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Abstract

Background: The extent to which environmental exposures and community

characteristics of the built environment collectively predict rapid lung function

decline, during adolescence and early adulthood in cystic fibrosis (CF), has not been

examined.

Objective: To identify built environment characteristics predictive of rapid CF lung

function decline.

Methods: We performed a retrospective, single‐center, longitudinal cohort study

(n = 173 individuals with CF aged 6–20 years, 2012–2017). We used a stochastic

model to predict lung function, measured as forced expiratory volume in 1 s (FEV1)

of % predicted. Traditional demographic/clinical characteristics were evaluated as

predictors. Built environmental predictors included exposure to elemental carbon

attributable to traffic sources (ECAT), neighborhood material deprivation (poverty,

education, housing, and healthcare access), greenspace near the home, and

residential drivetime to the CF center.

Measurements and Main Results: The final model, which included ECAT, material

deprivation index, and greenspace, alongside traditional demographic/clinical

predictors, significantly improved fit and prediction, compared with only demo-

graphic/clinical predictors (Likelihood Ratio Test statistic: 26.78, p < 0.0001; the

difference in Akaike Information Criterion: 15). An increase of 0.1 μg/m3 of ECAT

was associated with 0.104% predicted/yr (95% confidence interval: 0.024, 0.183)

more rapid decline. Although not statistically significant, material deprivation was

similarly associated (0.1‐unit increase corresponded to additional decline of 0.103%
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predicted/year [−0.113, 0.319]). High‐risk regional areas of rapid decline and age‐

related heterogeneity were identified from prediction mapping.

Conclusion: Traffic‐related air pollution exposure is an important predictor of rapid

pulmonary decline that, coupled with community‐level material deprivation and

routinely collected demographic/clinical characteristics, enhance CF prognostication

and enable personalized environmental health interventions.
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community material deprivation, geomarker, greenspace, medical monitoring,
traffic‐related air pollution

1 | INTRODUCTION

Cystic fibrosis (CF) is a life‐limiting autosomal disease marked by

progressive loss of lung function wherein nongenetic influences

reportedly explain 50% of the variation in lung function in

adolescents and young adults.1 Rapid decline in lung function is a

sustained drop relative to patient‐ and/or center‐level norms that

typically manifests from 12 to 21 years of age.2,3 Early detection has

enabled timely and effective treatment in pediatric CF clinical

settings, which has corresponded to improved lung function.4,5

A growing body of evidence has characterized how environmental

exposures and community characteristics of the built environment

associated with rapid lung function decline. For example, lung

function, measured as forced expiratory volume in 1 s of % predicted

(FEV1pp), was lower by an average of 4.1% predicted (95%

confidence interval [CI]: 3.2–5.0) when comparing children with CF

living in the most versus least deprived areas in the UK.6 Although

there are few small area deprivation studies of people living with CF,

individual‐level characteristics like Medicaid insurance status are

more frequently studied. Seminal work by Schechter et al.7 showed

that average FEV1pp was 9.1% predicted (95% CI: 6.9–11.2) lower in

Medicaid versus non‐Medicaid groups. However, there is limited

research on how neighborhood deprivation, in combination with

individual level proxies of socioeconomic status like Medicaid

insurance, relate to FEV1pp decline. In a different aspect of

environmental exposure research, Goss and colleagues linked air

pollution values to the US CF Registry and showed that increased

exposure to ozone and fine particulate matter (e.g., inhalable particles

with aerodynamic diameters ≤ 2.5 μm, denoted PM2.5) associated

with declining lung function and more frequent pulmonary exacer-

bations.8 A study in British Columbia of adults with CF found that

patients who lived farthest away from their CF care center (drivetime

>360min) were at increased risk of experiencing rapid lung function

decline, compared to those with the shortest commute (<45min);

respective rates of decline were 3.1% predicted/year (1.1, 5.1) versus

0.9 (0.1, 1.6).9

Traffic‐related air pollution (TRAP), a complex mixture of particles,

gasses, and other compounds emitted from traffic sources, have been

consistently associated with childhood wheezing, asthma exacerbation,

and the onset of asthma.10–12 Land use characteristics, including

greenspace, may also play a role in respiratory health via the mediation

of other environmental exposures or directly through increased allergen

exposure.13 Greenspace can be estimated using satellite‐based images

and can span from forests to shrublands or grasslands to lawn grasses.

