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A B S T R A C T   

Arbovirus can cause diseases with a broad spectrum from mild to severe and long-lasting symptoms, affecting 
humans worldwide and therefore considered a public health problem with global and diverse socio-economic 
impacts. Understanding how they spread within and across different regions is necessary to devise strategies 
to control and prevent new outbreaks. Complex network approaches have widespread use to get important in-
sights on several phenomena, as the spread of these viruses within a given region. This work uses the motif- 
synchronization methodology to build time varying complex networks based on data of registered infections 
caused by Zika, chikungunya, and dengue virus from 2014 to 2020, in 417 cities of the state of Bahia, Brazil. The 
resulting network sets capture new information on the spread of the diseases that are related to the time delay in 
the synchronization of the time series among different municipalities. Thus the work adds new and important 
network-based insights to previous results based on dengue dataset in the period 2001–2016. The most frequent 
synchronization delay time between time series in different cities, which control the insertion of edges in the 
networks, ranges 7 to 14 days, a period that is compatible with the time of the individual-mosquito-individual 
transmission cycle of these diseases. As the used data covers the initial periods of the first Zika and chikungu-
nya outbreaks, our analyses reveal an increasing monotonic dependence between distance among cities and the 
time delay for synchronization between the corresponding time series. The same behavior was not observed for 
dengue, first reported in the region back in 1986, either in the previously 2001–2016 based results or in the 
current work. These results show that, as the number of outbreaks accumulates, different strategies must be 
adopted to combat the dissemination of arbovirus infections.   

1. Introduction 

Dengue epidemics have been affecting different regions of Brazil 
since 1986. More recently, in 2014 and 2015, two new diseases caused 
by the viruses chikungunya and Zika, respectively, and transmitted by 
the same vector Aedes genus mosquitos have emerged in the country 

[1,2]. Zika infections have been associated with an increased risk of 
Guillain-Barré Syndrome and congenital malformations in newborns 
[1,3–5], while chikungunya infections lead to intense arthralgia and 
consequent reduction in life quality of those affected by persistent pain 
after the acute period of the disease [1,6,7]. 

A complex public health problem arises from the co-circulation of 
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three different viruses, as they cause specific but also similar symptoms, 
increasing the difficulty of diagnosing on acute phase and controlling 
the spread of the diseases between and across different regions. Thus, 
understanding the dynamics of dissemination of these viruses is of 
utmost importance. 

Various approaches based on the general formalism of complex 
networks have been proposed and successfully used when studying 
complex systems such as epidemics, as they reveal aspects of the prop-
agation dynamics not clearly perceived from the series of case records 
[8–13]. Networks are graphs represented by vertices (or nodes) and 
pairwise edges connecting them [11], which represent the individual 
agents and their interaction associated with the phenomenon being 
studied. In the current case, network nodes represent cities and edges are 
included according to a relation between the temporal emergence of the 
diseases (dengue, Zika and chikungunya) observed in the time series. 
This allows understanding how the cases of each arbovirus in different 
municipalities are temporally and spatially related. The study of epi-
demics through networks allows for a better understanding of how they 
spread and thus help in the possible control of the disease. 

Some previous works have already shown the importance of using 
networks to study dengue spread, which contributed to uncovering the 
mechanism of dissemination of the dengue virus. Malik et al. [14] 
studied dengue transmission networks and found that they were char-
acterized by a scale-free type topology. The authors associated this 
finding to the presence of spreading nodes, on which control policies 
could be focused at the same time. Simulations on network models were 
carried out, as in [15]), who made a network model with the purpose of 
investigating the possible influence of vaccination and vector control on 
the virus transmission network. Malik et al. [16] developed a network 
model that simulates possible internal and external factors that can 
cause or contribute to dengue virus transmission. 

Regarding the virus spread on a geographic region, Saba et al. [17] 
used reported cases from years 2000 to 2009 in the state of Bahia, Brazil, 
to show how the occurrence of dengue in different municipalities were 
correlated. Next, by obtaining dynamic networks generated based on 
this dataset Saba et al. [18] showed how mobility influences the disease 
dissemination. 

Our literature survey detected only two studies about Zika using 
network models [19,20], but none using chikungunya data. Thus, the 
main objective of this work is to present a comprehensive study of the 
spread of the three arboviruses (dengue, Zika and chikungunya) using a 
time-dependent complex network approach. 

In order to study the time dependence of the spreading process 
within the municipalities’ network, we used the concept of Time Vary-
ing Graphs (TVG). As a criterion to insert network edges for each time 
interval we used the Motif-Synchronization (MS) method [21]. In 
addition, to account for the delay required for the virus to reach other 
locations, we evaluate the delay time in synchronization between mu-
nicipalities. This way it is possible not only to insert an edge in the 
network but also to measure the delay time for which the largest syn-
chronization degree between two series is observed. 

Important issues will be addressed in this work, e.g.: i) ability of 
adopted approach to characterize, quantify, and possibly distinguish 
differences among the spread dynamics of three arboviruses; ii) the 
characteristic lag time associated with each of them; iii) existence of 
relation between intercity distance and the delay time; iv) existence of a 
set predecessor municipalities acting as hubs for disease dissemination. 

Based on dengue incidence data from 2001 to 2016 for the state of 
Bahia and on the approach described above, Araújo et al. [22] addressed 
some of these questions, analyzing the delay time in order to set up a 
model characterizing the spreading behavior. They concluded that the 
dengue spreading is not directly related to the distance between mu-
nicipalities, but rather to a temporal relationship with the life cycle of 
the mosquito and its ability to transmit the disease. 

