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Abstract 

Background: Following agricultural use and large‑scale distribution of insecticide‑treated nets (ITNs), malaria vector 
resistance to pyrethroids is widespread in sub‑Saharan Africa. Interceptor® G2 is a new dual active ingredient (AI) ITN 
treated with alpha‑cypermethrin and chlorfenapyr for the control of pyrethroid‑resistant malaria vectors. In anticipa‑
tion of these new nets being more widely distributed, testing was conducted to develop a chlorfenapyr susceptibility 
bioassay protocol and gather susceptibility information.

Methods: Bottle bioassay tests were conducted using five concentrations of chlorfenapyr at 12.5, 25, 50, 100, and 
200 µg AI/bottle in 10 countries in sub‑Saharan Africa using 13,639 wild‑collected Anopheles gambiae sensu lato (s.l.) 
(56 vector populations per dose) and 4,494 pyrethroid‑susceptible insectary mosquitoes from 8 colonized strains. In 
parallel, susceptibility tests were conducted using a provisional discriminating concentration of 100 µg AI/bottle in 
16 countries using 23,422 wild‑collected, pyrethroid‑resistant An. gambiae s.l. (259 vector populations). Exposure time 
was 60 min, with mortality recorded at 24, 48 and 72 h after exposure.

Results: Median mortality rates (up to 72 h after exposure) of insectary colony mosquitoes was 100% at all five 
concentrations tested, but the lowest dose to kill all mosquitoes tested was 50 µg AI/bottle. The median 72‑h mortal‑
ity of wild An. gambiae s.l. in 10 countries was 71.5, 90.5, 96.5, 100, and 100% at concentrations of 12.5, 25, 50, 100, and 
200 µg AI/bottle, respectively. Log‑probit analysis of the five concentrations tested determined that the  LC95 of wild 
An. gambiae s.l. was 67.9 µg AI/bottle (95% CI: 48.8–119.5). The discriminating concentration of 203.8 µg AI/bottle 
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Background
The core vector control interventions recommended 
by the World Health Organization (WHO) to reduce 
malaria transmission are universal coverage with insecti-
cide-treated nets (ITN) and/or indoor residual spraying 
(IRS) of houses [1]. An estimated 1.9 billion ITNs were 
delivered by manufacturers to countries in sub-Saharan 
Africa between 2004 and 2019, with 213 million ITNs 
distributed in 2019 alone [2]. Between 2000 and 2015 it is 
estimated that vector control averted 663 million clinical 
cases of malaria in sub-Saharan Africa, with ITNs con-
tributing to 68% of that reduction [3]. Pyrethroid insecti-
cides remain the dominant chemical class used on ITNs 
due to their low cost (< $2 per net), low human toxicity 
and efficacy against mosquitoes through rapid knock-
down, mortality and repellency [4, 5]. Currently there are 
15 standard pyrethroid net products that have WHO pre-
qualification (PQ) listing, consisting of seven that contain 
alpha-cypermethrin, seven deltamethrin and one perme-
thrin [6]. Following agricultural use and large-scale dis-
tribution of pyrethroid ITNs, resistance to pyrethroids in 
sub-Saharan Africa is widespread, with many countries 
reporting high resistance intensity, which is likely to lead 
to vector control failure [7–11].

To manage insecticide resistance and effectively 
control malaria vectors, it is important for ITNs to 
use insecticides with different modes of action. New 
‘dual active ingredient’ nets treated with two differ-
ent active ingredients (AIs) have been developed, 
although to date these all include a pyrethroid as one 
of the AIs. Examples include Interceptor G2 (treated 
with chlorfenapyr and alpha-cypermethrin) and Royal 
Guard (treated with pyriproxyfen and alpha-cyperme-
thrin) ITNs, which received WHO PQ listing in 2018 
and 2019, respectively [6]. Experimental hut studies 
of Interceptor G2 ITNs have shown particular prom-
ise, with high efficacy and wash durability against 
pyrethroid-resistant malaria vectors demonstrated in 
Benin, Burkina Faso and Côte d’Ivoire [12–14]. Chlo-
rfenapyr is a pyrrole compound with a non-neurotoxic 

mode of action that involves uncoupling of oxidative 
phosphorylation via disruption of the proton gradi-
ent [15, 16]. This uncoupling at the mitochondria 
ultimately results in disruption of ATP (Adenosine 
5’-triphosphate) production, cellular death and organ-
ism mortality [17]. Chlorfenapyr is a pro-insecticide, 
meaning that after uptake by the insect the parent 
form of chlorfenapyr (CL303630) is metabolized by 
cytochrome P450 enzymes into the active metabolite 
(CL303268) [16]. Chlorfenapyr is used as a termiti-
cide and in agriculture as a foliar-applied insecticide 
to control insect and mite pests of various fruit, veg-
etable, grain, herb, spice, and tea crops but is not yet 
widely used in sub-Saharan Africa and is fairly new for 
vector control [18].

