
COOLING CITIES FOR HEALTH THROUGH GREEN INFRASTRUCTURE:  

A HEALTH IMPACT ASSESSMENT FOR EUROPEAN CITIES 

 

Tamara Iungman1,2,3, Marta Cirach1,2,3, Federica Marando4, Evelise Pereira Barboza1,2,3, Sasha Khomenko1,2,3, Pierre Masselot5, Marcos Quijal-

Zamorano1,2, Natalie Mueller1,2,3, Antonio Gasparrini5,6,7, José Urquiza1,2,3, Mehdi Heris8, Meelan Thondoo1,9, Mark Nieuwenhuijsen1,2,3  

 

1 Institute for Global Health (ISGlobal), Barcelona, Spain 

2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain 

3 CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain 

4 European Commission – Joint Research Centre, Ispra, Italy 

5 Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine (LSHTM), London, UK 

6 Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine (LSHTM), London, UK 

7 Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine (LSHTM), London, UK 

8 Hunter College City University of New York 

9 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK 

 

Correspondence to: 

Prof. Mark Nieuwenhuijsen, 

ISGlobal, 08003, Barcelona, Spain 

mark.nieuwenhuijsen@isglobal.org   



2 
 

Content 
List of acronyms 3 

Evidence before the study 4 

Supplement A. City definition 5 

Supplement B. Demographic data 6 

Supplement C. Health Impact Assessment (HIA) 9 

Supplement D. Exposure Response Function (ERF) 13 

Supplement E. Counterfactual scenarios. 18 

a) Urban Heat Island (UHI) 18 

b) TC 30% 21 

Supplementary F. Sensitivity analysis. 27 

a) Health impact assessment of urban heat island 27 

b) Cooling estimation 30 

c) 30% TC health impact assessment 32 

Supplementary analysis G. Uncertainty analyses. 35 

References 37 

 

  



3 
 

List of acronyms 

 

CI Confidence interval 

CRA Comparative risk assessment 

CVD Cardiovascular disease  

ERF Exposure-response function 

ESP European standard population  

Etree Water evaporated from trees  

FUA European Functional Urban Area  

GHSL Global Human Settlement Layer 

HIA Health impact assessment 

LST Land Surface Temperature 

NCD Non-communicable diseases 

NDVI Normalized difference vegetation index  

NUTS Nomenclature of Territorial Units for Statistics 

PAF Population Attributable Fraction  

PML Penman-Monteith-Leuning  

RMSE Root mean squared error 

Tair Maximum air temperature  

TC Tree cover 

UGI Urban green infrastructure  

UHI Urban heat island 

UrbClim Urban Climate model 

WHO World Health Organization 

YLL Years of Life Lost  
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Evidence before the study 

We did two different literature searches in PubMed, Scopus, and Google Scholar. For the first one, our search terms were: "urban heat island" AND 

"mortality" OR "premature mortality" AND "impact assessment" OR "health impact". For the second one our search terms were: "green spaces" OR "green 

areas" OR "urban green infrastructure" OR "tree cover" OR "tree coverage" OR "tree canopy" OR "urban trees" AND "cooling" OR "temperature reduction" 

OR "heat mitigation" AND "mortality" OR "premature mortality" AND "impact assessment" OR "health impact" 
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Supplement A. City definition 

 

City definition 

We retrieved the European cities from the Urban Audit (UA) 2018 dataset (1). The city definition was based on the presence of an “urban centre”, which is 

defined as followed: (1) Selection of grid cells with population density over 1,500 inhabitants/km2; (2) Clustering of contiguous high-density cells and 

selection of clusters with a population above 50,000 inhabitants as the “urban centre”; (3) Defining cities as the local administrative units with at least half 

their population in an “urban centre”. For urban centres that extends far beyond the city, a ‘greater city’ level was created (2). 
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Supplement B. Demographic data 

 

a) Population data 

The Global Human Settlement Layer (GHSL) method combines information from population censuses and downscales the population into grid cells of 

250m by 250m resolution, based on the presence or absence of built-up area in the grid cell (3). We reduced the GHSL reference dataset to only those 

grid cells that covered residential areas to better represent population distribution, to avoid locating inhabitants in non-residential areas (eg. industrial 

zones, port areas, airports). We retrieve land use data from the European Urban Atlas 2012 and retain grid cells that intersect with any of the residential 

categories defined in the Urban Atlas (i.e. Continuous Urban Fabric, Discontinuous Dense Urban Fabric, Discontinuous Medium-Density Urban Fabric, 

Discontinuous Low-Density Urban Fabric and Discontinuous Very Low-Density Urban Fabric) (4).  

