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MATERIALS AND METHODS 

Study participants in the GWAS and meta-analysis 

The GWAS meta-analysis includes 19,378 prostate cancer cases and 61,620 controls of African ancestry from 

the AAPC Consortium (AAPC; 4,822 cases and 4,642 controls), ELLIPSE/PRACTICAL Onco-Array Consortium 

(ELLIPSE; 4,230 cases and 3,953 controls), Ghana Prostate Study (Ghana; 640 cases and 634 controls), ProHealth 

Kaiser GWAS (Kaiser; 601 cases and 1,650 controls), Electronic Medical Records and Genomics (eMERGE) Network 

(233 cases and 1,258 controls), BioVU Biobank (302 cases and 799 controls), BioMe Biobank (154 cases and 2,498 

controls), California and Uganda Prostate Cancer Study (CA UG; 1,590 cases and 1,048 controls), VA Million Veteran 

Program (MVP; 6,353 cases and 44,637 controls), and the Maryland Prostate Cancer Case-Control Study (NCI-MD; 

383 cases and 395 controls). Of all studies that contributed samples and/or summary statistics to this analysis, 9,011 

cases and 50,634 controls from CA UG, eMERGE, BioVU, BioMe, NCI-MD, and MVP were not part of any previous 

prostate cancer GWAS. Prostate cancer cases in these studies were identified from cancer registries and/or health 

records, while controls were individuals without any indication of prostate cancer at the time of DNA sample 

collection or last known visit. An overview of each study is provided in Table S1. Informed consent was obtained 

from all participants, and study protocols were approved by respective Institutional Review Boards. 

Genotyping and imputation in the GWAS  

Genotyping arrays, quality control measures on samples and variants, imputation panels, and the statistical 

software used for each study or consortium are summarized in Table S2. Details for each study or consortium have 

been described elsewhere (see references in Table S1). In general, before imputation, samples and genotyped variants 

were excluded at the corresponding study-specific sample or genotyping call rate of 95%. Except for the Ghana and 

ELLIPSE studies that included all variants, most studies filtered variants with minor allele frequency (MAF) < 1%. 

Several studies excluded variants that were out of Hardy-Weinberg equilibrium at varying significance thresholds. 

Genotyping data were imputed in each study or consortium to either the 1000 Genomes phase 3 [1], the Haplotype 

Reference Consortium (HRC)[2], or the NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium freeze 

5[3] imputation panels using Minimac3/Minimac4 [4] or IMPUTE2 [5]. In most studies, genotyped and imputed 

variants with an imputation info score (R2)  0.30 and MAF  1% were included in the association analyses. A lower 

MAF cutoff of 0.1% was applied in MVP while an info score  0.80 was used in BioMe. In most studies or consortia 

with samples from non-African countries, principal component analysis (PCA) was performed including reference 

populations from the 1000 Genomes Project to infer genetic ancestry based on the top principal components (PCs) [6]. 

Genetic ancestry for all MVP participants was assessed using HARE[7] based on the top 30 PCs and the African-

ancestry GWAS was conducted in samples assigned to be of African ancestry. In both AAPC and ELLIPSE, 

individuals with estimated African global ancestry < 0.1 from a STRUCTURE[8] analysis were excluded from the 

African-ancestry GWAS.  
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Statistical analysis for GWAS and meta-analysis 

Logistic regression analysis was carried out in each study or consortium to examine the association of variants 

with prostate cancer risk, adjusting for age, sub-study (if applicable), and up to ten PCs using PLINK [9], SNPtest [10], 

SAIGE [11] or R[12]. Per-allele odds ratios (ORs) and standard errors from individual studies were combined using a 

fixed-effects inverse-variance-weighted meta-analysis with METAL[13]. All statistical tests were two-sided. Variants 

were considered genome-wide significant if their marginal P-value from the meta-analysis was less than 5.010-8.  

We estimated the inflation factor (λ) from the P-values of all analyzed variants (N = 27,753,840). The inflation 

factor was then converted to an equivalent inflation factor for a study with 1,000 cases and 1,000 controls (λ1000) 

following λ1000 = 1 +
500 (λ−1)

∑ (
1

nk
k +

1

mk
)−1

, where the nk and mk were the number of cases and number of controls for study k, 

respectively [14]. 

To determine the independency of genome-wide significant associations, conditional analysis was performed 

on variants in known risk regions. Among the 269 previously identified prostate cancer susceptibility loci [15], 178 

known risk regions were defined and 51 contained more than one known risk variant. For genome-wide significant 

variants in known risk regions, we used Joint Analysis of Marginal summary statistics (JAM) to obtain conditional 

effects and P-values from multivariate models, conditioning on all known risk variants in the same region [15]. 

