400 9

12 1271500 8

2 203000* 7 33
9 939900 7 2 1
10 1033900 7

13 1317300 7 15
14 1418100 7 1

Chr Chromosome, iHS and Rsb Counts defined as the number of SNPs in a gene
that have an iHS or Rsb score with a p-value <0.0001; pvdhfr (Chr. 5), pvmdr1
(Chr. 10), pvdhps (Chr. 14); * previously identified; ** close to known gene
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training genes (pvdhfr on chromosome 5, pvindrl on
chromosome 10, pvdhps on chromosome 14). Further,
there was a peak around the gene encoding for the multi-
drug associated protein 1 (pvmrpl), which is a putative
resistance candidate [4]. On chromosome 7, there was a
peak around a gene coding for cysteine repeat modular
protein 1, which is expressed in both vertebrate and mos-
quito hosts for host tissue targeting and invasion. This
locus has been identified as presenting high population
differentiation and under directional selective pressure
in South America [4]. Finally, there was a larger region
that was identified on chromosome 14, which contains
pvdhps and a number of other genes that have been
found in other analyses [4].

Comparison with established positive selection
approaches

An analysis using the established REHH approach was
performed, which involved the calculation of the inte-
grated haplotype score (iHS) within populations and
the associated Rsb values between pairs of popula-
tions (Additional file 1: Tables S8, S9). Although the
REHH and DeepSweep methods have a different rank-
ing of the strongest hits, there was an overall posi-
tive correlation between the number of hits from Rsb
and DeepSweep (Pearson correlation: P falciparum
049, P vivax 0.20; Additional file 1: Figure S7). How-
ever, DeepSweep detected several novel loci that were
not identified by REHH. These included loci on chro-
mosomes 6 (PF3D7_0611800), & (PE3D7_0811600)
and 14 (PF3D7_1461800) for B falciparum (Additional
file 1: Table S6), and on chromosomes 6 (PIR protein), 7
(cysteine repeat modular protein) and chromosome 14
for P vivax (Additional file 1: Table S7). PF3D7_0611800
has been linked to increased cytoadherence [42],
PF3D7 0811600 has previously been linked to SP resist-
ance [40] and the genes coding for the PIR protein and
the cysteine repeat protein have been associated with
immune response and host invasion [43, 44]. There were
several loci that were detected by EHH methods but not
by DeepSweep (Additional file 1: Tables S8, $9). Some of
the top hits included genes that are linked to immune
response and host invasion (eg. PF3D7 1133400
AMAI1, PF3D7_1335100 MSP7). Other hits are house-
keeping genes that are less likely to be under selective
pressure (e.g. PF3D7 0731800 (alpha/beta hydrolase),
PF3D7 1475900 (KELT protein), PVP0I_0202900 (18S)
and PVPOI_1003700 (PPT)).

Discussion

The application of whole genome sequencing (WGS)
is gaining traction across malaria endemic countries.
With the resulting development of Plasmodium parasite
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genomic databases (“big data”), there is an opportunity
for the implementation of machine learning methods to
inform disease control. The detection of genomic sig-
natures of selective sweeps resulting from the spread of
mutations associated with anti-malarial drug resistance is
one application of WGS data. This work presents a super-
vised (deep) learning approach (DeepSweep), which after
being trained on haplotypic “images” of established drug
resistance genes in P. falciparum and P vivax parasites,
resulted in the identification of loci known to be under
recent positive selection. Whilst the strength of sweep
signals per locus found by DeepSweep correlated with
established EHH methods (e.g. between population Rsb),
the machine learning approach has the advantage of not
requiring a rigid definition and calculation of population-
genetic statistics, incorporating information within and
across populations, and relatively lower requirements for
the pre-processing of raw SNP data. Like other machine
learning approaches, it has the potential to scale up to
large numbers of samples, and is parallelizable across
genomic regions, thereby making it a potentially useful
“big data” tool. In the absence of sufficient computational
power, it is possible to develop sampling strategies that
can select the subset of the data and samples that contain
the highest density of information relevant to DeepSweep.
Different model structures were assessed, but perfor-
mance could be improved by further fine tuning of model
hyperparameters (e.g. the number and size of the convo-
lutional filters).

DeepSweep detected a set of loci not detected by the
EHH methods, potentially because a deep learning
approach can holistically incorporate information from
the raw SNP data, which could be fragmented across
separate populations and genomic windows, for the cal-
culation of population-genetic statistics. Indeed, the
simulation study demonstrated the potential of including
haplo-images with not only single, but multiple popula-
tions, to allow the algorithm to take advantage of fea-
tures that are common across regions and be robust to
different stages of the sweeps. However, DeepSweep does
require “representative” positive training examples, and
in the context applied, assumes that the training drug
resistance related loci have undergone or are undergo-
ing selective sweeps in some of the populations. This
assumption is not unrealistic given that some antima-
larial drugs have been rolled out in different populations
at different times resulting in differential stages of selec-
tive sweeps [40]. The DeepSweep and EHH approaches,
as well as alternative methods (e.g. HaploP$S [45]), can be
considered complementary and could be run in parallel.
However, as these approaches will increasingly use WGS,
there are general challenges that affect variant-calling and
ascertainment (e.g. extreme genome GC content), which
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can impact on the density and accuracy of genomic vari-
ant inputs, as well as the final population genomic analy-
sis. Typically, WGS analysis leads to a dense set of well
supported variants in robust genomic regions, with the
application of calling algorithms incorporating informa-
tion on known high quality polymorphisms [6]. Further,
highly variable or problematic regions, such as var genes
in B falciparum, are typically removed from analysis [46].
In general, DeepSweep appeared to perform well across
different GC content settings (P, falciparum 19%, B vivax
58%), as well as in a simulated data setting which did not
impose any constraint on GC content. However, in gen-
eral, it is important to evaluate the quality of genomic
variants used in an analysis. A further consideration is
that most approaches use haplotype data, which in the
human context require phasing from genotypes. Whilst
the Plasmodium life cycle involves haploid asexual stages,
complex clinical infections can complicate and confound
population genetic analyses, and therefore analysis was
restricted to infections with a dominant clone. However,
it may be possible to extend DeepSweep to process indi-
vidual parasite sequences for samples with multiplicity of
infection. Irrespective, any novel loci identified should be
confirmed through functional work [47]. Further, com-
plementary methods that look at isolate relatedness, as
determined by identity by descent (e.g. IsoRelate [48]),
could also be implemented. New loci detected by Deep-
Sweep that were not identified by other methods (e.g. on
chromosomes 6, 8 and 14 for P, falciparum and on chro-
mosomes 6, 7 and 14 for P vivax) provide interesting
candidates for confirmation studies.

A potential future opportunity is to apply models
across species, for example, to detect P falciparum loci
after being trained on P. vivax signatures, and vice-versa.
Such an application could assist to detect regions where
drug resistance loci are unknown or less established, such
as P vivax. However, the impacts of differences in sample
size and degree of polymorphism between species need
to be considered. Relatedly, “real data” was used for train-
ing, but an alternative may be to use coalescent or for-
ward-in-time simulation to create positive and negative
labelled exemplars. However, there is a risk that images
might not be representative of actual selective sweeps
in nature. The deep learning algorithm has applications
beyond positive selection, including for other evolution-
ary signatures (e.g. balancing selection) or application to
other organisms (e.g. mosquitoes and humans).

Conclusions

The DeepSweep approach and the wider application
of deep learning using genomic images constitutes a
novel approach that shows promising results. It pro-
vides a robust, accessible and scalable approach for the

Page 7 of 9

identification of genomic regions under positive selec-
tion, and could assist with detecting established and new
types of drug resistance. Thereby, providing insights into
transmission dynamics and informing malaria control
decision-making.
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S1Table

Simulation parameters for the data generation using SFS_Code software

Scenario No. of Selection Time
Simulated Coefficient window™***
datasets*®

Stronger selection — recent sweep 80 2000 0.20

Stronger selection — historic sweep 80 2000 0.40

Weaker selection — recent sweep 80 400 0.20

Partial sweep™* 80 100 0.15

Neutral 80x4 0 0.20

* Each simulated dataset consisted of 4 populations of 100 individual parasites (50% sweep; 50%
neutral), and a locus length of 1kbp, with the mutation inserted at position 500. The mutation rate per
site was set to 0.01 and the recombination rate per site was 0.02; ** The partial sweeps were created
with rejection sampling, where only sweeps that had a derived allele frequency of between 33% and 80%
were kept; ¥** The window is the time between the introduction of the mutation and sampling expressed
in 2N generations, with N being the population size.



S2 Table

Performance of Convolutional Neural Network (CNN) model structures on simulated datasets

Model Description of model and changes* Trainable Validation  Validation
parameters Loss** Accuracy (%)
1 Model used in our study (one convolutional 4,525 0.33 93.8

layer with 4 filters, with respective filter size of
(40,9) followed by two drop-out and dense
layers with Relu activation)

2 Two convolutional layers with 4 filters in each 78,277 0.42 75.0
layer, with respective kernel size of 11 and 5

3 Three convolutional layers with 4 filters in each 71,705 0.49 62.5
layer, with respective kernel sizes of 11, 5 and 3

4 Increase of number of convolutional filters to 8 15,193 0.26 87.5
5 Decrease of number of convolutional filters to 2 1,495 0.59 68.8
6 Increase of drop-out rate to 0.4 (from 0.2) 4,525 0.32 87.5
7 Decrease of drop-out rate to 0.1 (from 0.2) 4,525 0.48 75.0

* Model 1 is the final model used across our datasets, and Models 2 - 7 are deviations from this; RelLu:
Rectified Linear Unit. ** Validation loss as measured by binary cross-entropy. The performance
(validation loss, validation accuracy) was measured by training on 64 simulated isolates with the same
characteristics as other simulations (e.g. undergoing different forms of sweeps as well as neutral
evolution) with all performance metrics measured on a validation set of 16 isolates.



