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Abstract  

Antimicrobial resistance (AMR) is a major global public health threat, typically 

represented by bacteria becoming resistant to antibiotics, and hence harder to treat. 

A particular concern is multidrug resistance, which can arise as bacteria acquire new 

AMR genes via horizontal gene transfer (HGT). In the important nosocomial pathogen 

Staphylococcus aureus, bacteriophage (phage, viruses of bacteria) are the major 

drivers of HGT of AMR by the process of transduction. In an initial systematic review, 

I found that dynamics of transduction and the overall contribution of this process to the 

global spread of AMR are unclear. In this thesis, I aimed to fill this research gap 

through an interdisciplinary approach, combining mathematical modelling, lab work, 

and analysis of routinely collected hospital data. 

 

I first investigated the dynamics of phage and S. aureus, including generalised 

transduction of AMR, by developing a novel mathematical model representing these 

dynamics, and generating in vitro data to parameterise this model. I estimated rates 

of generalised transduction, and showed that this process consistently leads to 

generation of multidrug-resistant bacteria, even in the absence of a selection pressure. 

Within-host however, phage may often be present alongside antibiotics. These may 

either act in synergy to kill bacteria, or antibiotics may limit phage predation and 

instead exert a selective pressure on multidrug-resistant bacteria generated by phage 

via generalised transduction. I extended my model to include antibiotic 

pharmacodynamics, and parameterised this by generating additional in vitro data. By 

analysing this extended model, I identified timings and concentrations of phage and 

antibiotics which maximise bacteria killing, whilst minimising the risk of multidrug 

resistance evolution and selection. Finally, I translated these findings to an in vivo 

setting by analysing 20 years of routinely collected pseudonymised hospital data on 

more than 20,000 patients colonised or infected by S. aureus. Using antibiograms of 

more than 70,000 isolates, I identified evidence of within-host AMR phenotypic 

diversity, and changes in that diversity over time, potentially mediated by transduction. 

 

Overall, the work presented in this thesis clarifies some of the complex phage-bacteria 

dynamics in S. aureus, and highlights the important role played by phage in AMR 

spread through generalised transduction.  
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1 Introduction 

1.1 Outline of the thesis 

In this Introduction, I describe the global public health threat of antimicrobial resistance 

(AMR), focusing on antibiotic resistance in bacteria, before presenting Staphylococcus 

aureus as a clinically important pathogen, made more dangerous by the acquisition of 

multiple resistance genes. I then introduce bacteriophage (phage) as organisms that 

substantially interact with S. aureus. I explain how phage can lead to the transfer of 

AMR genes in S. aureus by transduction, and present how mathematical modelling 

can help to reveal the dynamics of phage predation and transduction of AMR. 

 

This thesis is structured following the London School of Hygiene & Tropical Medicine 

“research paper thesis” style, with the work divided between a series of papers written 

during the project, and each paper corresponding to a chapter. For each paper 

included, I first give an overview of the work conducted and how it fits in the thesis, 

then I directly include the corresponding manuscript. Note that the references in 

Chapters 2, 3, 4 and 5 are independent from the references in the Introduction 

(Chapter 1) and General Discussion (Chapter 6). The Supplementary Material for each 

Chapter is included in the Appendix of this thesis. 

 

In Chapter 2, I include a published systematic review I conducted on mathematical 

models used to study horizontal gene transfer of AMR in bacteria (Leclerc, Lindsay 

and Knight, 2019). In Chapter 3, I present my published research article combining 

laboratory work and mathematical modelling to reveal the dynamics of phage 

predation and generalised transduction in S. aureus (Leclerc et al., 2022). In Chapter 

4, I include my follow-up work extending the model from Chapter 3 to study the joint 

effect of antibiotics and phage capable of transduction on bacteria, available as a 

preprint at the time of writing (Leclerc, Lindsay and Knight, 2022). In Chapter 5, I 

present an analysis of routinely collected hospital data to identify evidence of within-

host AMR diversity in S. aureus, not yet publicly available. The final General 

Discussion Chapter then brings together and discusses the conclusions from this 

research. 
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1.2 The global public health threat of antimicrobial 

resistance 

1.2.1 The biology of antimicrobial resistance 

1.2.1.1 Bacteria and antibiotics 

The human body is host to 1013 bacteria on average, which is the same order of 

magnitude as the number of human cells (Sender, Fuchs and Milo, 2016). The majority 

of the time, these microscopic organisms in our bodies are harmless, existing as 

commensal organisms in different organs such as our gut, skin, or nose (Sender, 

Fuchs and Milo, 2016). However, some bacteria are able to cause infections, when 

they rapidly proliferate and interfere with the normal function of our body. If our immune 

system is unable to eradicate the causative bacterial population, these infections can 

be life-threatening or lead to severe sequelae in individuals. Bacterial infections are 

therefore responsible for a significant burden of disease worldwide (Murray et al., 