As of 2020 there was no published guidance regarding 
chlorfenapyr susceptibility test procedures or discrimi-
nating concentration. Insecticide susceptibility tests of 
malaria vectors are normally conducted using either 
pre-treated filter papers that are prepared by a WHO 
collaborating institution (Universiti Sains, Malaysia) 
and distributed to field sites for use in tube tests or by 
using bottle bioassay procedures according to US Cent-
ers for Disease Control and Prevention (CDC) defined 
discriminating concentrations [19, 20]. This delay in 
guidance was partly due to the non-neurotoxic nature 
of chlorfenapyr meaning that standard WHO testing 
protocols needed adaptation. WHO initially proposed 
5% chlorfenapyr filter papers with silicon oil for suscep-
tibility testing [21], but this methodology was not taken 
forward in multi-centre studies coordinated by WHO.

The US President’s Malaria Initiative (PMI) funding 
supports regular insecticide resistance monitoring in 
partnership with national malaria control programmes 
(NMCPs) in sub-Saharan Africa to assist with national 
vector control decision-making. In anticipation of 
Interceptor G2 nets being distributed in sub-Saharan 
Africa, chlorfenapyr susceptibility testing using a modi-
fied bottle bioassay protocol was conducted to deter-
mine a suitable discriminating concentration and to 
gather baseline susceptibility information.

(95% CI: 146–359) was calculated by multiplying the  LC95 by three. However, the difference in mortality between 100 
and 200 µg AI/bottle was minimal and large‑scale testing using 100 µg AI/bottle with wild An. gambiae s.l. in 16 coun‑
tries showed that this concentration was generally suitable, with a median mortality rate of 100% at 72 h.

Conclusions: This study determined that 100 or 200 µg AI/bottle chlorfenapyr in bottle bioassays are suitable dis‑
criminating concentrations for monitoring susceptibility of wild An. gambiae s.l., using mortality recorded up to 72 h. 
Testing in 16 countries in sub‑Saharan Africa demonstrated vector susceptibility to chlorfenapyr, including mosqui‑
toes with multiple resistance mechanisms to pyrethroids.

Keywords: Chlorfenapyr, Pyrrole, Anopheles gambiae, Interceptor G2, CDC bottle bioassay, Discriminating 
concentration, Insecticide‑treated net, Insecticide resistance



Page 3 of 10Oxborough et al. Malar J          (2021) 20:316  

Methods
Study sites and chlorfenapyr dosages tested
Experiments were conducted using five concentrations 
of chlorfenapyr at 12.5, 25, 50, 100, and 200 µg AI/bottle. 
This narrow range of doses was chosen based on earlier 
tests conducted by CDC. Tests were conducted on wild 
uncharacterized An. gambiae s.l. in 10 countries in sub-
Saharan Africa, out of which 8 countries conducted addi-
tional tests with colonized pyrethroid-susceptible strains. 
The countries included: The Democratic Republic of 
Congo (4 sites), Ethiopia (1 site), Ghana (3 sites), Kenya 
(2 sites), Madagascar (10 sites), Mali (11 sites), Nigeria 
(3 sites), Senegal (3 sites), Uganda (2 sites), and Zimba-
bwe (1 site). Locations are shown in Fig.  1. In parallel, 
susceptibility tests were conducted using a provisional 

discriminating concentration of 100  µg AI/bottle in 16 
countries. This concentration was chosen based on pre-
liminary bottle bioassay testing by CDC, which estab-
lished a provisional discriminating concentration of 
100 µg AI/bottle (Dr WG Brogdon, 2017, personal com-
munication). All bioassays were conducted between 2017 
and 2020.