Given that the UrbClim data was available at a gridded raster, for some cities the overlap with the Urban Audit layer was not exact and as a result there 

were city grid-cells with no temperature data which were excluded from the analysis (ie, a city-average equal to 97.7% of population covered) (a full list 

with the percentage of grids and population covered is available in the Supplementary Table 1). 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                   

Figure S1: Example of 

procedure applied for the 

population redistribution 

(example: Barcelona area): a) 

original population raster from 

GHSL, b) selection of cells based 

on residential land uses, and c) 

final dataset with weighted 

population redistribution 

assigned for each cell 
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b) Age distribution 

The population age distribution for 2015 was obtained from Eurostat at the Nomenclature of Territorial Units for Statistics (NUTS) 3 level (5,6). We retrieved 

the population data by age group (i.e. 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84 and 85 years and older) and 

calculated the proportion of the population per age group. We assumed the same age distribution between the NUTS3-level and the corresponding city level. 

The population age proportions of each city were applied to the total population counts in the corresponding grid cells to estimate the population by age 

group for each grid cell and the city-level adult population count. After that, we aggregated the groups as 20-44, 45-64, 65-74, 75-84 and 85 years and older 

to fit them with ERFs. 

 

c) Mortality data 

We retrieved weekly all-cause mortality counts by age group for 2015 from Eurostat (7) for 81 cities at NUTS3 level. We estimated the daily mortality rates 

per age group per city assuming an homogeneous distribution of deaths over the same week and applied the rates to each grid cell. 

For cities without weekly deaths counts available (ie, Berlin, Dusseldorf, Frankfurt, Hamburg, Koln, Leipzig, Ljubljana, Munich, Prague, Split, Zagreb) we 

retrieved annual city-specific all-cause mortality counts for 2015 from Eurostat (7). For only one city (ie, Dublin) we estimated the total all-cause mortality 

count using the country-level age-specific all-cause mortality rates, which was also available through the Eurostat database. We estimated the mortality 

rates per age group and applied the rates to each grid cell. We retrieved monthly country mortality counts (7) and estimated the proportion of deaths per 

month. We assumed an homogeneous distribution of deaths over the same month and estimated the daily deaths per grid cell.  

For the 81 cities with weekly mortality data, we also retrieved annual city-specific all-cause mortality and followed the same procedure as described before 

for comparison.  On average, the death counts estimated with the annual city-specific dataset were 17% higher with a Pearson correlation equal to 0.98. We 

ran a linear regression between both data sets (Table S1) and adjusted the annual mortality dataset by applying a calibration of 86%. 
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    p-value 

Intercept -10.34 0.766 

Coefficient 0.86 < 2.2e-16 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

      

      

 

 

 

 Figure S2: (A) Association between GHSL total population and 

Eurostat total population. (Pearson correlation=0.99). (B) Association 

between summer all-cause deaths counts estimations from city level 

annual deaths counts and from NUTS3 level weekly deaths counts. 

(Pearson correlation=0.98). (C) Association between adjusted summer 

all-cause deaths counts estimations from city level annual deaths 

counts and from NUTS3 level weekly deaths counts. (Pearson 

correlation=0.98). 

Table S1. Linear regression coefficients and p-values for the association between 

the annual city-specific dataset and the weekly NUTS3 dataset.  

A 

B

 

C
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Supplement C. Health Impact Assessment (HIA) 

We have analysed the historical average summer temperature according to the Köppen–Geiger climate zones to check whether 2015 was a normal year. We 

did not identify 2015 as an abnormal temperature year, however we observed an overall light increase trend (Figure S3). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S3. Average summer temperature by climate zone from 1991 to 2019. The red line indicates 

2015, the baseline year for the analysis BSk = Arid, steppe, cold; Cfa= Temperate, no dry season, hot summer; Cfb= 

Temperate, no dry season, warm summer; Csa= Temperate, dry summer, hot summer; Csb= Temperate, dry summer, warm 

summer; Dfa= Cold, no dry season, hot summer; Dfb= Cold, no dry season, warm summer; Dfc= Cold, no dry season, cold 

summer 
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We retrieved city and age group-specific exposure-response functions (ERFs) from Masselot et al 2021 (8). We estimated the daily baseline temperature 

exposure levels and we assigned to each age group a RR accordingly. We calculated the Population Attributable Fraction (PAF) for each daily mean 

temperature (i) and age group (j) at a grid-cell level (k) as: 

Eq. (S1)   PAFijk=RRijk-1/RRijk 

The PAF is the proportional reduction in population mortality that would occur if temperature were reduced to the corresponding ‘Minimum mortality 

temperature (MMT)’ (ie, the mean daily temperature at which the lowest mortality occurs) (9).  