Neighborhood characteristics and resources are also important determi-

nants of health and have been captured through a transformation of

related community‐level measures into a neighborhood material depriva-

tion index.14 Despite their known roles in other respiratory diseases,

these “geomarkers” have received limited attention in CF; consequently,

little is known about their collective prognostic value in assessing lung

function decline among CF patients.

For these reasons, we conducted a longitudinal study of a

Midwestern US cohort to determine the manner and extent to which

place‐based characteristics of the built environment are associated

with or predictive of rapid lung function decline in children and

adolescents with CF. We hypothesized that including built environ-

mental risk factors would yield more accurate lung function

prediction and improved fit to the data, compared to relying only

on demographic/clinical surveillance characteristics. Preliminary

results were presented at the North American CF Conference.15

2 | MATERIALS AND METHODS

2.1 | Cohort

We performed a retrospective longitudinal cohort study of individuals

with a documented CF diagnosis who received care at the Cincinnati

Children's Hospital Cystic Fibrosis Center in Cincinnati, OH, USA

(2012–2017). Clinical encounter data were acquired on individuals ≥6

years of age, to obtain valid lung function measurements from pulmonary

function tests; maximum follow‐up age was 20 years.

2.2 | Outcome and predictors

The primary outcome was FEV1pp obtained under AmericanThoracic

Society guidelines and using standard reference equations.16,17

2 | GECILI ET AL.
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Previously identified risk factors of rapid FEV1pp decline in CF18

were considered potential predictors, including time‐invariant vari-

ables: sex, genotype (F508del homozygous, heterozygous, or neither/

unknown), and pancreatic insufficiency (defined as ever taking

pancreatic enzymes), and time‐varying variables: age at clinic visit

(years), Medicaid insurance use, diagnosis of CF‐related diabetes

mellitus, culturing positive for Pseudomonas aeruginosa (Pa) infection

and Methicillin‐resistant Staphylococcus aureus (MRSA) infection.

Residential addresses observed at each encounter date were

geocoded using DeGAUSS19 and used to derive four key geomarkers

that measure characteristics of the built environment, which were

considered as predictors. Geomarkers included a surrogate of TRAP

exposure known as elemental carbon attributable to traffic sources

(ECAT), neighborhood deprivation index (assesses extent of poverty,

vacant housing, assisted income living, educational level, median income,

and health insurance coverage for a given neighborhood), percentage of

greenspace near the home, and residential drivetime to the CF center.

ECAT is aTRAP marker that was estimated for the 3 months before each

clinical encounter using a previously validated spatiotemporal land‐use

model.12 Greenspace was defined as the percentage of 30m×30m

pixels within 400m of the residential address classified as green by the

National Landcover Database. Access to CF care was measured using

drivetime from patient residence to the CF center. Drivetime was

calculated using drivetime isochrones from OpenRoute Service and

defined ordinally with 11 categories for time increments of 6min, with

the last category representing drivetimes >60min. We included drivetime

as a continuous variable in the model, since an ordinal variable with five or

more categories can be efficiently included as a continuous covariate in

regression models.20 Community material deprivation was derived at the

census‐tract level using an index comprised of American Community

Survey measures related to poverty, education, housing, and access to

healthcare.14

2.3 | Sample size and missing data

The available analysis cohort size for prediction model development

was evaluated under four criteria established for prediction modeling

with a continuous outcome under linear regression21 (Section A,

Supporting Information). Observed FEV1pp after lung transplant was

censored. An available case analysis strategy was undertaken,

assuming that data followed the missing at random assumption.22

2.4 | Statistical analysis methods

Descriptive analyses were performed to evaluate data quality and

ranges. Scatterplot smoothing and univariable regressions were used

to examine the nature of individual relationships between the

outcome and each predictor. A conceptual model of relationships

between demographic, clinical, and built environment factors in

relation to outcome was adapted from an established directed acyclic

graph (DAG) for asthma research (Figure 1).23 The TRIPOD reporting

checklist for prediction model development studies was followed.24

All analyses were implemented using R version 4.1.0 (R Foundation

for Statistical Computing). Detailed statistical considerations, includ-

ing model equations, software implementation, and additional tables

and figures, are provided in Supporting Information.

We utilized an established linear mixed effects model framework that

incorporated more flexible covariance structures to model FEV1pp

decline.25 Age at clinical encounter (in years) served as the time variable.