2022). To treat them, the main weapon at our disposal are antibiotics. These are 

molecules that specifically target and kill bacteria (bactericidal) or prevent their growth 

(bacteriostatic), allowing the immune system to bring the infection under control 

(Silverman and Holladay, 2014). 

 

One of the most important early antibiotics was penicillin, discovered by Alexander 

Fleming in 1928 (Fleming, 1929). This bactericidal molecule binds to penicillin-binding 

proteins (PBPs), inactivating them irreversibly (Waxman and Strominger, 1983). PBPs 

are required in the construction of the bacterial cell wall, therefore their inhibition leads 

to instability in the cell wall, and eventually bacterial lysis (Sauvage et al., 2008). When 

it was first made widely available in the 1940s, penicillin was used to treat various 

blood, respiratory, and sexually transmitted bacterial infections (Dawson and Hobby, 

1944; Herrell, 1944). 
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Since then, other antibiotics, often derived from compounds naturally produced by 

fungi or bacteria, have been discovered or engineered, targeting different bacterial 

mechanisms (Hutchings, Truman and Wilkinson, 2019). The main antibiotic classes, 

alongside example antibiotic, mode of action, and resistance, are presented in Table 

1.1. Antibiotics have substantially reduced the number of deaths due to bacterial 

infections, partly due to their accessibility. Although some antibiotics will only be given 

to patients in a healthcare setting (e.g. vancomycin, generally delivered intravenously), 

they are often taken orally and directly obtained by individuals in pharmacies after 

being prescribed by a doctor (e.g. nitrofurantoin, frequently prescribed for urinary tract 

infections). However, antibiotic consumption is less regulated in many settings with 

low healthcare infrastructure, and individuals may gain access to antibiotics without a 

prescription (Do et al., 2021). As discussed in the next section, this unregulated use 

of antibiotics is important in the context of AMR. In any case, antibiotics are most often 

taken empirically, before the exact nature of the pathogen responsible for an infection 

is known (Versporten et al., 2018). 
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Table 1.1: Main antibiotic classes, with examples of antibiotics and resistances. Highlighted in bold are antibiotics and 
resistance mechanisms particularly relevant in this thesis. 
Class Example antibiotic Mechanism of action Example resistance 

mutation/gene 
(example bacteria 
where the resistance 
has been identified) 

Mechanism of 
resistance 

Reference 

Aminoglycosides Gentamicin Binds to the ribosome 
30S subunit, leads to 
erroneous protein 
synthesis 

aacA/aphD (S. aureus) Aminoglycoside-
modifying enzyme, 
inactivates the 
antibiotic 

(Rouch et al., 
1987) 

Carbapenems Meropenem Binds to penicillin-
binding proteins, 
inhibits cell wall 
synthesis 

blaKPC (K. 
pneumoniae) 

Beta-lactamase, 
degrades antibiotic 
molecules 

(Ghasemnejad, 
Doudi and 
Amirmozafari, 
2019) 

Cephalosporins Ceftriaxone Binds to penicillin-
binding proteins, 
inhibits cell wall 
synthesis 

ampC (E. coli) Beta-lactamase, 
degrades antibiotic 
molecules 

(Jacoby, 2009) 

Glycopeptides Vancomycin Binds to cell wall 
peptides, prevents 
cross-linking and cell 
wall synthesis 

vanA (S. aureus) Alters the peptide 
terminal, prevents 
antibiotic binding 

(Périchon and 
Courvalin, 2009) 

Lipopeptides Daptomycin Inserts into the cell 
membrane, causes 
leakage of ions and cell 
death 

cls (S. aureus) Alters the cell 
membrane 
composition, prevents 
antibiotic insertion 