We estimated the attributable premature mortality burden combining the PAF and the daily natural-cause mortality. We repeated the same procedure for 

each of the counterfactual scenarios and we calculated the difference with the baseline scenario. The obtained result is the premature mortality burden 

attributed to shifting baseline exposure levels to the specific counterfactual exposure level scenario (Figure S4).  

We added up the results by city and age groups and estimated the preventable age-standardized mortality per 100,000 population, based on European 

Standard Population (ESP) (10) and the percentage of preventable annual and summer all-cause deaths. Additionally, we calculated the Years of Life Lost 

(YLL) due to the premature deaths as:  

Eq. (S2)   YLL = Attributable deaths age group * Life expectancy age of death 

YLL is a measure of premature mortality that considers both the frequency of deaths and the age at which it occurs. The YLLs for a cause are essentially 

calculated as the number of deaths from the specific cause multiplied by a loss function specifying the years lost for deaths as a function of the age at which 

death occurs. The average age at death was estimated as the mean age of each age group by city and the standard life expectancy at the age of death was 

obtained from country-level life tables available through Eurostat (11). YLL depends on an age weighting that encodes how the value of life is distributed 

with age, and on a time discount rate that represents a possible decreasing value of future lives. In this study, we applied a uniform age weighting and a 0%-

time discount rate following the GBD and WHO approach to count years lived equally at all ages now and in the future (ie, giving an equal weight to years of 
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healthy life lost at young ages and older ages) (12).We performed the analysis considering the sources of uncertainty. We built the range of uncertainty for 

each of the parameters involved in the mortality impacts estimations based on their SE and assuming a normal distribution. We then conducted 500 Monte 

Carlo iterations by sampling from the built ranges at a grid-cell level. From each sampling we aggregated the results to a city level, therefore we ended up 

with 500 results for each city, from which we estimated the mean (point estimate) and 2.5 and 97.5 percentiles (95% CI) for each city. 

For building the temperature and the UHI uncertainty ranges (both datasets with daily and gridded variability) we considered a sample by day (ie, same 

error for all of the grids for each day) for avoiding errors from cancelling each other out. 

 

 

 

 

 

 

 

 

 

 

Figure S4. Summarised methodological steps of the Health Impact Assessment analysis. 
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Association between UHI HIA and TC=30% HIA 
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Supplement D. Exposure Response Function (ERF) 

We generated city and age-specific ERFs from the framework of Masselot et al (forthcoming). The authors developed a three-stage analysis design to map 

ERFs across Europe. Very briefly, first, they estimated the city-specific overall cumulative exposure-response function in cities with observed daily mortality 

data through a quasi-Poisson regression model accounting for non-linearity and lagged effects. Secondly, they created a predictive model by conducting a 

meta-regression of the first-stage ERF coefficients using age, regional indicator and city-specific characteristics. This meta-regression model can then be 

used to predict ERF for any age group and any city in Europe (1). 

Given that the risk estimates were built under the ERA5-LAND temperature dataset with a resolution of approximately 9 km, therefore covering rural areas, 

it was expected that the ERF temperature range was lower than the UrbClim temperature range. For that reason, we applied a city-specific correction to the 

UrbClim dataset as: 

Eq. (S3) Turbclim= α + β     * Tera5 

Where Turbclim is the mean UrbClim daily city-level temperature and Tera5 is the mean ERA5-LAND daily city-level temperature for 2015. 

We then ran Eq3´ at a grid cell-level with their corresponding city-specific coefficients. 

Eq. (S3´) Turbclim adjusted = (Turbclim - α) / β 

Table S2. Statistical distribution of Equation 1 coefficients and determinant coefficient (R2) 
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After adjusting the temperature dataset, there were still some days with temperature values falling out of the ERFs (ie, temperature values above the 

maximum temperature with an estimated risk). We chose a conservative approach and instead of extrapolating the ERFs above the maximum, we assigned 

to highest temperatures, the corresponding maximum temperature´ risk available (Table S3). 

 

 

 

Table S3. Maximum exposure-response function predictive values and maximum UrbClim values at a grid-cell level (250m). Adjustment equation applied to 

each city. 

