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Abstract 

Background Latent class models are increasingly used to estimate the sensitivity and specificity of diagnostic tests in 
the absence of a gold standard, and are commonly fitted using Bayesian methods. These models allow us to account 
for ‘conditional dependence’ between two or more diagnostic tests, meaning that the results from tests are correlated 
even after conditioning on the person’s true disease status. The challenge is that it is not always clear to researchers 
whether conditional dependence exists between tests and whether it exists in all or just some latent classes. Despite 
the increasingly widespread use of latent class models to estimate diagnostic test accuracy, the impact of the condi-
tional dependence structure chosen on the estimates of sensitivity and specificity remains poorly investigated.

Methods A simulation study and a reanalysis of a published case study are used to highlight the impact of the con-
ditional dependence structure chosen on estimates of sensitivity and specificity. We describe and implement three 
latent class random-effect models with differing conditional dependence structures, as well as a conditional inde-
pendence model and a model that assumes perfect test accuracy. We assess the bias and coverage of each model in 
estimating sensitivity and specificity across different data generating mechanisms.

Results The findings highlight that assuming conditional independence between tests within a latent class, where 
conditional dependence exists, results in biased estimates of sensitivity and specificity and poor coverage. The simula-
tions also reiterate the substantial bias in estimates of sensitivity and specificity when incorrectly assuming a reference 
test is perfect. The motivating example of tests for Melioidosis highlights these biases in practice with important dif-
ferences found in estimated test accuracy under different model choices.

Conclusions We have illustrated that misspecification of the conditional dependence structure leads to biased 
estimates of sensitivity and specificity when there is a correlation between tests. Due to the minimal loss in precision 
seen by using a more general model, we recommend accounting for conditional dependence even if researchers are 
unsure of its presence or it is only expected at minimal levels.
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Background
Diagnostic tests are used widely to discriminate between 
individuals with and without certain conditions and dis-
eases. The results of these tests have important conse-
quences, for both decision on treatment of individuals 
and for population health interventions. As a result, accu-
rate characterization of diagnostic tests is paramount for 
optimal decision making. The usefulness of a diagnostic 
test is a combination of its accuracy, namely sensitivity 
and specificity, as well as practical considerations includ-
ing cost, ease of use and speed of results. Because of this 
variety of factors to consider, which can involve difficult 
tradeoffs, new tests are continually being developed that 
aim to improve upon previous tests in any of these fac-
tors. To truly compare test effectiveness we must be able 
to assess the accuracy of a diagnostic test with minimal 
bias and high precision.

Standard methods estimate the sensitivity and specific-
ity of a diagnostic test by comparing the results of a new 
test to the results of a ‘gold standard’ reference test. On 
the assumption that the reference test is indeed a ‘gold-
standard’ or perfect test, with 100% sensitivity and 100% 
specificity, we can be certain of the true infection status 
of each individual tested and we can estimate the sensi-
tivity and specificity of the new test directly. However, 
diagnostic tests are rarely perfect and in some instances 
there is no gold-standard test with which to compare. 
Examples of pathogens and infections where this is the 
case include Tuberculosis [1], Schistosomiasis [2] and 
Influenza [3]. In this situation, estimating the sensitivity 
and specificity of a diagnostic test is a difficult statistical 
problem and naively assuming the reference test is per-
fect will result in biased estimates of the new test’s accu-
racy [4]. However, the accuracy of a given test can still be 
estimated by comparing the results of multiple imperfect 
tests applied to the same group of people. An increas-
ingly popular method for making use of data on results 
from multiple imperfect diagnostic tests uses Bayesian 
latent class models (LCM) [5] and this approach has been 
applied across a wide range of pathogens [6–8].

To estimate diagnostic test accuracy with data from 
multiple imperfect tests using LCM requires making 
assumptions. Simple LCMs make the assumption that, 
conditional on the true infection status, results from 
multiple tests on an individual are independent. That 
is, the result of one test provides no information about 
the result of another test given the infection status of an 
individual. We refer to this situation as conditional inde-
pendence throughout the rest of this paper. It has been 
highlighted by several researchers [9, 10] that the condi-
tional independence assumption is unlikely to hold. For 
example, the assumption is unlikely to hold when there 
is a spectrum of disease severity. It is likely to be easier 

to detect disease in more severe cases for many patho-
gens and therefore, different tests on the same individual 
are more likely to return the same result. When disease 
severity, or some other factor associated with an indi-
vidual, is associated with ease of detection, there remains 
a dependence between the tests even after conditioning 
for the true infection status of an individual. Tests that 
are based on the same underlying mechanism are also 
unlikely to be independent given the individual’s disease 
status. When the assumption of conditional independ-
ence between tests is not valid, an analysis that assumes 
such independence is expected to result in biased esti-
mates of sensitivity and specificity [11]. The assumption 
of conditional independence can be relaxed through 
incorporating either fixed [9] or random effects [12] 
into the LCM. The implementation of both in a Bayesian 
framework has been described elsewhere [11].

