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Mathematical models are widely used to provide evidence to inform policies
for tuberculosis (TB) control. These models contain many sources of input
uncertainty including the choice of model structure, parameter values and
input data. Quantifying the role of these different sources of input uncertainty
on the model outputs is important for understanding model dynamics and
improving evidence for policy making. In this paper, we applied the Sobol
sensitivity analysis method to a TB transmission model used to simulate the
effects of a hypothetical population-wide screening strategy.We demonstrated
how the method can be used to quantify the importance of both model
parameters and model structure and how the analysis can be conducted on
groups of inputs. Uncertainty in the model outputs was dominated by uncer-
tainty in the intervention parameters. The important inputs were context
dependent, depending on the setting, time horizon and outcome measure
considered. In particular, the choice of model structure had an increasing
effect on output uncertainty in high TB incidence settings. Grouping inputs
identified the same influential inputs. Wider use of the Sobol method could
inform ongoing development of infectious disease models and improve the
use of modelling evidence in decision making.
1. Introduction
Mathematical models arewidely used to simulate the epidemiology of tuberculo-
sis (TB) and provide evidence to inform policies to reduce TB burden. These
models contain many sources of input uncertainty including the choice of
model structure, parameter values and input data.

Previous analyses have shown that all these different sources of uncertainty can
be important in determining the model outputs [1–3]. Despite this, many TB mod-
elling studies focus on parameter uncertainty [4,5], and uncertainty in model
structure and other inputs is either not considered or explored using a scenario-
based approach. Such scenarios are often selected on an ad hoc basis, based on
prior beliefs about the likely importance of different inputs. This approach does
not allow for a quantitative comparison of the effect of different sources of input
uncertainty and may miss potential interactions between uncertain inputs.

Systematic sensitivity analysis (SA) of howmodel inputs drive model outputs
can be a critical part of the modelling process [6]. SA can help to understand
model dynamics, identify opportunities for model simplification and pinpoint
where additional data collection, to reduce uncertainty in model inputs, may
improve the precision of evidence used for decision making. Methods for con-
ducting SA can be broadly divided into local and global approaches. In local
methods, inputs are varied one at a time, usually by some fixed fraction around
their nominal value. Local methods do not explore the full input space or account
for interactions between inputs. By contrast, global methods explore the full range
of input uncertainties, typically by sampling from prior probability density func-
tions, and account for potential interactions between inputs by varying all
inputs simultaneously. A variety of global SA methods exist. Among the most

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2022.0413&domain=pdf&date_stamp=2022-11-23
mailto:tom.sumner@lshtm.ac.uk
https://doi.org/10.6084/m9.figshare.c.6296299
https://doi.org/10.6084/m9.figshare.c.6296299
http://orcid.org/
http://orcid.org/0000-0001-9305-534X
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220413

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 J

un
e 

20
23

 

commonly used in TB modelling are partial rank correlation
coefficients (PRCCs) e.g. [4,7–9]. One limitation of PRCCs is
that they assume a monotonic relationship between the
model inputs and model outputs [6,10]. If this assumption
is not satisfied, the PRCCs may provide incorrect results.
Methods which do not have this limitation will be more gener-
ally applicable to infectious disease modelling and avoid the
need to check assumptions of monotonicity prior to conduct-
ing an analysis. Previous analysis of TB models has found a
non-monotonic relationship between the incidence of disease
and the effect of preventive treatment [11] suggesting the use
of alternative methods to study TB models is merited.

The Sobol method [12] is a global SA method that, unlike
PRCCs, ismodel independent: itdoesnotdependonanyassump-
tions about the input–output relationship. The Sobol method can
alsoprovide informationon the individual effects ofmodel inputs
on themodel outputs and the additional effect due to interactions
between inputs. This information is not provided by the calcu-
lation of PRCCs. The Sobol method is widely used in other
modelling disciplines but has not been widely adopted in TB
modelling or in infectious disease modelling more broadly [13],
with few examples of its application found in the literature
[14–16]. In this paper, we apply the Sobol method to a TB trans-
mission model used to simulate the effects of a population-wide
screening strategy. We demonstrate the use of the method to
quantify the importance of both model parameters and model
structure and show how it can be used to analyse the importance
of groups of inputs to increase computational efficiency.
2. Methods
The first section of the methods describes the Sobol sensitivity
analysis method (further details can be found in the electronic
supplementary material, file S1) and the approach used to ana-
lyse groups of inputs. The second section describes the TB
model used to demonstrate the method. All analysis was con-
ducted using the R programming language and all code is
available at https://github.com/tomsumner/Variance_SA_TB.