Associations with a conditional P < 5.010-8 were considered novel. Similar conditional analyses were carried out to 

determine if multiple independent associations exist in the  800 kb of the identified novel variant.  

To identify credible set variants, we applied a modified JAM approach examining all variants within  800 kb 

of each identified novel variant (index variant). Based on the summary statistics from this African-ancestry meta-

analysis, for each variant within the region, a posterior inclusion probability (PIP) was calculated considering both its 

marginal effect and its mediation effect after adjusting for the index variant. These scaled PIPs were then used to 

construct a 95% credible set by selecting the smallest set of variants accounting for a 95% PIP.  

Study participants in the subsequent association analyses 

Six GWAS studies (AAPC, ELLIPSE, Ghana, CA UG, NCI-MD, and MVP) in the meta-analysis and an 

independent sample from the Men of African Descent and Carcinoma of the Prostate (MADCaP) Network [16,17] 

were included in the subsequent association analyses, where we evaluated (1) the association of novel and known risk 

variants with disease aggressiveness, and (2) the association of polygenic risk scores (PRS) with prostate cancer risk, 

overall and stratified by age, geographic area, and disease aggressiveness (Table S3).  

The MVP dataset in these association analyses included additional 8,725 controls with prostate-specific 

antigen (PSA) level  4 ng/mL that were excluded in the MVP GWAS. The MADCaP dataset included 405 prostate 

cancer cases and 396 controls from sub-Saharan Africa with a substantial proportion of cases diagnosed at late 

stages[16]. The MADCaP samples were genotyped on a customized array designed to capture genetic variation in 

diverse African populations [17] and were imputed using the 1000 Genomes Project Phase 3 reference panel (14).  
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In all seven studies, prostate cancer was considered aggressive if one or more of the following criteria was 

met: tumor stage T3/T4, regional lymph node involvement, metastatic disease (M1), Gleason score  8.0, PSA level  

20 ng/mL or prostate cancer as the underlying cause of death. Non-aggressive prostate cancer was defined as men with 

no aggressive features meeting one or more of the following criteria: Gleason score  7.0, PSA < 20 ng/mL, and stage 

 T2. After excluding subjects with missing information on these clinical features, a total of 5,469 aggressive cases 

and 11,710 non-aggressive cases were identified across these studies, including 6,399 cases with a Gleason score of 6; 

6,758 with a Gleason score of 7; 3,099 with Gleason score of 8 or above; 10,497 cases with T1 or T2 tumor; 1,201 

cases with T3 or T4 tumor; 769 cases with metastatic disease; and 304 fatal cases (prostate cancer as the cause of 

death; Table S3).  

Association of risk variants with disease aggressiveness  

For the novel and known risk variants with MAF > 1% in African populations (N = 255), we examined their 

prostate cancer risk-increasing alleles for association with disease aggressiveness in logistic regression analysis of 

aggressive cases versus controls, non-aggressive cases versus controls, and aggressive cases versus non-aggressive 

cases, adjusting for age, sub-study (if applicable) and up to ten principal components. Additional case-case analyses by 

tumor stage, Gleason score, metastatic or fatal disease were also performed (Gleason score of 8 versus Gleason score 

of 6, tumor stage T3/T4 versus tumor Stage T1/T2, metastatic cases versus non-aggressive cases, and fatal cases versus 

non-aggressive cases).  In each analysis, results were meta-analyzed across individual studies using a fixed-effects 

inverse-variance-weighted method.  

PRS construction and association with prostate cancer risk 

The PRS was constructed by summing variant-specific weighted allelic dosages from 269 known prostate 

cancer risk variants and the nine novel variants. For the primary PRS association analysis, the multi-ancestry weights 

for all of the 278 variants were obtained from the previous trans-ancestry GWAS and used to calculate the PRS (Table 

S7)[15]. To assess the robustness of PRS associations, we also constructed a PRS using the African ancestry-specific 

effects estimated from men of African ancestry (10,367 cases and 10,986 controls; Table S7) and compared its 

association with prostate cancer risk to the multi-ancestry PRS.  

The association of PRS with prostate cancer risk was estimated using an indicator variable for the percentile 

categories of the PRS distribution: [0%-10%], (10%-20%], (20%-30%], (30%-40%], (40%-60%], (60%-70%], (70%-

80%], (80%-90%], and (90%-100%]. An additional analysis was performed by splitting the top decile into two 

categories to obtain the PRS risk for the top 1%: (90%-99%], (99%-100%]. PRS thresholds were determined in the 

observed distribution among controls. Logistic regression was performed to estimate OR and 95% confidence intervals 

(CI) corresponding to each PRS category, adjusting for age, sub-study (if applicable), and up to ten principal 

components, with the (40%-60%] category as the reference. We also reported the OR and 95% CI for prostate cancer 

per one standard deviation (SD) increase in PRS, where the mean and SD were determined in the observed distribution 

among controls.  
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The association of PRS with prostate cancer risk was meta-analyzed across the six studies included in the 

GWAS (“Discovery Sample” in Table 2) and was evaluated for replication in the independent sample from MADCaP 

(“Replication Sample” in Table 2). In the comparison of multi-ancestry PRS and African-specific PRS, heterogeneity 

was assessed via a Q statistic between effect estimates with corresponding tests of significance using the R package 

meta [19]. Discriminative ability was evaluated in MVP by estimating the area under the curve (AUC) for logistic 

regression models of prostate cancer that included covariates only (age and four principal components of ancestry) and 

for models that additionally included the PRS. 

