

Rice and malaria in Africa Trade-off vs. co-benefits? Jo Lines & Kallista Chan

www.lshtm.ac.uk/raft

Multi-sectoral malaria control

What proportion of malaria is man-made, in any given setting?

- Mainly...vector breeding in man-made landscapes
- What proportion of local vector mosquitoes are from man-made breeding sites? Consider...
 - sites created directly / indirectly by human activity
 - sites much more productive because of human activity
 - (sites inadvertently removed by human activity)

Addressing insecticide resistance and emerging mosquito-borne disease threats www.lshtm.ac.uk/raft

Man-made malaria

Is it time to revive this concept?

- A huge fraction of total malaria burden (in Africa and elsewhere)
- Not a new idea! recognized ~100 years ago
- But recently less profile: malaria control becomes more medicalized, less 'hygiene'
- But in practice: its importance is growing
- Towards 100% anthropogenic landscapes

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

1990s: A series of studies in Africa compared malaria in *rice vs. non-rice communities*

Paddies paradox: rice fields produce VERY MANY EXTRA malaria vectors but the malaria in rice villages was (at the time) similar or a bit less

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

Intervention coverage has changed

Malaria in Africa has changed = pathway to elimination

POST-2003

Where we are

The state of the evidence

1900-2005: paddies paradox

Nowadays: rice and malaria situation has changed

But... Just 1 paper

A	Country	Vear	Control areas		Rice-growing areas			Risk ratio (95% (1)
	country	Tear	Trial		Titl			Kisk latio (95% cl)
			participants	PTPR ₂₋₁₀	participants	PfPR ₂₋₁₀		
re-2003 studies								
udibert et al (1990) ²⁶	Cameroon	1979	1470	19.4558	491	24.8473		1.28 (1.06–1.54)
obert et al (1987) ²⁷	Burkina Faso	1980	817	62.4235	1505	43.8538	HE C	0.70 (0.65-0.76)
ouprié et al (1985) ²⁹	Cameroon	1981	554	3.2491	370	7.5676		2.33 (1.31-4.15)
udibert et al (1990) ²⁶	Cameroon	1981	775	12.5161	864	7.0602		0.56 (0.42-0.77)
oosemans (1985) ²⁹	Burundi	1982	1335	17.2045	2357	54.7553		3.18 (2.81-3.60)
osse et al (1987) ³²	Cameroon	1985	966	26.9151	1409	13.5557	H-1-1	0.50 (0.43-0.60)
oudin et al (1992) ³³	Burkina Faso	1985	1033	62.8359	1087	35.4221	H C	0.56 (0.51-0.62)
udibert et al (1990) ²⁶	Cameroon	1985	469	14·7122	542	11.0701		0.75 (0.54-1.04)
aye et al (1993) ³⁷	Senegal	1990	685	9.6825	1035	9.7871		1.01 (0.75-1.36)
homson et al (1994) ³⁹	The Gambia	1991	1167	50.3844	298	35.0622	HT.	0.69 (0.59-0.82)
bakima (1994) ³⁸	Sierra Leone	1991	105	68.9089	1001	49.5132		0.72 (0.63-0.83)
aye et al (1995)40	Senegal	1992	329	0.3180	656	0.1595		0.50 (0.03-7.99)
umba et al (2002)43	Tanzania	1994	1483	21.4820	1468	12.2114		0.57 (0.48-0.67)
issoko et al (2004) ⁴⁷	Mali	1995	3308	51.0108	5826	33.9839	H	0.67 (0.63-0.70)
lenry et al (2003) ⁴⁹	Côte d'Ivoire	1997	11951	83.2694	24266	88.0288		1.06 (1.05-1.07)
ssi et al (2013) ⁵²	Côte d'Ivoire	1998	8189	50.7864	21141	48.5513	(0.96 (0.93-0.98)
Autero et al (2004)55	Kenya	2001	116	38.9543	90	7.0057		0.17 (0.08-0.38)
oudou et al (2009) ⁵⁸	Côte d'Ivoire	2002	245	90.9072	171	90.1236		0.99 (0.93-1.05)
ooled effect estimate							⊢ ⊑ i	0.82 (0.63-1.06)
ost-2003 studies								
umisha et al (2019) ⁶⁴	Tanzania	2004	3283	18.7713	4605	47.8074		2.55 (2.36-2.75)
100 Mboera et al (2011) ⁶⁶	Tanzania	2005	289	22.6452	289	51.8647		2.31 (1.81-2.94)
oudou et al (2009)58	Côte d'Ivoire	2005	795	63.7318	714	69.6313		1.09 (1.02-1.17)
ouré et al (2016) ⁷⁰	Mali	2010	417	34.7716	728	26.5096	ня [®]	0.76 (0.64-0.91)
Nboera et al (2015) ⁷³	Tanzania	2012	1016	1.9322	1022	13.6478		6.91 (4.36-10.95)
lien et al (2017) ⁷⁴	Burkina Faso	2014	329	55.6231	285	53·3333		0.96 (0.83-1.11)
abamale et al (2020)75	Nigeria	2018	137	58.9749	93	95.9538		1.62 (1.40-1.87)
ooled effect estimate	<u> </u>							1.73 (1.01-2.96)
							5 6 5 5 5 6 6 6 6 6 6 6	