2.1. Sobol method
The Sobolmethod is a quantitative global SAmethod. Sensitivity of
the model output to uncertainty in the model inputs is quantified
in terms of the contribution of the inputs (either individually
or in interactions with other inputs) to the total variance in the
model outputs. For a model of the form

Y ¼ f(X),

where X ¼ (X1, . . .Xk) is a vector of k uncertain inputs, the total
variance in the output, Y, can be written as follows:

V(Y) ¼
Xk

i¼1

Vi þ
X

1�i,j�k

Vij þ . . .þ V1,2,...,k,

where Vi is the contribution to the total variance due to input i and
Vij is the contribution due to the interaction between inputs i and j
and so on. The sensitivity indices are obtained by normalizing the
partial variances by the total variance. For example, the first-order
sensitivity indices Si, which describe the reduction in the model
output variance that could be obtained by fixing Xi, are given by

Si ¼ Vi

V(Y)
:

Second-order and higher order indices can be calculated
to describe the effects of interactions; however, the calculation
of all 2k− 1 indices required to completely characterize the
input–output relationship is impractical for models with a
large number of inputs.

As an alternative to calculating all higher order indices, the
total sensitivity indices, Ti, describe the total effect of input i
on the model output, accounting for all possible interactions
with other inputs. The total indices are given by

Ti ¼ 1� V�i

V(Y)
,

where V∼i is the variance due to all other inputs except i. If there
are no interactions between inputs, then the Si and Ti are equal
and the sum of all Si = 1. If Ti > Si this indicates that the effect
of input i is in part due to its interaction with other inputs.

The Si and Ti can be calculated using Monte Carlo integrals
based on sampling the distributions of the k model inputs.
Following the method outlined by Homma & Saltelli [17], this
requires the generation of two N by k matrices (where N is the
number of samples drawn and k is the number of uncertain
inputs). The model is evaluated for each set of inputs in these
matrices as well as for combinations of the two matrices (further
details are given in the electronic supplementary material,
file S1). As a result, the set of first-order and total sensitivity indi-
ces can be calculated at a cost of N(k + 2) model evaluations. We
used the R sensobol package [18] to generate the input samples
and calculate the sensitivity indices. This implementation uses
Sobol sequences to generate the input samples. These are
quasi-random low-discrepancy sequences which provide better
coverage than randomly generated numbers in high dimensions.
In addition, the sample size can be continually increased without
affecting the randomization. This is a useful property for testing
convergence of the indices without having to pre-specify the
maximum sample size.

2.2. Grouping inputs
As the number of model runs required for the Sobol method
depends on the number of inputs k, its application to models
with large numbers of inputs or long run times can be computa-
tionally intensive. In addition, it can be difficult to interpret the
sensitivity indices for a large number of inputs.

An alternative approach is to group the k individual inputs
into g < k classes [19,20]. For each class, n realizations of the
inputs are generated by sampling from the input distributions
of the members of that class. Each realization is assigned an inte-
ger number from 1 to n and the samples for calculating the Sobol
indices of the classes are drawn from these discrete uniform dis-
tributions. The analysis of g groups requires N(g + 2) model
evaluations.

2.3. Checking convergence, variability and importance
As the sensitivity indices are estimated using Monte Carlo
samples to approximate integrals, they are subject to sampling
variability. One result of this is that inputs which do not contrib-
ute to the output variance may be found to have non-zero
sensitivity indices as a result of the numerical approximation.

We use non-parametric bootstrapping to calculate 95% confi-
dence intervals for the sensitivity indices. Following Khorashadi
Zadeh et al. [21], we then calculate the sensitivity indices for a
‘dummy’ input which has no influence on the model outputs.
Model inputs whose sensitivity indices overlap with those of
the dummy input can be considered non-influential. Using the
method in [21] the ‘dummy’ indices can be calculated with no
additional model evaluations.