City name City code 
Maximum ERF 

predictive 
values (ºC) 

Maximum 
summer 

temperature 
UrbClim 
(250m) 

Difference 
(ºC) 

Alfa Beta error R squared 

Wien AT001C1 28.885 32.28 3.395 -1.24 1.00 0.90 0.99 

Graz AT002C1 25.559 30.738 5.179 -2.35 1.00 0.76 0.99 
Bruxelles / 
Brussel 

BE001C1 26.563 29.928 3.365 
-1.22 0.98 0.77 0.98 

Antwerpen BE002C1 26.319 29.095 2.777 -0.84 0.98 0.73 0.98 

Gent BE003C1 26.815 28.863 2.047 -0.30 1.00 0.59 0.99 

Charleroi BE004C1 26.373 29.062 2.689 -0.67 0.97 0.74 0.98 

Liège BE005C1 26.904 31.338 4.433 -0.88 0.98 0.73 0.99 

Sofia BG001C1 31.871 30.58 -1.291 -2.57 1.03 1.03 0.99 

Varna BG003C1 30.402 31.39 0.987 -0.97 0.96 0.75 0.99 

Zürich CH001C1 27.747 32.652 4.906 -1.96 0.96 0.97 0.98 

Genève CH002C1 27.559 31.756 4.196 -3.40 1.04 1.03 0.98 

Basel CH003C1 24.628 32.582 7.954 -3.03 0.99 1.00 0.98 

Praha CZ001C1 28.369 32.19 3.821 -0.62 0.99 0.53 1.00 

Berlin DE001C1 27.598 33.055 5.457 -1.05 0.99 0.74 0.99 
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Hamburg DE002C1 26.425 29.404 2.979 -0.52 0.97 0.67 0.99 