Preparation of solutions
Treatment of 250-ml Wheaton® bottles was conducted 
locally in the country of testing using technical grade 
chlorfenapyr dissolved in acetone. A vial containing 5  g 
of technical grade (99.9% pure) chlorfenapyr was sup-
plied by BASF (Ludwigshafen, Germany) to each coun-
try team and a stock solution was prepared at 1  mg/ml 

Fig. 1 Locations of insecticide susceptibility testing sites where mortality of wild Anopheles gambiae s.l. was measured in bioassays following 
exposure to a full (yellow) or limited (blue) range of concentrations of chlorfenapyr. *denotes countries where a susceptible insectary strain was also 
tested with the full range of concentrations



Page 4 of 10Oxborough et al. Malar J          (2021) 20:316 

by weighing 100 mg and dissolving with 100 ml acetone. 
The stock solution was prepared in an amber glass bot-
tle (or clear glass bottle covered with aluminium foil) 
to avoid exposure to UV light and sealed with a tightly 
fitting lid to prevent evaporation before being stored at 
4 °C in a refrigerator for a maximum of 3 months. A test 
solution of 200 µg/ml was prepared by performing a five 
times dilution by mixing 10 ml of the stock solution with 
40  ml of acetone. Diluents were serially prepared with 
twofold dilutions of 100 µg/ml, 50 µg/ml, 25 µg/ml, and 
12.5  µg/ml. Stock solution of chlorfenapyr in acetone 
were warmed to room temperature before conducting 
dilution.

Bioassay procedures
Glass bottles and plastic caps were cleaned using deter-
gent solution before being rinsed thoroughly with water 
and left overnight to dry. Each 250-ml glass bottle and its 
plastic cap were coated with 1 ml of insecticide solution 
by rolling and inverting the bottles according to CDC 
procedures until all visible signs of liquid were gone [20]. 
In parallel, a negative control bottle was coated with 1 ml 
of acetone. All bottles were dried overnight in the dark 
with bottle caps off and bioassays were conducted within 
24  h of treating bottles. In general, a total of 80–100 
female mosquitoes, aged 2 to 5  days old, were exposed 
for 60 min in four replicates of 20–25 mosquitoes, with 
an additional single replicate of 25 mosquitoes used for 
the negative control (bottle treated with 1 ml acetone). A 
total of 13,639 wild-collected An. gambiae s.l. (56 vector 
populations per dose) in 10 countries were tested using 
five concentrations of chlorfenapyr. While a total of 4,494 
pyrethroid-susceptible insectary mosquitoes from eight 
colonized strains were tested. A total of 23,422 wild-col-
lected, pyrethroid-resistant An. gambiae s.l. (259 vector 
populations) were tested at the discriminating concen-
tration of 100  µg AI/bottle in 16 countries. After expo-
sure, mosquitoes were transferred to clean paper cups 
and provided with 10% sugar solution. Mortality was 
recorded at the end of the 60-min exposure and at 24, 
48 and 72 h after exposure. Tests were conducted during 
the day time with effort made to keep testing and hold-
ing conditions within WHO guidelines of 27  °C ± 2  °C 
and relative humidity of 75% ± 10% [19]. Temperature 
and humidity were monitored and recorded, however, in 
several cases could not be accurately controlled, as tests 
with wild-collected mosquitoes were generally conducted 
in improvised field insectaries which did not have robust 
temperature and humidity controls.

Mosquito species tested
Insectary-reared, pyrethroid-susceptible colonies of An. 
gambiae sensu stricto (s.s.) Kisumu strain were used 

for testing in six countries (Ghana, Kenya, Madagas-
car, Nigeria, Uganda, Zambia) while Anopheles coluzzii 
Ngousso strain was used in Mali and Anopheles arabi-
ensis Adama strain in Ethiopia. Larval collections of wild 
An. gambiae s.l. were made in areas where pyrethroid 
resistance had previously been detected from temporary 
sunlit pools between 2017 and 2020 (timing varied by 
country) using larval dippers. Larvae were subsequently 
transported to a field insectary where they were reared 
in water collected from the field and fed with Tetramin® 
fish food. Emerging adult mosquitoes were provided with 
cottonwool pads dipped in 10% sugar solution until they 
were used in insecticide susceptibility tests. Wild Anoph-
eles were identified morphologically as An. gambiae s.l. 
in all 16 countries using the key of Gillies and Coetzee 
[22]. Molecular analysis to determine species of these test 
mosquitoes was not conducted. However, An. gambiae 
s.l. collected from the same locations for other purposes 
were identified to species by PCR using the protocols 
of either Scott, Santolamazza, or Wilkins to determine 
members of the An. gambiae species complex [23–26].