Now we use a unified data set covering reported cases of the three 
quoted arbovirus from 2014 to 2020, whereby Zika cases started being 

registered as such only from 2015 on. As before, the networks obtained 
within this framework characterize and quantify the spread of three 
different diseases, allowing for uncovering differences and similarities 
among them. All four issues listed previously will be fully addressed. 

In the period 2014–2020, Bahia registered of two major dengue 
outbreaks, concomitantly with Zika and chikungunya outbreaks be-
tween 2015 and 2016 [23–25]. Because of that, in this specific period we 
conducted a more detailed analysis of the spread dynamics. 

The rest of this work is organized as follows: in Section 2 we intro-
duce the basic concepts of the framework used to convert time series into 
network, namely: TVG, motifs, and MS. As the whole framework has 
been already used and presented else, we refrain to repeat her all details 
of the procedure, which can be found in the suggested literature. Section 
3 discusses the main features of the data used in our analysis, Results 
obtained in our work are discussed in Section 4, which is assembled by 4 
subsections. Finally, Section 5 closes the work with our conclusions and 
perspectives. 

2. Methods 

2.1. Time-varying graphs (TVG) 

The TVG approach was used in this work with the purpose of 
studying the dynamics of arboviruses dissemination, as it allows 
obtaining a sequence of networks for different instants of time. In this 
work, the networks depend on the number of reported cases for each 
municipality as a function of time. 

Several authors, such as Flocchini, Mans and Santoro [26], Casteigts 
et al. [27] and Nicosia et al. [28], contributed to the formalization of this 
method. A TVG is defined as a set of graphs with a fixed number of 
vertices, in which edges appear and disappear along the time (see Tang 
et al. [29], Nicosia et al. [28]) As such, it corresponds to a set of M graphs 
{G1,G2,…,GM} (Fig. S1), all of which with a fixed number N of vertices, 
and each Gm in this sequence represents the state of the network at the 
time tm, with m = 1,…,M. Note that the number of edges at each graph 
Gm depends on the way the TVG is defined. Therefore, it is well possible 
that, for some Gm, some nodes may not be connected to any other node, 
i.e., not all Gm correspond to a connected graph. Besides that, each Gm 
can be analyzed individually with the usual metrics of graph theory, or 
they can be analyzed jointly, providing an integrated view of the phe-
nomenon that is represented by the TVG. 

2.2. Motif-synchronization (motifs and MS) 

The MS framework [21] generates a synchronization measure be-
tween two time series through a fast evaluation of correlations. To this 
purpose, it first maps the original series into a series of a small set of 
different patterns called motifs which, in a second step, allows to 
searching the time lag between the two series that maximize the syn-
chronization score. It has been recently used to build networks using 
electroencephalography (EEG) time series [21,30] as well as weekly 
records of dengue cases [22,31] and COVID [32]. 

Motifs are different patterns formed by a set of consecutive points 
extracted from the time series according to a suitably chosen period. 
They are characterized by the relative point positions and resulting 
slopes of straight lines between them. The order of a motif is defined by 
the number of points is made of. For each order, there is a finite set of all 
relative point positions. Here we consider a sub-set of 6 different motifs 
of order 3, labeled as Mz, z = 1,…,6, as illustrated in Fig. 1. The reason 
for this choice is that it provides a best trade-off between simplicity and 
ability to identify basic trend changes in a time series. 

The number of points generating the motif (motif degree) and the 
gap between the points (lag), shapes each motif. For motif degree n = 3, 
there are n! = 6 possible motifs. The motif time series XMi may be defined 
according to the relationship between successive data elements Xi, Xi+λ 
and Xi+2λ as 
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XMi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if Xi > Xi+,Xi+ > Xi+2,Xi > Xi+2

2, if Xi > Xi+,Xi+ < Xi+2,Xi > Xi+2

3, if Xi < Xi+,Xi+ > Xi+2,Xi > Xi+2

4, if Xi > Xi+,Xi+ < Xi+2,Xi < Xi+2

5, if Xi < Xi+,Xi+ < Xi+2,Xi < Xi+2

6, if Xi < Xi+,Xi+ > Xi+2,Xi < Xi+2

(1)  

where XMi is the element of the motif series and λ is the motif lag. 
After converting all data series into a motif series, the correlation 

degree between two series X and Y at time t is defined by 

QXYt =
max{cXYt , cYXt}

LM
(2)  

where LM is the length of the sliding synchronization window, and cXYt 
and cYXt are defined by. 

c(XM ,YM)t = cXY t = max

{
∑LM

i=1
Jτ0

t+i,
∑LM

i=1
Jτ1

t+i,…,
∑LM

i=1
Jτmáx

t+i

}

, (3)  

where 

Jτ
i =

{
1, if XMi = YMi+τ

0, otherwise (4)  

We see that Jτ
i = 1 or 0 identifies whether the motifs MXi and MYi+τ in the 

series XM and YM are coincident or not. Thus, cXYt corresponds to the 
largest number of times in which a motif Mz appears in the Y series after 
appearing at time t in the X series within a window of width LM, for a 
fixed value of τi. The sums in the argument of the max operator in eq. 3 
are bounded between 0 (when all J’s are 0) or LM (when all J’s are 1). 
Therefore, cXYt ∈ [0, LM] and QXYt ∈ [0,1]. The sums in Eq. (3) cover an 
interval of time lags τi running from no delay time τ0 = 0 up to a suitably 
chosen maximum delay τmax = τn (Fig. 2), which represents a n-point 
shift ahead of the moment where the motive Mz occurred in X. In brief, 
cXY will be the largest value of the number of identical motifs in a 
window of length LM, for values of τ in the interval [0,τmax]. 