Each model included fixed effects to estimate the association between a

selected covariate and outcome, including interaction effects (covariate ×

time) to estimate association between a given covariate and rate of

change in the outcome, a random effect to capture between‐patient

variation in lung function, a specialized covariance function to account for

longitudinal correlation between lung function measurements taken on

the same individual over time, and a residual error term.

We examined fit and predictive value individually for each

covariate (Table S1). To provide context for environmental covari-

ates, higher concentrations of ECAT are expected to result in worse

health, higher levels of deprivation correspond to higher deprivation

and worse health, and higher levels of greenspace correspond to

better health. To obtain a final reduced model, covariates (demo-

graphic, clinical, and environmental) were jointly selected using an

adaptive Bayesian lasso approach built under the aforementioned

longitudinal lung function decline model.26 Candidate covariates

were further evaluated using change in Akaike information criteria

(delta‐AIC) and the likelihood ratio test (LRT) to check contribution to

model fit to assess improvement in prediction performance. Second-

ary selection methods were Bayesian lasso, ridge, and elastic‐net

(results presented as supplemental material). Prediction performance

metrics included root‐mean‐square error (RMSE), mean absolute

error (MAE), and mean absolute percentage error (MAPE) from

overall and five‐fold cross‐validation replicated 20 times (lower

values indicate better accuracy to predict lung function).

F IGURE 1 Conceptual model of relationships between
demographic, clinical, and built environment factors in relation to
outcome. ECAT, elemental carbon attributable to traffic exposure; Pa,
Pseudomonas aeruginosa. [Color figure can be viewed at
wileyonlinelibrary.com]

GECILI ET AL. | 3
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Once we finalized the model of FEV1pp decline, we predicted the

occurrence of rapid decline using predictive probabilities based on

the model, which accounts for measurement error in FEV1pp data.27

Specifically, we estimated the predictive probability, for a given

individual at a given time, of their FEV1pp slope falling below −1.5%

predicted/year (see Supporting Information for equations). This

threshold was selected based on clinical judgment, graphical

inspection in previous work,28 and has been reported in prior

research.29 A higher probability implies a greater risk of rapid decline.

We examined these real‐time predictive probabilities of rapid decline

over time for each patient.

2.5 | Prediction maps

Interactive and static maps were developed to investigate relative

and combined contributions of geomarkers in predicting rapid lung

function decline in CF across the geographic region of the study

cohort. Each HTML file in the supplement is designed for a user to

search a specific place of interest along with additional lookup

functions. Additional static maps are provided in Figures S2 and S3.

2.6 | Ethical statement

This study was approved by the Cincinnati Children's Hospital

Medical Center Institutional Review Board (Protocol ID: 2018‐5936).

3 | RESULTS

3.1 | Cohort and built environment characteristics

The analysis cohort consisted of 173 CF patients (52.6% male)

aged 6–20 years old with more than half who were F508del

homozygotes (characteristics summarized in Table 1). There was

TABLE 1 Clinical and built environment characteristics*.

Clinical Built environment

F508del mutation ECAT, μg/m3 (in prior 3 months before PFT)

Homozygous 98 (56.65%) At baseline 0.391 (0.143)

Heterozygous 67 (38.73%) During follow‐up 0.359 (0.128)

None 8 (4.62%) Deprivation index

Male gender 82 (47.40%) At baseline 0.307 (0.088)

Age at baseline, years 10.60 (4.25) During follow‐up 0.308 (0.096)

FEV1pp at baseline 93.55 (19.43) Greenspace, %

BMI percentile at baseline 54.91 (25.03) At baseline 86.53 (14.62)

Medicaid insurance use 70 (40.46%) During follow‐up 88.59 (13.01)

Microbiology Drivetime to center (min)

Pa At baseline

At baseline 26 (15.03%) 0–6 2 (1.15%)

Ever during follow‐up 112 (64.74%) 7–12 4 (2.31%)

MRSA 13–18 14 (8.09%)

At baseline 30 (17.34%) 19–24 31 (17.91%)

Ever during follow‐up 78 (45.08%) 25–30 36 (20.80%)

CF‐related diabetes mellitus 34 (19.65%) 31–36 31 (17.91%)

Duration of follow‐up, years 4.48 (2.95) 37–42 15 (8.67%)

Number of PFTs 25.69 (22.9) 43–48 23 (13.29%)

49–54 9 (5.20%)

55–60 5 (2.89%)

> 60 3 (1.73%)

Abbreviations: CF, cystic fibrosis; ECAT, elemental carbon attributable to traffic exposure; FEV1pp, forced expiratory volume in 1 s of % predicted; MRSA,
methicillin‐resistant Staphylococcus aureus; Pa, Pseudomonas aeruginosa; PFT, pulmonary function test; SD, standard deviation.