In a simulation study by Wang et  al. [13] the authors 
showed that LCM with fixed effects, to account for 
conditional dependence among disease positive indi-
viduals, worked well both when tests were highly cor-
related (conditionally dependent) and when tests were 
truly conditionally independent. They also showed that 
the use of fixed effects or random effects has very little 
impact on the overall estimates of test accuracy. How-
ever, they only explored the possibility of conditional 
dependence in disease positive individuals as they 
assumed all diagnostic tests had a specificity of 99%. 
As a result, there could be no, or negligible, conditional 
dependence between these tests among disease negative 
individuals. However, the assumption of 99% specificity 
may not hold in many cases, so conditional dependence 
in non-infected individuals is also a possibility. When 
this is the case, researchers have a choice of conditional 
dependence structure in infected or non-infected indi-
viduals or both, and should be aware of the impact on 
estimates of sensitivity and specificity from choosing a 
particular structure, a situation highlighted in the case 
study by Menten et al. [14].

Much of the literature to date has focused on the 
importance of accounting for conditional dependence in 
disease positive individuals with much less discussion on 
the importance of conditional dependence among dis-
ease negative individuals. Above we discuss that disease 
severity or intensity may explain conditional dependence 
in disease positive individuals, In disease negative indi-
viduals, the presence of other parasites may work in a 
similar way, leading to a higher probability of false posi-
tive results on a range of tests, thus inducing a positive 
correlation among test results and a dependence between 
test results conditional on the true infection status [15].

There has been little research on the impact on esti-
mates of sensitivity and specificity of choosing to account 
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for conditional dependence in disease positive or disease 
negative individuals only versus accounting for condi-
tional dependence in both. Here we focus on LCM with 
random effects and carry out a simulation study inves-
tigating the size of bias and impact on precision of esti-
mates of sensitivity and specificity and coverage of 95% 
credible intervals, when the conditional dependence 
structure is mis-specified. We also look at how the size 
of this bias changes depending on the level of depend-
ence between tests. Finally, we extend the analysis from 
a motivating example that estimated the accuracy of five 
different diagnostic tests used in the identification of 
Melioidosis [16], to highlight the importance of the con-
ditional dependence structure chosen in practice.

Methods
We begin this section with an overview of the latent class 
models used for diagnostic test accuracy before introduc-
ing our motivating example, followed by details of the 
simulation study utilizing the structured approach devel-
oped by Morris et al. [17].

Latent class models
We consider a sample of N individuals who all undergo 
R binary diagnostic tests. We have observed data Y = 
{yij; i = 1, …, N, j = 1, …, R} where yij represents the test 
result (1 = positive, 0 = negative) of the jth test for the 
ith individual. We assume two disease classes, and we 
let di denote the true (but unobserved) infection status 
for individual i, with those who are truly infected having 
di = 1 and those who are truly not infected di = 0. The dis-
ease prevalence (i.e. the proportion for whom di = 1) in 
the underlying population is denoted π.

For a given test, the probability that an individual 
who is truly infected will return a positive test result is 
defined as the sensitivity (Se = Pr(y = 1| d = 1)) and the 
probability that an individual who is truly not infected 
will return a negative test result is defined as the speci-
ficity (Sp = Pr(y = 0| d = 0)). Each test j has its own sen-
sitivity and specificity, denoted Sej and Spj. Under the 
assumption that the R diagnostic tests are conditionally 
independent, the likelihood of the observed data can be 
expressed as:

To account for conditional dependence between tests 
in either or both truly infected individuals or truly not 
infected individuals, we allow the sensitivity and/or the 
specificity to vary by individual using a random effect. 

(1)P(Y | π , Se, Sp)=

N

i=1

π

R

j=1

Sej
yij 1− Sej

1−yij
+ (1− π)

R

j=1

Spj
(1−yij) 1− Spj

yij

This reflects the situation where some subject-specific 
characteristic, besides the true disease status of the indi-
vidual, affects the test result seen. The subject-specific 
value of the ith individual in a disease class is denoted 
by sid. Then, we can define the sensitivity of the j th test 
for the i th individual as Seij = Pr(yij = 1 ∣ di = 1, si1) and 
similarly the specificity as Spij = Pr(yij = 0 ∣ di = 0, si0). The 
likelihood in [1] is then modified to include Seij and Spij 
where we assume then that sensitivity takes the form:

and, specificity:

where g(·) is a link function. In this study we use the 
inverse logit link, so g−1(x) = 1/(1 + e−x). αjd and βjd are 
unknown parameters to be estimated. βjd describes the 
dependency of test j in disease class d on the random 
effects such that if all βjd = 0, there is no dependence 
on the random effect and all j tests among both disease 
classes are conditionally independent. We can estimate 
the mean or median sensitivity and specificity of a given 
test from the two parameters αjd and βjd. The random 
effect sid is assumed to follow a standard normal distri-
bution (sid~N(0, 1)) . For a more detailed description of 
random-effect latent class models see references [11, 12] 
and for details about how latent class models are imple-
mented in this study see the model specification and 
implementation section below.