On the other hand, a synchronization direction qXYt can be defined 
after evaluating cXYt and cYXt using 

qXYt =

{
0, if cXYt = cYXt

sign (cXYt − cYXt ), if cXYt ∕= cYXt

(5)  

It is possible to see that the value qXYt = 0 indicates no preferred di-
rection; while 1 and − 1 indicate that motifs in X are more likely to 
precede those in Y or vice versa. Here we anticipate that qXYt ∕= 0 for the 
large majority of X, Y and t, indicating the directed character of our TVG 
networks. This feature makes it possible to identify those cities that most 
constantly act as spreaders, being responsible for infecting other 
municipalities. 

2.3. Network construction 

The networks that form each arbovirus infection TVG are formed by 
nodes representing municipalities while, for each instant of time t, the 

Fig. 1. Illustration of the conversion of time series into a motif series. Panel A 
shows a time series, a small part of which is enlarged to display the individual 
points it is made of. It consists of 19 points, which define 17 motifs. Panel B 
shows some order 3 motifs, defined by a sequence of three successive points. 
The identification of a motif depends on the relative position of the points it 
contains. The panel shows only the 6 different order-3 motifs used in this work. 
Panel A also highlights the process of identifying 4 motifs (from some arbitrary 
sets of 3 red points), as well as the first 10 motifs in the motif series. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) (Figure adapted from Li and 
Ouyang [49]) 

Fig. 2. Sum of simultaneous appearances of motifs for different delay times. Each number in this series refers to one of the motif patterns shown in the Fig. 1.  
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edges are inserted according to the synchronization index QXY defined in 
Subsection 2.2. A synchronization length LM = 5, corresponding to 5 
week intervals, was selected for all networks. A 5 weeks interval was the 
smallest window that still kept a functional meaning, given the typical 
time scale of the disease spreading. The step-by-step TVG construction 
[21] proceeds as follows: (i) transform the time series of reported cases 
(Fig. 3A) into motif time series (Fig. 3B). Then, at each time step t, (ii) 
evaluate the synchronization degree by counting how many times a 
motif Mz in series X at time t appears in the time series Y in a LM sliding 
window for different delay times τi. The degree of synchronization and 
the delay time τ, at which the maximum synchronization between the 
series of motifs was observed, are recorded. (iii) build the association 
matrix St with elements sij representing the degree of synchronization 
between vertices i and j (Fig. 3C); (iv) transform the matrix St into the 
network adjacency matrix At (Fig. 3D) by a filtering procedure defined 
by a suitably chosen threshold σth, according to 

aij =

{
1, if sij ≥ σth
0, otherwise (6)  

The threshold σthis obtained in a procedure where the data from the time 
series shuffled and subsequently used to construct new networks. Then, 
σthcorresponds to a 1 % chance of the original network being randomly 
selected. In this study we assumed σth=0.9 so that edges between nodes 
will be allowed only when a large enough synchronization of 90 % or 
more motifs has been reached. The inserted edges will be associated 
with the delay time value τ corresponding to the largest obtained 
synchronization. 

The synchronization between two case-motif series i and j is evalu-
ated, at each time t, over a time window of length LM = 5 epidemio-
logical weeks, which leads to a maximum of M = T − 6 synchronized 
values, where T indicates the number of points in the time series. This 
value of M results from the fact that seven consecutive weeks are 
required to identify the edges that are present in each individual 
network in the TVG. Within this procedure, the obtained networks for 
any time 3 < t < T − 3 depend on data records from seven successive 
weeks t́ with t − 3 ≤ t´≤ t+ 3. 

Once the network adjacency matrix At is completed, the construction 
of the TVG proceeds by shifting the sliding window of length LM one time 
step forward and repeating the above procedure to evaluate At+1. The 
values of the network parameters τmax, σth, and LM used in Araújo et al. 
[22] for the construction of dengue networks were taken as guidelines to 
specific choices made in this work. 

For the purpose of focusing the analysis to some specific periods, we 
used different values of τmax but, in most cases, the value τmax = 10, 
which implies in looking for maximum synchronization up to 10 steps 
ahead of the first window. As one time step corresponds to one week, 
such a maximum delay is sufficient to detect correlated events well 
displace in time but not exceeding the characteristic time interval of the 
outbreaks. This choice is further empirically corroborated by analyzes 
based on the number of maximal synchronizations in the networks that 
are observed at the delay time τ value for values of τmax in the range 
40–50. 

The time dependent networks in the TVG approach (Fig. 3E) can be 
aggregated to provide a global picture of the underlying process it de-
scribes. To this purpose we consider the aggregated static network (ASN) 
(Fig. 3F), which is a weighted network with the same nodes as those in 
the TVG, where the weight of each edge bij is given by the number of 
times that a directed edge from node i to node j appears in the TVG 
networks. 

To estimate the distances between the municipalities, necessary for 
identifying the spatial dependence of the delay time, we considered the 
latitude and longitude data provided by the Brazilian Institute of Ge-
ography and Statistics [50]. These coordinates were then converted into 
the Mercator’s Universal Transverse two-dimensional Cartesian coor-
dinate system (UTM). It was designed to project a three-dimensional 

sphere onto a two-dimensional map, while the geodesic coordinate 
system – latitude and longitude – are used to locate places on the Earth’s 
three-dimensional surface [33–35]. The unit of measurement of the 
UTM is the meter and this was the reason for choosing this coordinate 
system to calculate the distance between the municipalities. 