*Expressed as mean (SD) for continuous variables and n (%) for categorical variables.

4 | GECILI ET AL.
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an available sample size of 248 individuals over follow‐up, but we

restricted primary analysis to 173 patients due to missingness in

select variables (Figure S4). The majority of patients in the analysis

cohort went on to develop Pa over follow‐up and nearly half were

diagnosed with MRSA. ECAT exposure and deprivation index at

baseline averaged 0.307 μg/m3 and 0.307, respectively, and were

similar during follow‐up, while extent of greenspace was high

overall (86.53%). Most patients (57%) had drivetime from 19 to

36 min. Patients contributed 4445 lung function measurements

(FEV1) over the follow‐up timeframe. The median number of

observations per patient was 20 and ranged from 1 to 145.

Patients with missing data on one or more predictors (demo-

graphic, clinical, or built environment) were excluded from the

analysis cohort. Data from those patients who resided in locations

without available ECAT exposure estimates (n = 68) or did not have

an address that could be geocoded (n = 5) were excluded. Two

patients were excluded due to missing BMI data.

3.2 | Prediction modeling results

Deprivation index, drivetime to health center, extent of green-

space, and ECAT were associated with FEV1pp in individual

regressions (Table S1). After adjusting for demographic/clinical

characteristics including sex, Medicaid insurance use, CF‐related

diabetes, BMI, infections with Pa and MRSA, and performing

covariate selection, we found that including deprivation index,

greenspace, and ECAT exposures as a main effect and their

interaction with age yielded a significantly better fit and improved

prediction of FEV1, compared with a model with only clinical/

demographic characteristics (Table 2). Based on the final model

from lasso selection, exposure to ECAT was associated with a more

rapid decline; specifically, an increase of 0.1 μg/m3 of ECAT was

associated with a 0.104% predicted/yr (95% CI: 0.024, 0.183)

more rapid decline when adjusted for other environmental

exposures and routinely collected demographic/clinical covariates.

Similarly, a 0.1‐unit increase in the socioeconomic deprivation

index associated with 0.103% predicted/yr (95% CI: −0.113,

0.319) more rapid decline, however this association was not

statistically significant. Greenspace was retained as a covariate in

the final model, but its association with rapid FEV1pp decline was

not statistically significant. Associations between demographic/

clinical characteristics and rate of decline, as well as SD estimates

for the variance components (between‐ and within‐patient and

residual error), were similar between the final model and the model

excluding geomarkers, except for the estimated intercept of lung

function and effect of age. However, 95% CIs for the correspond-

ing estimates overlapped.

We randomly evaluated multiple subjects' predicted lung

function trajectories with 95% CIs and estimated real‐time risk

of rapid decline of lung function for the models with and without

geomarkers, and we present three subjects as cases (Figure 2). The

graphs on the left panel show the observed (black dots) and the

estimated lung function trajectories (blue dashed line stands for

the model without geomarkers; red‐solid line stands for the model

with geomarkers) with their 95% CIs from the proposed prediction

model. The graphs on the right panel present the predicted real‐

time risk of rapid decline for each individual over time. The

predicted trajectories from the final model and the model without

geomarkers appeared similar, however, the model with geomarkers

had smaller RMSE, MAE, and MAPE, compared to the model

without geomarkers (Table S2). Although the difference in the

predicted trajectories from these two models have similar patterns,

the difference in the predicted real‐time risk is higher for two of

the three cases shown. Observed ECAT exposure, deprivation

index, and greenspace for these subjects are plotted over age

(Figure S1).

3.3 | Prediction mapping

Using the final model, we mapped the marginal and total impacts of

selected geomarkers on rate of lung function decline (% predicted/

year) for the city and surrounding suburban areas (Figure 3). As the

shaded area changes from green to red, the rate of decline increases.