S3 Table

Sample origin by geographic location

Country P. falciparum  P. falciparum  P.vivax  P. vivax
N* % N** %

Cambodia 351 31.2 32 8.7
Malawi 221 19.6 -

Ghana 202 18.0 -

Vietnam 187 16.6 -

Thailand 164 14.6 128 34.8
Peru - - 58 15.8
Malaysia - - 50 13.6
Colombia - - 30 8.2
Papua New Guinea - - 26 7.1
Mexico - - 20 54
Ethiopia - - 24 6.5
Total 1,125 100 368 100

* see 54 Table for a list of sequence data accession numbers
** see S5 Table for a list of sequence data accession humbers



54 Table. The 1,125 high-quality Plasmodium falciparum isolates used in this study

Country Identifier Country Identifier  Country Identifier  Country Identifier

Cambodia ERS009721 Cambodia ERS014167 Cambodia ERS028699 Cambodia ERS032695
Cambodia ERS010057 Cambodia ERS014168 Cambodia ERSD28700 Cambodia ERS032696
Camhodia  ERS010059 Cambodia FRS014169 Cambodia ERS028701 Cambodia ERS032697
Cambodia ERS010062  Cambodia ERS014170 Cambodia ERS028702 Cambodia ERS045932
Camhodia ERS010066 Cambodia FRS014171 Cambodia ERS028703 Cambodia ERS045933
Cambodia ERS010067  Cambodia ERS014172 Cambodia ERS028704 Cambodia ERS045934
Cambodia ERS010216 Cambodia ERS014173 Cambodia ERSD28705 Cambodia ERS045935
Cambodia ERS010217 Cambodia ERS017698 Cambodia ERSD28706 Cambodia ERS045936
Cambodia ERS010318 Cambodia ERS017699 Cambodia ERSD28707 Cambodia ERS045937
Camhodia ERS010319 Cambodia FRS017700 Cambodia ERS028708 Cambodia ERS045938
Camhodia ERS010320 Cambodia FRS017702 Cambodia ERS028709 Cambodia ERS045939
Cambodia ERS010321  Cambodia ERS017705 Cambodia ERS028710 Cambodia ERS050859
Cambodia ERS010322  Cambodia ERS017706 Cambodia ERS028712 Cambodia ERS050860
Cambodia ERS010323  Cambodia ERS017707 Cambodia ERS028713 Cambodia ERS050865
Cambodia ERS010324  Cambodia ERS023736 Cambodia ERS028714 Cambodia ERS050866
Cambodia ERS010325 Cambodia ERS023737 Cambodia ERSD28715 Cambodia ERS050870
Cambodia ERS010327 Cambodia ERS023738 Cambodia ERSO28716 Cambodia ERS050872
Cambodia ERS010330 Cambodia ERS023739 Cambodia ERSO28717 Cambodia ERS050885
Camhodia ERS010331 Cambodia FRS023740 Cambodia ERS028718 Cambodia ERS050890
Cambhodia ERS010332 Cambodia FRS023741 Cambodia ERS028719 Cambodia ERS052777
Cambodia ERS010333  Cambodia ERS023742 Cambodia ERS028720 Cambodia ERS052778
Cambodia ERS010334 Cambodia ERS023743 Cambodia ERSD28721 Cambodia ERS052781
Cambodia ERS010335  Cambodia ERS023744 Cambodia ERS028722 Cambodia ERS052784
Cambodia ERS010336 Cambodia ERS023745 Cambodia ERSD28723 Cambodia ERS052785
Camhodia ERS010337 Cambodia FRS023746 Cambodia ERS028724 Cambodia ERS052790
Cambodia ERS010346 Cambodia ERS023747 Cambodia ERSD28725 Cambodia ERS071770
Camhodia ERS010511 Cambodia FRS023748 Cambodia ERS032018 Cambodia ERS071771
Cambodia ERS010516  Cambodia ERS023749 Cambodia ERS032022 Cambodia ERS071773
Cambodia ERS010590  Cambodia ERS023750 Cambodia ERS032026 Cambodia ERS071774
Cambodia ERS010592 Cambodia ERS024123 Cambodia ERSD32029 Cambodia ERS071776
Cambodia ERS010598 Cambodia ERS025100 Cambodia ERSD32037 Cambodia ERS071777
Cambodia ERS010669 Cambodia ERS025257 Cambodia ERSD32050 Cambodia ERS071778
Camhodia ERS010672 Cambodia FRS025258 Cambodia ERS032060 Cambodia ERS071779
Camhodia ERS010673 Cambodia FRS025259 Cambodia ERS032109 Cambodia ERS071781
Camhodia ERS010779 Cambodia FRS025262 Cambodia ERS032135 Cambodia ERS071782
Camhodia ERS010786 Cambodia FRS025263 Cambodia ERS032243 Cambodia ERS071784
Cambodia ERS013843  Cambodia ERS025265 Cambodia ERS032246 Cambodia ERS071787
Cambodia ERS013844  Cambodia ERS025266 Cambodia ERS032249 Cambodia ERS071791
Cambodia ERS014154 Cambodia ERS025267 Cambodia ERSD32255 Cambodia ERS071794
Cambodia ERS014155 Cambodia ERS025268 Cambodia ERSD32258 Cambodia ERS071796
Cambodia ERS014156 Cambodia ERS025269 Cambodia ERSD32683 Cambodia ERS071797
Camhodia ERS014157 Cambodia FRS025271 Cambodia ERS032686 Cambodia ERS071799
Cambodia ERS014158  Cambodia ERS025272 Cambodia ERS032687 Cambodia ERS071800
Camhodia ERS014159 Cambodia FRS025273 Cambodia ERS032688 Cambodia ERS071809
Cambodia ERS014161  Cambodia ERS025274 Cambodia ERS032689 Cambodia ERS071812
Cambodia ERS014162 Cambodia ERS025275 Cambodia ERSD32690 Cambodia ERS071815
Cambodia ERS014163 Cambodia ERS025276 Cambodia ERSD32691 Cambodia ERS071824
Cambodia ERS014164 Cambodia ERS028696 Cambodia ERS032692 Cambodia ERS088705
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ER5032017
ER5032031
ER5032039
ER5032056
ER5032106
ER5032108
ERS032638
ER5157463
ER5009723

Cambodia
Cambodia
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana

ERS088706
ERS140927
ERS009734
ERS010081
ERS010083
ERS010084
ERS010085
ERS010086
ERS010087
ERS010088
ERS010089
ERS010090
ERS010124
ERS010125
ERS011021
ERS011022
ERS011023
ERS011025
ERS011026
ERS011027
ERS013064
ERS013065
ERS013066
ERS013067
ERS013068
ERS013069
ERS013071
ERS013072
ERS013073
ERS013074
ERS013075
ERS013076
ERS013077
ERS013078
ERS013079
ERS013080
ERS013081
ERS013082
ERS013091
ERS013092
ERS013093
ERS013094
ERS013095
ERS013096
ERS013097
ERS013098
ERS013099
ERS013100
ERS013101
ERS017384



Cambodia
Cambodia
Cambodia
Cambodia
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana

ER5164622
ERS164623
ERS164624
ERS174483
ERS017389
ERS017390
ERS017391
ERS017392
ERS017393
ERS017394
ERS017395
ERS017396
ERS017397
ERS017398
ERS017399
ERS017400
ERS017401
ERS017402
ERS022744
ERS022745
ERS022746
ERS022747
ERS022748
ERS022749
ERS022750
ERS022751
ERS022754
ERS022755
ERS022756
ERS022757
ERS022758
ERS022760
ERS022761
ERS022762
ERS022764
ERS022765
ERS022768
ERS022770
ERS022771
ERS022773
ERS022774
ERS022942
ERS022948
ERS022949
ERS022950
ERS022952
ERS022953
ERS022954
ERS022955
ERS022956

Cambodia
Cambodia
Cambodia
Cambodia
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana

ERS010670
ERS010671
ERS010776
ERS010777
ERS022963
ERS022964
ERS022965
ERS022966
ERS022967
ERS022968
ERS022969
ERS022970
ERS022971
ERS022972
ERS022973
ERS022974
ERS022975
ERS022976
ERS022977
ERS022978
ERS022979
ERS022981
ERS022982
ERS022984
ERS022986
ERS031998
ERS032001
ERS032002
ERS032007
ERS032011
ERS032012
ERS032028
ERS032030
ERS032032
ERS032033
ERS032034
ERS032035
ERS032038
ERS032044
ERS032047
ERS032053
ERS032054
ERS032067
ERS032170
ERS032171
ERS032172
ERS032173
ERS032174
ERS032176
ERS032177

Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Ghana
Malawi
Malawi
Malawi
Malawi
Malawi

ERS009725
ERS5009727
ERS009728
ERS009730
ER5032185
ER5032188
ERS032189
ER5032190
ER5032191
ERS032192
ER5032195
ER5032196
ER5032199
ERS032201
ERS032202
ER5032204
ER5032205
ERS032212
ERS032213
ER5032215
ER5032218
ER5032219
ERS032220
ER5032221
ER5032222
ERS032223
ERS032226
ER5032227
ER5032229
ER5032230
ER5032231
ER5032232
ER5032233
ERS032236
ERS032238
ER5032239
ER5032667
ERS032668
ER5032669
ERS032670
ER5032671
ER5032672
ERS032673
ER5032674
ER5032675
ERS032647
ER5032660
ER5032661
ER5032662
ERS032665

Ghana

Ghana

Ghana

Ghana

Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malaw
Malaw
Malawi
Malawi
Malaw!
Malaw
Malaw
Malawi
Malawi
Malaw
Malawi
Malawi
Malaw
Malaw
Malawi
Malawi
Malaw

ERS017385
ERS017386
ERS017387
ERS017388
ERS032653
ERS032654
ERS032657
ERS040098
ERS040099
ERS040100
ERS5040101
ERS040103
ERS053866
ERS053871
ERS053875
ERS053876
ERS053877
ERS053938
ERS053940
ERS053942
ERS053944
ERS053945
ERS053947
ERS5053948
ERS053949
ERS053950
ERS053952
ERS053953
ERS053954
ERS053955
ERS053956
ERS053957
ERS053958
ERS053960
ERS053878
ERS053880
ERS053890
ERS053891
ERS053895
ERS053897
ERS055901
ERS055903
ERS055904
ERS055905
ERS055906
ERS055907
ERS055908
ERS055909
ERS055911
ERS055913



Ghana

Ghana

Ghana

Ghana

Ghana

Ghana

Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi

ERS022957
ERS022958
ERS022959
ERS022960
ERS022961
ERS022962
ER5164686
ER5168594
ERS168595
ERS5168596
ERS5168597
ERS168598
ER5168599
ER5168600
ERS168601
ER5168602
ERS168603
ERS168604
ERS168605
ERS168618
ERS168619
ERS168620
ER5168621
ER5168622
ERS168623
ER5168624
ER5168625
ER5168627
ER5168628
ER5168629
ER5168630
ER5168631
ERS168632
ERS168633
ERS5168634
ERS168635
ERS5168636
ERS168637
ERS168638
ERS168639
ERS168640
ER5168641
ERS168642
ER5168643
ER5168644
ERS168645
ER5168646
ER5168647
ER5168648
ER5168649

Ghana

Ghana

Ghana

Ghana

Ghana

Ghana

Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malawi
Malaw
Malaw
Malawi
Malaw
Malaw
Malawi
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malaw
Malawi
Malaw
Malaw
Malawi
Malaw

ERS032178
ERS032180
ERS032181
ERS032182
ERS032183
ERS032184
ERS168607
ER5168608
ERS168609
ERS168610
ERS168611
ERS168612
ERS168614
ERS5168615
ERS168616
ERS168617
ER5193667
ERS193672
ERS193623
ER5193628
ERS193638
ERS193643
ER5193648
ER5193653
ERS193658
ER5193663
ERS5193668
ERS193673
ER5193678
ERS5193624
ERS5193629
ER5193634
ERS193639
ERS5193644
ERS5193654
ERS193659
ERS5193664
ER5193669
ERS193674
ERS193679
ER5193625
ER5193630
ERS188069
ER5188076
ER5188090
ERS188097
ERS5188111
ERS5188118
ERS188125
ER5188132

Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi
Malawi

ERS032666
ER5032648
ERS5032649
ERS032650
ER5032651
ER5032652
ER5188108
ER5188115
ERS188122
ER5188129
ER5188136
ERS188067
ER5188081
ER5188088
ERS188095
ER5188102
ER5188109
ERS188116
ERS188123
ER5188130
ERS188137
ERS188144
ER5188068
ER5188075
ERS188082
ER5188089
ER5188096
ER5188103
ER5188110
ER5188117
ER5188124
ER5188131
ERS188138
ER5188145
ER5188077
ERS188084
ER5188091
ER5188105
ERS188112
ERS188119
ER5188133
ER5188140
ERS188147
ER5188079
ER5188086
ERS188100
ER5188135
ER5188149
ER5188121
ER5188128