Motivating example
We illustrate the impact of different conditional depend-
ence structures on estimates of sensitivity and specificity 
using data from a study that utilised LCM to estimate the 
sensitivity and specificity of five different diagnostic tests 
used in the diagnosis of Melioidosis [16]. Melioidosis is an 
infectious disease caused by the bacterium Burkholderia 
pseudomallei. The data are from a cohort of 320 febrile 
adult patients recruited over a 6 month period from a hos-
pital in the northeast of Thailand in 2004 [18]. The five 
tests included four serological tests (indirect hemaggluti-
nation test (IHA), IgM immunochromogenic cassette test 

(ICT), IgG ICT, and ELISA) and culture test which was 
assumed 100% specific throughout all their analyses. For 
comparability we made the same assumption.

(2)Seij = g−1
(

αj1 + βj1si1
)

(3)Spij = g−1
(

αj0 + βj0si0
)
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In the original analysis, Limmathurotsakul et al. imple-
mented four different LCM with various conditional 
dependence structures as well as an analysis which 
assumed culture was a perfect gold standard. The LCM 
models varied from a model assuming conditional inde-
pendence between all tests (Model 0) to those consid-
ering conditional dependence between a single pair of 
serological tests using fixed effects (Models 1 and 2) and 
finally those that use random effects to represent depend-
ence between all serological tests within a disease class 
(Models 3 and 4) but they did not consider a model that 
simultaneously accounted for conditional dependence 
within both true positive and true negative individuals. 
See Table 1 for a summary of the models considered in 
the original paper. We extend their analysis to consider 
a ‘Model 5’ which allows dependence between all four 
serological tests among those individuals truly infected 
and those individuals truly not infected using random 
effects. Before reporting the results of this analysis we 
describe a simulation study used to explore the impact on 
estimates of sensitivity and specificity of using the wrong 
conditional dependence structure.

Simulation study
Aim
To evaluate the impact of mis-specifying the conditional 
dependence structure in latent class analysis on bias, 

coverage, and precision of estimates of sensitivity and 
specificity.

Data generating mechanism
Data are simulated on 500 individuals for five diagnos-
tic tests. As in our motivating example, we imagine four 
tests (j = 2, 3, 4, 5), of a similar nature to the serological 
tests in the motivating example, that exhibit different 
conditional dependence structures among themselves, 
and one test (j = 1), of a similar nature to a culture test, 
which is assumed independent of the serological tests. 
We consider four scenarios for the conditional depend-
ence structure between serological tests described in 
Table 2. In all four conditional dependence scenarios, the 
underlying disease prevalence is 50% (π = 0.5). All tests 
have a median sensitivity of 0.65 (g−1(α1j) = 0.65) while 
the median specificity of the four serological type tests 
is 0.9 (g−1(α0j) = 0.9, j = 2, .., 5) and the median specific-
ity of our independent reference culture type test is 0.99 
(g−1(α01) = 0.99).

For the three scenarios in which there is conditional 
dependence, we set βjd equal to 1. When the median sen-
sitivity is 65%, the inclusion of this random effect means 
the interquartile range for sensitivity is 48–78% and 
with a median specificity of 90% the interquartile range 
is 82–94%. In a secondary simulation, we also compared 
this scenario with two additional scenarios under differ-
ent values for β  (β = 0.2,0.6), where lower values of the 

Table 1 Models and conditional dependence structures compared

Models 0–4 considered in Limmathurotsakul et al. [14]. Model 5 an extension not considered in the previous analyses. The last column highlights the scenarios that 
are considered in the simulation in this paper

Model Dependence Structure Effect Type Used Included in 
this paper’s 
simulation

Model 0 Conditional Independence between all tests NA Yes

Model 1 Dependence between IHA and IgM ICT in disease positive individuals Fixed No

Model 2 Dependence between IHA and IgG ICT in disease positive individuals Fixed No

Model 3 Dependence between all serological tests in disease positive individuals Random Yes

Model 4 Dependence between all serological tests in disease negative individuals Random Yes

MODEL 5 Dependence between all serological tests in disease positive and disease nega-
tive individuals

Random Yes

Table 2 Data generating mechanisms considered

Data Generating Mechanism Dependence in disease positive 
Individuals

Dependence in disease negative 
Individuals

Value of βjd in models (2) 
and (3) for sensitivity and 
specificity

CIndep No No βjd = 0, d = 0, 1

CDP Yes No βj1 = 1, βj0 = 0

CDN No Yes βj0 = 1, βj1 = 0

CDPN Yes Yes βjd = 1, d = 0, 1
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standard deviation correspond to a narrower interquar-
tile range around the median sensitivity and specificity.

Estimand/target of the simulation
In each simulated data set we estimate the sensitivity 
and specificity of each diagnostic test (j = 1, .., 5) for the 
median individual (with random effect 0) and the associ-
ated 95% credible interval.