3. Data 

The networks were built based on public and non-identified data 
obtained from the Notifiable Diseases Information System of Brazilian 
Ministry of Health (Sistema de Informação de Agravos de Notificação – 
SINAN, in Portuguese) [36]. The used dataset contains the daily reports 
of notified dengue and chikungunya cases for all municipalities in the 
state of Bahia from 2014 to 2020, as well as those of Zika from 2015 to 
2020. Based on original information on date of onset of symptoms and 
residence places, time series of reported cases for the three types of 
arbovirus infections were obtained for each municipality. Finally, daily 
counts were aggregated on a week basis, giving rise to the number of 
weekly reported cases, which were the input data for this work, and the 
time step t corresponds to the epidemiological weeks. 

The state of Bahia, Brazil, has an area of 567,295 km2 and is divided 
into 417 municipalities, mainly connected by a land transportation 
network [37]. Bahia’s territorial area is larger than the areas of countries 
such France (543,965 km2). Besides, Bahia has specific climatic condi-
tions such as varied precipitation, which may justify the non- 
homogeneous number of cases of arboviruses infections as climate is 
usually associated with disease propagation [38]. 

4. Results and discussions 

We start by considering the histograms in Fig. 4 where, for each of 
the three TVGs, each point represents the total number of edges that 
were inserted in any of the corresponding time-varying networks at a 
certain delay time. All of them are characterized by large peaks at low 
values of delay time, which are markedly reduced around τ = 10. A 
further important feature of these histograms is the presence of a second 
broad and much less intense peak at later times, i.e., ~ 34 weeks for Zika 
and chikungunya and 48 weeks for dengue. The found value τ = 10 
justifies selecting also τmax = 10 in most of our analyzes, albeit it was 
necessary to use other values of τmax when investigating the relation 
between the characteristic delay time for disease spreading and inter 
node distance using network indices. In such cases, the investigation 
should cover small to large delay times. The histogram in Fig. 4 runs up 
to τ = 50, so as not to exceed the period of 1 year. 

The main results are addressed in the next four different subsections. 
In the first one, the main network features obtained within the MS 
frameworks are discussed and, in the sequence, the characteristic delay 
time τ for maximal synchronizations. The third subsection brings a 
detailed analysis of the spatial dependence of the delay time with 
maximal synchronization. Finally, subsection four is presents the 
ranking of spreader cities, i.e., those that mostly play the role of trans-
mitting the infection to other network nodes. 

4.1. Main features of the motif-synchronization networks 

In accordance with the methodology discussed in the previous sec-
tion, here we present some important features of the networks obtained 
within the TVG framework that reveal relationships among the number 
of arbovirus cases in the municipalities. The results, which can be 
associated with the phenomenon of disease spreading, turn it possible to 
explicit such relationships based on the obtained values of time delays 
for synchronization. Within this subsection, all networks were generated 
using τmáx = 10. 

The main outputs of our analyses are: (i) the correlation between the 
number of cases and the total number of edges of the networks in the 
TVGs; (ii) a comparison between the evolution curves of the averages of 
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Fig. 3. Scheme of the construction of networks. A) Time series of weekly cases. It will be converted into Motifs time series. B) Time series of motifs and the size 
sliding windows in which the synchronizations of each vertex pair will be calculated. C) Synchronization matrix, in which each element represents the degree of 
synchronization of each vertex pair. D)Matrices of correlation with the representation of network connections LM. E) Representation of the networks created for each 
moment of time (TVG). E) Aggregate Static Network, in which it has the information of the connections of all TVG networks. 
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cases with the weighted degree of these networks. 
The correlation between the number of cases and number of edges 

can be appreciated in Fig. S2, where each point condenses the infor-
mation for a single week. The number of cases is performed over the 
weekly registered cases of all municipalities, while the number of edges 
counts how many edges appear in the corresponding TVG network for 
the same week. The corresponding Pearson correlation values for each 
arbovirus are presented in Table S1. 

The obtained values are high (> 0.89) for the three arboviruses, 
indicating that an overall increase in the number of cases of the diseases 
in the different municipalities is associated to an increase in the number 
of networks edges. In the work by Araújo et al. [22], such an analysis 
was carried out to test the hypothesis that the TVG networks within the 
motif synchronization method could characterize the spread of dengue 
in the municipalities. The obtained large correlation between the vari-
ables leads the authors to conclude that the enounced hypothesis was 
valid. Thus, the results in Table S1 for dengue, Zika, and chikungunya 
provide support to the hypothesis that evaluating the properties of TVG 
networks is a good way to characterize the spread of these arboviruses. 

A comparison between the time series for the average degree of the 
network and the average of cases is presented in Fig. 5. The average of 
cases was obtained from the average number of cases in all municipal-
ities in the period of 7 weeks. 

The first observation is that the time series of the average degree and 
the average of cases show very similar patterns. This result is closely 
related to those in Fig. S2, once the previously discussed increase in the 
number of networks associated with the increase of the number of cases 
will naturally increase the average node degree of the network. As ex-
pected, the high values of the R-Pearson coefficient in the fourth col-
umns of Table S1 attest the presence of strong correlation (> 0.92). The 

increase in the average degree of the network when there is an increase 
in the average of cases, suggests that the outbreaks detected in most 
municipalities are connected with each other. 

In Table 1 we indicate the months in which the largest numbers of 
arbovirus cases occurred, and highlight in orange those peaks with the 
corresponding largest values of the network average degree in the 
graphs in Fig. 5. 