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand

ERS055914
ERS053902
ERS053903
ERS5053904
ERS164642
ERS164677
ER5188141
ER5188148
ERS009703
ERS009705
ERS009706
ERS009707
ERS009709
ERS009710
ERS009713
ERS009714
ERS009715
ERS009716
ERS009717
ERS009718
ERS009722
ERS009956
ERS009957
ERS009958
ERS009959
ERS009960
ERS009961
ER5009962
ERS009963
ERS009964
ERS009968
ERS009969
ERS010141
ERS010190
ERS010308
ERS010314
ERS010349
ERS010353
ERS010478
ERS010514
ERS010522
ERS010524
ERS010525
ER5010526
ERS010528
ERS010530
ERS010531
ERS010532
ERS010600
ERS010601



Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand

ERS168650
ERS168651
ERS168652
ERS168653
ERS175807
ER5175808
ERS175809
ERS5168606
ERS010650
ERS017464
ERS017465
ERS017466
ERS017467
ERS017468
ERS017469
ERS017470
ERS017471
ERS017472
ERS023565
ERS023566
ERS023568
ERS023569
ERS023570
ERS023572
ERS023575
ERS023576
ERS142818
ERS142819
ERS142821
ERS142822
ERS142824
ERS142825
ERS142827
ERS142830
ERS142831
ERS142833
ERS142834
ERS142836
ERS142842
ERS142843
ERS142845
ERS142848
ERS142849
ERS142854
ERS142855
ERS142857
ERS142858
ERS142861
ERS5142863
ERS142867

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand

ER5188139
ERS5188146
ER5188066
ERS5188073
ERS5188080
ERS188087
ERS188094
ERS188101
ERS142879
ERS142881
ERS142883
ERS142884
ERS154522
ERS164621
ERS174521
ERS174522
ERS174523
ERS174524
ERS174525
ERS5174526
ERS174527
ERS174528
ERS174529
ERS174530
ERS174531
ERS174532
ERS5174533
ERS5174534
ERS5174535
ERS5174536
ERS174537
ERS5174538
ERS5174539
ERS174540
ERS174541
ERS174631
ERS174632
ERS174633
ERS174634
ERS5174635
ERS174636
ERS174637
ERS5174638
ERS5174639
ERS174640
ERS5174641
ERS174642
ERS174643
ERS174644
ERS174645

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Malawi

Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ER5188071
ER5188078
ER5188085
ER5188099
ER5188106
ERS188113
ERS188127
ERS188134
ER5174649
ER5174651
ER5174652
ER5174653
ER5174654
ER5174655
ER5174657
ER5174658
ER5174659
ER5174661
ERS174662
ER5174663
ER5174664
ER5174665
ER5174666
ER5174667
ER5174668
ER5174669
ER5347448
ERS347472
ER5347504
ER5347512
ER5010783
ER5010784
ER5010034
ERS010035
ERS010036
ERS013083
ERS013084
ER5013085
ER5013086
ER5013087
ER5013088
ER5013089
ER5013102
ER5013103
ER5086846
ER5142875
ER5143419
ERS143421
ERS143424
ERS143428

Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietham
Vietham
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ERS010602
ERS010605
ERS010606
ERS010622
ERS010626
ERS010634
ERS010648
ERS010649
ER5143454
ERS143462
ERS143463
ERS5143464
ERS5143465
ERS143467
ERS143469
ERS143471
ERS143472
ERS5143473
ERS143474
ERS5143475
ER5143476
ERS143477
ERS143481
ERS5143484
ERS5143485
ERS5143493
ERS143494
ERS143495
ERS143496
ERS5143497
ERS5143498
ERS143499
ER5143501
ERS5143502
ERS143505
ERS143506
ER5143508
ERS5143509
ERS5143511
ERS143514
ERS143516
ER5143518
ERS5143519
ERS143520
ERS5154466
ERS5154483
ERS174506
ERS174542
ERS174543
ERS174544



Thailand
Thailand
Thailand
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ER5142869
ERS142872
ERS142878
ERS174548
ERS174550
ERS174551
ERS174552
ERS174553
ERS174554
ERS174555
ERS174556
ERS174557
ERS5174558
ERS174560
ERS174670
ERS174671
ERS174672
ERS174673
ERS174674
ERS174675
ERS174676
ERS174677
ER5224919
ER5224924
ERS336368
ERS336375
ERS336380
ERS336381
ERS336386
ERS336392
ERS347474
ERS347475
ERS347490
ERS347499

Thailand
Thailand
Thailand
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ERS174646
ERS174647
ERS174648
ERS086810
ERS086811
ERS086812
ERS086814
ERS086815
ERS086816
ERS086817
ERS086819
ERS086820
ERS086821
ERS086822
ERS086823
ERS086824
ERS086825
ERS086827
ERS086828
ERS086833
ERS086834
ERS086836
ERS086837
ERS086839
ERS086840
ERS086847
ERS086848
ERS086864
ERS086865
ERS086872
ERS086873
ERS086874
ERS086876
ERS086884

Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ERS143429
ERS143433
ERS143437
ERS088710
ERS088712
ERS088713
ERS086797
ERS086798
ERS086799
ERS086800
ERS086801
ERS086802
ERS086803
ERS086804
ERS086806
ERS086807
ERS086808
ERS086809
ERS3475006
ERS347521
ERS347529
ERS347537
ERS085458
ERS085459
ERS085460
ERS085461
ERS085462
ERS085463
ERS085464
ERS085465
ERS085466
ERS085467
ERS085468
ERS086796

Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam
Vietnam

ERS174545
ERS174546
ERS174547
ERS086997
ERS086998
ERSD86999
ERS087000
ERS087028
ERS087029
ERS087030
ERS087032
ERS087033
ERS087034
ERSO87035
ERS087036
ERSO86886
ERSO86887
ERS086888
ERS086909
ERS086913
ERS086934
ERS086950
ERS086981
ERS086983
ERS086984
ERSD86985
ERS086986
ERS086987
ERS086991
ERS086994
ERS086995




S5 Table. The 368 high-quality Plasmodium vivax isolates used in the study

Country Identifier Country  Identifier Country Identifier Country Identifier

Cambodia ERR020103 Colombia  SRR1568159 Malaysia  ERR1138869 Mexico SRR1568201
Cambodia ERR023039 Colombia  SRR1568160 Malaysia  ERR1138870 Mexico SRR1568218
Cambodia ERR023040 Colombia  SRR1568169 Malaysia  ERR1138871 Mexico SRR1568219
Cambodia ERR023041 Colombia  SRR1568171 Malaysia  ERR1138872 Mexico SRR1568223
Cambodia ERR023042 Colombia  SRR1568207 Malaysia  ERR1138873 Mexico SRR1568225
Cambodia ERR027119 Colombhia  SRR1568213 Malaysia  ERR1138875 Mexico SRR1568231
Cambodia ERR039234 Colombia  SRR1568221 Malaysia  ERR1138876 PNG SRR1562605
Cambodia ERR054080 Colombia  SRR1568227 Malaysia  ERR1138879 PNG SRR1562669
Cambodia ERR054082 Colombia  SRR1568230 Malaysia  ERR1138881 PNG SRR1562672
Cambodia ERR111729 Colombia  SRR1568235 Malaysia  ERR1138882 PNG SRR1562960
Cambodia ERR123849 Colombia  SRR1568236 Malaysia  ERR1138883 PNG SRR1562963
Cambodia ERR152408 Colombhia  SRR1573226 Malaysia  ERR1138884 PNG SRR1568105
Cambodia ERR152410 Ethiopia ERR925441 Malaysia  ERR1138885 PNG SRR1568147
Cambodia ERR152413 Ethiopia ERR925440 Malaysia  ERR1475395 PNG SRR1568177
Cambodia ERR211549 Ethiopia ERR925439 Malaysia  ERR1475396 PNG SRR1568185
Cambodia ERR211557 Ethiopia ERR925438 Malaysia  ERR1475397 PNG SRR1568189
Cambodia ERR211561 Ethiopia ERR925437 Malaysia  ERR1475398 PNG SRR1568214
Cambodia ERR216477 Ethiopia ERR925436 Malaysia  ERR1475399 PNG SRR1759411
Cambodia ERR216554 Ethiopia ERR925435 Malaysia  ERR1475418 PNG SRR1759522
Cambodia ERR337538 Ethiopia ERR925434 Malaysia  ERR1475419 PNG SRR1759523
Cambodia ERR386533 Ethiopia ERR925433 Malaysia  ERR1475420 PNG SRR1759592
Cambodia ERR386534 Ethiopia ERR925431 Malaysia  ERR1475425 PNG SRR1759594
Cambodia ERR386535 Ethiopia ERR925430 Malaysia  ERR1475427 PNG ERR022864

Cambodia ERR386536 Ethiopia ERRO25424 Malaysia  ERR1475429 PNG ERR175552

Cambodia ERR386537 Ethiopia ERR925421 Malaysia  ERR1475430 PNG ERR175555

Cambodia ERR386538 Ethiopia ERR925420 Malaysia  ERR1475434 PNG ERR175557

Cambodia ERR386539 Ethiopia ERR925417 Malaysia  ERR1475439 PNG ERR216469

Cambodia ERR386541 Ethiopia ERR925416 Malaysia  ERR1475441 PNG ERR216474

Cambodia ERR386542 Ethiopia ERR925412 Malaysia  ERR1475451 PNG ERR527450

Cambodia ERR386543 Ethiopia ERR925411 Malaysia  ERR1475456 PNG ERR527453

Cambodia ERR386546 Ethiopia ERR925410 Malaysia  ERR1475457 PNG ERR527467

Cambodia ERR388742 Ethiopia ERR925409 Malaysia  ERR054089 PNG ERR527468

Colombia SRR1562518 Ethiopia ERR775192 Malaysia  ERR152414 Peru SRR1562512
Colombia SRR1562524 Ethiopia ERR775191 Malaysia  ERR152415 Peru SRR1562513
Colombia SRR1562555 Ethiopia ERR775190 Malaysia  ERR527337 Peru SRR1562519
Colombia SRR1562818 Ethiopia ERR775189 Malaysia  ERR527363 Peru SRR1562521
Colombia SRR1562870 Malaysia ERR1106842 Mexico SRR1562522 Peru SRR1562525
Colombia SRR1562965 Malaysia ERR1106843 Mexico SRR1562526 Peru SRR1562534
Colombia SRR1562967 Malaysia ERR1106846 Mexico SRR1562839 Peru SRR1562535
Colombia SRR1562971 Malaysia ERR1138855 Mexico SRR1562840 Peru SRR1562538
Colombia SRR1562975 Malaysia ERR1138856 Mexico SRR1562968 Peru SRR1562567
Colombia SRR1564650 Malaysia ERR1138857 Mexico SRR1568077 Peru SRR1562606
Colombia SRR1564660 Malaysia ERR1138858 Mexico SRR1568110 Peru SRR1562614
Colombia SRR1564664 Malaysia ERR1138861 Mexico SRR1568126 Peru SRR1562615
Colombia SRR1564665 Malaysia ERR1138862 Mexico SRR1568127 Peru SRR1562624
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Colombia
Colombia
Colombia
Colombia
Colombia
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Peru
Thailand
Thailand