(Tran, Munita and 
Arias, 2015) 

Lincosamides Clindamycin Binds to the ribosome 
50S subunit, inhibts 
protein synthesis 

ermB (S. aureus) rRNA methylase 
causing a 
conformational 
change in the 
ribosome, prevents 
antibiotic binding 

(Schmitz et al., 
2000) 

Macrolides Erythromycin Binds to the ribosome 
50S subunit, inhibts 
protein synthesis 
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Nitrofurans Nitrofurantoin Damages DNA and 
proteins non-
specifically 

nfsA (E. coli) Encodes oxygen-
insensitive 
nitroreductase, 
prevents antibiotic 
activation 

(Osei Sekyere, 
2018) 

Oxazolidinones Linezolid Binds to the ribosome 
50S subunit, inhibits 
protein synthesis 

23S rRNA gene (S. 
aureus) 

Point mutation in the 
23S rRNA gene, 
prevents antibiotic 
binding 

(Foster, 2017) 

Penicillins Flucloxacillin Binds to penicillin-
binding proteins, 
inhibits cell wall 
synthesis 

mecA (S. aureus) Encodes an 
alternative penicillin-
binding protein, 
prevents antibiotic 
binding 

(Pinho, de 
Lencastre and 
Tomasz, 2001) 

Polypeptides Colistin Changes the 
permeability of the 
outer membrane, 
causes cell leakage 

mcr-1 (E. coli) Alters cell membrane 
lipids, prevents 
antibiotic binding 

(Li et al., 2020) 

Quinolones Ciprofloxacin Binds to 
topoisomerases, 
prevents changes in 
DNA topology and cell 
division 

norA (S. aureus) Efflux pump, removes 
the antibiotic from 
within the cell 

(Yoshida et al., 
1990) 

Streptogramins Quinupristin/dalfopristin Binds to the ribosome 
50S subunit, inhibits 
protein synthesis 

vgaA (S. aureus) Encodes a binding 
protein, removes the 
antibiotic from within 
the cell 

(Gentry et al., 
2008) 

Sulfonamides Sulfamethoxazole Competes with 
bacterial enzymes to 
prevent synthesis of 
folic acid, prevents 
bacterial DNA synthesis 
and growth  

dfrA (S. aureus) Encodes an alternative 
dihydrofolate 
reductase, prevents 
antibiotic binding 

(Dale et al., 1995) 
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Tetracyclines Tetracycline Binds to the ribosome 
30S subunit, inhibits 
protein synthesis 

tetK (S. aureus) Efflux pump, 
removes the 
antibiotic from within 
the cell 

(Khan and 
Novick, 1983) 

Others Chloramphenicol Binds to the ribosome 
50S subunit, inhibits 
protein synthesis 

cfr (S. aureus) rRNA methylase 
causing a 
conformational change 
in the ribosome, 
prevents antibiotic 
binding 

(LaMarre et al., 
2013) 
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1.2.1.2 Definition of AMR 

“I would like to sound one note of warning. [...] The time may come when penicillin can 

be bought by anyone in the shops. Then there is the danger that the ignorant man may 

easily underdose himself and by exposing his microbes to non-lethal quantities of the 

drug make them resistant.” - Alexander Fleming, Nobel Lecture 1945 

 

Unfortunately, antibiotics are not infallible, as highlighted by Alexander Fleming during 

his Nobel Prize Lecture (citation above). Antimicrobial resistance (AMR) describes 

resistance in microorganisms to treatments against them, and therefore includes 

antibiotic resistance in bacteria. Resistance in bacteria is generally defined by 

measuring the minimum concentration of an antibiotic required to prevent growth of 

these bacteria (“minimum inhibitory concentration”; MIC) (Wheat, 2001). For each 

antibiotic, there are cut-off MIC values used to determine whether bacteria are 

classified as susceptible or resistant (Wheat, 2001). The most commonly used 

guidelines for this purpose are from the European Committee on Antimicrobial 

Susceptibility Testing (EUCAST: Clinical breakpoints and dosing of antibiotics, 2022) 

and the Clinical and Laboratory Standards Institute (Clinical and Laboratory Standards 

Institute, 2022). Although this binary susceptible/resistant classification is useful 

clinically to identify which antibiotics should be used to treat infections, it does not fully 

capture the true diversity of AMR. In reality, two bacteria labelled as resistant to the 

same antibiotic can show variations in their actual resistance levels, with one being 

completely insensitive to the antibiotic, and the other still affected by a slight reduction 

in growth rate (Mueller, de la Peña and Derendorf, 2004). Understanding this diversity 

is essential to identify how resistant bacteria may persist, further adapt, and be 

transmitted to other individuals. 