Data analysis
Insecticide susceptibility results were presented as unad-
justed percentage mortality at the end of 60  min and 
subsequently 24, 48 and 72 h after bioassay exposure. If 
negative control mortality was greater than 20%, the data 
were discarded, and tests were repeated. Box plots are 
used to present mortality data showing the median and 
interquartile range, with whiskers representing one and a 
half times the interquartile range and small circles out-
side the whiskers considered outliers. PoloPlus (LeOra 
Software, Parma MO, USA) was used to conduct probit 
analysis on the logarithmic scale to calculate the con-
centration of chlorfenapyr needed to kill a defined pro-
portion of mosquitoes, known as lethal concentration 
(LC). Mortality data (72  h after exposure) was included 
for each concentration used in the analysis (12.5, 25, 50, 
100, 200  µg AI/bottle) to determine the  LC50,  LC95 and 
 LC99 (concentration needed to achieve 50, 95 and 99% 
mortality) for wild An. gambiae s.l. The  LC95 value was 
then multiplied by three to give a discriminating concen-
tration  (LC95 × 3 = DC) as described by Lees et  al. [27]. 
The WHO approach of multiplying the  LC99 by two was 
also used to determine a discriminating concentration 
[28]. Probit analysis was not conducted with data gener-
ated using insectary strains as there was not a sufficient 
spread of data to fit the probit curve.

Results
Median mortality rates of pyrethroid-susceptible colony 
strains across eight countries were 100% at 72  h post-
exposure to each of five chlorfenapyr concentrations 
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tested in bottle bioassays, with 50  µg AI/bottle being 
the lowest concentration to kill every mosquito tested 
(Fig. 2).

A clear positive response with increasing mean mor-
tality rates at every chlorfenapyr concentration was 
observed among wild An. gambiae s.l. (Fig.  3). The 
median 72-h mortality was 71.5, 90.5, 96.5, 100, and 
100% at 12.5, 25, 50, 100, and 200 µg AI/bottle, respec-
tively. Log-probit analysis determined the LC50 as 7.7 µg 
AI/bottle (95% confidence interval (CI): 5.5–9.8), LC95 
as 67.8  µg AI/bottle (95% CI: 55.2–89.4), and LC99 as 
166.9 µg AI/bottle (95% CI: 120.4–266.5). The discrimi-
nating concentration was calculated at either 203.4  µg 
AI/bottle (95% CI: 166–268) using the method of Lees 
et al. [27] or 333.8 µg AI/bottle (95% CI: 241–533) using 
the WHO approach [28]. 

At the provisional discriminating concentration of 
100  µg AI/bottle, large variation in per cent mosqui-
toes knocked-down at 60  min was observed (Fig.  4), 
although the median value was low at 38.0% (inter-
quartile range (IQR): 8.0–66.6%), demonstrating the 
slow acting nature of pyrrole insecticides compared to 
pyrethroids [29]. Results confirmed that a holding time 
of 72 h post-exposure is required, with median mortal-
ity of 96.7% (IQR: 82.0–100) at 24 h compared to 100% 

(IQR: 100–100) at 72  h. While the median mortality 
was 100% after 72  h, there were many outliers when 
mortality was < 98%, indicating that 100  µg AI/bottle 
may not be a suitable discriminating concentration. 
Tests conducted with 200 µg AI/bottle in 10 countries 
produced similar trends to the 100  µg concentration, 
reaching a median of 100% (IQR: 100–100) mortality at 
72 h (Fig. 5). 

In this study it was not always possible to closely 
regulate testing and holding temperature however, the 
temperature was consistently < 25  °C in only Madagas-
car and Zimbabwe. However, it should be noted that 
in Madagascar mortality was < 98% with 100 or 200 µg 
AI/bottle in seven sites where testing and holding 
temperatures were regularly below the WHO-recom-
mended range of 27 ± 2  °C. Molecular species identi-
fication indicated that the predominant species tested 
in the dose-ranging studies were An. gambiae in DR 
Congo and Madagascar, An. coluzzii in Mali, mixed An. 
gambiae/coluzzii in Ghana and Nigeria, and An. ara-
biensis in Ethiopia, Kenya, Senegal and Uganda (Addi-
tional file 1: Table S1). All wild malaria vectors used for 
chlorfenapyr susceptibility tests were found to be resist-
ant to pyrethroid insecticides, except for a few locations 
in Madagascar (Additional file 1: Table S1). Raw bioas-
say results are available in Additional file  2: database 

Fig. 2 Percentage mortality (72 h) after exposure to each of five concentrations (12.5, 25, 50, 100, 200 µg AI/bottle) of chlorfenapyr in bottle 
bioassays using pyrethroid susceptible colony mosquito strains in eight countries
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1  (insectary strains tested with 12.5, 25, 50, 100 and 
200  μg AI/bottle), Additional file  3: database 2  (wild 
An. gambiae s.l. tested with 12.5, 25, 50, 100 and 200 μg 
AI/bottle) and in Additional file 4: database 3 (wild An. 
gambiae s.l. tested with 12.5, 25, 50, 100 and 200 μg AI/
bottle.