SRR1564670
SRR1568112
SRR1568118
SRR1568128
SRR1568155
SRR1564630
SRR1568107
SRR1568113
SRR1568117
SRR1568122
SRR1568123
SRR1568149
SRR1568157
SRR1568162
SRR1568163
SRR1568165
SRR1568166
SRR1568168
SRR1568172
SRR1568174
SRR1568175
SRR1568178
SRR1568179
SRR1568182
SRR1568183
SRR1568184
SRR1568187
SRR1568191
SRR1568195
SRR1568196
SRR1568198
SRR1568199
SRR1568202
SRR1568203
SRR1568206
SRR1568210
SRR1568211
SRR1568216
SRR1568232
SRR1568234
SRR1568787
SRR1759047
SRR1759122
SRR1759307
SRR1759336
ERR527385

ERR527384

Malaysia
Malaysia
Malaysia
Malaysia
Malaysia
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
Thailand
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56 Table
Plasmodium falciparum loci identified by DeepSweep (DS; with >3 SNPs)

Chr. Location GenelD Gene Function DS iHS Rsb
(PF3D7_) hits hits hits
4 765952 0417400 conserved protein (close to pfdhfr) 8 37
5 852924 0520800 conserved protein 4
5 921557 0522400 conserved protein (close to pfmdri) 13 8
5 951346 0522900 zinc finger protein (close to pfmdri) 8
6 496916 0611800 conserved protein 6
6 1109895 0627700 transportin 4 3
6 1115827 0627800 acetyl-CoA synthetase 20 11 39
6 1139634 0628100 HECT-domain (ubiquitin-transferase) 18 1 30
6 1163355 0628200 EIF2AK (PK4) 5 2
6 1292572 0630900 ATP-dependent RNA helicase HAS1 4 6
7 333558 0707200 conserved protein (close to pfert) 5 12
7 370246 0708000 cytoskeleton associated protein (close to pfert) 4 1
7 375694 0708200 conserved protein (close to pfert) 9 14
7 409992 0709100 Cgl protein (close to pfert) 11 38
7 417927 0709300 Cg2 protein (close to pfert) 7 46
7 467220 0710200 conserved protein (close to pfert) 5 2
g 488913 0809600 peptidase family C50 (close to pfdhps) 9 3 29
8 542388 0810600 ATP-dependent RNA helicase DBP1 (close to pfdhps) 5 8
8 563088 0811200 ER membrane protein complex subunit 1 (close to pfdhps) 7 11
8 585494 0811600 conserved protein (close to pfdhps) 4
8 598114 0811900 RNA-binding protein (close to pfdhps) 6 4
12 750432 1219000 formin 2 4 1
12 943344 1223400 phospholipid-transporting ATPase 6 3
12 954302 1223500 conserved protein 8 11
14 2508460 1461800 conserved protein 5
14 2536662 1462400 conserved protein 4 39

Chr, Chromosome; iHS and Rsb counts defined as the number of SNPs in a gene that have an |iHS| or
|Rsbh|score with a p-value < 0.0001; pfdhfr (Chr. 4: 749001, pfmdrl (Chr. 5: 960020), pfert (Chr. 7:
404770), pfdhps (Chr. 8: 549408)
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57 Table
Plasmodium vivax loci identified by DeepSweep (DS; with >3 SNPs)

Chr.  Location GenelD Gene Function Ds iHS Rsb
(PvPO1_) Hits  hits hits

1 904054 0119600  Plasmodium exported protein 4 5

2 100527 0202000  hypothetical protein 11 4

2 156981 0203000  multidrug resistance-associated protein 1 7 33

2 745122 0217200  Plasmodium exported protein 5

3 620559 0313900  exported serine/threonine protein kinase 4

5 945918 0523400  Plasmodium exported protein (PHIST) 4 6

5 1041740 0525700 DNA helicase MCM9 (close to pvdhfr) 6 3

5 1047865 0525800  histone acetyltransferase (close to pvdhfr) 5 2 8

5 1064836 0526300  conserved protein (close to pvdhfr) 9 2 4

5 1070542 0526400 conserved protein (close to pvdhfr) 10 1 12

5 1093253 0526800 conserved protein (close to pvdhfr) 19 4 12

6 1011569 0624300 PIR protein 4

7 64704 0701100  reticulocyte binding protein 1b 10 8

7 500160 0709800  cysteine repeat modular protein 1 11

7 1462407 0735200  Plasmodium exported protein 5 6

9 972542 0922400 peptidase M16 4

9 1735229 0939900 RNA-binding protein 7 2 1

9 1752568 0940100 AP2 domain transcription factor 5

9 2150596 0948800  tryptophan-rich protein 10

10 490336 1011000  zinc finger protein (close to pvmdrl) 11 1

10 1443984 1033900  tryptophan-rich protein 7

10 1470845 1034400  Plasmodium exported protein 9

11 61701 1101300  Plasmodium exported protein 14 2

12 3026696 1271500  lysophospholipase (PST-A) 8

13 814038 1317300  conserved protein 7 15

14 43063 1401100  Plasmodium exported protein 5

14 798622 1418100  AP2 domain transcription factor AP2-G3 7 1

14 1227470 1428700  conserved protein (close to pvdhps) 13 1

histone-arginine methyltransferase CARM1 (close

14 1232652 1428800  to pvdhps) 4 1

14 1245928 1429000 CCR4-associated factor 1 (close to pvdhps) 5 39

14 1300426 1430100  ABC1 family (close to pvdhps) 4

14 1312634 1430400 JmjC domain-containing protein (close to pvdhps) 5 1 25

14 1320290 1430500 conserved protein (close to pvdhps) 4

14 1336114 1430700 peptidase family C50 21

14 1431856 1432900  GPI ethanolamine phosphate transferase 3 11 1 1

Chr, Chromosome; iHS and Rsb Counts defined as the number of SNPs in a gene that have an iHS or Rsb
score with a p-value < 0.0001. pvdhfr (Chr. 5: 1078299), pvmdrl (Chr. 10: 480936, pvdhps (Chr. 14:
1271030)
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S8 Table

Plasmodium falciparum loci with the most iHS and Rsb hits

Chrom Location Gene ID Function iHS Rsb  Deep
(PF3D7_) Sweep

7 452987 0710000 conserved protein 49 2

7 417927 0709300 (g2 protein 46 7

13 2116999 1352900 Plasmodium exported protein 1 41

14 2536662 1462400 conserved protein 39 4

6 1115827 0627800 acetyl-CoA synthetase 11 39 20

7 409992 0709100 Cgl protein 38 11

4 765952 0417400 conserved protein 37 8

5 1107081 0526600 conserved protein 37

6 1139634 0628100 HECT-domain (ubiquitin-transferase) 1 30 18

8 488913 0809600 peptidase family C50 3 29 9

13 756296 1318300 conserved protein 25

7 1379445 0731800 alpha/beta hydrolase 25

14 3125133 1475900 KELT protein 4 24

4 989562 0421700 conserved protein 20 23

8 608343 0812100 proteasome activator complex subunit 4 20 1

11 1294496 1133400 apical membrane antigen 1 19 8

10 1395940 1035200 S-antigen 18 8

14 2792063 1468100 conserved protein 17 3

10 217522 1004600 conserved Plasmodium membrane protein 17

5 1288394 0531500 unspecified product 1 17

13 1011360 1324300 conserved Plasmodium membrane protein 17

13 1421390 1335100 merozoite surface protein 7 2 16

13 1466337 1335900 thrombospondin-related anonymous protein 16 12

7 340301 0707300 rhoptry-associated membrane antigen 16 1

5 1036670 0525000 zinc finger protein 16

12 785829 1219600 aminophospholipid-transporting P-ATPase 15

9 285998 0905700 autophagy-related protein 3 15

7 929713 0721500 conserved Plasmodium membrane protein 15

8 427868 0808500 Plasmodium RNA of unknown function RUF6 2 15

8 549345 0810800 HPPK-DHPS 15 4

8 1313279 0830800 SURFIN 8.2 15 4

7 375693 0708200 conserved protein 14 9

5 482369 0511400 conserved protein 2 14

7 951490 0722300 ubiquitin carboxyl-terminal hydrolase 13 1

8 919102 0820300 conserved protein 13

14 2527372 1462300 GTP-binding protein 13 2

7 333557 0707200 conserved protein 12 5

3 221968 0304600 circumsporozoite (CS) protein 1 12

2 618524 0215000 acyl-CoA synthetase 12

6 1265574 0630300 DNA polymerase epsilon catalytic subunit A 1 11 1

13 108319 1301900 Plasmodium exported protein 1 11

3 653725 0316200 conserved protein 11

13 479886 1311100 meiosis-specific nuclear structural protein 1 11

4 695218 0415800 RING zinc finger protein 11
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merozoite surface protein 10

heat shock protein 90

conserved protein

ER membrane protein complex subunit 1
rhoptry neck protein 3

conserved protein

parasite-infected erythrocyte surface protein

WD repeat-containing protein 66
glutamate-rich protein GLURP
acyl-CoA synthetase

BEMA46-like protein

conserved protein

protein phosphatase

ribonucleases P/MRP protein subunit POP1
conserved protein

AP2 domain transcription factor
apoptosis-inducing factor

WD repeat-containing protein
serine/threonine protein kinase, FIKK family
conserved protein

conserved protein

Plasmodium exported protein (hyp12)
conserved protein

conserved protein

protein phosphatase PPM38

DNA repair protein RAD50
CX3CL1-binding protein 2

chloroquine resistance transporter
probable protein

conserved protein

conserved protein

conserved protein

28S ribosomal RNA

CelTOS

conserved protein

autophagy-related protein 18
conserved protein

ATP-dependent RNA helicase DBP1
regulator of chromosome condensation
conserved protein

cullin-1

Plasmodium exported protein
ring-exported protein 3

conserved Plasmodium membrane protein
406 ribosomal protein S5
cytoadherence linked asexual protein 9
Plasmodium exported protein (hyp15)
OST-HTH associated domain protein
liver stage associated protein 2
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8 331678
14 2183066
7 957542
14 304487
9 110619
9 747006

0806100
1453200
0722500
1408200
0902500
0918100

conserved protein

conserved protein

pre-mRNA-splicing factor CWC15

AP2 domain transcription factor AP2-G2
serine/threonine protein kinase, FIKK family
cytochrome b5-like heme/steroid binding protein

D D o~~~

iHS and Rsh Counts defined as the number of SNPs in a gene that have an iHS or Rsh score with a p-

value < 0.0001
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S9 Table

Plasmodium vivax loci with the most iHS and Rsb hits

Chr. Location GenelD Function iHS Rsb Deep
(PVPO1_) hits  hits Sweep
2 148495 0202900 18Sribosomal RNA 2 62
10 189242 1003700 phosphoenolpyruvate/phosphate translocator 2 45
14 1245928 1429000 CCR4-associated factor 1 39 5
2 156981 0203000 multidrug resistance-associated protein 1 33 7
14 1284723 1429800 protein phosphatase PPM7 29
10 146870 1002700 conserved protein 2 28 3
10 153038 1002800 SURF1 domain-containing protein 26
14 1312633 1430400 JmjC domain-containing protein 1 25 5
10 184519 1003600 conserved protein 24
1 883223 0119200 Plasmodium exported protein (PHISTc) 21
10 318571 1007200 conserved protein 5 18
10 205509 1004100 conserved protein 18
3 123931 0302600 conserved protein 13 16
10 1376089 1032000 50S ribosomal protein L28, apicoplast 6 16
13 814038 1317300 conserved protein 15 7
14 2257490 1451700 asparagine and aspartate rich protein 1 13
14 1263931 1429300 cullin-1 13 2
5 210653 0504700  18Sribosomal RNA 12
major facilitator superfamily-related
11 1483167 1134800 transporter 12
14 823643 14183900 conserved protein 12
10 1324328 1030700 hypothetical protein 12 2
12 788337 1219200 hypothetical protein 8 12 2
tRNA (adenine(58)-N(1))-methyltransferase
7 551240 0711200 non- catalytic subunit TRM6 1 12
14 1255147 1429100 ER membrane protein complex subunit 1 12 3
5 1070542 0526400 conserved protein 1 12 10
2 105832 0202100 Plasmodium exported protein 2 12
14 1267716 1429400 conserved protein 12 1
2 175717 0203400 eukaryotic translation initiation factor 4E 2 12 2
5 1093253 0526800 conserved protein 4 12 19
8 108099 0802000 5.85ribosomal RNA 11
9 328701 0905600 RNA polymerase subunit 1 11
10 168725 1003200 conserved protein 11
10 1387953 1032500 conserved protein 1 11
13 2014020 1346200 ribosomal protein S27a 2 11
4 212211 0404700 Plasmodium exported protein 10
13 2017523 1346400 zinc finger protein 9 10
4 584464 0414300 conserved protein 10
5 1258182 0529800 AP2 domain transcription factor 10
14 2696171 1462600 conserved protein 1 10
7 1217570 0728900 merozoite surface protein 1 10 5 1
14 2207640 1450700 CG2-related protein 10
14 1278613 1429700 ATP-dependent RNA helicase DBP1 10
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iHS and Rsb Counts defined as the number of SNPs in a gene that have an iHS or Rsb score with a p-value