The peak positions shown in Table 1 indicate a fairly periodic sea-
sonal pattern for the dengue occurrences during the whole investigation 
period, with largest intensities in 2015 and 2016. Similarly, the network 
approach also assigns largest value of average node degree. However, 
the major outbreaks of the other two arboviruses, concentrated in 2015 
and 2016, were far less likely to exhibit the same seasonal dependence in 
the corresponding curves of Fig. 5. 

Fig. 4. Delay time histograms for the three TVGs. The horizontal axis range from τ=0 (when there is no delay between the time series) up to τ=50, which represents a 
delay equivalent to 50 weeks in the synchronization of the case series. 

Fig. 5. Time series of average of cases and mean degree of networks.  

Table 1 
Months and years with largest numbers of the average degree graph in Fig. 5. 
The months where outbreaks attained highest values (peak tips) are high-
lighted in orange. 

Peak positions

Chikungunya May/2015 Jan/2016 Dec/2016 May/2019 May/2020

Dengue Mar/2014 Apr/2015 Mar/2016 Feb/2017 May/2018

Zika Jul/2015 Mar/2016 Dec/2016 May/2020
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We further observe that the time interval between the largest out-
breaks of chikungunya and Zika was 34 weeks, which coincides with the 
second peak observed in the time delay histogram in Fig. 4. What con-
cerns dengue, a second peak in the delay time histogram was observed at 
~48 weeks, which is much closer to the seasonal periodicity commented 
before. The presence of such shallow peaks at in Fig. 4 should not be 
interpreted as resulting of the transmission from one specific city to the 
other one over such a large period, but as an evidence that the spreading 
process follows similar patterns at each new outbreak. 

Table S2 details the initial and final months of the two main 2015 
and 2016 outbreaks for the three arboviruses, which cover approxi-
mately 80 weeks. In Sub-section 4.3 we will analyze some special fea-
tures presented by each of them, by considering the dependence 
between the obtained time delay for the synchronization and the 
intercity distance. 

4.2. Characteristic delay time 

In this sub-section we discuss specific features of the delay time in the 
synchronization of arbovirus networks, as an alternative way to char-
acterize the time dependence of the disease spread over the considered 
region. In such way it is possible to test the hypothesis that the syn-
chronization delay time is somehow related to the time that the viruses 
take to be transported between cities. 

Thus let us consider again the delay time histograms in Fig. 4 which, 
in order to investigate the longest possible delay of synchronizations, 
were obtained for TVG networks built with τmax = 50 weeks, in such way 
that τ ∈ [0,50] weeks. There we see that most edges have a delay time of 
1 week. Araújo et al. [22] estimated that the most likely delay time for 
dengue networks was around 2 weeks, which is consistent with our re-
sults indicating that the most frequent delay times were observed for τ =
1, 2, and 3. 

These authors also emphasize that the obtained value τ = 2 may be 
related to the dengue transmission cycle between individuals, as sup-
ported by the current literature indicating that the extrinsic incubation 
period, which is the period when the mosquito bites an infected person 
and begins to become infectious, varies between 8 and 12 days [39,40]. 
The intrinsic incubation phase, which represents the period between the 
individual being bitten and the onset of symptoms [39], ranges from 4 to 
10 days for dengue [40], 3 to 14 days for Zika [41] and 1 to 12 days for 
chikungunya [6]. Although the extrinsic and intrinsic incubation pe-
riods vary for each arbovirus, we can consider all arboviruses together 
and consider that this period can vary between 9 and 24 days, which 
encompasses the 2 to 3 weeks period mentioned by Araújo et al. [22]. 
Due to the resolution of the time series, the delay time of 1 week within 
the TVG approach actually ranges from a delay of 7 to 13 days, so that τ 
= 1 in network synchronization is in accordance with the intrinsic and 
extrinsic incubation periods. 

To uncover the origin of other smaller peaks observed around 34 

weeks for Zika and chikungunya, and 48 weeks for dengue, we built 
similar histograms as those in Fig. 4 whereby only the delay times cor-
responding to the period comprising the two main detected outbreaks 
were taken into account. This corresponds to an 80 week interval be-
tween the last months of 2014 and June of 2016, as indicated in 
Table S2. The results in Fig. 6, indicating that the secondary peaks have 
been comparatively highly magnified, indeed suggest they were asso-
ciated with the time interval covered by the two largest peaks in Fig. 5. 
Therefore, taking into account the characteristic times for intrinsic and 
extrinsic incubation periods quoted above, we conclude that the syn-
chronizations among the motifs with such large values of τ result from 
the superposition of two outbreaks and, as such, should not have sig-
nificance for the disease spread in a single outbreak. 

4.3. Spatial dependence of delay times 

Here we investigate the relationship between the geographical dis-
tance between the cities represented by nodes and the synchronization 
delay time used as a condition for including a network edge between 
them. The results aim confirming or denying the existence of a growing 
monotonic relationship between these two measures associated with the 
TVG networks. The delay time in synchronizations would then be 
greater as the distance between the municipalities increases, due to the 
larger time required for the virus to spread from one city to the other. 
The results were obtained for τmax = 40 weeks. 

The graphs in Fig. S3 show the average delay time as a function of the 
intercity distance, whereby each point congregates the contributions of 
intercity distances within a bin of width 10 km. The results, which cover 
the entire available periods in the data set, namely, from 2014 to 2020 
for dengue and chikungunya and from 2015 to 2020 for Zika, fail to 
indicate a clear monotonous relationship between the variables. 