We also check for convergence of the sensitivity indices by
calculating their values for increasing values of N up to N =
5000. We compare the visual convergence of the indices using
both the individual input and grouped input approaches.

https://github.com/tomsumner/Variance_SA_TB
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Figure 1. Model structure. (a) Core model structure with serial exposed states. (b) Core model structure with parallel exposed states. In both (a) and (b), dashed
arrows represent births and natural mortality. (c) Preventive treatment care cascade. Values on the left-hand side indicate the proportion completing the step
(median (95% range)); values on the right-hand side indicate the cumulative proportion retained at each stage (based on median proportions at each step).
S = susceptible, LF = recently exposed, LS = remotely exposed, LR = recently re-exposed, I = active TB, TST = tuberculin skin test, PT = preventive treatment.
See table 1 for parameter definitions.
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2.4. Tuberculosis model
In this work, we use a simple compartmental TB model to illus-
trate the application of the SA method to different sources of
input uncertainty and the grouping of inputs.

Themodel, illustrated in figure 1 (see electronic supplementary
material, file S2 for model equations), follows the core structure
used inmany published TBmodelling papers. Susceptible individ-
uals (S) can be infected withMycobacterium tuberculosis (M.tb) after
which they enter a series of exposed (but non-infectious) states (LF,
LS) from which they can progress to infectious TB disease (I). Indi-
viduals with TB disease experience an excessmortality risk (m) can
naturally recover at a rate w or be diagnosed (at rate d). A pro-
portion (τ) of diagnosed individuals is successfully treated and
return to the LS state, the remainder remain in the infectious dis-
ease state. Distributions for the core model parameters are taken
from the literature and are shown in table 1.

To explore the impact of the choice of model structure on
model outputs, we include two different representations of the
exposed states and progression to disease: (i) serial exposed
states in which all infected individuals enter the LF state and
transition to the LS state at rate k (figure 1a); (ii) parallel exposed
states in which a proportion (b) of infected individuals enter the
LF state and the remainder enter the LS state (figure 1b)). In both
cases, LF represents a recent exposure state with a high risk (e) of
progression to disease and LS a remote exposure state with a
lower risk (v) of progression. Previous analysis [25,32] has
shown that these two structures perform equally when replicat-
ing data on the incidence of TB by time since infection. As a
result, we assume equal probability for each structure in the SA.
It is typically assumed that prior exposure to M.tb confers
some degree of protection against subsequent infection and/or
disease. To account for the uncertainty around the mechanism
of this protection, we consider two different ways in which it is
included in the model: (i) prior infection reduces the risk of re-
infection (q < 1, p = 1 in figure 1); (ii) prior infection reduces the
risk of progressing to disease if re-infected (q = 1, p < 1 in
figure 1). As for the choice of progression model structure, we
assume equal probability for each mechanism of protection in
the SA.
2.5. Input data
To explore the role of uncertainty in input data, we used WHO
estimates of global TB incidence, case detection rate (CDR, the
proportion of incident cases that are notified) and treatment suc-
cess (τ) as inputs to the model [27]. The CDR is used to determine
the rate, d, at which individuals with TB disease are diagnosed
and started on treatment. The distributions for these inputs are
shown in table 1.

We fit the model to the WHO global incidence estimates by
varying the contact parameter, β, which determines the rate of
infection, λ = βI. This is done by solving the steady state solution
of the model for β for each set of sampled inputs (model choice,
parameters and input data). Details of the steady state solutions
are given in the electronic supplementary material, file S2.

In a previous qualitative analysis of the effect of model struc-
ture on the predicted impact of TB preventive therapy (PT) [2],
we found that the relative importance of the choice of model
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Figure 3. Results of individual Sobol analysis. Panels show results for different outputs. (a,b) Reduction in TB incidence; (c,d ) reduction in TB mortality; (a,c) 1 year
time horizon; (b,d ) 10 year time horizon. Blue bars show the individual indices (Si), red bars the total effects (Ti). Error bars show 95% confidence intervals based on
bootstrapping. Lighter shading indicates inputs that are non-influential based on comparison with the dummy indices. Dashed vertical lines divide the individual
inputs into the groups used in the grouped analysis.
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structure varied with the baseline TB incidence in the model. To
explore how the results of the SA depend on the setting being
modelled, we repeated the analysis using WHO estimates of
TB incidence for the Philippines, an example of one of the 30
WHO classified high TB incidence countries, with an estimated
TB incidence of 539/100 000 (306–838) [27].