<0.0001
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S1 Figure
The creation of haplo-images
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Panel 1 Top-left: The image shows a small hypothetical genomic dataset of 51 SNPs (rows) and 17 samples
(columns) with nucleotides re-coded as 1,2,3 and 4. All samples come from one population and have the same
allele in the mid-position (row 25, highlighted with arrow). The creation of a haplo-image for this 25th SNP would
start with determining the longest common haplotype (LCH). In this example, the last three columns share the
LCH. Panel 1 Top-right: The differences between these three samples that make up the LCH and the other
samples are shown in red. Panel 1 Bottom-left: The overlaps between the LCH samples and the other samples is
shown in yellow. Panel 1 Bottom-right: A re-ordering based on shared overlap gives a haplo-image (for one
population and one allele). Panel 2 Top: A hypothetical dataset with two alleles and two populations. Panel 2
Bottom: The resulting haplo-image. It should be noted that the actual process involves haplo-images each
comprised of 1,401 SNPs. These SNPs were however not adjacent to one another but were chosen to be a specific
distance apart. This distance was 100 basepoints for P. falciparum and 50 basepoints for P. vivax. The resulting
genomic haplotype matrices have a size equivalent to the range of SNPs (e.g. 1,401 SNPs) and the number of
samples (e.g. 1,100 samples). However, to improve the computational speed of the DeepSweep algorithm, these
genomic matrices were further shrunk to a size of a height of 40 pixels by a width of 200 pixels, using “nearest”
interpolation in the Scipy image package (59).
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S2 Figure

Workflow

A, List of positive training examples

B. Input files (preprocessed, filtered)

1. Creation of haplo-images

C. Training and validation dataset

l

4. REHH analysis (IHS, RSh)

D. Prediction dataset

2. Training of the DeepSweep
algorithm

5. Comparison of results

Legend: Grey boxes are datasets, blue boxes are activity steps. Step 1 (creation of haplo-images) is further

expanded upon in 51 Figure.
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S3 Figure

Exemplar images of simulated isolates undergoing different types of sweeps or neutral evolution
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Each individual diagram is a haplo-image of a specific SNP for populaticn of parasites, with the genomic
information simulated following the settings as described in S1 Table. The haplo-images are created
following the explanation in S1 Figure, with genomes of the individual parasites ordered on the
horizontal axis and the overlap in haplotype for the SNP in focus shown on the vertical axis. The colour
coding links to overlap in specific nucleotides (yellow, green, dark blue, light blue) with the purple
background indicating no overlap. The sweeps in these illustrative examples are different
nucleotides/alleles than the ancestral nucleotide/allele. Weaker sweep refers to simulation with
relatively low selection coefficient; historic refers to a simulated sweep that occurred further in the
past; partial refers to a partial sweep that is not fully fixed; stronger refers to a sweep with a relatively
high selection coefficient.
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S4 Figure

Model performance on simulated datasets
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“weaker” refers to the simulation with a low selection coefficient; “historic” refers to a simulated
sweep that occurred further in the past; “partial” refers to a partial sweep that is not fully fixed,;

“stronger” refers to a sweep with a high selection coefficient; “al

Area under the ROC Curve.

|u

refers to all sweeps combined; AUC
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S5 Figure
Distribution of the minor allele frequencies across the SNPs

a) P. falciparum (N=750k SNPs)
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S6 Figure

Model performance for Plasmodium falciparum and P. vivax on training and validation datasets
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Plasmodium vivax
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The left panel shows the performance of the model in the P. falciparum parasite data, and the right panel
shows the performance of the model in the P. vivax parasite data. The top panel shows model loss
(measured as binomial loss) and the bottom panel shows model accuracy (measured as correct
classification). The blue lines show the statistics for the training datasets and the orange lines show the
statistics for the validation datasets. A negative slope in the top panel indicates a decrease in loss as the
model trains over more epochs. An increasing slope in the bottom panel indicates an increase in accuracy
and a reduction in misclassification as the model trains over more epochs.
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S7 Figure

Relationship between -logl0 p-value of Rsb hits and number of DeepSweep hits
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Geographical classification

of malaria parasites

through applying machine learning
to whole genome sequence data

Wouter Deelder'?, Emilia Manko?, Jody E. Phelan?, Susana Campino’*, Luigi Pallal>* &
Taane G. Clarkl

Malaria, caused by Plasmodium parasites, is a major global health challenge. Whole genome
sequencing (WGS) of Plasmodium falciparum and Plasmodium vivax genomes is providing insights
into parasite genetic diversity, transmission patterns, and can inform decision making for clinical

and surveillance purposes. Advances in sequencing technologies are helping to generate timely

and big genomic datasets, with the prospect of applying Artificial Intelligence analytical techniques
(e.g., machine learning) to support programmatic malaria control and elimination. Here, we assess
the potential of applying deep learning convelutional neural network approaches to predict the
geographic origin of infections (continents, countries, GPS locations) using WGS data of P. falciparum
(n=5857; 27 countries) and P. vivax (n=659; 13 countries) isolates. Using identified high-quality
genome-wide single nucleotide polymorphisms (SNPs) (P. falciparum: 750 k, P. vivax: 588 k), an
analysis of population structure and ancestry revealed clustering at the country-level. When predicting
locations for both species, classification (compared to regression) methods had the lowest distance
errors, and > 90% accuracy at a country level. Our work demeonstrates the utility of machine learning
approaches for geo-classification of malaria parasites. With timelier WGS data generation across more
malaria-affected regions, the performance of machine learning approaches for geo-classification will
improve, thereby supporting disease control activities.

Malaria, caused by Plasmodium parasites and transmitted by Anopheles mosquitoes, remains a pressing global
health problem, with a mortality and morbidity burden heavily concentrated among children less than five years
old. The morbidity and mortality impacts of Plasmodium falciparum malaria are predominantly concentrated in
Sub-Saharan Africa, whereas the burdens of Plasmodium vivax are most heavily felt in Asia and South America'.
The complex co-evolutionary history between Plasmodium parasites, humans, and Anopheles mosquitoes is con-
tained within the genome of each organism, and genomic tools and data are of key importance for understanding
the fundamental genetic underpinning of malaria, its geo-spatial distribution and control strategies to eliminate
it. There is a rapidly growing number of P. falciparum and P. vivax isolate DNA that have undergone whole
genome sequencing (WGS), with continued advances in genomic technologies likely to accelerate the timely
generation of datasets from clinical and surveillance blood samples to inform disease epidemiology and control.

The rich information contained in WGS data can be used to infer transmission patterns, detect drug resist-
ance, and support wider malaria control initiatives and elimination strategies®’. WGS data in combination with
population genomic methods can detect selective sweeps associated with drug resistance and infer the geographic
origin of infections, including if infections are found to be imported or drug resistant and whether treatment
should be adapted accordingly. It is known that malaria parasites have a population structure primarily based
on geography*®. Several informative molecular barcodes for speciation and geography have been developed?”,
but typically these barcodes have not used the whole genome due to the high-dimensionality of the data and the
associated computational cost”. However, machine learning (a subfield of Artificial Intelligence) with its ability to
incorporate and analyse very large and high-dimensional datasets in an efficient manner, seems potentially well
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suited for geo-predicting using WGS data. Machine learning can be applied for classification, which concerns
predicting a label (e.g., country, continental region), and regression, which involves predicting a quantity (e.g.,
longitude or latitude).

Machine learning has been applied effectively across a variety of problems in malaria research, including
the detection of evolutionary selection associated with drug resistance®’, the classification and detection of
parasites in red blood cells*", and antimalarial drug discovery'?. Deep learning is a subset of machine learning
where algorithms aim to extract and learn series of hierarchical representations, often leveraging large amounts
of data. The application of deep learning, and especially neural networks, has been explored within population
genetics'>!, including for other pathogens'*!. Pioneering work has also shown that machine learning, includ-
ing deep learning convolutional neural networks (CNNs), can be used to predict geographic locations from
human, mosquito and P. falciparum genetic variation”, building on methods and the use of large genotyping
chips or WGS for population structure assessment'®'*. Here, we aim to further expand on the application of
geo-prediction for malaria parasites by using a very large dataset of isolates sourced globally, (P. falciparum,
n=>5957, 27 countries; P. vivax, n=659, 13 countries) across 11 regions (South East Asia (SEA), Southern SEA
(SSEA), South Asia, South America, West Africa, Central Africa, South Central Africa, East Africa, Horn of
Africa, Southern Africa, Oceania). We explore the potential of both regular machine learning approaches that
aim to learn representations from sequence and geographical data, as well as deep learning approaches that aim
to learn and extract layers of hierarchical representations of SNP combinations linked to geography. We compare
four commonly applied approaches, including classification methods that predict locations and subsequently
interpolate to specific coordinates, as well as compare the performance across geographies (countries) both
including the observations within those and excluding them from the training sets used to develop the models.

Materials and methods

Processing of raw sequencing data.  Publicly available raw Illumina (> 150 bp paired end) sequence data
from previously published studies of P. falciparum and P. vivax was downloaded from the ENA repository (see
S1 Table and S2 Table for accession numbers), and accompanied by meta-data including locations of sampling
(see §1 Table and 52 Table for latitude and longitude coordinates). The data included public raw sequence and
GPS data from MalariaGEN projects (www.malariagen.net). Raw WGS data for P. falciparum (n=5957) and P.
vivax (n=659) were aligned with the P3D7 (v3) and PvP0I (v1) reference genomes, respectively, using bwa-
mem software (v0.7.12) using default parameter settings (e.g., concerning mismatch and sequence read clipping
penalties; see http://bio-bwa.sourceforge.net/bwa.shtml). The samtools (v1.9) functions fixmate and markdup
were applied to the resulting BAM files to call a set of potential variants™. For variant quality control, calibra-
tion assessments were performed using the GATK's BaseRecalibrator and ApplyBQSR functions, benchmarking
off known high quality variants from genetic crosses for P. falciparum®*' and previously curated datasets for P
vivax™. A revised set of SNPs and insertions/deletions (indels) was called with GATK’s HaplotypeCaller (ver-
sion 4.1.4.1) using the option -ERC GVCF>%. Variants were then assigned a quality score using GATKs Variant
Quality Score Recalibration (VQSR), and those with a VQSLOD score <0, representing variants more likely to
be false than true, were filtered out™. Additionally, SNPs were removed if they had more than 10% missing
alleles™ . The resulting dataset comprised of parasite genomes of P, falciparum (5,957 isolates, 750 k SNPs) and of
P vivax (659 isolates, 588 k SNPs). The population structure was assessed using a principal component analysis
(PCA) of between isolate SNP differences. In parallel, ADMIXTURE au:i]ysis.g'1 was performed to understand
the composition of ancestral groups across geography, where the optimal number of groups (K) was established
using cross validation with values ranging between 1 and 20. This cross validation analysis led to 10 ancestral
groups for both P. falciparum and P vivax (K=10).