However, one must consider that these results are actually average 
values, as they account for delay times stemming from a large time in-
terval, and that relevant details of individual outbreaks may have been 
severely blurred. To clear out this issue, we obtained similar results 
based on the data covering smaller time intervals, as those including the 
two large outbreaks characterized in Table 1 and Fig. S4, in which they 
are identified as Outbreak 1 and Outbreak 2, respectively. Table 1 shows 
the periods of these two outbreaks for each of the arboviruses. The 
analysis of these two periods was done by selecting the networks of the 
first outbreak and the networks of the second outbreak separately. 

For each event characterized as Outbreak 1 and 2, we show in Figs. 7, 
S5, S6 and S7the corresponding graphs of delay time vs. intercity dis-
tance for the three TVG networks, whereby in Fig. 7 we considered 
τmax = 40 only, while in Fig. S5, S6 and S7 we let τmax assume different 
values in order to illustrate the role played by this parameter in estab-
lishing a dependence between delay time and intercity distance. Note 
that, when τmax = 40–9 months, the networks in the first outbreak admit 
synchronizations between weeks which belong already to the period of 

Fig. 6. Histogram of delay times for the period comprising the largest outbreaks in Fig. 5. A) Chikungunya. B) Dengue. C) Zika.  
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the second outbreak (Table 1). Similarly, networks in the second 
outbreak may include synchronization with data 40 weeks ahead which, 
as indicated in Table 1, do not reach the next peak. When using smaller 
values as τmax = 10, the networks from the first outbreak may include 
only small amount of data in the beginning of the second outbreak, so 
that it is more likely to progressively obtain information from single 
isolated outbreaks. In summary, in the following analyses, we consider 
τmax = 40 in order to study the spatial dependence of delay time, 
whereas τmax = 10 was used when we wanted it to be an isolated anal-
ysis of outbreaks. 

Fig. 7 shows the results for each arbovirus and outbreaks with τmax =

40 weeks. During the period comprising the first outbreak, identified as 
Outbreak 1 in Fig. 7A, it is possible to identify a monotonous increase of 
the delay time with the intercity distance for the three arboviruses. For 
dengue, with the smallest increase tendency, we further observe that the 
error bars are too large, so that the inference of a spatial dependence of 
the delay time may be questionable. However, in the case of Zika and 
chikungunya, the spatial dependence of the delay time is more strongly 
evidenced. On the other hand, results for the networks in second 
outbreak period in Fig. 9B do not show identifiable spatial dependence 
of the delay time. 

To clear out further aspects of the relationships between time delay 
and intercity distance (Fig. 7), we developed three different strategies 
and used them to analyze the data for the period of the two largest 
outbreaks. In first place we generated TVG networks for delay times 
τmax= 5, 10, 20, 30 and 40 (Fig. S5, Fig. S6 and Fig. S7), making it is 
possible to see whether more distant municipalities would be connected 
in networks with smaller delay times. Next, we identified the 

municipalities that appeared in the TVG networks of each outbreak, with 
special attention to those that were present in second one but not in the 
first. This way it was possible to identify virus spread to municipalities 
that occurred only during outbreak 2. Finally, we used the framework of 
aggregate static networks ASN to analyze the entire period comprising 
the two main outbreaks. 

The results for different values of τmax are shown in Figs. S5, S6 and 
S7. In the chikungunya networks (Fig. S5) connections appear only be-
tween the closest municipalities when τmax=5. As its value progressively 
increases, new edges connecting more distant municipalities appear. 
This picture is consistent with the facts that the chikungunya virus has 
arrived in Bahia in 2013–2014 and that the analyzed outbreaks were the 
first large observed occurrences, when the virus reach municipalities far 
apart the first infected ones, gradually spreading throughout the state. 

The dengue networks (Fig. S6) do not show this pattern, as networks 
with τmax = 5 includes connections among distant municipalities. The 
same occurs in the Zika networks (Fig. S7), with connections among 
distant municipalities connected even for short delay times. However, 
the resulting patterns for the corresponding networks when τmax=30 and 
40 are different from each other: for the Zika networks the points are 
aligned along an increasing line with large slope, whereas such a ten-
dency can hardly be detected for dengue. 

The chikungunya and Zika viruses have been presumably been 
introduced in Brazil in 2013 and 2014 (a relatively short delay ~1 year), 
when the country hosted international sport events [5,24,42,43]. As it 
took a while for each of them to be transported to municipalities far 
away from the places where they were introduced, the relevant differ-
ences between the patterns in Fig. S5 and S7 are quite surprising. A 

Fig. 7. Delay time vs. time graphs. Distance to dengue, Zika and chikungunya networks. A) Outbreak 1 period networks. B) Outbreak 2 period networks.  
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possible explanation is the fact that clinical symptoms of Zika are very 
similar to those of dengue. So, it may be that, upon the virus being 
introduced in Bahia, the first infected individuals were not reported as 
Zika cases, while the first reported cases – from 2015 onwards [3] – only 
happened when the virus had already spread into several regions. 

The identification of municipalities where chikungunya and Zika had 
not been reported until the start of Outbreak 2 offers a way to account 
for the continuity of the spreading process. Table S3 shows the per-
centage of municipalities at least one case in the corresponding out-
breaks, as well as the percentage of municipalities in which cases were 
reported only in Outbreak 1 or in Outbreak 2. 

Table S3 reveals a significant increase in municipalities with cases of 
chikungunya (from 51 % to 80 %) and Zika (from 58 % to 86 %) from 
Outbreak 1 to Outbreak 2, as well as a large number of municipalities 
with cases first reported in Outbreak 2 (42 % for chikungunya and 36 % 
for Zika). On the other hand, dengue shows similar percentage of mu-
nicipalities with at least one case in each of the outbreaks (94 % in 
Outbreak 1 and 95 % in Outbreak 2), and only a small amount (5 %) of 
municipalities with cases in Outbreak 2 but not in Outbreak 1. These 
results support that chikungunya and Zika went through a spreading 
process among the municipalities from the end of 2014 to June of 2016, 
while dengue virus were already present in the large majority of the 
municipalities. 