1.2.1.3 Mechanisms of AMR 

Antibiotic resistance in bacteria can be spontaneously acquired by mutations in the 

bacterial DNA, or following acquisition of a gene encoding a resistance mechanism. 

An example of resistance acquired by mutation is linezolid resistance in S. aureus, 

due to a point mutation in the 23S ribosomal RNA gene which prevents the antibiotic 

molecules from binding to their target on the ribosome (Meka et al., 2004). An example 
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of resistance following gene acquisition is a new efflux pump encoded by the tetK gene 

in S. aureus which actively removes tetracycline molecules from within the cell before 

they can bind to the bacterial ribosomes (Trzcinski et al., 2000). 

 

Some resistances can be intrinsic as opposed to acquired, where an antibiotic is 

inherently unable to affect a bacterium because its target is not available, such as 

vancomycin resistance in Gram-negative bacteria (Miller, 2016). These are bacteria 

with an outer membrane of lipopolysaccharides, as opposed to Gram-positive bacteria 

which only have a peptidoglycan cell wall (Salton and Kim, 1996). Vancomycin 

molecules are too large to pass through the porins naturally present in the Gram-

negative outer membrane, and therefore cannot reach their target peptides and 

prevent cell wall synthesis (Miller, 2016). 

 

Further examples of mechanisms of resistance to each of the antibiotic classes are 

presented in Table 1.1. As there are many resistance mechanisms, the overall 

resistance profiles (defined as the unique combination of resistances and 

susceptibilities of a bacteria to multiple antibiotics) can vary even between bacteria 

belonging to the same species, and the presence of multiple resistances in a single 

bacterium is increasingly common (Tanwar et al., 2014). In addition, there are 

instances where a single gene can provide resistance to multiple classes of antibiotics, 

such as the ermB gene providing resistance to lincosamides and macrolides (Table 

1.1). It is important to note that, by itself, the appearance and acquisition of new 

antibiotic resistance mechanisms by bacteria is a random process, and that antibiotics 

are the evolutionary pressure selecting for these resistances (Lipsitch and Samore, 

2002). Accessibility, presented as a strength of antibiotics in the previous section, is 

therefore also a weakness, as misuse of antibiotics is a key factor responsible for 

increases in antibiotic resistance, for example via inappropriate antibiotic prescribing 

(e.g. for respiratory viral infections) or incorrect antibiotic usage by individuals (e.g. not 

completing a course of antibiotics). 

 

Fortunately, the resistance mechanisms described above often impose a fitness cost 

on bacteria, reducing their growth rate and their ability to compete for resources with 

other organisms which may be present in their environment (Melnyk, Wong and 

Kassen, 2015). For example, a conformational change preventing antibiotic binding 
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might reduce the ribosome efficiency to translate messenger RNA to proteins (Powers 

and Noller, 1991), and an efflux pump will require additional bacterial resources to be 

operational (Alonso et al., 2004). In settings where antibiotics are absent, this reduces 

the competitiveness of bacteria expressing AMR genes versus bacteria not expressing 

these genes (Melnyk, Wong and Kassen, 2015). These fitness costs can limit the 

increase in the prevalence of resistant bacteria under natural circumstances, and 

prevent bacteria from accumulating multiple resistances (Levin et al., 1997). However, 

there are often multiple different genes granting resistance to the same antibiotic, 

hence two bacteria resistant to the same antibiotic may not be resistant via the same 

mechanism, and may not be affected by the same fitness cost. Importantly, bacteria 

carrying one or more antibiotic resistance genes can continue to evolve over time, 

acquiring compensatory mutations in the resistance genes or elsewhere in the 

genome to overcome these fitness costs (Andersson and Hughes, 2010; Knight, Budd 

and Lindsay, 2013). This includes mutations on mobile genetic elements (MGEs) 

which may carry these resistance genes (further discussed in the next section), such 

as plasmids (Zwanzig et al., 2019). Persistence of resistance in bacteria despite the 

absence of antibiotic use is therefore increasingly seen (Dorado-Morales et al., 2021).  