PRS associations with prostate cancer risk stratified by age and geographic area 

We investigated the association of the multi-ancestry PRS with prostate cancer risk stratified by age and 

geographic area. In the age-stratified analysis, cases and controls were both stratified into age groups (age  55 years 

vs. age > 55 years). In the geographic area stratified analysis, cases and controls were stratified based on being 

recruited from African countries (Uganda, Ghana, and the Democratic Republic of the Congo) and non-African 

countries (US, UK, Canada, and France). In each stratum, a logistic regression analysis was performed with prostate 

cancer status as the outcome and the PRS (categories or per one SD) as the independent predictors, adjusting for age, 

sub-study (if applicable), and up to ten principal components. Results within each stratum were meta-analyzed across 

studies, and the heterogeneity of associations between strata was assessed via a Q statistic with corresponding tests of 

significance[19].  

PRS associations with disease aggressiveness 

We assessed the association of the multi-ancestry PRS with disease aggressiveness in logistic regression 

analyses of aggressive cases versus controls and non-aggressive cases versus controls, with the specific prostate cancer 

phenotype as the outcome and the PRS (categories or per one SD) as the independent predictor, adjusting for age, sub-

study (if applicable) and up to ten principal components. P for heterogeneity was determined using a Q statistic 

comparing the associations between the aggressive cases (vs. controls) and non-aggressive cases (vs. controls). 

Additional subgroup case-control analyses using similar models were performed for high-grade (Gleason score  8), 

low-grade (Gleason score of 6), advanced (tumor stage of T3 or T4), localized (tumor stage of T1 or T2), metastatic 

(tumor stage of M1), and fatal prostate cancer, comparing the subgroup cases versus controls.  Results from each 

analysis were meta-analyzed using a fixed-effects inverse-variance-weighted method across studies with sufficient 

samples of the defined phenotypes (number of cases and controls > 100; Table S3). P for heterogeneity was estimated 

comparing the PRS association with high-grade prostate cancer to the association with low-grade prostate cancer, 

advanced prostate cancer to localized prostate cancer, metastatic prostate cancer to non-aggressive prostate cancer, and 

fatal prostate cancer to non-aggressive prostate cancer. A significantly (P-heterogeneity < 0.05) greater association 

with the aggressive phenotype than with the corresponding non-aggressive phenotype would support a PRS association 

with the aggressive phenotype.  
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The PRS association with disease aggressiveness (categories or per one SD) was also evaluated in case-case 

analyses comparing aggressive cases versus non-aggressive cases, advanced cases versus localized cases, high-grade 

cases versus low-grade cases, metastatic cases versus non-aggressive cases, and fatal cases versus non-aggressive 

cases. A statistically significant (P < 0.05) positive association (OR > 1) from the case-case analysis would support a 

PRS association with the aggressive phenotype.  

For prostate cancer risk variants that were nominally and positively associated with disease aggressive (P < 

0.05; N = 14), we assessed their contribution to the PRS association with disease aggressiveness in the analysis of 

aggressive cases vs. controls, non-aggressive cases vs. controls, and aggressive vs. non-aggressive cases, by separately 

removing each variant from the PRS. Associations with a specific prostate cancer phenotype were compared between 

the PRSs with and without the variant.  A Q statistic was used to determine the significance of the observed differences 

in ORs[19].  

Proportion of familial risk explained 

The contribution of the 278 variants to the familial relative risk (FRR) of prostate cancer was estimated using 

the formula: 
∑ (logλk)k

(logλ0)
, where λ0 is the observed familial risk to first-degree relatives of prostate cancer cases, assumed 

to range from 2.0 to 3.0 [20–22], and λk is the FRR due to locus k, given by λ =  
pkrk

2+qk

(pkrk+qk)2, where pkis the frequency 

of the risk allele for locus k, qk = 1 − pk and rk is the estimated per-allele OR [23,24]. The proportion of FRR 

explained was estimated using the per-allele OR from the previous trans-ancestry meta-analysis[15].  