Finally, we obtained and analyzed the ASN’s corresponding to the 
periods comprising the two main outbreaks (Fig. S8). In this process we 
considered τmax = 10 in such a way to avoid synchronization between 
distinct outbreaks and to restrict the analysis to each indicated period. 

The chikungunya networks show that, during the first outbreak 
(Fig. S8A), only the closest municipalities are connected to each other. 
This connection pattern expands to the other municipalities after the 
second outbreak (Fig. S8B), supporting again the scenario that the virus 
was found initially in a relatively small region and spread later to more 
distant places. Similar features are also displayed by the Zika networks 
(Fig. S8C and S8D), i.e., the edges connecting mainly municipalities in 
the northeast part of the state during the first outbreak and spread over 
time to the central, west and south regions. 

The dengue networks for the first and second outbreaks (Fig. S8E and 
S8F) include short and long distance connections among municipalities 
in all state regions, a completely different pattern when compared with 
the recently introduced arbovirus. Therefore the three aspects revealed 
by Figs. Fig. 7, S5, S6 and S7 and Table S3 consistently indicate that 
dengue, which established in the whole state mode than 25 years ago, 
has lost, the spatial diffusive character still identified in the first Zika and 
chikungunya outbreaks. 

In a previous work using the TVG approach, Araújo et al. [22] 
identified the absence of any dependence between delay time and 
intercity distance in dengue networks for the period 2001–2016. They 
raised the hypotheses of a non-local virus spread caused by the rapid 
intercity people commuting through modern transport systems, which 
allows people to move great distances and causing virus transmission to 
occur almost simultaneously in different regions. Results found by Saba 
et al. [18] also highlighted the role played by the transport system on the 
spread of dengue among the municipalities. 

However, it is also necessary to consider that dengue, being estab-
lished in the region for a long period, has become a disease of local 
dissemination, irrespective of the occurrence of further spatial dissem-
ination by the transport system. This would require the presence of a 
small number of individuals carrying the dengue virus in a large number 
of cities in such a way that, when there is an uncontrolled increase in the 
number of mosquitoes cause the local number of dengue cases increases 
in each region. It is known that seasonal climatic conditions [40], e.g., 
periods of great heat and humidity, highly favor the appearance of virus 
transmitting mosquitoes. 

To have additional indications on the origin of the different depen-
dence patterns, we analyzed the chikungunya and Zika outbreaks 
occurred in 2020 (see Fig. S3), respectively 7 and 6 years after they were 

introduced in Brazil. Fig. S9A and Fig.S9 show the corresponding chi-
kungunya and Zika ASNs. In order to follow the pace at which new 
connections are introduced into the networks, we repeated the analysis 
for different values of τmax ∈ [0,10]. 

The main features in the chikungunya networks (Fig. S9A) is the 
presence of short and long distance connections for all τmax values, even 
for τmax = 0 and 2. Differences observed when its value increases refer 
mostly to an increase in the number of edges, irrespective of their short 
or long distance character. In this sense, it differs from the evolving 
patterns in Fig. S8A and B corresponding to the years 2014/2015 and 
2016. The same scenario is valid for the Zika networks shown in 
Fig. S9B. These analyses support hypothesis that, once the arboviruses 
establish themselves in a given region, the emergence of new outbreaks 
does not follow those features associated with a spatial spreading of a 
causing agent. 

4.4. Identification of spreading out-hubs 

Following a remark on the directed character of the TVG networks in 
Subsection 2.2, here we analyze the role played by out-hub municipal-
ities, i.e., those with largest number of outgoing edges in the TVG net-
works. Once infections in such cities usually precede those that receive 
their out-edges, they play key role in the disease spreading. Paying 
greater attention to their outbreaks might help reducing the arboviruses 
cases in the state. 

In the TVG networks using motif-synchronization network con-
struction, whenever a vertex is connected with another one with a delay 
time τ > 0, there is a directed edge from the predecessor vertex to the 
successor vertex. Thus we proceed by identifying the vertices that acted 
as predecessors for largest number of TVG networks. 

We start with the ASN and filter out the undirected edges, i.e., edges 
with zero delay time are not included for the purpose of investigating 
predecessor municipalities. The so obtained directed ASN undergoes a 
new filtering process to select the edges with the largest weights. The 
used criterion is that they must be larger than a threshold value, cor-
responding to the weight average plus two standard deviations: 

bth =
〈
bij
〉
+ 2ζ  

where ζ indicates the standard deviation of the ASN weight. 
The set of edges with bij ≥ bth define a subnetwork called HUBASN, a 

ASN subnetwork formed by its out-hubs only. For each municipality i we 
define the total weight Wi =

∑
jbij and the source frequency θi which 

counts the number of values of j for which bij > 0. 
Table S4a lists, in descending order, the municipalities with highest 

source frequency θi, i.e., those that are predecessors of a very large 
number of municipalities. Table S4b shows, also in descending order, 
the municipalities with largest total weights Wi. 

Looking the other way around, in Table 2 we list those municipalities 
that simultaneously act as predecessor for the three arboviruses for the 
entire period networks. 

Looking the other way around, in Table 2 we list those municipalities 

Table 2 
List of municipalities present simultaneously in the three arboviruses rankings in 
Table S4.  