The gray areas on the maps are census tracts with unavailable

community material deprivation index values due to suppressed

American Community Survey data in census tracts with small

populations. Figure 3 illustrates the spatial distribution of the distinct

contributions, moving clockwise from the upper left, of ECAT (Figure

3A), deprivation index (Figure 3B), and greenspace (Figure 3C) on the

rate of change in CF lung function. Figure 3D illustrates the combined

additive impact, by highlighting geographic regions in the urban core

of Cincinnati, OH, that are close to truck traffic and are highly

deprived. These maps not only reinforce our findings that patients

living in areas with high ECAT and high deprivation experience a

greater decline in lung function, but importantly, highlight that

patients experiencing high ECAT are often living in highly deprived

communities. The bottom right panel of Figure 3 illustrates this

additive impact, by highlighting geographic regions in the urban core

of Cincinnati, OH that are close to truck traffic and are highly

deprived. There was a variable association between individual and

cumulative geomarkers and overall level of lung function (%

predicted) (Figure S2)

Total contributions of ECAT, socioeconomic deprivation and

greenspace on rate of FEV1pp decline were mapped specifically for

Hamilton County (OH) in Figure 4, to add granularity to the

primary results. For this particular county, the largest estimated

impacts were observed in three areas that included pink‐shaded

regions, corresponding to elevated ECAT and deprivation index

values and lower greenness: i) the majority of the riverfront, which

encompasses a higher density of truck/bus routes and in lower

elevation, compared to non‐riverfront areas; ii) concentrations

around the CF center location (blue dot) and northward; iii) a

GECILI ET AL. | 5
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TABLE 2 Model parameter estimates,
fit, and performance, according to clinical
and built environmental predictors*.

Final model Excluding geomarkers

Parameter

Intercept 83.16 (49.68, 116.64)* 99.67 (77.77, 121.57)*

Female 11.82 (3.12, 20.52)* 11.46 (2.78, 20.14)*

Heterozygous 6.72 (−15.92, 29.36) 6.53 (−16.05, 29.10)

Homozygous 4.78 (−17.52, 27.09) 4.64 (−17.51, 26.79)

Pa 0.58 (−2.70, 3.86) 0.47 (−2.82, 3.76)

Medicaid −9.47 (−18.62, ‐0.31)* −11.08 (−19.97, −2.19)*

ECAT 13.23 (2.02, 24.45)*

Deprivation index −2.38 (−32.84, 28.09)

Greenspace 0.13 (−0.06, 0.33)

Age 1.30 (−1.90, 4.49) −0.69 (−3.27, 1.90)

Female × age −1.07 (−2.14, −0.01)* −1.05 (−2.12, 0.02)

Heterozygous × age 0.13 (−2.52, 2.78) 0.17 (−2.48, 2.81)

Homozygous × age 0.01 (−2.61, 2.62) 0.06 (−2.54, 2.67)

Pa × age −0.16 (−0.38, 0.06) −0.15 (−0.37, 0.07)

Medicaid × age 0.49 (−0.62, 1.61) 0.59 (−0.51, 1.70)

ECAT × age −1.04 (−1.83, ‐0.24)*

Deprivation index × age −1.03 (−3.19, 1.13)

Greenspace × age −0.01 (−0.03, 0.01)

SD

Between patient 10.94 (7.65, 13.44) 10.88 (7.58, 13.38)

Within patient 0.94 (0.83, 1.05) 0.94 (0.83, 1.05)

Residual 7.95 (7.77, 8.12) 7.97 (7.80, 8.14)

Fit

‐2LL 32211.03 32237.8

BIC 32362.22 32338.6

AIC 32253.03 32267.8

LRT Chi‐squared, df, p‐value 26.8, 6, 0.00016

Predictive performance

RMSE, % predicted 11.10 (8.87, 13.33) 11.30 (9.07, 13.53)

MAPE, % 10.80 (7.68, 13.92) 11.50 (8.29, 14.71)

MAE, % predicted 8.65 (7.02, 10.28) 8.85 (6.94, 10.76)

Abbreviations: −2LL, negative two times the log‐likelihood for the model; AIC, Akaike Information
Criterion (smaller is better); BIC, Bayesian Information Criterion (smaller is better); df, degrees of

freedom; LRT, Likelihood Ratio Test (comparing a selected model with and without built environment
geomarkers); MAE, mean absolute error (smaller is better); MAPE, mean absolute percentage error
(smaller is better); RMSE, root‐mean‐square error (smaller is better); SD, standard deviation (square
root) of variance component estimate from model.