 

1.2.2 AMR and public health 

1.2.2.1 Consequences of AMR 

AMR is one of the greatest global public health challenges we are facing (World Health 

Organization, 2015). For almost all of the antibiotics currently available, bacteria 

displaying resistance have been identified (Ventola, 2015). Since the majority of 

antibiotics are prescribed empirically, before the causative pathogen and its potential 

resistance are known, then all other things equal, a higher rate of AMR will directly 

lead to more antibiotic treatment failures (Versporten et al., 2018). This translates to 

worse health outcomes for individuals, including prolonged illness such as recurrent 

urinary tract infections by antibiotic-resistant bacteria, which require further usage of 

antibiotics and hence further worsen the problem of AMR (Wagenlehner et al., 2022). 
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Due to AMR, many common infections that could previously be cured with a single 

antibiotic dose now require complex treatment strategies (World Health Organization, 

2021). The significance of this problem is illustrated by the global number of deaths 

due to infections by antimicrobial-resistant organisms (not bacteria only), which was 

initially estimated at around 700,000 per year (O’Neill, 2016). This same report 

suggested that if policies remained unchanged, this number could increase up to 10 

million by 2050 (O’Neill, 2016). Unfortunately, we are fast progressing towards the 

worst case scenario, as the most recent estimate of AMR burden calculated that 1.2 

million (95% uncertainty interval: 0.911–1.71) deaths in 2019 alone may be attributable 

to infections by antibiotic-resistant bacteria (Murray et al., 2022). This same study 

estimated that 275,000 (161,000–439,000) years lived with disability may be 

attributable to infections by antibiotic-resistant bacteria in 2019, illustrating the impact 

of this problem on the long-term health of individuals. In addition, AMR leads to 

financial costs for society, by reducing the productivity of individuals infected by 

resistant bacteria, and requiring supplementary medical interventions to treat these 

individuals. Attempts to estimate the economic cost of AMR concluded that this could 

reach several billions of dollars per country per year (Shrestha et al., 2018). 

1.2.2.2 Interventions against AMR 

To reduce the threat posed by AMR, many interventions have been suggested and 

are still being developed. For example, antibiotic stewardship regroups several 

interventions which aim to encourage individuals to use antibiotics more responsibly, 

reducing the selection pressure for resistant bacteria (King et al., 2016; Price et al., 

2018). Stewardship can include incentives for doctors to reduce their antibiotic 

prescription rates, only prescribing them when necessary, or informing patients about 

the function of antibiotics and why these are not always the default answer to every 

health problem. Similarly, rapid diagnostic tests to identify resistant bacteria faster and 

prevent unnecessary antibiotic use are in active development (Vasala, Hytönen and 

Laitinen, 2020). Separately from antibiotic stewardship which aims to preserve the 

value of existing antimicrobials, novel antimicrobial agents are being investigated, both 

new antibiotics and alternative compounds to target bacteria via a wide range of 

mechanisms, overcoming existing resistances (Vila, Moreno-Morales and Ballesté-

Delpierre, 2020). Improved economic incentives are required to encourage the 

development of these new antibiotics, such as the new subscription model recently 
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launched in the UK (Mahase, 2020). Finally, interventions against infections in general, 

not specifically targeting AMR (e.g. vaccines, improved sanitation), can still be 

effective to directly reduce the incidence of infections by resistant bacteria. Such non-

specific interventions can also provide an indirect effect against AMR, as a general 

decrease in bacterial infections will reduce antibiotic usage, and hence selection for 

resistance. 

 

1.3 The problem of methicillin-resistant 

Staphylococcus aureus 

1.3.1 Biology of S. aureus 

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium first identified in 1884 

(Rosenbach, 1884). It belongs to the Staphylococcus genus, and possesses the 

spherical shape (coccal) that characterises this group of bacteria (Foster, 1996; Taylor 

and Unakal, 2022). S. aureus bacteria typically form grape-like clusters, and the 

“aureus” (Latin for “golden”) suffix reflects their golden-yellow colour when grown on 

blood agar plates. S. aureus replicate fairly rapidly, with a doubling-time of 

approximately 30 minutes in rich medium at 37 degrees Celsius (Missiakas and 

Schneewind, 2013). These bacteria are facultative anaerobes, able to survive in a 

wide range of environments with or without oxygen (Foster, 1996; Taylor and Unakal, 

2022). 