Statistical models and performance. Using machine learning (ML) and deep learning (DL) statisti-
cal models, the goal was to use SNPs to predict geographical source at a location (GPS), country, and regional
resolution. We applied two standard models for classification at a country and region level: (1) penalized multi-
nomial logistic regression classifier (LOG-C; ML); (2) CNN (CNN-C; DL). Subsequently, we used the predictive
probabilities placed on different locations to perform a weighted interpolation between these locations and make
predictions at the GPS coordinate level.

In particular, the final prediction location (longitude and latitude) was determined by a weighted average of
classifier predictions, where weights are the probabilities placed by the model on each location.

We also applied two regression models for GPS coordinate prediction: (iii) penalised linear regression model
(LIN-R; ML); (iv) CNN (CNN-R; DL). The LOG-C and LIN-R models were tuned on the regularization strength
C for the L1 penalty (LASSO) and implemented in the sklearn Python package (https://scikit-learn.org). The
penalty parameters were tuned using cross-validation (see below, 53 Table). The deep learning CNN architecture
was implemented using the Keras library (version 2.2.4)* in Python. Our CNN models had an architecture with a
soft-max prediction layer and regularization through dropout™ to prevent overfitting and support transferability.
The main model had one convolutional layer with 4 filters, with respective filter size of (40, 9) followed by two
drop-out and dense layers with ReLu activation (similar to'7), and applied the Stochastic Gradient Descent algo-
rithm for optimisation. We trained and validated the models for 1000 epochs. The parameterisation of the models
is summarised (53 Table). We created a stratified three-fold split in the dataset (80% training, 10% validation,
10% test) for all models, and used the validation dataset to cross-validate parameters (53 Table). The LOG-C and
LIN-R models were cross-validated (stratified, four-fold) on the regularization strength C for the L1 penalty. The
reported scores (accuracy, mean weighted distance error) were calculated by making predictions on the hold-out
test set (see 53 Table for the final parameter set). In addition, we conducted a “leave-one-geography-out”, where
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Region Country Pf. SNP Diversity | Pf.N* | Pf.% | Pv. SNP Diversity | Pv. N** | Pv. %
Benin 0.040 76 13 - - -
Burkina Faso | 0.028 86 1.4 - - -
Gambia 0.035 164 28 - - -
Ghana 0.033 928 156 |- - -
R Guinea 0.040 161 27 - - -
‘West Africa
Ivory Coast 0.034 70 1.2 - - -
Mali 0.034 378 6.3 - - -
Mauritania 0.035 77 1.3 - - -
Nigeria 0.050 18 0.3 - - -
Senegal 0.039 84 1.4 - - -
Kenya 0.035 116 1.9 - - -
East Africa Tanzania 0.035 320 5.4 - - -
Uganda 0.053 15 0.3 - - -
Horn of Africa Ethiopia 0.048 25 0.4 0.060 44 6.7
Central Africa Cameroon 0.033 237 4.0 - - -
South Central Africa DRC 0.032 339 57 - - -
) Madagascar 0.040 24 0.4 - - -
Southern Africa
Malawi 0.027 29 0.5 - - -
India - - - 0.062 40 6.1
South Asia
Bangladesh 0.037 83 1.4 - - -
Cambodia 0.040 1118 188 | 0.049 70 10.6
Laos 0.039 126 21 - - -
Myanmar 0.039 246 4.1 0.061 27 4.1
South East Asia (SEA) -
Thailand 0.038 928 15.6 0.056 160 243
Vietnam 0.036 147 25 0.048 13 20
China - - - 0.066 12 1.8
Southern SEA (SSEA) Malaysia - - - 0.040 48 73
Colombia 0.046 16 0.3 0.055 30 4.6
Peru 0.037 24 0.4 0.059 88 13.4
South America
Brazil - - - 0.061 82 125
Mexico - - - 0.039 20 3.0
Oceania PNG 0.040 120 20 0.037 24 36
Total - - 5955 100 - 658 100

Table 1. Sample origin and SNP Diversity by geographic location. Pf P. falciparum, Pv P. vivax; PNG Papua
New Guinea; DRC Democratic Republic of Congo.

each single geography in the training dataset was omitted in turn, with the model trained on the remaining
geographies, to understand generalizability towards previously unseen locations?.

Classification accuracy was determined after assigning predicted latitude and longitude pairs to individual
countries. For the classification models, a mean (weighted) distance error was calculated using the Haversine
method to allow for (angular) distance calculations along a sphere, based on the difference of the actual and
estimated location. The latter was determined by a weighted average of classifier predictions, where weights are
the probabilities placed by the model on each location. The accuracy was calculated based on the labels of the
prediction versus the test data. In particular, the baseline accuracy using a naive prediction based on the most
common country would be 18.8% for P, falciparum (Cambodia) and 24.3% for P vivax (Thailand). For the regres-
sion models, the error was calculated using the Haversine method based on the difference between the predicted
and actual latitude and longitude using angular distance.

Results

Malaria isolate sequence data and population structure. Raw WGS data with accompanying geo-
graphic origin information was available in the public domain for P. falciparum (n=5957, 27 countries) and P,
vivax (n=659, 13 countries) (Table 1), which represent the global distributions for each parasite. Most P falci-
parum isolates were sourced from SEA (2,648, 44.5%) followed by West Africa (2,042, 34.3%) and East Africa
(451, 7.6%). Whilst, for P. vivax, most isolates were sourced from SEA (282, 42.9%) followed by South America
(220, 33.4%) and SSEA (48) (Table 1). By analysing each species separately, high quality genome-wide SNPs
were identified across the isolates (P falciparum 750 k SNPs, P. vivax 588 k SNPs). Most SNPs have low minor
allele frequencies (SNPs with MAF < 1%: P, falciparum 94.6%, P. vivax 77.6%) (S1 Figure). Most SNPs were in
genic regions (P, falciparum 76.5%, P. vivax 54.3%), with a high proportion of non-synonymous (NS) amino acid
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(a) P. falciparum (n = 5,957; 750k SNPs)
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Figure 1. Population structure using principal component analysis based on all high-quality SNPs. Axes show
percentage of variation explained by each principal component (PC).

changes (P, falciparum 63.0%, P vivax 42.5%). The genetic diversity amongst P falciparum isolates was relatively
homogeneous across the 27 countries (SNP m: median 0.037, range 0.027-0.053), and lower in magnitude than
P vivax, whose data was sourced from 13 countries (SNP m: median 0.056, range 0.037-0.066) (Table 1).

Unsupervised clustering methods were applied to the genome-wide SNPs of each species to reveal the extent
of their population structure and linked (pseudo-)ancestral patterns. Principal component analysis (PCA) of P
falciparum and P. vivax isolates revealed the expected separation by continent, and clear evidence of population
structure at both the regional and country level (Fig. 1). An analysis of population structure and ancestry using
ADMIXTURE software®® determined the number of ancestral groups (P. falciparum K =10, P vivax K=10), and
their relative abundance for each isolate was estimated (Fig. 2). For P, falciparum, there were dominant ancestral
groups across region and continent (Africa 4, SEA 4, Oceania 1, South America 1), with some evidence of mixture
of ancestries (e.g., SEA isolates with 3 ancestral populations), but a general consistency within country. For P
vivax, the numbers of dominant ancestral groups by region differed from P. falciparum (South America 4, SEA
2, SSEA 2, East Africa 1, South Asia 1), due to sampling and Plasmodium species endemicity differences, such as
the near absence of P. vivax in Africa. Overall, there was more homogeneity of ancestral groups within P. vivax
isolates, with some groups broadly linked to neighbouring countries (comparison with Fig. 1). These analyses
confirmed that spatial-genomic clustering and classification is possible using WGS data.

Application of geo-classification models. For P falciparum, the predictive performance of the clas-
sification methods (LOG-C, CNN-C) was stronger than for the regression models (LIN-R, CNN-R) in regional
(Table 2) and country-wide (Table 3) analyses (mean distance error (km): LIN-R 470, LOG-C 93, CNN-R 245,
CNN-C 77). For locations included in the training dataset, the performance of the classification models was
close to 100% at the regional level, and close to 90% at the country level (S4 Table, S5 Table). The poorest per-
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Figure 2. ADMIXTURE analysis involving 10 inferred ancestral populations (denoted as K1 to K10).

formance of the models was for African populations, for example, the mean distance error for CNN-C was high
in West African (267 km) and East African countries (117 km, especially Kenya and Uganda), as well as Malawi
(530 km) (Table 3), compared to other regions. This observation is consistent with the complex ancestries in
African populations (Fig. 2), as well as another deep learning analysis'7. As expected, where we predicted coun-
tries absent in data used by the training models, the distance errors (km) were at least ~ five-fold larger (LIN-R
2246, LOG-C 1848, CNN-R 1983, CNN-C 1540), with the poorest predictions for Peru (Table 4). The best per-
forming model in this setting was the CNN-C classifier (Fig. 3).
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Parasite | Region N [ LIN-R* 1LOG-C* CNN-R CNN-C*
West Africa 2042 | 665[375-1354] | 302[5-681] | 368 [161-1169] | 267 [45-728]
East Africa 451 | 708[693-1198] |200([3-1581] | 297 [289-856] 117 [0-1856]
Horn of Africa | 25 569 [569-569] 0 [0-0] 124 [124-124] 0 [0-0]
Central Africa | 237 | 635 [635-635] 29 [29-29] 184 [184-184] 0 [0-0]

Pf SC Africa 339 | 478 [478-478] 3[3-3] 34 [34-34] 0 [0-0]
Southern Africa | 53 490 [490-968] 7[7-433] | 1543 [1018-1543] | 0 [0-530]
SEA 2648 | 312 [247-744] 19 [8-121] 152 [39-559] 7 [0-53]
South America |40 | 1936 [1820-2053] | 3 [0-7] 3683 [2535-4832] | 0 [0-0]
Oceania 120 | 488 [488-488] 0[0-0] 697 [697-697] 0 [0-0]
Hornof Africa | 44 334 [334-334] 0[0-0] 142 [142- 142] 0 [0-0]
South Asia 40 500 [500-500] 0[0-0] 517 [517-517] 0 [0-0]

- South East Asia | 282 | 616[156-2751] | 25[0-1033] | 578 [288-704] 0[0-1463]
Southern SEA | 48 213 [213-213] 0[0-0] 957 [957-957] 0 [0-0]
South America |220 | 906 [134-3080] 0[0-0] 667 [574-2773] 0 [0-0]
Oceania 24 175 [175-175] 0[0-0] 1103 [1103-1103] | 0[0-0]

Table 2. Mean distance Error (km) per model by region using geographies included in the training data. Pf
P, falciparum, Pv P. vivax, * mean [range], CNN Convolutional Neural Network, SC South Central, SEA South
East Asia; LOG-C multinomial logistic regression classifier; CNN-C CNN classifier; LIN-R penalised linear
regression model; CNN-R CNN regression model.