*Parameter estimates and metrics for predictive accuracy reported with 95% CI. The CIs are useful to
quantify the uncertainty around the estimated mean error in our prediction. 95% CI is a range of values
that one can be 95% confident contains the true mean error in our prediction for the corresponding
error type. Symbol “×” refers to interaction effects, representing association between a given covariate

and rate of change in lung function decline. Geomarker terms include ECAT, deprivation index, and
greenspace.

6 | GECILI ET AL.

 10990496, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ppul.26352 by T

est, W
iley O

nline L
ibrary on [18/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 2 Left panel: Observed FEV1pp (black dots) against age are shown with dynamic predictions from both the null model (model
without geomarkers, blue dashed line) and model with geomarkers (red solid line) and 95% CIs (blue and red bands for null model and model with
geomarkers, respectively); Right panel: real‐time risk for rapid lung function decline (blue dashed line is the probability of rapid decline with null
model; red solid line is the probability of rapid decline for the model with geomarkers). Each row corresponds to an individual patient. The first
patient (top row) was a male F508del homozygote who was first diagnosed with Pa infection at age 13 and used Medicaid insurance. Over the
follow‐up period, his median (range) ECAT exposure, deprivation index, and greenspace percentage were 0.279 (0.176–0.429) μg/m3, 0.418 (0.
279–0.795), and 92.9% (60.8%–100%), respectively. His median ECAT exposure was lower than the study population median, while his median
deprivation index was above the study population median and his median percentage of greenspace was similar to the study population median.
His risk of rapid decline peaked around 16 years old. The middle row shows another patient who was a male F508del heterozygote, never
diagnosed with Pa and used Medicaid insurance. His median (range) ECAT exposure, deprivation index, and greenspace percentage were 0.311
(0.232–0.528) μg/m3, 0.393 (0.187, 0.408), and 94.5% (81.4%–95.5%), respectively. His median ECAT exposure was slightly lower than the
study population median, while his median deprivation index and greenspace percentage exceeded the study population median. The patient
was at high risk early in follow‐up, but the risk diminished into adolescence. The last row includes a patient who was a male F508del
heterozygote, never diagnosed with Pa, and had Medicaid. His median (range) ECAT exposure, deprivation index, and greenspace percentage are
0.267 (0.176–0.386) μg/m3, 0.462 (0.462–0.462), and 94.5% (81.4%–95.5%), respectively. His median ECAT exposure and greenspace
percentage were lower than the study population median, while his median deprivation index was well above the study population median. He
experienced steady decline, and, in turn, the real‐time risk of rapid decline elevated over the 2 years of follow‐up but downturned towards the
last observation. [Color figure can be viewed at wileyonlinelibrary.com]
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crescent‐shaped area in the southeastern portion. The interactive

version of this map, which is provided as supplemental material,

presents each geomarker's marginal impact on rate of FEV1pp

decline.

3.4 | Sensitivity analyses

Patients excluded from the primary analysis cohort due to missing

covariates, particularly ECAT, had longer drivetimes, increased

F IGURE 3 Distinct (individual relative) contributions of ECAT, deprivation index and greenspace (A–C, respectively) and the combined
contribution of all three geomarkers (D) on rate of change on CF lung function (FEV1pp). As the color changes from green to red, the rate of
decline increases in severity. Area within dashed lines represents Hamilton County, while the larger area shows the entire region. ECAT,
elemental carbon attributable to traffic sources; FEV1pp, forced expiratory volume in 1 s of % predicted. [Color figure can be viewed at
wileyonlinelibrary.com]
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greenspace, and higher rates of Medicaid insurance use; other

observed characteristics were similar (Table S3). These differences

were expected because ECAT exposure estimates were only available

for areas around the urban core of Cincinnati; however, other

geomarkers were available in the broader areas. When fitting models

that included this cohort with the data from individuals used for

primary analysis (n = 248), the intercept estimate of FEV1pp was

higher, but 95% CIs overlapped (Table S4). There was a higher

magnitude of association between Pa and rate of FEV1pp decline.

Including socioeconomic deprivation index and greenspace yielded

improved model fit and predictive performance (LRT: 14.4, p = 0.006).