Methods
Each simulated dataset is analysed in the following five 
ways:

1) GS Model: A conditionally independent model where 
test 1 (culture) is assumed perfect, i.e. a gold standard 
model (GS) (Se = Sp = 1)

2) CIndep Model: A conditionally independent (CIn-
dep) model where test 1 (culture) is assumed imper-
fect (Eq. 1)

3) CDP Model: A model allowing conditional depend-
ence in disease positive (CDP) individuals only 
(among serological tests, j = 2, . . , 5) and all tests 
(j = 1, .., 5) are assumed imperfect (Eq. 2)

4) CDN Model: A model allowing conditional depend-
ence in disease negative (CDN) individuals only 
(among serological tests, j = 2, . . , 5) and all tests 
(j = 1, .., 5) are assumed imperfect (Eq. 3)

5) CDPN Model: A model allowing conditional depend-
ence in both disease positive and disease negative 
(CDPN) individuals (among serological tests, j = 2, . 
. , 5) and all tests (j = 1, .., 5) are assumed imperfect 
(Eqs. 2 and 3)

Performance measures
Under each scenario, we generated 1000 simulated data 
sets. We assess performance through bias in estimates 
of sensitivity and specificity (including the Monte Carlo 
standard errors), precision of those estimates measured by 
the empirical standard error, and the coverage of the 95% 
credible intervals. These measures are defined in Supple-
mentary Table 1. Empirical diagnostics were recorded for 
all simulations to keep track of any simulations with infer-
ence validity concerns. Validity concerns occurred when 
either divergent transitions and/or the split R̂ statistic 
values larger than 1.01 were recorded [19, 20]. Any simu-
lations with validity concerns are removed from the pres-
entation of results.

Model specification and implementation
All models are fitted using Bayesian methods and so 
prior distributions must be specified for all parameters. 
In all models, the prior distribution for prevalence is 

assumed uniform between 0 and 1. In models where cul-
ture is allowed to be imperfect (CIndep, CDP, CDN and 
CDPN Models) the sensitivity of all tests are assumed 
uniform between a lower limit of 1 minus the specific-
ity  Sejlower = 1 −  Spj, j = 1, . . , 5, and 1. This ensures that 
the probability of a positive test is higher for somebody 
with disease than without. In these same models, the 
specificity of our independent test (j = 1) is assumed 
to follow a beta(10, 1) prior distribution and the speci-
ficity of all other tests (j = 2, .., 5) is assumed to follow 
a beta(5, 1) prior distribution. Although in this simula-
tion we are assuming test 1 is a culture test and there-
fore we could assume a much stronger prior distribution 
for specificity, for the purposes of a more generalizable 
simulation we have kept this relatively uninformative. 
Assuming a beta(10, 1) distribution corresponds to an 
assumption of 95% probability of the specificity being 
above 74% and a beta(5, 1) distribution corresponds to 
an assumption of 95% probability of the specificity being 
above 55%. Where we account for conditional depend-
ence between tests using random effects, βjd is assumed 
to follow a gamma(1, 1) prior distribution. In this paper 
we assume that β is the same between all serological 
type tests (j = 2, .., 5) but that that the culture type test 
(j = 1) is independent, and for simplicity, we consider the 
case where βjd = βd, j = 2, . . , 5. The effect of this is that 
a change in the random effect si will cause the sensitiv-
ity and of all serological type tests for the ith individual 
to change by the same amount and similarly, the speci-
ficity of all serological type tests for the ith individual to 
change by the same amount. We implement all models 
in R [21, 22] using stan [23] and all code can be found at: 
https:// github. com/ shk313/ Evalu ating- sensi tivity- and- 
speci ficity- from- LCM-a- simul ation- study. git.

Results
Simulation study
Bias
Throughout the presentation of the results tests 2–5 
(j = 2, .., 5) are combined. Figure 1 shows the overall mean 
bias and associated 95% confidence interval which quan-
tifies the uncertainty in the estimates of bias for median 
sensitivity and median specificity across all simula-
tions (excluding those where either divergent transitions 
and/or the split R̂ statistic values larger than 1.01 were 
recorded) for each model under each data generating 
mechanism. For all data generating mechanisms, use of 
the GS Model where test 1 (culture) is assumed perfect 
yields biased estimates. The sensitivity of test 1 (cul-
ture) is biased upwards because the test does not have 
a sensitivity of 100% as is assumed in the model and the 
specificity of the serological tests is underestimated by a 
minimum of 10% considering the upper limit of the 95% 

https://github.com/shk313/Evaluating-sensitivity-and-specificity-from-LCM-a-simulation-study.git
https://github.com/shk313/Evaluating-sensitivity-and-specificity-from-LCM-a-simulation-study.git
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Fig. 1 Mean bias and 95% confidence interval in estimates of sensitivity and specificity under each scenario. Points show mean bias across all 
valid simulations and the bar extends to the lower and upper confidence intervals. Shaded areas highlight the model that corresponds to the data 
generating mechanism
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confidence interval and a maximum of 20% using the 
lower limit of the 95% confidence interval across all data 
generating mechanisms. Under the CIndep data gener-
ating scenario all other models provide approximately 
unbiased estimates of sensitivity and specificity, with 0 
being contained within all the 95% confidence intervals.