 

The complete genome size of S. aureus bacteria is approximately 2.8 million base-

pairs (Holden et al., 2004). The current nomenclature used to structure S. aureus 

populations into lineages originates from multilocus sequence typing (MLST) (Enright 

et al., 2000). This technique focuses on the identification of seven housekeeping 

genes in the S. aureus chromosome (i.e. genes that should always be present in all 

isolates). MLST defines the sequence type (ST) of an isolate depending on the 

versions (alleles) of each housekeeping gene carried by that isolate. Isolates with at 

least 5 alleles in common between their STs are then grouped into clonal complexes 

(CCs), named according to the predicted ancestor ST (e.g. isolates belonging to CC22 
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all are predicted to have ST22 as ancestor) (Feil et al., 2003). Almost all S. aureus 

isolates contain a type I restriction-modification system, which degrades foreign DNA 

introduced in the bacteria. Importantly, the hsdS genes which control the specificity of 

this system vary between lineages (Waldron and Lindsay, 2006). Consequently, 

isolates belonging to one CC consider DNA fragments from other CCs as foreign and 

target them for degradation. This represents a barrier to the exchange of genetic 

material between CCs, and explains the independent evolution of CCs (Lindsay, 

2014). MLST has now been replaced for lineage identification by more powerful 

molecular and easy to use techniques, such as spa typing which identifies variations 

in the gene encoding for surface protein A (Harmsen et al., 2003), and microarrays 

which classify isolates according to hundreds of core variable genes (Lindsay et al., 

2006), 

 

In addition to their core genome, S. aureus possess a large number of mobile-genetic 

elements (MGEs) (Alibayov et al., 2014). These are genetic elements that can move 

within a bacterium, such as transposons (DNA sequences which can relocate in a 

genome via excision and reinsertion), or between bacteria, such as plasmids 

(extrachromosomal DNA capable of independent replication). As discussed later in 

this Introduction, MGEs frequently encode AMR genes or virulence factors, increasing 

the pathogenicity of the bacteria carrying them (Alibayov et al., 2014). Due to the 

restriction-modification systems mentioned above which restrict the movement of 

genetic material between S. aureus lineages, the distribution of MGEs varies between 

lineages (McCarthy and Lindsay, 2012, 2013; McCarthy, Witney and Lindsay, 2012). 

 

1.3.2 Epidemiology of S. aureus 

1.3.2.1 S. aureus colonisation in humans 

S. aureus is generally a commensal bacteria in humans, with approximately 20% of 

individuals colonised by S. aureus at any given time, typically in the nose and on the 

skin (den Heijer et al., 2013). Colonisation is most likely to be transient, with individuals 

being repeatedly colonised for periods of 2-6 months at a time (Miller et al., 2014). 

This colonisation is asymptomatic (i.e. without symptoms), and therefore generally 
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undetected. Individuals colonised by S. aureus are a reservoir for these bacteria, 

where they can replicate and diversify by exchanging genes (discussed later in this 

Introduction). Colonisations can directly impact infections, since individuals are more 

likely to be infected by the strains they carry (von Eiff et al., 2001; Huang and Platt, 

2003). 

1.3.2.2 S. aureus infections in humans 

S. aureus is an opportunistic pathogen, with infections normally controlled by the 

immune system in healthy individuals (Fournier and Philpott, 2005). The most common 

S. aureus infections are minor skin infections, which are resolved without any 

treatment (Ryu et al., 2014; O’Gara, 2017). S. aureus bacteria are not normally able 

to able to cross skin and mucosal barriers to reach organs where they may cause 

severe infections. Individuals suffering from severe S. aureus infections, such as 

bloodstream infections, are therefore often immunocompromised, and thus found in 

hospitals and other care facilities (O’Gara, 2017). Hence, S. aureus infections in 

humans are often healthcare-associated, also called “nosocomial infections''. In 

Europe in 2020, more than 70,000 S. aureus isolates from bloodstream infections were 

recorded in the European Centre for Disease Prevention and Control (ECDC) 

Surveillance ATLAS (European Centre for Disease Prevention and Control, 2022). 