München DE003C1 27.548 31.115 3.567 -1.85 0.98 1.28 0.97 

Köln DE004C1 28.414 31.656 3.242 -0.90 0.98 0.52 0.99 
Frankfurt am 
Main 

DE005C1 28.861 33.643 4.781 
-1.65 0.99 0.90 0.98 

Leipzig DE008C1 29.899 31.544 1.646 -0.50 0.96 0.77 0.99 

Düsseldorf DE011C1 28.448 31.057 2.609 -0.69 0.99 0.54 0.99 

København DK001C1 24.295 28.48 4.185 -0.67 0.96 0.61 0.99 

Tallinn EE001C1 25.308 22.725 -2.583 -0.41 0.99 0.40 1.00 

Tartu EE002C1 25.775 23.979 -1.797 -0.41 0.99 0.40 1.00 

Athina EL001C2 32.653 36.119 3.465 -2.31 0.95 1.32 0.97 

Thessaloniki EL002C2 32.336 33.997 1.661 -2.90 0.98 0.71 0.99 

Madrid ES001C1 26.26 35.15 8.89 -2.74 1.02 1.12 0.98 

Barcelona ES002C1 24.523 31.625 7.102 -2.04 1.00 0.50 0.99 

Valencia ES003C1 24.577 33.633 9.056 -1.97 1.01 0.70 0.99 

Sevilla ES004C1 25.198 35.719 10.521 -1.52 1.01 0.58 0.99 

Málaga ES006C1 26.504 36.295 9.791 -1.50 0.94 0.54 0.99 

Murcia ES007C1 27.01 34.025 7.015 -0.40 0.95 0.45 1.00 
Palma de 
Mallorca 

ES010C1 23.231 31.785 8.554 
-0.11 0.96 0.56 0.99 

Bilbao ES019C1 28.18 28.813 0.633 -0.10 0.91 0.61 0.98 
Alicante/Alacan
t 

ES021C1 31.628 32.547 0.919 
0.38 0.94 0.57 0.99 

Helsinki / 
Helsingfors 

FI001C2 24.962 23.247 -1.715 
-1.59 1.01 0.74 0.99 

Paris FR001C1 28.49 33.547 5.057 -2.75 0.99 1.13 0.97 

Lyon FR003C2 28.486 33.971 5.485 -2.12 1.02 0.96 0.98 

Toulouse FR004C2 29.287 30.758 1.472 -0.81 1.00 0.66 0.99 

Strasbourg FR006C2 27.683 35.122 7.44 -2.27 1.00 0.68 0.99 

Bordeaux FR007C1 30.57 32.196 1.626 -1.06 1.00 0.57 0.99 

Nantes FR008C1 28.628 29.779 1.15 0.02 0.96 0.53 0.99 

Lille FR009C1 29.83 29.613 -0.218 -0.76 0.99 0.67 0.99 



16 
 

Montpellier FR010C1 29.54 31.038 1.498 0.03 0.96 0.46 0.99 

Marseille FR203C1 30.115 30.696 0.581 0.03 0.94 0.54 0.99 

Nice FR205C2 27.434 33.97 6.536 -1.80 0.98 0.59 0.99 

Zagreb HR001C1 29.878 32.442 2.564 -1.11 0.99 0.62 0.99 

Split HR005C1 28.599 33.525 4.926 -1.72 0.96 0.62 0.99 

Budapest HU001C1 29.493 33.713 4.22 -1.51 0.99 0.84 0.99 

Miskolc HU002C1 29.547 33.466 3.919 -1.54 0.96 0.79 0.99 

Pécs HU004C1 28.859 31.722 2.863 -0.34 0.98 0.48 1.00 

Debrecen HU005C1 28.734 31.762 3.028 -0.07 0.98 0.43 1.00 

Szeged HU006C1 28.664 33.782 5.118 -0.77 0.97 0.70 0.99 

Gyõr HU007C1 30.218 33.047 2.829 -0.97 0.98 0.68 0.99 

Dublin IE001C1 22.212 23.891 1.679 -0.78 0.94 0.86 0.95 

Roma IT001C1 29.169 34.38 5.211 -0.52 0.95 0.74 0.99 

Milano IT002C1 30.059 33.856 3.797 -3.50 1.02 0.99 0.98 

Napoli IT003C1 29.774 34.572 4.798 -0.07 0.92 0.85 0.98 

Torino IT004C1 30.082 32.55 2.467 -3.93 1.02 1.09 0.98 

Palermo IT005C1 27.338 36.016 8.678 -2.23 0.94 0.90 0.98 

Genova IT006C1 26.849 33.256 6.407 -3.04 0.99 0.67 0.99 

Bari IT008C1 27.793 33.836 6.043 -0.70 0.94 0.77 0.99 

Bologna IT009C1 27.771 33.866 6.095 -2.00 1.03 0.71 0.99 

Trieste IT015C1 29.776 32.919 3.143 -1.72 1.00 0.67 0.99 

Padova IT028C1 31.631 34.937 3.307 -2.16 1.02 0.83 0.99 

Vilnius LT001C1 26.119 28.811 2.691 -0.47 0.98 0.59 0.99 

Klaipėda LT501C1 26.463 27.966 1.503 -0.52 0.97 0.55 0.99 

Luxembourg LU001C1 26.843 30.187 3.344 -0.88 0.99 0.52 0.99 

Rīga LV001C1 25.291 26.359 1.068 -0.15 0.97 0.43 1.00 
Greater 
Amsterdam      

NL002C2 24.888 28.699 3.812 
-0.73 0.96 0.77 0.98 

Greater 
Rotterdam         

NL003C2 25.525 29.644 4.118 
-0.78 0.96 0.77 0.98 
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Greater 
Utrecht               

NL004C2 26.183 29.343 3.161 
-0.74 0.97 0.80 0.98 

Oslo NO001C1 22.837 23.132 0.294 -2.37 1.05 0.81 0.99 

Warszawa PL001C1 26.733 31.411 4.678 -0.62 0.97 0.58 0.99 

Łódź PL002C1 27.318 30.509 3.192 -0.18 0.97 0.70 0.99 

Kraków PL003C1 24.891 31.403 6.512 -0.94 0.98 0.76 0.99 

Wrocław PL004C1 27.786 32.126 4.34 -0.40 0.98 0.59 0.99 

Gdańsk PL006C1 27.446 29.12 1.675 -0.65 1.00 0.70 0.99 

Lisboa PT001C1 26.688 28.863 2.176 0.22 0.92 0.52 0.98 

Porto PT002C1 28.915 29.236 0.321 -0.25 0.94 0.65 0.98 

Bucureşti RO001C1 29.772 32.411 2.64 -1.51 0.99 0.93 0.99 

Cluj-Napoca RO002C1 25.328 31.889 6.56 -2.32 0.97 1.06 0.99 

Braşov RO504C1 31.309 29.455 -1.854 -2.91 0.99 0.93 0.99 

Stockholm SE001C1 23.409 25.172 1.763 -0.46 0.97 0.57 0.99 

Göteborg SE002C1 24.863 24.815 -0.048 -0.46 0.97 0.57 0.99 

Ljubljana SI001C1 27.059 31.036 3.977 -2.65 1.02 0.84 0.99 

Bratislava SK001C1 29.355 32.998 3.642 -0.90 1.00 0.62 0.99 

Košice SK002C1 29.3 31.49 2.19 -1.41 1.01 0.64 0.99 
London Greater 
City 

UK001K1 21.207 28.2 6.993 
-0.87 0.99 0.57 0.98 

Birmingham UK002C1 21.682 26.538 4.856 -0.18 0.97 0.74 0.97 

Leeds UK003C1 21.123 25.804 4.682 -1.09 0.93 0.78 0.96 

Glasgow UK004C1 21.676 24.349 2.673 -1.16 0.96 0.82 0.96 

Edinburgh UK007C1 21.133 24.516 3.383 -0.45 0.95 0.75 0.97 
Newcastle upon 
Tyne 

UK013C1 21.031 23.787 2.757 
-1.84 0.99 0.73 0.98 
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Supplement E. Counterfactual scenarios. 