Considering the three data generating mechanisms 
where there is conditional dependence among serologi-
cal tests within either or both disease positive and disease 
negative individuals, sensitivity estimates are approxi-
mately unbiased from all models with the exception of 
the GS Model. Each data generating mechanism and 
model combination for sensitivity estimates reported a 
Monte Carlo standard error less than 0.02 and 6 out of 
40 scenarios had a Monte Carlo 95% confidence interval 
that contained zero while in the remaining scenarios the 
confidence interval did not contain 0, suggesting there 
is some small bias even after accounting for sampling 

variability. Bias in specificity estimates among data gen-
erating mechanisms with conditional dependence is 
minimised when the ‘correct’ model is used. This is most 
notable when there is conditional dependence between 
tests among positive individuals. For this data generating 
mechanism (CDP), when the model used assumes con-
ditional independence between tests (CIndep Model) or 
conditional dependence between tests in negative indi-
viduals only (CDN Model), culture specificity is under-
estimated but serological tests specificity estimates are 
approximately unbiased. For specificity all scenarios had 
a Monte Carlo standard error less than 0.01 and, like with 
sensitivity, only six scenarios had a 95% Monte Carlo 
confidence interval for the estimate that contained zero.

Coverage
Tables  3 and 4 show the coverage probability, that is, 
the percentage of simulations where the 95% credible 

Table 3 95% Coverage probabilities and 95% confidence intervals for sensitivity estimates across 1000 simulations

Values in bold show scenarios where the upper limit of the confidence interval is less than 95%. Confidence intervals for coverage calculated using Jeffreys prior
a Total number of simulations summarised is not equal to 1000 for the CDPN model due to a number of simulations with convergence problems

Culture

Model GS Model CIndep Model CDP Model CDN Model CDPN  Modela

Data generating mechanism CIndep 0(0–0.3) 96.4(95.1–97.4) 97.4(96.3–98.3) 97.0(95.8–97.9) 96.8(95.6–97.8)

CDP 0(0–0.3) 94.7(93.2–96.0) 94.8(93.3–96.0) 93.5(91.8–94.9) 96.6(95.3–97.6)

CDN 0(0–0.3) 81.0(78.5–83.3) 79.1(76.5–81.5) 95.5(94.1–96.7) 99.2(98.5–99.6)

CDPN 0(0–0.3) 92.2(90.4–93.7) 84.2(81.8–86.4) 96.7(95.5–97.7) 99.5(98.9–99.8)

Serology

Model GS Model CIndep Model CDP Model CDN Model CDPN  Modela

Data generating mechanism CIndep 96.2(95.5–96.7) 97.0(96.4–97.4) 96.8(96.3–97.3) 96.6(96.0–97.1) 96.8(96.2–97.3)

CDP 89.1(88.1–90.0) 80.4(79.1–81.6) 95.5(94.8–96.1) 79.4(78.1–80.6) 95.0(94.3–95.6)

CDN 95.4(94.7–96.0) 96.5(95.9–97.1) 96.5(95.8–97.0) 96.9(96.3–97.4) 97.2(96.6–97.7)

CDPN 88.4(87.4–89.4) 87.5(86.5–88.5) 97.4(96.8–97.8) 85.2(84.1–86.3) 97.0(96.4–97.5)

Table 4 95% Coverage probabilities and 95% confidence intervals for specificity estimates across 1000 simulations

Values in bold show scenarios where the upper limit of the confidence interval is less than 95%. Confidence intervals for coverage calculated using Jeffreys prior
a Total number of simulations summarised is not equal to 1000 for the CDPN model due to a number of simulations with convergence problems

Culture

Model GS Model CIndep Model CDP Model CDN Model CDPN  Modela

Data generating mechanism CIndep 0(0–0.3) 99.8(99.4–100) 100(99.7–100) 99.8(99.4–100) 99.9(99.5–100)

CDP 0(0–0.3) 8.3(6.7–10.1) 96.9(95.7–97.8) 8.4(6.8–10.2) 96.7(95.5–97.7)

CDN 0(0–0.3) 99.0(98.2–99.5) 100(99.7–100) 98.7(97.9–99.3) 99.9(99.5–100)

CDPN 0(0–0.3) 12.5(10.6–14.7) 97.8(96.7–98.6) 12.1(10.2–14.2) 97.3(96.2–98.2)

Serology

Model GS Model CIndep Model CDP Model CDN Model CDPN  Modela

Data generating mechanism CIndep 0(0–0.1) 96.1(95.5–96.7) 96.0(95.4–96.6) 96.5(95.9–97.1) 97.5(96.9–97.9)