 

S. aureus is identified as the causative pathogen of an infection by analysing a sample 

taken from the infected patient in a microbiology diagnostic laboratory. Common 

diagnostic methods include evidence of bacterial growth by plating the sample on 

selective culture media (Baird and Lee, 1995), coagulase agglutination test (van 

Griethuysen et al., 2001), and Matrix-Assisted Laser Desorption Ionization-Time of 

Flight Mass Spectrometry (Dubois et al., 2010). Uncomplicated S. aureus skin 

infections can be treated using topical antibiotics (applied directly to the skin) such as 

mupirocin (Tong et al., 2015). Treatment of S. aureus bloodstream infections involves 

antibiotics, typically anti-staphylococcal penicillins such as flucloxacillin, delivered to 

patients intravenously for at least two weeks (Kimmig et al., 2021). Prophylactic 

treatment is also essential in cases where patients are known to be at high risk of 

infection, such as after a surgery. 
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1.3.2.3 S. aureus in other ecosystems 

Aside from humans, S. aureus can be found in many different environments, including 

surfaces within households (Uhlemann et al., 2011; Fritz et al., 2014), and 

environment-mediated transmission likely plays a key role in the spread of these 

bacteria. S. aureus can also be found in animals, including pets which may be an 

important source of infection for humans (Davis et al., 2012; Bierowiec, Płoneczka-

Janeczko and Rypuła, 2016). S. aureus infections in livestock can cause diseases 

such as chicken pododermatitis and cow mastitis (Smith, 2015). Although livestock-

associated S. aureus lineages are different from lineages found in humans, suggesting 

that cross-species infections are uncommon, animals represent an important reservoir 

for S. aureus antibiotic resistance genes (McCarthy et al., 2011; McCarthy, Lindsay 

and Loeffler, 2012; Moodley et al., 2012; Larsen et al., 2022). 

 

1.3.3 The problem of AMR in S. aureus  

1.3.3.1 Methicillin-resistant S. aureus 

Penicillin was originally the antibiotic of choice to treat S. aureus. However, resistance 

rapidly appeared amongst bacterial populations, with more than 90% of S. aureus now 

carrying penicillinases, enzymes which actively degrade penicillin molecules (Lowy, 

2003). Other antibiotics from the penicillin class were therefore introduced to control 

S. aureus infections, such as methicillin, which is not affected by penicillinases. 

Unfortunately, antibiotic resistance was again selected for as a consequence of this 

introduction (Chambers and DeLeo, 2009). Methicillin-resistant S. aureus (MRSA) 

refers to strains of S. aureus resistant to all beta-lactam antibiotics (as opposed to 

methicillin-susceptible S. aureus, MSSA). Beta-lactam antibiotics include penicillins, 

but also cephalosporins and carbapenems. Methicillin resistance in staphylococcal 

bacteria was first identified in the 1960s (Barber, 1964), with all MRSA strains found 

to carry the mecA genetic element (Kuhl, Pattee and Baldwin, 1978; Beck, Berger-

Bächi and Kayser, 1986). This mecA gene was then shown to encode PBP2a, which 

has a reduced affinity for beta-lactam antibiotics compared to the regular bacterial PBP 

(Pinho, de Lencastre and Tomasz, 2001). This alternative protein therefore grants 
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beta-lactam resistance to S. aureus by preventing the antibiotics from inhibiting cell 

wall synthesis.  

 

Later, it was discovered that the mecA gene was part of a DNA cassette in the S. 

aureus chromosome, named “staphylococcal cassette chromosome mec” (SCCmec) 

(Katayama, Ito and Hiramatsu, 2000). Different types of SCCmec have been identified, 

carrying other resistance genes alongside mecA (International Working Group on the 

Classification of Staphylococcal Cassette Chromosome Elements, 2009). Alongside 

the clonal complexes mentioned previously, the SCCmec type can be used to 

structure S. aureus isolates into groups, as current evidence suggests that SCCmec 

elements are rarely gained or lost by S. aureus (Hanssen and Ericson Sollid, 2006; 

Scharn, Tenover and Goering, 2013; Maree et al., 2022).  