For P. vivax, the predictive performance of the classification methods (LOG-C, CNN-C) was also superior
compared to regression models (LIN-R, CNN-R) across regional (Table 2) and country-wide (Table 3) analyses
(mean distance error (km): LIN-R 890, LOG-C 33, CNN-R 819, CNN-C 36) (Table 3). For locations included
in the training dataset, the performance of the classification models was close to 100% at both the regional and
country level, with the poorest performance in neighbouring China and Myanmar (S4 Table, $5 Table). The
(mean) distance error for the countries not used in the development of the model is distinctively larger (km:
LIN-R 1481, LOG-C 2508, CNN-R 2512, CNN-C 2405), with the poorest predictions for Ethiopia and Peru
(Table 4). The best performing model in this setting was a LIN-R regression (Fig. 3).

Discussion

WGS data of Plasmodium parasites can detect imported infections, drug resistance, and transmission patterns,
thereby assisting decision making in clinical and malaria control settings. With the implementation of WGS
gaining traction across health systems, there is an opportunity to implement statistical learning methodologies
to assist surveillance activities. A clear use-case includes the determination of the geographical origin of isolates,
building on insights from previous work which shows that genomic data can be used to cluster parasites by
geography®~. Our work reveals that machine learning approaches, particularly those focusing on classification
(e.g., deep learning CNNs), have the potential to accurately predict geographic locations at a GPS and country-
level resolution. As expected, the performance was much stronger for isolates of which the geographic origin
was already represented at the country level in the dataset, demonstrating the need for WGS to be implemented
more widely to fill country gaps in genetic diversity. The weakest predictions were for P. falciparum in West and
East Africa, where common ancestries, mixed infections, movement of people, drug resistance and malaria
endemicities can complicate genetic diversity analysis. The distance errors are similar to a previous machine
learning analysis of P. falciparum (median < 20 km}, which implemented a single deep learning approach on a
smaller dataset'”. Our CNN for classification approach appeared to perform well across parasite species, was
implemented with measures to minimise the effects of over-fitting, and its performance is likely to improve with
greater isolate sampling and WGS data.

Whilst we have implemented a limited set of machine learning methods, there is scope to test alterna-
tive approaches (e.g., gradient boosted trees, support vector machines)'® or further optimise our model para-
metrisations (beyond the default settings) to improve performance. For example, while L1-penalized regres-
sion approaches are generally quite competitive, stability selection on top of the LASSO leads generally to
improvememsz'_'. Moreover, the resulting model is white box and leads to a set of interpretable SNPs. CNNs are
the most utilised deep learning network type, and known to outperform alternative appmachesza. However, one
limitation of CNN models is their “black box™ nature, with a complex architecture consisting of several layers,
and in our context (and others'’) making it difficult to establish which (combinations of) SNPs are informative
for the geographical profiling. Other studies have used population genomic approaches to determine informa-
tive SNPs, with a focus on applying genotyping assays or amplicon sequencing for resource poor settings®.
We provide computer code to implement the models, to assist future assessments in simulation or empirical
studies. Future work should focus on the development of an online “geo-locator” tool that reveals a prediction
of location, which can be assessed for its plausibility against the actual position, if known, and feedback into
the model building and learning process. Such a framework could also be extended to integrate explicit drug
resistance markers®, as well as genomic data for malaria vectors', and use sequences generated on portable
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Parasite Region Location LIN-R |LOG-C | CNN-R | CNN-C
Benin 700 4 354 45
Burkina Faso 374 96 161 88
Gambia 775 132 317 107
Ghana 401 48 193 52
Guinea 751 515 459 402
West Africa
Ivory Coast 630 681 695 728
Mali 563 345 208 271
Mauritania 615 67 382 410
Nigeria 1039 329 1169 329
Senegal 1354 274 565 263
Kenya 693 200 297 17
East Africa Tanzania 707 3 289 o
Uganda 1198 1581 856 1856
B Horn of Africa Ethiopia 568 1] 124 1]
P. falciparum
Central Africa Cameroon 635 28 184 o
SC Africa DRC 477 2 34 o
) Madagascar 490 6 1543 o
Southern Africa —
Malawi 968 432 1018 530
Bangladesh 743 9 159 o
Cambodia 312 18 12 21
Laos 276 121 152 53
SEA
Myanmar 360 10 559 o
Thailand 247 7 39 7
Vietnam 356 90 199 4]
Colombia 2052 0 4832 o
South America
Peru 1820 7 2535 o
Oceania PNG 488 0 697 1]
Mean 470 93 245 77
Horn of Africa | Ethiopia 334 0 142 ]
South Asia India 500 0 517 0
Cambodia 638 25 648 0
China 2751 1033 704 1463
SEA Myanmar 616 i 350 311
Thailand 604 0 288 o
Vietnam 156 0 578 0
P vivax
SSEA Malaysia 213 0 957 0
Brazil 3080 0 2773 6
Colombia 1057 0 667 0
South America
Mexico 134 0 1502 0
Peru 755 0 574 o
Oceania PNG 175 0 1103 o
Mean 890 33 819 36

Table 3. Mean distance error (km) per model on test data using those countries included in the training
data. DRC Democratic Republic of Congo; PNG Papua New Guinea; CNN Convolutional Neural Networlk;
LOG-C multinomial logistic regression classifier; CNN-C CNN deep learnerclassifier; LIN-R penalised linear
regression model; CNN-R Penalised CNN regression model; SC South Central; SEA South East Asia; SSEA
Southern SEA.

and field deployable sequencing platforms (e.g., Oxford Nanopore Technology MinION). Such tools would be
of immediate value to malaria control programs in endemic countries, including those that are implementing
elimination activities who wish to differentiate between locally acquired or imported infections. It would also
assist those countries with low malaria burden, including through the detection of imported parasites that could
threaten malaria elimination targets.

In summary, our study has demonstrated that machine learning methods can play an informative role in
determining the geographic origin of WGS isolates, thereby providing important insights for both control and
surveillance activities. Further, such approaches will be scalable when WGS becomes routine and cost effective,
resulting in a setting with increasingly “big data” being available for decision making. The utility of this “learning”
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Cambodia 496 669 322 628
Cameroon 959 1545 1472 1636
DRC 1150 2331 2531 2456
P falciparum | Ethiopia 1118 1760 1252 1394
Myanmar 703 731 470 728
Peru 9050 4050 5856 2400
Mean 2246 1848 1983 1540
Cambodia 591 323 1709 564
Ethiopia 2499 5174 3528 4140
P vivax Malaysia 459 1594 3617 2064
Peru 2376 2943 1196 2852
Mean 1481 2508 2512 2405

Table 4. Mean distance error (km) per model on test data for unseen geographies. CNN Convolutional Neural
Network; DRC Democratic Republic of Congo; LOG-C multinomial logistic regression classifier; CNN-C
CNN deep learning classifier; LIN-R penalised linear regression model; CNN-R Penalised CNN regression
model.

(a) P. falciparum (CNN-C)

* Predited MidPoint
o Troe Location

(b) P. vivax (LOG-C)

Figure 3. Maps with predicted vs. actual locations for the best predictive models. Blue points are the actual
locations in the dataset, red points are the predicted locations (where different to actual), with red lines link
the actual and the predicted locations. CNN-C deep learning Convolutional Neural Network classifier. LOG-C
penalised multinomial logistic regression classifier.

system will improve with time, as underlying methodologies and model performances improve with more data
becoming available, and they are implemented within informatic tools to assist surveillance and clinical decision
making. This utility underscores the benefit of making sequencing data and linked geographical information
publicly available to global databases in a more-timely fashion to understand infection dynamics, the advantages
of which have also been demonstrated by the COVID-19 crisis.
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Conclusion

Advances in sequencing technologies are making real time genomics-informed surveillance and clinical manage-
ment a reality. With the resulting big genomic datasets, our study has shown that machine learning methods, a
subset of Artificial Intelligence, can accurately predict the geographical source of malaria parasites from sequence
data. With greater geographical coverage and informatics infrastructure, such approaches will improve in per-
formance and assist malaria control and elimination activities.

Data availability

The raw WGS data is available from the European Nucleotide Archive (ENA) (see S1 Table and S2 Table for
project accession numbers). Computing code and machine learning models are available from https://github.
com/WDee/GeoComparison.
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S1 Table

Please note the separate file S1_Table.xIsx — available online upon publication

S2 Table

Please note the separate file S2_Table.xlIsx — available online upon publication

S3 Table

The machine learning parameter settings for the models

Name Classifier Predicts | Fixed Parameters Cross-validated
parameters *
LOG-C** | Penalised Region, | Penalty type ="L1" Penalty = 0.01/0.1
Multinomial Country, | Tolerance=0.001
Logistic and GPS | Maximum
Regression — iterations=1000
classification
LIN-R** Penalised GPS Penalty type = ”L1" Penalty =
Linear Tolerance=0.001 0.003/0.003
Regression - Maximum
regression iterations=1000
CNN-C Convolutional | Region, | Epochs=1000 -
Neural Country, | Early stopping with
Network - and GPS | patience of 900
classification
CNN-R Convolutional | GPS Epochs=1000 -
Neural Early stopping with
Network — patience of 900
regression

GPS Global Positioning System; LOG-C penalised multinomial logistic regression classifier; CNN-C
CNN classifier; LIN-R penalised linear regression model; CNN-R CNN regression model.

* Performed on P. falciparum and P. vivax data separately, across a cross-validation range of
parameter values of 0.001, 0.0031, 0.01, 0.031, 0.1, 0.31 and 1, resulting in this case in the same
penalty values for P. falciparum and P. vivax.

** There are two penalty parameters due to latitude/longitude
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S4 Table

Classification accuracy at a country level for P. falciparum (Pf) and P. vivax (Pv)

Region Country Pf Pf Pv Pv
LOG-C CNN-C LOG-C CNN-C
West Africa Benin 100 100 - -
Burkina Faso 75.0 75.0 - -
Gambia 93.8 100.0 - -
Ghana 95.7 90.3 - -
Guinea 62.5 62.5 - -
Mali 63.2 63.2 - -
Mauritania - 50.0 - -
Nigeria 50.0 50.0 - -
Senegal 62.5 50.0 - -
East Africa Kenya 63.6 72.7 - -
Tanzania 100 100 - -
Uganda 50.0 50.0 - -
Horn of Africa Ethiopia 100 100 100 100
Central Africa Cameroon 95.7 100 - -
South Central Africa DRC 100 100 - -
Southern Africa Madagascar 100 100 - -
Malawi 66.7 333 - -
South Asia India - - 100 100
Bangladesh 100 100 - -
South East Asia (SEA) Cambodia 98.2 97.3 100 100
Laos 83.3 83.3 - -
Myanmar 100.0 95.8 66.7 66.7
Thailand 98.9 98.9 100 100
Vietnam 714 92.9 100 100
China - - 0 100
Southern SEA Malaysia - - 100 100
South America Colombia 100 100 100 100
Peru 100 100 100 100
Brazil - - 100 100
Mexico - - 100 100
Oceania Papua New Guinea 100 100 100 100

CNN Convolutional Neural Network, DRC Democratic Republic of Congo; LOG-C multinomial logistic
regression classifier; CNN-C CNN deep learning classifier; LIN-R penalised linear regression model;
CNN-R Penalised CNN regression model.
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S5 Table
Confusion matrices for the best predictive classification models

(a) P. falciparum (CNN-C, regional level)
Please note the separate file S5_Table.xlIsx — available online upon publication

(b) P. vivax (LOG-C, regional level)
Please note the separate file S5_Table.xlIsx — available online upon publication

(c) P. falciparum (CNN-C, country level)
Please note the separate file S5_Table.xIsx — available online upon publication

(d) P. vivax (LOG-C, country level)
Please note the separate file S5_Table.xlIsx — available online upon publication

CNN Convolutional Neural Network, LOG-C multinomial logistic regression classifier; CNN-C CNN
deep learning classifier
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S1 Figure
Distribution of the minor allele frequencies across the SNPs

a) P. falciparum (N=750k SNPs)
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b) P. vivax (N=588k SNPs)
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S2 Figure

Maps with predicted vs. actual locations for all models

(a) P. falciparum
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Legend: Blue points are the actual locations in the dataset, red points are the predicted locations, with

red lines linking the actual and the predicted locations. Logistic classification refers to a multinomial
logistic model.