CDP 0(0–0.1) 95.4(94.7–96.0) 97.8(97.3–98.2) 96.2(95.6–96.8) 98.4(98.0–98.7)

CDN 0(0–0.1) 97.5(96.9–97.9) 97.6(97.1–98.0) 97.5(97.0–98.0) 97.6(97.1–98.0)

CDPN 0(0–0.1) 94.7(93.9–95.3) 97.3(96.8–97.8) 95.3(94.6–95.9) 98.1(97.6–98.5)
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Fig. 2 Mean bias and 95% confidence interval in estimates of sensitivity and specificity with varying β ’s. Points show mean bias across all valid 
simulations and the bar extends to the lower and upper confidence intervals. Shaded areas highlight the model that corresponds to the data 
generating mechanism
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interval for the estimate (sensitivity or specificity) con-
tains the true value. In the GS model where the sensi-
tivity and specificity of culture is assumed perfect the 
95% credible intervals for both estimates results in 0% 
coverage for the true sensitivity and specificity of cul-
ture and also 0% coverage for the specificity of sero-
logical tests across all data generating mechanisms. 
For sensitivity, all models except the GS Model show 
good coverage under the CIndep scenario. With con-
ditional dependence among serology tests in disease 
positive individuals, models which do not account for 
this dependence have coverage around 80% for serol-
ogy tests (j = 2, .., 5). On the other hand, when there 
exists conditional dependence between tests j = 2, . 
. , 5 in disease negative individuals only, the coverage 
in those models that do not account for dependence 
remains close to 95% for serology tests but is below 85% 
for culture. The coverage of sensitivity for culture from 
the CDPN model is higher than the nominal 95% levels 
for both the CDN and CDPN data generating mecha-
nisms with the upper limits of the confidence intervals 
approaching 100%.

Specificity estimates for all models, except the GS 
model, show good coverage for serology tests (j = 2, .., 5). 
For culture  (j = 1), coverage is higher than the nominal 
95% level for all models except the GS model under CIn-
dep and CDN data generating mechanisms. In the CDP 
and CDPN data generating mechanisms there is good 
coverage with models that account for the conditional 
dependence of tests in disease positive individuals (CDP 
and CDPN models) and poor coverage (< 15%) with 
models that do not account for conditional dependence 

of tests in disease positive individuals (GS, CIndep and 
CDN models).

Precision
A complete table of precision estimates for each esti-
mand within each scenario and for each model can be 
found in Supplementary Tables 2 and 3. Precision of esti-
mates of sensitivity and specificity across all data generat-
ing mechanisms and models were similar for serological 
tests (j = 2, .., 5) but differed for our independent culture 
test (j = 1). For culture, the empirical standard error of 
estimates for both estimands was larger using the most 
general model, CDPN model, similar across CIndep, 
CDP and CDN models, and 0 for the GS model which 
assumes the test was perfect. The loss of efficiency from 
using the most general model (CDPN model) was high 
for estimating the accuracy of culture but low for esti-
mating the accuracy of serological tests. However, if we 
just consider using the CDP model (accounting for con-
ditional dependence in disease positive individuals only) 
the loss of efficiency from using this model when the true 
data generating mechanism is CIndep was never more 
than 2% for either estimand and all tests.

Secondary simulation
All results so far considered the scenario where the 
standard deviation for the random effect is equal to one. 
We also considered, in a secondary simulation, the bias 
in estimates of sensitivity and specificity at two other lev-
els of the standard deviation for the scenario where there 
exists conditional dependence in serological tests among 
infected individuals (CDP). These results are shown in 

Table 5 Sensitivity and specificity (95% credible interval) estimated from each model for each diagnostic test

Values shown are mean estimates with 95% credible intervals
a Se = sensitivity, bSp = specificity, cSpecificity assumed perfect. Models 0–4 were considered in the original work of Limmathurotsakul et al. while Model 5 is the 
additional analysis considered in this paper

Model Name | Assumed 
dependence structure

Model 0
CIndep

Model 1
CDP among two tests

Model 2
CDP among two tests

Model 3
CDP

Model 4
CDN

Model 5
CDPN

Effect Type Used NA Fixed Fixed Random Random Random

Test Measure

Culture Sea 61(53–69) 62(54–69) 62(54–69) 60(52–69) 74(59–97) 67(57–79)

Spb 100c 100c 100c 100c 100c 100c

Serology: IHA Sea 73(66–80) 73(66–79) 73(67–78) 70(63–76) 72(65–79) 69(62–75)

Spb 87(79–93) 86(79–93) 86(79–92) 84(75–92) 75(61–88) 76(66–84)

Serology: Igm ICP Sea 81(75–86) 80(74–85) 80(74–86) 77(71–83) 80(72–86) 76(69–82)

Spb 65(56–74) 64(55–74) 65(56–73) 62(53–72) 56(45–67) 55(46–64)