2.6. Intervention
We model a hypothetical one-off screening of the population (for
simplicity we model the screening as an instantaneous event).
The intervention consists of both active case finding (ACF) for
prevalent TB disease and PT for those with M.tb infection. We
assume that everyone is tested for TB with an Xpert-like test
with estimates of test sensitivity taken from WHO TB screening
guidelines [28]. For simplicity, we ignore false positive diagnosis
(i.e. we assume that the test has 100% specificity). Of those test-
ing positive, a proportion (given by the ‘Treatment uptake’
parameter [28]) start treatment. Those starting treatments after
ACF have the same probability of treatment success (τ) as those
diagnosed in the baseline model.

We also assume everyone is screened for infection with M.tb
with a tuberculin skin test (TST) and that those who test positive
are offered PT. We use estimates of TST sensitivity from a pre-
vious systematic review [29] and as for TB testing ignore false
positive diagnosis. We include several steps in the process from
attending for an initial TST to completing preventive treatment
using the findings of a systematic review of the cascade of care
in the diagnosis and treatment of M.tb infection [30]. These are
shown in figure 1c. Of those completing PT a proportion
(given by the PT efficacy) move to a post-PT state where they
have zero risk of progressing to TB disease but can be re-infected.

Distributions for all the intervention parameters are also
shown in table 1.
2.7. Grouping inputs
The model has a total of k = 20 uncertain inputs. For the grouped
SA, we assign these 20 inputs into five groups: ‘Model’ group
(two inputs: the choice of structure for disease progression,
the choice of mechanism of protection due to prior infection);
‘Parameters’ group (eight inputs: the parameters of the core TB
model); ‘Data’ group (three inputs: baseline TB incidence, CDR
and treatment success); ‘ACF’ group (two inputs: test sensitivity,
treatment uptake); ‘PT’ group (five inputs: TST sensitivity, TST
completion, PT uptake, PT completion, PT efficacy). For the
‘Model’ group, there are two options for each input, resulting
in four possible realizations to sample. For each other group
we generate n = 10 000 realizations for the group by sampling
from the distributions in table 1.
3. Results
Figure 2 shows the range of the outputs of the model (percen-
tage reductions in TB incidence and TB mortality over 1 and
10 years compared with baseline values) when all inputs are
sampled from the distributions in table 1. The greatest
reductions are predicted in mortality after 1 year, with smaller
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Figure 5. Comparison of sensitivity indices for different incidence settings. (a) Global TB incidence; (b) example of high TB incidence country. Blue bars show the
individual indices (Si), pink bars the total effects (Ti). Error bars show 95% confidence intervals based on bootstrapping. Lighter shading indicates inputs that are
non-influential based on comparison with the dummy indices.
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reductions in incidence over the same time period. For both
measures, the reduction is lower over 10 years as the TB
burden returns toward baseline values following the one-off
screening intervention. The short-term impacts (1 year) are
larger in the high TB incidence setting (Philippines (pink)
versus global (blue)). In the longer term (10 years), the situation
is reversed. The lower long-term effect in the high-incidence set-
ting results from the increased risk of infection in this setting,
which in turn results in a reduction in the long-term benefit of
PT. This supports the view that repeated rounds of screening
will be required to achieve sustained reductions inTB incidence,
as observed in a recent trial of ACF in Vietnam [33].

The following describes the results of the SA applied to the
global TB incidence setting. Figure 3 shows the sensitivity indi-
ces (main and total) for the individual model inputs. For the
longer term impacts (10 years, right-hand column of figure 3)
on both incidence and mortality, the model is most sensitive
to the PT parameters. Approximately 40% of the variance is
explained by the TST completion parameter and approxi-
mately 25% by each of PT completion and PT efficacy. For
the short-term impacts (1 year), the slow-progression rate
and the ACF sensitivity are identified as important inputs in
addition to the PT parameters. For all inputs, the difference
between the main and total effects is small, suggesting that
interactions play a minor part in the output uncertainty. This
is consistent with the sum of the Sis which range from 0.89 to
0.96 across the four outputs considered, suggesting approxi-
mately 90% of the variance in the output is explained by
individual inputs.