Municipalities present simultaneously in 
the three arboviruses – Source 
frequencies θi 

Municipalities present simultaneously 
in the three arboviruses – Total weights 
Wi 

Camaçari Camaçari 
Feira De Santana Feira de Santana 
Ilhéus Ilhéus 
Itabuna Itabuna 
Salvador Salvador 
Serrinha Serrinha 
Simões Filho Simões Filho  
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that simultaneously act as predecessor for the three arboviruses for the 
entire period networks. We conjecture they constantly suffer the pres-
ence of a large vector population, a necessary condition to transmit all 
three arboviruses. Besides being the most populous in Bahia, they are 
known to be hubs in the state’s transport network, with a large commute 
movement of people from different locations. 

A better display of the most significant predecessor municipalities in 
the networks for each of the arboviruses can be observed in plots of Wi as 
function of θi, as highlighted in Fig. S10. 

Table 3 identifies the four highlighted municipalities for each arbo-
virus in Fig. S10. They had a greater relevance for the spread of different 
viruses during the period of study, particularly during the 2015 and 
2016 outbreaks that concentrated the majority of reported cases. It is 
interesting to observe the important role played by Santa Luz (chi-
kungunya) and Campo Formoso (Zika) during the corresponding 
outbreak periods, although they have relatively small population as 
compared to other cities in the table. Another fact to note is that, with 
exception of the state capital Salvador and the regional center Itabuna, 
the other municipalities appear just once in the tables. Although we 
found seven municipalities appear simultaneously in the top 20 ranking, 
just one of them remains present in the top 4 ranking. It is to be expected 
that the same municipalities responsible for the spread of each arbovirus 
were the same. The hypothesis is that when the virus establishes itself in 
a certain region, it is predominant, and there cannot be outbreaks of 
different arboviruses in the same locality. This hypothesis can be tested 
using a model in future work. 

Despite the importance of identifying the predecessor municipalities 
for the different arboviruses, the municipalities of the Table 3 were the 
most important ones for the period studied (2014 to 2020), but may not 
characterize other periods. Therefore, the municipalities contained in 
Table 3 are places where it is important to maintain surveillance, in 
terms of vector control and in the event of an increase in cases, as they 
are municipalities that presented the highest transmissions regardless of 
arboviruses. 

5. Conclusions 

In this work we analyzed the transmission of arboviruses – dengue, 
Zika and chikungunya – across cities in a bounded geographical focusing 
on the occurrence of cases in different places and the delay time between 
these occurrences. We use the motif-synchronization method, which 
allows for the synchronization of time series for different delay times. 

This methodology, which was already used to analyze dengue data 
[22], was applied in this work to study new data for the three arbovi-
ruses in the period 2014–2020. Our results estimate the synchronization 
delay times, their temporal dependence, and identifies the spatial 
characteristics playing key role in the spreading processes of the 
different arboviruses. 

A characteristic delay time of 1 week in network synchronizations 
was found to be highly compatible with the individual-mosquito- 
individual transmission time. Despite the difference to the reported 

delay time of 2 weeks observed previously [22], the obtained histogram 
of time delay occurrence assigns a large peak covering 1–2 weeks range 
in both works. 

The networks showed different spreading processes for arboviruses 
depending on the period studied. For the period 2015 and 2016, dengue 
virus was already present in all municipalities, in contrast with the Zika 
and chikungunya viruses, which resulted in a diffusion-like pattern 
across the municipalities. The results obtained for Zika and chikungunya 
in the year 2020 reveal a pattern that is approaching that of dengue, 
showing that they were already scattered in different regions, even at 
the beginning of the outbreak of that period. Other studies have used 
spatial methods to explain the spread of arboviruses within municipal-
ities, thus much smaller spatial areas, also established that the spread of 
arboviruses occurs to neighboring locations mostly by diffusion 
[44–48], which corroborates our results. 

The results show that the intercity transmission of diseases through 
the displacement of people and mosquitoes is one of the factors that 
influence the increase in cases in different regions, especially when it 
comes to a recent disease. But it was seen through the analysis of the 
spatial dependence of the time delay that this process takes time, as the 
greater the distance from the epicenter of the outbreak, the longer the 
time for these viruses to arrive in each region. However, once it is 
established, as mentioned above, other factors seem to be more relevant 
for the outbreak of these arboviruses in each region, such as climatic 
conditions, ineffective and insufficient vector control measures, popu-
lation density and bad sanitation. These results suggest that different 
combat strategies are essential on the stage of dissemination of each 
disease in different regions. For a recent disease, when population is 
naïve, controlling the flow of people in different regions can become an 
effective measure, but when diseases become established in some places, 
the mobility of people is only one factor on the dynamics of transmission 
of arboviruses. It is also important to consider that although dengue 
virus has been circulating in Bahia since the 1980s, there are four se-
rotypes and constant population replacement. For chikungunya and 
Zika, until 2014 and 2015 the population was completely naïve, offering 
a large number of susceptible that collaborated in the transmission of the 
disease. 

The methodology used made it possible to identify the municipalities 
that proved to be the main predecessors in the synchronizations and the 
identification of these epicenters constitutes important information to 
surveillance services, to intensify the vector control measures, avoiding 
new outbreaks and epidemics in neighboring areas. The predecessor 
municipalities common to the three arboviruses were identified - which 
are municipalities that must be associated with a high infestation of the 
vector, naïve population, high population density, absence or insuffi-
cient control measures and bad sanitation. We also identified the mu-
nicipalities that were the most predecessors for each of the arboviruses 
by periods, but may not characterize that they were the most important 
for other periods. 

Table 3 
Lists of the municipalities with the largest values of Wi as function of θi for each of the arboviruses. 
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