Serology: IgG ICT Sea 91(86–95) 91(86–94) 90(86–94) 88(82–92) 89(84–94) 87(81–92)

Spb 76(67–85) 75(66–84) 75(66–84) 74(64–85) 62(48–77) 65(54–74)

Serology: ELISA Sea 77(70–84) 78(70–84) 78(71–84) 75(68–78) 82(74–88) 80(72–86)

Spb 97(93–100) 98(94–100) 97(93–100) 97(92–100) 88(72–99) 95(82–100)
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Fig. 2 and show that the size of bias increases as the value 
for the standard deviation increases when there exists 
conditional dependence but the model used assumes 
conditional independence among disease positive indi-
viduals. Among models where culture is assumed imper-
fect, this bias results in increasingly underestimated 
specificity estimates for culture.

Convergence
All simulations in GS, CIndep, CDP and CDN models 
passed our convergence checks and had a reported rank 

normalised split- R̂ statistic as < 1.01 and had no diver-
gent transitions. The CDPN model reported convergence 
warnings in a number of simulations. 13% of simulations 
from the CDPN model under the CIndep data generat-
ing mechanism were removed along with 9, 3 and 10% 
in CDP, CDN and CDPN data generating mechanisms 
respectively. To run the CDPN and ensure there are no 
warnings, additional prior information may be required. 
In this analysis, all simulations with divergent transitions 
or a split- R̂ statistic greater than 1.01 were removed from 
result summaries.

Table 6 Observed and predicted frequency of each response profile from each model

Observed frequency shown corresponds to five diagnostic test results from 320 patients with suspected melioidosis analysed in Limmathurotsakul et al. Models 0–4 
were considered in the original analyses but model 5 is new to this paper

Expected frequency

Response profile Observed 
frequency

Model 0 Model 1 Model 2 Model 3 Model 4 Model 5

11111 69 49 53 53 63 49 65

11110 6 15 15 15 7 11 4

11101 0 5 6 1 2 6 2

11100 0 1 2 0 1 1 1

11011 9 12 8 13 6 13 7

11010 0 4 2 4 3 3 2

11001 0 1 1 0 1 2 1

11000 1 0 0 0 1 0 1

10111 14 18 14 14 11 19 12

10110 3 5 4 4 5 4 4

10101 0 2 1 6 1 3 1

10100 5 1 0 2 2 1 2

10011 3 4 9 3 4 5 6

10010 0 1 3 1 5 1 4

10001 3 0 1 2 1 1 2

10000 6 0 0 0 6 0 6

01111 35 31 33 33 42 31 35

01110 15 11 11 11 7 18 15

01101 0 3 4 1 1 3 2

01100 5 5 6 5 6 6 8

01011 5 8 5 8 4 4 4

01010 6 5 4 5 5 5 5

01001 0 1 1 0 1 1 1

01000 7 8 9 8 9 5 7

00111 5 12 9 9 8 9 7

00110 18 12 12 12 13 17 17

00101 0 2 2 5 2 2 1

00100 25 29 29 30 29 19 22

00011 7 3 6 3 3 3 3

00010 11 17 19 18 20 14 15

00001 2 1 2 2 2 2 2

00000 60 55 52 52 50 62 58



Page 11 of 13Keddie et al. BMC Medical Research Methodology           (2023) 23:58  

Motivating example
We re-analysed the data used by Limmathurotsakul 
et  al. [16] and extended their work by considering a 
dependence structure not considered in the original 
paper. We fitted Models 0–5 as defined in Table 1 and 
as considered in the simulation study. Estimates of the 
sensitivity and specificity under each model are pre-
sented in Table 5. The point estimates and width of 95% 
credible intervals are similar across models 0–3 (model 
0 being the model assuming conditional independ-
ence and models 1 and 2 being models that account for 
conditional dependence between two tests using fixed 
effects) however models 3, 4 and 5 (random effect mod-
els) do exhibit some important differences. Between 
models 4 and 5 the median sensitivity of culture and 
specificity of ELISA differs by 7% while between mod-
els 3 and 5 the median specificity of serological tests 
differs by 2–9%.

Table  6 shows the expected frequency of each possi-
ble response profile from the 5 tests under each model. 
Viewing the results in this way as opposed to looking 
at just estimates of sensitivity and specificity highlights 
a few key things. It highlights the importance of allow-
ing conditional dependence as model 0 (assuming con-
ditional independence) appears to fit the data least well, 
and also shows that the structure of the conditional 
dependence modelled affects the fit. We can see that 
models which only consider dependence between two of 
the four serology tests (models 1 and 2), underestimate 
the frequency of extreme response profiles (i.e. 0,0,0,0,0 
and 1,1,1,1,1). Model 3 accounting for conditional 
dependence between all serological tests in those disease 
positive is able to capture those with all positive response 
profiles but unsurprisingly fails to capture those will all 
negative response profiles. On the other hand, Model 4 
exhibits the same tendencies in reverse while our addi-
tional model accounting for conditional dependence in 
both disease positive and disease negative individuals 
(Model 5) is able to capture both extremes and appears 
to fit the data best. This is confirmed by comparing the 
models on the expected log predictive density [24] where 
Model 5 shows the best predictive performance closely 
followed by Models 3 and 4 (See Supplementary Table 4 
for more details).