(b) P. vivax
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Legend: Blue points are the actual locations in the dataset, red points are the predicted locations, with
red lines linking the actual and the predicted locations; Logistic classification refers to a multinomial
logistic model.

123



Discussion

In this thesis, | explored the application of ML methods to whole-genome sequenced datasets for P.
Falciparum and P. Vivax parasites and M. tuberculosis bacterial isolates. In Chapters 2 and 3, |
applied (customized) ML methods to M. tuberculosis isolates to predict drug-resistance. In Chapter
4, | described the application of novel deep learning method (Deepsweep) to identify loci under
putative selection pressure in the genomes of P. falciparum and P. vivax. Finally, in Chapter 5, |
aimed to resolve the challenge of accurate geo-classification of the origin of P. falciparum and P.
vivax infections by applying ML methods. There are several cross-cutting observations can be drawn

from this work.

Machine learning methods can improve on traditional statistical methods for analysing WGS
datasets. For example, the ML methods applied in Chapter 2 had a higher predictive accuracy for some
drugs than traditional GWAS-based methods. In Chapter 3, similarly, the Treesist-TB algorithm was
shown to outperform the TB-Profiler method for some drugs. In these applications, the ability of the
ML methods to include interactions between features (i.e., epistatic effects) was likely a contributor
to the superior performance relative to traditional methods. In all applications, the risks of overfitting
were minimised. In Chapter 4, it was demonstrated that the novel application of a deep learning
(DeepSweep) approach can be used for selective sweep detection and prediction, thereby identifying
loci that are putatively subject to selective pressure. The DeepSweep algorithm can simultaneously
analyse and identify population-genomic features encoded in different parts of the haplo-images, with
great flexibility for training on other population genetic signatures and data from other organisms or
simulated models. In Chapter 5, the analysis revealed a strong performance of ML and deep learning
methods to determine the geographic origin of malaria isolates. Overall, our applications and ML

methods appear well-suited for the analysis of high-dimensional WGS datasets.

It is critical to understand big data at a granular level. The datasets that we use, including both the
genomic features and the training labels, often contain errors and idiosyncrasies that are artefacts of
the way they were collected and compiled. For example, in Chapter 2 we observed and discussed that
the drug-sensitivity labels contain inaccuracies due to the complexity and sensitivity of phenotypic
drug sensitivity testing. Of course, these inaccuracies are one of the main reasons given to consider
genotyping instead of phenotypic testing. Training an algorithm on the phenotypic labels could result

in an extreme situation to a model that perfectly predicts the erroneous labels. When combined with
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other potential sources of bias (such as a non-representative structure of the dataset), this can
significantly impair the performance of the models when applied outside the training set. For example,
the known inaccuracies in the DST process for pyrazinamide (PZA) combined with sequential testing
and the structure of our datasets (which contain insufficient isolates that are solely resistant to PZA
and an overrepresentation of MDR and XDR cases) lead to the inclusion of non-causally linked
resistance markers in ML models, which very likely would not translate into optimal performance in a
real-life clinical setting. The sole way to prevent this generalization problem is careful analysis and
understanding of the process through which the data and the phenotypic labels were generated,
including conducting descriptive analyses to understand the structure of the datasets, and where
needed assessing model performance on simulated artificial data. This process can be slow and time-
consuming, and it is at perennial risk of being ignored when ML models show seemingly impressive

results when applied “out of the box”.

It is important to ensure the transferability of a model from the training environment to a clinical
or programmatic setting. The datasets used to train ML models in the infectious disease setting are
often not an exhaustive or representative sample of the population of interest as encountered in
clinical practice or disease control settings. In the balance between optimization and generalization,
the models might as a result be too optimized to these specific datasets (or mis-specified) at the cost
of generalizability to unseen data. An example is given in chapter 5, where | demonstrate that the
country-level predictive accuracy of the geo-classification ML models drop sharply for isolates from
countries held out of the training set. Another example can be found in Chapter 2, where | discuss
whether cross-resistance markers should be included in predictive models. Due to the interaction
between DST errors, sequential testing, and the structure of the genomic training datasets, the
inclusion of such markers is likely to decrease the generalizability of the model and lead to lower actual
performance in clinical settings. The inclusion of co-occurrent resistance markers might lead to
overoptimism in the estimated performance that may not translate optimally into clinical practice. In
Chapter 3, | showed that it is possible to improve generalizability through model specification
decisions such as restricting the inclusion of highly unlikely sub-structures in the decision-tree models.
Although this exclusion slightly diminishes the performance in the training environment (lower
optimization), | believe that it is likely to increase the performance of the model in clinical and
programmatic settings (higher generalization). As shown in Chapter 5, in some cases, the
generalizability of the ML models can be tested straight-forwardly, for example, through leave-out

cross-validation. In other cases, potential generalization challenges can only be progressed by careful
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scrutiny of the covariates or features and the manner in which these features are combined in the ML
models. The difficulty of performing this task tends to be inversely proportional to the complexity of

the model; this is an important consideration for the application of deep learning models.

There is a need to develop and implement methods that are able to estimate predictive uncertainty.
Many ML methods generate predictions without providing estimates of the confidence in these
predictions. In clinical and programmatic settings, the degree of confidence in the prediction can
however be of great value. For example, for the decision-tree models in Chapters 2 and 3, a clinician
or diagnostician making a diagnostic decision might decide to perform additional phenotypic testing
if the genomic prediction has a relatively high degree of uncertainty. For the geoclassification models
described in Chapter 5, a decision maker will likely benefit from understanding the uncertainty in the
prediction at different levels of geographic granularity. For the selective sweep model, users might
want to prioritise laboratory-based confirmation of putative loci to those with the highest degree of
predictive confidence. Historically, the estimation of predictive uncertainty has received little
attention in the ML community and it has not routinely been incorporated into software packages.
However, this approach is slowly changing, including through the pioneering work of using drop-out

in deep-learning models to estimate predictive uncertainty (118,123).

It is important to understand the loss in performance caused by imposing constraints that serve to
increase the interpretability and simplicity of ML models in the aim to stimulate adoption. Clinicians
and diagnosticians may be more able and willing to adopt new tools if the underlying predictive
models are interpretable and easily understandable. Thus, it is relevant to understand what the loss
in performance might be if an ML algorithm is constrained to develop a model that meets
predetermined objectives of simplicity (e.g., the final decision tree follows a simple set of rules and
can fit on a single page). In some cases, the trade-off between slightly lower performance but higher

likelihood to adopt might be worthwhile.

It is important to remain prudent and cautious about making inferential statements from predictive
ML models. For several applications discussed in this thesis, | aimed to make predictions, for example,
concerning whether an isolate is drug-resistant. Often, it is also of interest to understand which
features (e.g., SNPs) drive this prediction. However, the estimates of accuracy that accompany
predictions (e.g., as determined though cross-validation) do not apply to inferential observations. For
example, within a 10-fold cross-validation, even though the variance in the predictive accuracy might

be small across folds, the features included in the fitted models might shift drastically between folds.
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The instability of feature inclusion will apply to the final fitted model as well, and therefore should be

considered when making inferential statements.

There is a need to build on previous studies and prior knowledge. ML studies often start “from
scratch” and do not incorporate the findings and outcomes of other studies and prior research. This
exclusion often comes to the detriment of model performance. This issue was demonstrated in
Chapter 4, where the benefits of including the information encoded in the sub-study labelling were
revealed. Using this information, rather than grouping all isolates together in one dataset, allowed for
the partial compensation for specific DST errors that might disproportionally affect some data subsets.
In Chapter 4, | pioneered an approach for using prior knowledge to inform the number and

prioritization of genes included in the ML models and the sub-structures allowed in the trees.

Future directions of work

There are multiple directions for future research across a range of dimensions, namely to:

e Develop and use larger and higher-quality datasets. Bigger datasets will help with making more
accurate predictions. There is especially a need for more (labelled) data for rarer events, such as
drug-resistance for third-line TB drugs. Moreover, there is an opportunity to use higher-quality
data and filter out subsets of data that have high rates of suspected error (in either genomic
sequencing or labelling). It would also be valuable if more quantitative drug-sensitivity datasets
would be available for machine learning purposes. This would potentially allow for both the
assessment of effect sizes of individual mutations and the identification of new mutations.

e Build on, and bring in, other sources of information. In many cases, there is existing knowledge
that is not included in the training process. Some of these data sources (e.g. gene function) de-
facto can serve as priors and, in a Bayesian manner, could be used to inform the confidence in the
predictions of our machine learning models.

e Build bridges to other fields of statistical learning. In order to incorporate prior knowledge and
other sources of information, there is also a parallel need and opportunity to further pioneer and
develop more Bayesian-oriented ML approaches and strengthen the connections to this
important domain of statistical learning.

o Build bridges to other population-genetic methods. There is an opportunity to develop ML
methods that can stretch across population-genetic domains. For example, it is likely possible to

make more accurate predictions by integrating the outcomes of phylogenetic inferences into
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machine learning predictions. However, for example, at the moment, there are no well-
established methods to incorporate the information encoded in phylogenetic tree structures as
covariates in machine learning models.

Ensure that tools can be adopted by clinicians and programme managers. More work can be
done to ensure that the applications and tools derived from ML models, and their predictions, are
available and adopted by intended users. Availability can be advanced by ensuring that tools are
accessible through online portals (e.g., where users can upload their isolates and obtain
predictions), which also would benefit users in low-resource settings. Adoption can be advanced
by ensuring that models are (where possible) interpretable, that efforts have been made to ensure

generalizability, and that measures of predictive accuracy are provided to the user.
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Conclusions

The negative trend in global disease outcomes for TB and malaria, driven in part by resistance
against available drugs, diagnostics, and tools, create a renewed need for methods that can help
guide the optimal usage of the resources and commodities at our disposal. The increasing adoption
of whole genome sequencing is creating a new wealth of raw genomic “big” data. ML approaches
offer great potential to analyse these datasets and make predictions to guide decision makers.
However, it is still essential to customize and adapt these ML methods to the disease-specific
context, and to resist the temptation to apply them “out of the box.” There is a lurking danger of
over-optimistic predictions and impressive performance on training datasets that likely will fail to
generalize in real-life settings. With the right caution and customization, this thesis has shown that
ML methods and approaches have the potential to play a valuable role in the fight against the

scourges of TB and malaria, and with adaption, other infectious diseases.
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