Langdon, Ryan J; Yousefi, Paul; Relton, Caroline L; Suderman, Matthew J; (2021) Epigenetic modelling of former, current and never smokers. Clinical epigenetics, 13 (1). p. 206. ISSN 1868-7075 DOI: https://doi.org/10.1186/s13148-021-01191-6
Permanent Identifier
Use this Digital Object Identifier when citing or linking to this resource.
Abstract
BACKGROUND: DNA methylation (DNAm) performs excellently in the discrimination of current and former smokers from never smokers, where AUCs > 0.9 are regularly reported using a single CpG site (cg05575921; AHRR). However, there is a paucity of DNAm models which attempt to distinguish current, former and never smokers as individual classes. Derivation of a robust DNAm model that accurately distinguishes between current, former and never smokers would be particularly valuable to epidemiological research (as a more accurate smoking definition vs. self-report) and could potentially translate to clinical settings. Therefore, we appraise 4 DNAm models of ternary smoking status (that is, current, former and never smokers): methylation at cg05575921 (AHRR model), weighted scores from 13 CpGs created by Maas et al. (Maas model), weighted scores from a LASSO model of candidate smoking CpGs from the literature (candidate CpG LASSO model), and weighted scores from a LASSO model supplied with genome-wide 450K data (agnostic LASSO model). Discrimination is assessed by AUC, whilst classification accuracy is assessed by accuracy and kappa, derived from confusion matrices. RESULTS: We find that DNAm can classify ternary smoking status with reasonable accuracy, including when applied to external data. Ternary classification using only DNAm far exceeds the classification accuracy of simply assigning all classes as the most prevalent class (63.7% vs. 36.4%). Further, we develop a DNAm classifier which performs well in discriminating current from former smokers (agnostic LASSO model AUC in external validation data: 0.744). Finally, across our DNAm models, we show evidence of enrichment for biological pathways and human phenotype ontologies relevant to smoking, such as haemostasis, molybdenum cofactor synthesis, body fatness and social behaviours, providing evidence of the generalisability of our classifiers. CONCLUSIONS: Our findings suggest that DNAm can classify ternary smoking status with close to 65% accuracy. Both the ternary smoking status classifiers and current versus former smoking status classifiers address the present lack of former smoker classification in epigenetic literature; essential if DNAm classifiers are to adequately relate to real-world populations. To improve performance further, additional focus on improving discrimination of current from former smokers is necessary.
Item Type | Article |
---|---|
Faculty and Department | Academic Services & Administration > Directorate |
PubMed ID | 34789321 |
Elements ID | 201966 |
Official URL | http://dx.doi.org/10.1186/s13148-021-01191-6 |
Download
Filename: Langdon-etal-2021-Epigenetic-modelling-of-former-current-and-never-smokers.pdf
Licence: Creative Commons: Attribution 4.0
Download