Discussion
We carried out a simulation study investigating the 
bias and coverage of sensitivity and specificity esti-
mates arising from mis-specification of the conditional 
dependence structure in latent class models. We found 
that assuming conditional independence among tests 
within disease positive or disease negative individuals 
when conditional dependence exists leads to bias and 

poor coverage in estimates of test accuracy. Due to the 
minimal loss in precision seen by using a model which 
accounts for conditional dependence between serology 
type tests in disease positive individuals, our results 
suggest it makes sense to account for conditional 
dependence in positive individuals even if researchers 
are unsure of its presence or if it is only expected at 
minimal levels. And, if there is a suggestion that there is 
dependence in both disease positive and disease nega-
tive individuals we would recommend using the most 
general model, particularly if the specificity of diagnos-
tic tests being investigated are less than perfect. The 
results from this simulation also reiterate findings from 
previous studies [5, 14, 16] that assuming conditional 
independence between imperfect tests is still much bet-
ter than assuming an imperfect test is a gold-standard, 
even when the conditional independence assumption is 
not valid.

Our simulation study revealed that the size of bias 
in estimates of sensitivity and specificity was greatest 
when there existed conditional dependence among dis-
ease positive individuals and latent class models used 
assumed conditional independence among disease posi-
tive individuals. The size of this bias increased as the 
standard deviation of the random effects increased. Bias 
was larger when conditional dependence existed among 
disease positive individuals than conditional dependence 
in disease negative individuals. This reflects the fact that 
the true specificity was reasonably high in our simula-
tion at 90% compared to a moderate sensitivity of 65%. In 
similar scenarios, where specificity is generally believed 
to be higher than sensitivity, these findings highlight that 
considering dependence among the disease positive indi-
viduals is most important to reduce the bias in accuracy 
estimates.

In the motivating example, accounting for conditional 
dependence in only disease positive or disease nega-
tive individuals may have resulted in biased estimates 
of the sensitivity and specificity of tests included in this 
analysis. Comparing the model that only considered 
dependence in positive individuals and the model that 
considered dependence in both positive and negative 
individuals, the median specificity of one test differed 
by 9 percentage points. Although dependence among 
disease negative individuals was thought to be negligi-
ble, examining the predicted frequencies for each profile 
highlighted shortfalls in the final selected model which 
assumed independence among tests in these individuals. 
This was confirmed with a relatively novel model com-
parison tool that addresses shortfalls of earlier estimates 
such as AIC and DIC [24]. This re-analysis highlights that 
examining predicted frequencies, when you have a truth 
to compare to, might be a useful addition in investigating 
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the most appropriate conditional dependence structure 
for a dataset.

There are limitations to this simulation study. Practi-
cally, we saw a limitation in implementing the CDPN 
model where some simulations exhibited divergent tran-
sitions and others a split R̂ statistic greater than 1.01. In 
this case additional prior information may be necessary 
to ensure the model converges to the correct target dis-
tribution. Another limitation to this study is that we only 
considered a single prior distribution for the standard 
deviation of the random effect however estimates could 
be altered by a different choice of prior which has been 
investigated in a simulation study by Lee et al. [25]. We 
considered a single correlation among all serological 
tests in either disease positive or disease negative indi-
viduals. In practice you may have pairs or groups of tests 
that each require different random effect parameters 
with different standard deviations. However, if this is the 
case, this simulation still serves to highlight the poten-
tial biases that could be present in estimates of sensi-
tivity and specificity if incorrect assumptions are made 
about the conditional dependence structure. Lastly, a key 
assumption of this simulation and our motivating exam-
ple is that in the underlying population there exist only 
two disease classes; diseased and disease free. In some 
situations more than two classes may exist in a popula-
tion, for example to distinguish between symptomatic 
and asymptomatic individuals. In cases where more than 
two diseases classes exist, recent work has shown that 
estimates of sensitivity and specificity from the two state 
LCM can be biased [26].

Conclusions
The impact of biased estimates of sensitivity and speci-
ficity is twofold. Firstly, a test whose accuracy is under-
estimated may not be used when it could be useful 
(more accurate, cheaper or easier to implement) and 
secondly, a test whose accuracy is overestimated may be 
used when more useful tests exist. Both outcomes ulti-
mately result in negative consequences for individuals 
and societies, so minimizing the bias in our estimates 
of diagnostic test accuracy is paramount. This paper 
serves to highlight that not only should conditional 
dependence be taken account of but that the choice 
of conditional dependence structure is important and 
should be considered in any analysis of diagnostic test 
accuracy that utilizes latent class models.
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