Estimation of global ancestry  

The proportion of African ancestry (AFR%) for each individual in six prostate cancer studies (AAPC, 

ELLIPSE, CA UG, Ghana, NCI-MD, and MADCaP) was estimated using 20,047 genotyped common variants (MAF > 

1%) from an unsupervised (K=2) ADMIXTURE analysis [25] which included the 1000 Genomes Project phase 3 

European and African subjects [1]. We evaluated the relationship between allele frequency and AFR% for the nine 

novel risk variants and calculated the mean AFR% to indicate the level of admixture in each of the six prostate cancer 

studies. 

Functional annotations 

The nine novel variants and their 95% credible sets were annotated for putative evidence of biological 

functionality using publicly available datasets according to the framework described previously[15]. Briefly, variants 

were annotated for genomic context and proximity to genes using wANNOVAR. Annotation of variants against 

intersection with chromatin marks indicative of regulatory DNA regions was performed relative to peak data from 

publicly available datasets generated in the prostate-derived cell lines LNCaP, PC3, PrEC, and VCaP. Transcription 

factor binding site chromatin immunoprecipitation sequencing (ChIP-seq) peak data was obtained from the Androgen 

Receptor (GSM1274871, GSM1576447, and GSM1527834), CTCF (GSM1006874 and GSM2825574), ERG 

(GSM1193657 and GSM1328978), FOXA1 (GSM1274873, GSM1691142, and GSM2219863), GABPA 
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(GSM1193660), GATA2 (GSM941195 and GSM1600544), HOXB13 (GSM1716764 and GSM2537218), NKX3.1 

(GSM989640) and POLR2A (GSM353623, GSM969566, GSM1059393, and GSM1059394).  
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SUPPLEMENTARY FIGURES 

 

Figure S1 Summary of prostate cancer genome-wide association study (GWAS) included in this meta-analysis. The current meta-analysis in men of African 

ancestry included 19,378 prostate cancer cases and 61,620 controls from 10 GWAS studies, of which 9,011 cases and 50,634 controls from six GWAS were not 

part of the previous trans-ancestry GWAS (Conti, Darst et al., Nature Genetics, 2021). Studies that provided the summary statistics were indicated in the 

parenthesis. A total of 27,753,840 variants were tested for association with prostate cancer risk in the meta-analysis.
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Figure S2 Manhattan plot (A) and quantile-quantile plot (B).  
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Figure S3 LocusZoom plots of the nine novel risk variants.  In each plot, the lead variant was represented by a purple 

diamond and the known risk variant(s) in the same region were represented by triangles. The color of each variant was 

based on their linkage disequilibrium (r2) with the lead variant in the 1000 Genomes Project African populations. 

Variants in diamond shapes represent the 95% credible set identified in each risk region.  
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Figure S4 Associations of the novel variants with prostate cancer risk in individual studies of African ancestry.  

For each variant, the forest plot presented the risk allele frequency (RAF), imputation quality score (Rsq), odds ratio 

(OR), 95% confidence interval (CI), and P value from each study/consortium as well as the meta-analyzed results. 
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Figure S5 PRS associations with prostate cancer risk in individual studies of African ancestry.  The association was assessed in MVP (6,353 cases and 

53,362 controls), AAPC (4,822 cases and 4,642 controls), ELLIPSE (4,230 cases and 3,953 controls), CA UG (1,590 cases and 1,048 controls), Ghana (640 cases 

and 634 controls), NCI-MD (383 cases and 395 controls), and MADCaP Network (405 cases and 396 controls). The x-axis indicates the PRS category. The y-

axis indicates the OR with error bars representing the 95% CIs for each PRS category compared to the 40%-60% PRS category. A separate analysis was performed 

to evaluate the PRS association with prostate cancer risk in men with extremely high genetic risk (*). The dotted horizontal line corresponds to an OR of 1. 
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Figure S6 Association with prostate cancer risk per one SD increase of the multi-ancestry PRS. Associations 

with risk of total prostate cancer (A) in discovery and replication studies, (B) in studies from African countries and 

non-African countries, and (C) in men aged  55 years and > 55 years. Associations from the analyses of aggressive 

cases vs. controls and non-aggressive cases vs. controls are shown in (D).  The x-axis indicates the OR with error bars 

representing the 95% CIs for per SD increase in PRS. The red vertical line corresponds to an OR of 1. 
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Figure S7 PRS associations (90% - 100% PRS category) with aggressive and non-aggressive forms of prostate cancer in individual studies of African 

ancestry. PRS associations were evaluated in each study separately and meta-analyzed across studies using a fixed-effects inverse-variance-weighted method. 

Studies with small number of cases (< 100) were not included in the meta-analysis (Table S3), and the meta-analyzed results are shown in Table S15.  The x-

axis indicates the specific case-control analysis. The y-axis indicates the OR with error bars representing the 95% CIs for the 90%-100% PRS category compared 

to the 40%-60% PRS category.  
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