Figure 4 shows the results of the grouped analysis.
Consistent with the individual analysis, we find that the
‘PT’ group is responsible for almost all the variance in the
predicted reduction in incidence and mortality over 10 years.

For the reductions over 1 year, the ‘Parameters’ group (cf.
slow progression in the individual analysis) and ‘ACF’ group
(cf. ACF sensitivity in the individual analysis) are also found
to be influential. In each case, the group indices are approxi-
mately equal to the sum of the individual indices within
each group.

For both the individual and grouped analysis, we found
that the estimated indices were stable with sample sizes of
N = 2500 or greater (see electronic supplementary material,
file S3, figures A1 and A2). For the individual analysis
with k = 20, this corresponds to 55 000 model evaluations. By
contrast, the grouped analysis (g = 5) requires 17 500 model
evaluations.

Figure 5 compares the sensitivity indices for the reduction
in incidence over 10 years using the WHO estimates of global
TB incidence (figure 5a) and the example of a high TB incidence
setting (the Philippines, figure 5b). In a high-incidence setting,
the choice of progression model is identified as an additional
important input based on its main effect (accounting for
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approximately 10% of the variance). In the high-incidence set-
ting, there is also an increased role of interactions between
inputs, as shown by the larger difference between the main
and total effects. In particular, the choice of re-infection
model is important due to its interactions. The sum of the
main effect indices (Si) is 0.77 (compared with 0.95 in
the global incidence setting) indicating that more than 20% of
the variance in the output is due to interactions between the
uncertain inputs. Full results for the high TB incidence setting
are shown in the electronic supplementary material, file S3
(electronic supplementary material, figures A3 and A4).
l/rsif
J.R.Soc.Interface

19:20220413
4. Discussion
The results of our analysis showed that uncertainty in the
intervention parameters was more important than uncer-
tainty in the core model inputs in determining the variance
in the predicted long-term reductions in TB incidence and
mortality. This finding is supported by a recent model analy-
sis of a mass TB screening intervention [34] which found that
the model outcomes (TB cases and deaths averted) were
robust to the core model parameters.

We also found that the inputs identified as important are
context specific, with the most important inputs depending
on the choice of output, time horizon and the setting con-
sidered. In particular, we found that the model structure
used to represent disease progression and the mechanism
of protection provided by prior infection were important
inputs when a high TB incidence setting was modelled.
This is consistent with our previous qualitative analysis of
disease progression assumptions in TB modelling in which
we found that the choice of model structure was increasingly
important at higher TB incidence [2].

The results of the Sobol analysis provided useful infor-
mation for future development of the model. The results
suggested that improved estimates of the PT parameters
would have the biggest effect in improving the precision of
model predictions. Conversely, many of the core model
inputs could be fixed without loss of information.

Grouping inputs were found to provide results consistent
with the individual analysis, identifying the groups that con-
tained the influential individual inputs as important. The use
of groups also reduced the computation time of the analysis.
In our example application, we found that the sample size, N,
required to obtain stable estimates of the Sobol indices was
similar for both the individual and grouped analysis. As a
result, the reduction in the number of model iterations
required for the grouped analysis depended on the ratio of
(g + 2) to (k + 2) (where g is the number of groups and k the
number of individual inputs). In our example (g = 5 and k =
20), grouping inputs resulted in an approximate two-thirds
reduction in the number of model iterations. Analysing
groups of inputs could also be used as a preliminary screen-
ing step to reduce the number of inputs to be included in an
individual analysis.

The Sobol method required distributions to be specified
for each input. The results of the analysis may be dependent
on these distributions. In our analysis, we defined input dis-
tributions based on published estimates for the model inputs
where possible. However, using other literature sources may
have resulted in different input distributions and changes
in the Sobol indices. We do not consider this aspect in our
analysis, but methods to assess the robustness of the Sobol
indices to uncertainty in the input distributions have been
proposed elsewhere [35,36].

While uncertainty and SA is often incorporated into infec-
tious disease modelling studies, wider use of the Sobol
method could inform ongoing development of models and
improve the use of modelling evidence in decision making.

Data accessibility. All code used in the analysis is available from: https://
github.com/tomsumner/Variance_SA_TB.
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