We implemented the final prediction model without accounting

for Medicaid insurance use and observed its effect on impact of

deprivation index. Excluding Medicaid insurance use from the model

increased the main effect of the deprivation index in magnitude (from

−2.37 to −9.26) and decreased the interaction effect of deprivation

index by age in magnitude (from −1.03 to −0.597). However, both

main and interaction effects of deprivation index remained

insignificant. Excluding Medicaid insurance use from our model did

not alter the effects of ECAT and greenspace.

In another sensitivity analysis of the final model, we substituted

the time‐varying measurements of Pa infection with an indicator of

chronic Pa, which was defined as a history of at least four cultures

positive for Pa.30 Associations between geomarkers and rate of lung

function decline did not substantively change, compared to the final

model. The main effect of chronic Pa was larger (and statistically

significant), compared to that of time‐varying Pa (which was

statistically insignificant).

4 | DISCUSSION

Environmental exposures and community characteristics, including

air pollution and community material deprivation, are powerful

predictors of many diseases. We examined these factors in the

context of rapid lung function decline among people living with CF

and their capacity as novel targets in personalized CF clinical

management (e.g., secondary environmental health interventions)

during late adolescence and early adulthood—when rapid lung

function decline most often occurs. In our study, individuals with

CF who resided in areas with higher levels of ECAT and increased

community material deprivation were at highest risk of rapid FEV1pp

decline, even after accounting for routinely collected demographic/

clinical characteristics.

Findings were drawn from rigorous covariate selection

processes that we undertook using a recently published approach

motivated by evaluating markers of pediatric CF lung disease

progression.26 Including sex, genotype, Medicaid insurance use,

F IGURE 4 Hamilton county‐specific impact of the three predictive geomarkers (ECAT, socioeconomic deprivation index, and greenspace) on
rate of change in CF lung function (FEV1pp). As the color changes from green to red, the rate of decline increases in severity. Geocoding was
used for geomarker values. Zip codes are provided here for reference. The smaller area shown here is depicted within dashed lines of the entire
region shown in Figure 3. ECAT, elemental carbon attributable to traffic sources; FEV1pp, forced expiratory volume in 1 s of % predicted. [Color
figure can be viewed at wileyonlinelibrary.com]
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infections with Pa, and environmental exposures measuring

deprivation index, ECAT, and greenspace as main effects and their

interactions with age yielded a parsimonious model with the

highest predictive performance (Table 2). ECAT and deprivation

index variables showed similar prediction power and were more

predictive than greenspace, but including all three as predictors

exhibited the best fit and performance of all models examined.

While this final model has explanatory value, not all three of these

variables were statistically significant based on their individual

coefficients. We selected this final model based primarily on

predictive performance, which does not necessarily mean that

explanatory value will be optimized.31 Little is known about ECAT

exposure and CF lung function decline, but increased area

deprivation index has been associated with lower lung function

in children (aged 6‐18 years) with CF, which was adjusted for

demographic/clinical covariates.32 Our findings corroborated this

association, which was still observed after adjusting for Medicaid

insurance use; however, it is worth noting that insurance status

does not necessarily coincide with low income, given expansion of

Medicaid and choosing to enroll to gain more comprehensive

coverage. While Medicaid insurance use has been used in past CF

research as a proxy for socioeconomic status,33 more recent

research, including this study, suggests that community material

deprivation can provide additional information and predictive

value for monitoring lung function decline.

Individualized predictions highlight the changing nature of

disease progression within the individual patient (Figure 2) and

how these predictions can be made more accurate by integrating

built environment characteristics (Table S2). Prediction maps

identified areas of greatest potential risk for rapid lung function

decline throughout the region studied (Figure 3). More precise,

interactive mapping reflected areas of elevated ECAT exposure

and socioeconomic deprivation (Figure 4). Taken together, these

graphics and interactive applications can facilitate point‐of‐care

identification of periods in which an individual patient may be at

high risk of rapid lung function decline. Findings from this study

along with the approach and mapping application could serve as a

clinical prognostic aid for localized monitoring and development

of novel decision support tools to treat rapid CF disease

progression.