Discussion
In this study, susceptibility tests conducted with a pyre-
throid-susceptible colony and wild Anopheles species 
confirmed that chlorfenapyr is a slower-acting insecti-
cide when compared with neurotoxic pyrethroids [29]. 
While pyrethroids are characterized by rapid knock-
down of susceptible mosquitoes within a few minutes, 
chlorfenapyr-induced knock-down at 60 min post-expo-
sure was generally low (albeit highly variable). Despite 
the low levels of knock-down, more than 90% of chlor-
fenapyr-induced mortality occurred within 24 h of expo-
sure, but 72 h holding period was required to consistently 
reach > 98% mortality at 100 and 200 µg AI/bottle. It has 
previously been shown that 25 µg AI/bottle was sufficient 
to kill 100% of a susceptible colonized strain of An. ara-
biensis but mortality rates were significantly lower with 
wild An. arabiensis with 100 µg and 200 µg AI/bottle pro-
ducing mortality > 98% [30]. Results presented here are in 
keeping with this trend, with pyrethroid-susceptible col-
ony strains killed at lower concentrations than wild An. 
gambiae s.l. Inbreeding over a period of several decades 

reduces the overall fitness of reference strains, therefore 
it is important to conduct testing against wild mosquitoes 
before widespread use for vector control [31]. Other fac-
tors which may contribute to higher toxicity with insec-
tary colonies in bioassays could be related to the mode 
of action which is intertwined with mosquito metabolism 
[32]. The circadian rhythm of colonies can be different to 
wild Anopheles populations either due to rearing under 
reverse photoperiod or due to daytime blood feeding, 
which would result in greater metabolic activity during 
daytime [33, 34]. Therefore, there could be greater impact 
of the insecticide on insectary-colonized mosquitoes 
with daytime exposures because they are more active 
during the day than wild mosquitoes that are more active 
during the night under natural conditions.

Others have proposed a discriminating concentration 
of 50  µg AI/bottle based on bottle bioassays performed 
with susceptible An. gambiae Kisumu strain and wild 
collected An. arabiensis, An. gambiae s.s. and Anopheles 
funestus from western Kenya [35]. In this study, 50 µg AI/
bottle was sufficient against susceptible-colony mosqui-
toes but mean mortality of wild An. gambiae s.l. across 
10 countries was only 93% (95% CI: 86.3–99.5) after 72 h. 
Large-scale susceptibility testing using the interim dis-
criminating concentration of 100  µg AI/bottle against 
thousands of An. gambiae s.l. in 16 countries showed that 
this concentration was generally suitable, with a mean 
of 98.7% mortality (95% CI: 98.1–99.3). Other studies in 

Fig. 3 Median percentage mortality of wild Anopheles gambiae s.l. 72 h after exposure to chlorfenapyr at concentrations of 12.5, 25, 50, 100, and 
200 µg AI/bottle in bottle bioassay in 10 countries
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Faranah Prefecture of Guinea with 100 µg AI/bottle pro-
duced 100% mortality with wild An. gambiae s.s., while 
in the Agréby-Tiassa Region of south-east Côte d’Ivoire, 
the same concentration produced only 95.5% mortal-
ity [36, 37]. Using the formula of Lees et al. it was deter-
mined that 200 µg AI/bottle was a suitable discriminating 
concentration and this concentration is likely to produce 
fewer cases of false resistance reporting than with 100 µg 
AI/bottle. It is recognized that susceptibility testing with 
chlorfenapyr will produce more variable results than with 
neurotoxic insecticides due to the mode of action being 
linked with the metabolism of the insect, and this vari-
ability was most evident at lower concentrations. WHO 
recommend a temperature of 27 ± 2 °C be closely adhered 
to when conducting chlorfenapyr bioassays [32]. In this 
study (and probably in general) it was not always possible 
to closely regulate testing and holding temperature and 
this may have been a factor in the generally lower mortal-
ity in Madagascar. The activation of chlorfenapyr and its 
toxic action of disrupting cellular respiration, being met-
abolic processes, are both temperature dependent [32]. 
This is likely to lead to significant variation in test results 