a) Urban Heat Island (UHI) 

We retrieved the mean day-time UHI and mean night-time UHI data at 100 m x 100 m resolution for 2015 summer season (ie, June - August) from the 

Copernicus UrbClim model application. This is the difference between the mean rural temperature (ie, represented by the rural classes of CORINE covering 

grassland, cropland, shrubland, woodland, broadleaf forest and needleleaf forest) and each of the urban grid cells, masking out the water bodies (13). 

We estimated the 250m grid cell mean 24hs UHI (ie, for each day) by averaging the day and night UHI 100 m grid cells with centroids within the spatial 

boundaries of each 250 m grid cell. For the grids with negative values we considered a null UHI. We have also calculated the average daytime and night-time 

UHI separately to understand the contribution of each to the mean 24hs UHI. Day-time UHI resulted in a mean city value of 0.6ºC, whereas night-time UHI 

was 1.9ºC. 
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Figure S5. (A) Day-time average urban heat island per grid cell. (B). Night-time average urban heat island per grid cell. (C) 24 hours average urban heat 

island per grid cell. 

 

B

C
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Minimum (%) Pct.1 25 (%) Median (%) Mean (%) Pct.1 75 (%) Maximum

UHId 0.00 5.94 11.67 17.96 23.49 80.07

UHIn 0.00 1.10 3.61 5.07 7.88 22.67
1. Pct.=percentile

Table S4. Distribution of the percentage of negative daily UHI values for day-time (UHId) and night-time (UHIn) 

 

  

 

 

 

We also estimated the population-weighted city-average by weighting the number of people in a city—divided by the grid—to the UHI exposure in each 

grid-cell. By summing up all grid-cells estimations, it is possible to have a more accurate measure of the exposure of the city population as it gives 

proportionately greater weight to the UHI exposure where most people live.  
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b) TC 30% 
      

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6. Average tree cover density at a grid cell level by city. 

For each city, we analyzed the feasibility of achieving the 30% TC target. We estimated the percentage of open space in each city at a grid cell level where 

potentially trees could be planted according to the corresponding land use. For this purpose, we retrieved from the European Settlement Map (ESM) the 

open space (“BU area -open space”) and the green space (“BU - green NDVIx”; green spaces not included in the Urban Atlas (UA) green space classification, 

such as roadside vegetation, urban trees and pocket parks). We estimated the difference between the 30% target and the available open space at a grid cell 

level (Figue S7). We calculated the mean and the interquartile range at a city level in order to have the whole picture of the open space distribution (Table 

S5).  



22 
 

Table S5. Interquartile range of the difference between the 30% TC target and the open space by grid-cell. 
 

City code Quartile 1 Median Quartile 3 Mean   City code Quartile 1 Median Quartile 3 Mean 