Growing rice w/o growing mosquitoes: feasibility

	Does it work? (% effectiveness)	No. of studies (no. in SSA)	
Monomolecular surface films	-57.2 (-69.4, -40.3) / -91.6 (-99.9, +486.3)	3 (3)	
Biological larvicides	-60.0 (-71.8, -43.1)	10 (2)	
Synthetic organic chemicals	-73.1 (-83.8, -55.4) / -72.3 (-89.5, -26.9)	6 (2)	
Fish	-815 (-014 -602) / -871 (-020 -727)	6 (1)	
Copepods		1 (0)	
Azolla	It is possible!	1 (0)	
Neem		1 (0)	
Intermittent irrigation		7 (2)	
Rice variety	+150.0 (-66.1, +1745.1)	1 (0)	
Rice variety & plant spacing	-66.3 (-90.0, +13.4)	1 (0)	
Weed control (herbiciding)	+77.4 (+65.7, +89.9)	1 (0)	
Agricultural insecticide	-76.4 (-88.8, -50.2)	1 (0)	
Land preparation: tillage	-64.7 (-85.5, -14.1)	1 (1)	
Land preparation: levelling	-12.8 (-65.2, +118.5)	1 (1)	

Growing rice w/o growing mosquitoes: approach

- No point in interventions being developed by entomologists
- Entomologists have done it successfully – but no attention (except in China)
- Win-win solutions (with agriculturehealth [and environmental] co-benefits)

Growing rice w/o growing mosquitoes: approach

If the big R&D job must be led by the agricultural sector...

Q: What is there for us health people to do?

A: Convince them it is an avoidable problem

- 1. It is a problem
- 2. It is avoidable

Suggestions?

- 1. How to strengthen the epidemiological evidence that it is a problem?
- 2. How to strengthen the evidence that it is avoidable?

The research agenda: next steps for malaria entomologists

Q: So if the big R&D job must be done by Agriculture Research, what is there for us health people to do?

A: convince them it is an avoidable problem: (a) it is a problem and (b) it is avoidable

. Strengthen the epidemiological evidence that rice brings malaria:

HOW? Before-and-after studies

Risk factor studies - case control?

Estimate the rice-attributable fraction?

what proportion of malaria burden comes from mosquitoes from ricefields

Need geo-referenced surveys without the random error of DHS/MIS

WHO? national cross-sectoral development plans: office of the PM; AU, donors and broad development community, cross-sectoral multi-laterals ... now CIF countries?

2. Show that is is possible to grow rice with only a few mosquitoes

Lots of promising ideas begging for research AWD, levelling, direct-sowing, weeding methods, rice varieties Fish & ducks Bti in fertilizer