Exposure to TRAP and the neighborhoods in which patients

reside are important predictors of pulmonary decline in CF that

may be used to enhance clinician assessments of prognosis and

enable personalized environmental health interventions. Research-

ers and physicians may consider strategies to avoid or reduce air

pollution exposures, including in‐home air filters to improve or

reduce lung function decline in CF patients. A recent meta‐analysis

of 6 intervention studies (five in adults; one in pediatrics) on

particulate matter exposure in asthmatics confirmed past findings

that air filters showed no statistically significant association

between air filter use and FEV1.
34 Despite similar challenges with

intervention delivery/effective use (e.g., having a sufficient

number and maintenance costs of home air filters within a

household) the difference in asthma and CF manifestations

(including within disease) warrant intervention studies to examine

CF‐specific efficacy and estimate heterogeneous intervention

effects. Combined strategies, which have also been considered in

pediatric asthma, include indoor home cleaning and tobacco smoke

reduction.35 Additional investigation should be conducted to

understand how pharmacologic interventions and antioxidant

supplementation may benefit CF patients at elevated risk for air

pollution exposures and/or living in communities with high

deprivation.36,37 Our model identified Pa infection as a predictor

of rapid decline alongside these geomarkers. Lung infections like

Pa or MRSA may moderate the relationship between socio-

economic deprivation and lung function decline. A previous study

shows that neighborhood deprivation doubled the odds of MRSA

infection in children with CF.38 Future studies employing appro-

priate causal inference methods are needed to evaluate these

effects. Furthermore, based on prior association analyses, predic-

tive modeling of these influences would likely differ between

regions and be subject to seasonality.39,40

Given the recent, broad uptake of highly effective CFTR

modulators,41–43 more sensitive methods are necessary to detect

changes in FEV1pp decline. Our analysis reflects estimated lung

function decline during the pre‐CFTR modulator period with

ranges of 1.3% to 1.7% predicted/year.18 Assessments of

modulator‐initiated trends in FEV1pp have emerged and are

ongoing, and it is likely that lung function monitoring will proceed

through remote collection as evidenced by the COVID‐19

pandemic. The novel modeling application and tools developed

in the current study could be adapted for post‐CFTR modulation

of lung function over time as more data are accrued, and

modalities change. Examples include the evolution of the CF care

model from quarterly to less frequent clinical visits, which may not

significantly impact estimated rate of lung function decline if using

mixed‐effects models and certain assumptions are met.44 External

cohort studies are needed to ascertain generalizability of these

findings and further inform prospective interventional studies of

secondary environmental health interventions to mitigate effects

of ECAT exposure. Using historical patient demographic data, the

individualized predictive data and maps from the current study

could be adapted for integration with an electronic health record

and downstream clinical informatics applications. These point‐of‐

care technologies require prospective validation and clinician

coproduction/testing and system implementation (e.g., electronic

health record system integration). Real‐time predictive probabilit-

ies from this study could be used for these point‐of‐care risk

assessments.

This study has several potential limitations. Geomarkers were

limited to residential ECAT, deprivation index, greenspace, and

drivetime to the CF center. A wider list of geomarkers may identify

additional predictors of lung function decline. Although the CF

center studied had provided care for a sample size of 248

individuals over follow‐up, we restricted primary analysis to 173

patients due to missingness in ECAT and BMI variables. Our

10 | GECILI ET AL.
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sensitivity analyses suggested inherent differences according to

living in suburban versus urban regions, which may limit general-

izability of the primary analysis cohort utilized in this study. The

considered ECAT measure was estimated for 3 months before

each clinical encounter rather than using daily or weekly estimated

values. Temporally scaled ECAT is based on EPA sampling

conducted approximately every 6 days. Monthly estimates are

sometimes only based on one or two measurements; therefore, a

3‐month average was chosen for greater stability. Because ECAT is

more spatially variable than temporally variable,45 predictive gains

with incorporating daily or weekly values are unlikely. Further-

more, observing drops in FEV1pp requires longer follow‐up and

would not correspond to daily/weekly values. We did not examine

other covariance structures to account for between‐ and within‐

subject FEV1pp heterogeneity, but a prior empirical study suggests

that the model utilized in the current study outperforms structures

previously applied to CF FEV1pp data.46 Our study of built

environment factors did not include tobacco smoke exposure,

given limited reliability and potential underreporting of these data

during the study period. Underestimated smoke exposure preva-

lence has been nationally noted in the CFFPR Annual Report,47 and

efforts are underway to improve reporting and gather objective

measures, especially for secondhand smoke exposure.48

This study identifies the combined and actual effects of

stressors and multiple pollutants inherent in the built environment

of children living with CF. The individualized predictive mapping

from this study highlights how clinicians can utilize these

characteristics of a single CF patient alongside routinely collected

demographic and clinical care data to monitor lung function and

risk of rapid decline.
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