AT001C1 0.00 0.00 0.00 2.09   HU001C1 0.00 0.00 0.00 0.91 

AT002C1 0.00 0.00 0.00 1.65   HU002C1 0.00 0.00 0.00 2.24 

BE001C1 0.00 0.00 12.33 6.18   HU004C1 0.00 0.00 0.00 1.30 

BE002C1 0.00 0.00 0.23 2.24   HU005C1 0.00 0.00 0.00 1.80 

BE003C1 0.00 0.00 0.85 2.48   HU006C1 0.00 0.00 0.00 1.90 

BE004C1 0.00 0.00 0.00 0.52   HU007C1 0.00 0.00 0.94 2.82 

BE005C1 0.00 0.00 0.00 1.11   IE001C1 0.00 0.00 0.00 0.12 

BG001C1 0.00 0.00 0.00 0.47   IT001C1 0.00 0.00 0.00 1.03 

BG003C1 0.00 0.00 0.00 1.07   IT002C1 0.00 0.00 0.00 1.71 

CH001C1 0.00 0.00 2.54 2.73   IT003C1 0.00 0.00 0.00 1.05 

CH002C1 0.00 0.00 6.23 3.50   IT004C1 0.00 0.00 0.00 1.11 

CH003C1 0.00 0.00 5.84 3.68   IT005C1 0.00 0.00 0.00 1.02 

CZ001C1 0.00 0.00 0.00 1.37   IT006C1 0.00 0.00 0.00 1.92 

DE001C1 0.00 0.00 0.00 1.99   IT008C1 0.00 0.00 0.00 0.95 

DE002C1 0.00 0.00 0.00 2.40   IT009C1 0.00 0.00 0.00 1.95 

DE003C1 0.00 0.00 0.00 0.71   IT015C1 0.00 0.00 0.00 1.92 

DE004C1 0.00 0.00 0.00 1.47   IT028C1 0.00 0.00 0.00 0.53 

DE005C1 0.00 0.00 5.91 3.45   LT001C1 0.00 0.00 0.00 1.58 

DE008C1 0.00 0.00 0.00 0.76   LT501C1 0.00 0.00 0.00 1.14 

DE011C1 0.00 0.00 0.00 1.56   LU001C1 0.00 0.00 1.95 2.74 

DK001C1 0.00 2.35 13.48 6.75   LV001C1 0.00 0.00 0.00 1.19 

EE001C1 0.00 0.00 0.00 0.41   NL002C2 0.00 0.00 3.53 3.18 

EE002C1 0.00 0.00 0.00 0.67   NL003C2 0.00 0.00 5.00 3.33 

EL001C2 0.00 0.00 1.69 1.24   NL004C2 0.00 0.00 6.54 3.97 

EL002C2 0.00 0.00 0.00 0.35   NO001C1 0.00 0.00 0.00 1.73 

ES001C1 0.00 0.00 0.00 1.65   PL001C1 0.00 0.00 0.00 1.02 

ES002C1 0.00 0.00 10.46 5.37   PL002C1 0.00 0.00 0.00 1.95 
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ES003C1 0.00 0.00 0.00 1.98   PL003C1 0.00 0.00 0.00 1.65 

ES004C1 0.00 0.00 4.49 3.47   PL004C1 0.00 0.00 0.00 2.16 

ES006C1 0.00 0.00 3.18 3.56   PL006C1 0.00 0.00 0.00 1.06 

ES007C1 0.00 0.00 0.00 1.47   PT001C1 0.00 0.00 6.46 3.70 

ES010C1 0.00 0.00 0.20 2.22   PT002C1 0.00 0.00 0.66 2.05 

ES019C1 0.00 0.00 11.06 5.78   RO001C1 0.00 0.00 0.00 1.33 

ES021C1 0.00 0.00 0.27 3.46   RO002C1 0.00 0.00 3.42 3.02 

FI001C2 0.00 0.00 0.00 0.19   RO504C1 0.00 0.00 4.27 3.98 

FR001C1 0.00 6.84 13.01 7.50   SE001C1 0.00 0.00 0.00 1.78 

FR003C2 0.00 0.00 0.00 1.62   SE002C1 0.00 0.00 4.12 3.26 

FR004C2 0.00 0.00 0.00 1.88   SI001C1 0.00 0.00 5.96 4.17 

FR006C2 0.00 0.00 0.00 1.71   SK001C1 0.00 0.00 3.10 2.89 

FR007C1 0.00 0.00 0.00 1.55   SK002C1 0.00 0.00 5.46 3.73 

FR008C1 0.00 0.00 6.38 3.83   UK001K2 0.00 0.00 0.00 2.85 

FR009C1 0.00 0.00 0.56 2.29   UK002C1 0.00 0.00 0.00 1.09 

FR010C1 0.00 0.00 3.40 3.20   UK003C1 0.00 0.00 4.94 4.45 

FR203C1 0.00 0.00 0.00 2.27   UK004C1 0.00 0.00 0.62 2.78 

FR205C2 0.00 0.00 0.00 2.63   UK007C1 0.00 0.00 15.00 7.66 

HR001C1 0.00 0.00 0.00 1.90   UK013C1 0.00 0.00 0.00 2.48 

HR005C1 0.00 0.00 0.00 0.52   
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Figure S7. Difference between 30% target and the open space at a grid cell level for each city.  