between laboratories unless stricter temperature con-
trol measures are undertaken. In colder settings heaters 
should be used (especially overnight) to ensure testing 
and holding conditions always meet the minimum WHO 
recommended temperature of 25 °C. The higher potential 
for test variability highlights the need to repeat bioassays 
to confirm resistance over several time points, particu-
larly when resistance is being reported for the first time. 
To minimize the occurrence of false resistance report-
ing, tests should always be conducted in parallel with a 
well-characterized colony strain to try and detect issues 
with under-dosing or low testing temperature. It is also 
recommend that before reporting chlorfenapyr resist-
ance for a site, experiments should be repeated at the 
same location at least three times in different months and 
consistently result in less than 90% mortality. Ideally any 
findings of potential resistance would be supported by 
molecular studies (for example, transcriptome sequenc-
ing to identify upregulated and downregulated genes) to 
identify mechanisms of resistance.

Insecticide selection pressure from agriculture is gen-
erally regarded as an important early driver of insecticide 

Fig. 4 Percentage mortality of wild Anopheles gambiae s.l. 60 min, 24 h, 48 h, and 72 h after exposure to the provisional discriminating 
concentration of chlorfenapyr at 100 µg AI/bottle in 16 countries
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resistance in malaria vectors [38, 39]. Chlorfenapyr 
resistance has been reported in several species of crop 
pest due to agricultural use in Asia, Europe, North 
America, and Australia, [40–42]. While statistics from 
sub-Saharan Africa are scant, there appears to be little 
usage of pyrrole insecticides for agricultural pest control, 
with supply by BASF limited to Kenya for control of rose 
pests in greenhouses (Dr S Stutz, BASF 2020, pers. com-
mun.). However, it is likely that generic formulations will 
become more widely available, for example chlorfenapyr 
residues have already been detected on cabbages in Bot-
swana [43]. Limited agricultural use of chlorfenapyr in 
sub-Saharan Africa would help to preserve susceptibil-
ity of the vector to this important insecticide by limiting 
selection pressure to public health use. The only report 
of potential chlorfenapyr resistance to date is from Côte 
d’Ivoire by Kouassi et al. which showed that 200 µg AI/
bottle killed less than 98% of An. gambiae s.l. in five of 15 
sites, with possible resistance recorded in Bouaké, Gag-
noa, Nassian, Sakassou, and San Pédro [44]. This could 
be a sign of chlorfenapyr resistance in some parts of 

Côte d’Ivoire, but further phenotypic and genotypic data 
should be collected to confirm this finding. Fortunately, 
results from this study in 16 countries in sub-Saharan 
Africa have shown no signs of chlorfenapyr resistance.

Cluster-randomized control trials of Interceptor G2 
ITNs in Tanzania and Benin are nearing completion, 
pilot distribution evaluations are underway in Burkina 
Faso, Rwanda, Mali, Mozambique, and Nigeria, and 
a MedAccess partnership has reduced the price of 35 
million Interceptor G2 nets by 40% [45, 46], which is 
expected to greatly increase the availability of these 
products. With millions of Interceptor G2 nets being 
distributed, it is essential for a discriminating con-
centration to be determined and susceptibility testing 
to be regularly conducted to ensure there is no cross-
resistance through existing mechanisms and to monitor 
any developing resistance. In a time where new insecti-
cides are desperately needed, it is vitally important for 
timely susceptibility protocols for new active ingredi-
ents. Results from this study have been included as part 
of the WHO expert committee to determine a suitable 

Fig. 5 Percentage mortality of wild Anopheles gambiae s.l. 60 min, 24 h, 48 h, and 72 h after exposure to chlorfenapyr at 200 µg AI/bottle in 10 
countries
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discriminating concentration and a WHO recommen-
dation is expected in 2021.

Conclusion
This study showed that 100 or 200 µg AI/bottle chlor-
fenapyr in bottle bioassays are suitable discriminating 
concentrations for monitoring susceptibility of wild An. 
gambiae s.l., with mortality recorded up to 72 h. Test-
ing in 16 countries in sub-Saharan Africa demonstrated 
malaria vector susceptibility to chlorfenapyr at all sites, 
including mosquitoes with multiple resistance mecha-
nisms to pyrethroids.
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