      

Table S6. Statistical distribution of Equation 2 coefficients and determinant coefficient (R2) 

β0e4 β1e4 β2e4 R2 

36.42 ± 5.50 -0.06 ± 0.003  -1.49 ± 1.01 0.41 ± 0.20 
 

 

Eq. 2 was built with an US air temperature dataset given that the existing network of weather stations in Europe has insufficient coverage. The dataset, 

compiled by the University of Colorado Denver, derived from NOAA (National Oceanic and Atmospheric Administration), consists of more than 6,500 

summer maximum air temperature records (June 15th to August 15th) from weather stations, including their latitude and the average of 1 km of 

neighbourhood LST buffer of each station.  The wide range of latitudes and biomes covered makes the associations suitable for extrapolation to Europe.       
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In order to test the model predictions, we used average summer (June–August 2015) air temperature at a city level to validate the air temperature 

estimated through the model. With this purpose we regressed each city-average value against the corresponding observed air temperature values. We 

calculated the adjusted R2, RMSE and model coefficients to assess the accuracy of the model. 

 

 

 

 

 

 

 

 

     In order to estimate the LST corresponding to TC equal to 30%, 40% and 25%, we estimated the city-average Etree considering the grid cells with: (1) 

TC=28-32% (Etree30) and, (2) TC=38-44% (Etree40), (3) TC=23-27% (Etree25), respectively. We considered an interval plus-minus 2º for avoiding NAs or low 

counts. 

For two cities (ie, Thessaloniki, Greece and Murcia, Spain) for which the maximum TC was 30% we computed the same mean evapotranspiration for 

TC=40%. 

Table S7. Distribution of the percentage of negative cooling estimations for TC=30% 

  Minimum (%) Pct.1 25 (%) Median (%) Mean (%) Pct.1 75 (%) Maximum (%) 

Cooling (TC=30%) 0.1 6.63 14.04 16.36 21.82 89.4 

Figure S8. Plot of the cooling 

model validation. The 

UrbClim temperature data 

used in the validation is the 

average maximum 

temperature from June to 

August 2015. Adjusted R2: 

0.66; RMSE: 2.03. Both 

intercept and slope are 

significant for p ≤ 0.05. 
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1. Pct.=percentile             
Model errors 

We estimated the uncertainty of the model by calculating the propagated error of the two regressions, for each city. We applied Eq. S1 based on Taylor el al 

method for accumulated prediction fractional uncertainties (14).  

 

(Eq. S4)   Error = √( δTa /|Ta| )2 + ( δLST /|LST| )2 + ( δTa30 / |Ta30| )2 + ( δLST30 /|LST30| )2 

 

Where δ is the error, Ta is the estimated air temperature, LST is the land surface temperature, and Ta30 and LST30 are the estimated air and surface 

temperature for TC=30% scenario, respectively. We calculated the errors (δ) by averaging the observed upper and lower confidence interval (alpha = 0.05) 

values from grid- cell-level predictions, 
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Supplementary F. Sensitivity analysis. 

a) Health impact assessment of urban heat island 
i) Exposure response function (Martinez-Solanas et al, 2021) 

 

 

 

 

 

 

 

 

 

ii)  Grid-cell-average summer UHI  
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iii) City-average UHI 

 

 

 

 

 

 

 

 

iv) Adjusted annual city mortality dataset 
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v) Non-adjusted annual city mortality dataset 
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b) Cooling estimation 
We conducted two sensitivity analysis of the cooling estimation for TC=30% changing the way the amount of water evaporated from trees (Etree30) was 

calculated. 

1) Linear regressions by city between the TC and Etree 
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2) Linear regression by biome between the TC and Etree 
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c) 30% TC health impact assessment 
i) Etree30 estimation: regression by city 

 

 

 

 

 

 

 

 

 

ii) Etree30 estimation: linear regression by biome 
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iii) City-average cooling 
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iv) Exposure response function (Martinez-Solanas et al, 2021) 

We applied the same methodology than for the main analysis.   

Given that the risk estimates were built under the E-obs dataset (15), we applied a city-specific correction to the UrbClim dataset as:  

 

Eq. (S5)   Turbclim= α + β3* TE-obs 

 

Where Turbclim is the mean UrbClim daily city-level temperature and TE-obs is the mean E-obs daily city-level temperature for 2015. 

After adjusting the temperature dataset, there were still some days with temperature values falling out of the ERFs (ie, temperature values above the 

maximum temperature with an estimated risk). We chose a conservative approach and instead of extrapolating the ERFs above the maximum, we assigned 

to highest temperatures, the corresponding maximum temperature´ risk available. 
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Supplementary analysis G. Uncertainty analyses. 

We conducted uncertainty analysis running 500 Monte Carlo simulations considering each of the parameter’s uncertainty separately. We considered the 

following sources of uncertainties: the ERFs (8), the UrbClim data error (16), the temperature adjustment model error, the UHI data error (16) and the 

cooling model error, accordingly. 

 

- Urban heat island health impact assessment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

 

- 30% TC scenario health impact assessment 
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