1.3.3.2 Epidemiology of MRSA 

As for all S. aureus strains, MRSA can be responsible for infections, notably of the 

blood or the skin (Tong et al., 2015). As for MSSA, MRSA infections are often 

healthcare-associated (HA-MRSA). MRSA can also colonise individuals 

asymptomatically (Kluytmans, van Belkum and Verbrugh, 1997). This again highlights 

the importance of understanding this pathogen in general, not only in an infection 

context, as individuals colonised by an MRSA strain will then be more likely to be 

infected by this same strain. In 2020, 13.2% of S. aureus isolates recorded in the 

ECDC Surveillance ATLAS were MRSA (European Centre for Disease Prevention and 

Control, 2022). MRSA is a significant public health threat, responsible for the second 

highest burden of disease amongst the antibiotic-resistant pathogens most commonly 

isolated from blood or cerebrospinal fluid in Europe in 2015 (Cassini et al., 2019). 

MRSA was estimated to be the only pathogen-drug combination responsible for more 

than 100,000 deaths globally in 2019 (Murray et al., 2022). 

 

In addition, the incidence of community-associated MRSA (CA-MRSA) is increasing, 

indicating that this problem goes beyond healthcare environments (Kong, Johnson 

and Jabra-Rizk, 2016). The type of SCCmec elements varies between CA- and HA-

MRSA, with type V more commonly found in CA-MRSA, as opposed to types I, II and 

III for HA-MRSA (Diep et al., 2006). CA-MRSA often carry genes encoding Panton-

Valentine leucocidin, a toxin associated with increased severity for skin and soft-tissue 
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infections (Shallcross et al., 2013). Although CA-MRSA isolates are epidemiologically 

distinct from HA-MRSA, the increased incidence in severe infections caused by CA-

MRSA translates to more patients infected by this S. aureus group being admitted to 

hospitals, and therefore an increased prevalence of CA-MRSA in healthcare settings 

(Lindsay, 2010). The relative importance of CA- and HA-MRSA varies geographically, 

with HA-MRSA being more common in Europe, while in the United States the burdens 

of CA- and HA-MRSA are similar (Otter and French, 2010). Livestock-associated 

MRSA (LA-MRSA) represents another distinct group of MRSA which typically colonise 

pigs, and carry tetracycline resistance genes (Wulf and Voss, 2008). Although LA-

MRSA may not transmit efficiently between humans, individuals in close contacts with 

colonised animals (e.g. farmers, veterinarian etc.) may become colonised, and 

therefore be themselves at higher risk of MRSA infection (Lindsay, 2010). For these 

reasons, and due to the potential for strains to rapidly gain further resistances, MRSA 

is listed on the antibiotic-resistance priority pathogens list from the World Health 

Organization, and the ESKAPE list (Rice, 2008; Tacconelli et al., 2018). 

 

Once S. aureus has been identified as the causative pathogen in an infection, further 

tests are routinely conducted to distinguish between MSSA and MRSA. These include 

a latex agglutination test to detect the presence of PBP2a, a polymerase chain 

reaction to detect the mecA gene, or an antibiotic susceptibility test to detect beta-

lactam resistance (van Griethuysen et al., 1999). MRSA bloodstream infections are 

generally treated using intravenous vancomycin, or daptomycin (Kimmig et al., 2021). 

These antibiotics are less convenient than those used for MSSA treatment, as they 

have a higher risk of causing nephrotoxicity (kidney damage) (The National Institute 

for Health and Care, 2022b, 2022a). In addition, these are antibiotics with poor 

bioavailability (capacity to reach their target site in the human body whilst still active), 

which further complicates their usage as they must be administered over long 

durations with careful monitoring of concentrations (Patel, Preuss and Bernice, 2022). 

1.3.3.3 Other antibiotic resistances in S. aureus 

Alongside broad beta-lactam resistance in MRSA, S. aureus strains can carry many 

different genes or mutations giving resistance to essentially all classes of antibiotics 

currently available for treatment (Foster, 2017). Multiple resistances are most common 

in MRSA, whilst MSSA isolates tend to be resistant to only one or two antibiotics 
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(Chambers and DeLeo, 2009). Importantly, many of these resistance genes are on 

MGEs, allowing them to spread rapidly in a bacterial population (discussed later in this 

Introduction) (Haaber, Penadés and Ingmer, 2017). 

 

Of particular interest is fluoroquinolone resistance, as antibiotics from this class are 

not used to treat S. aureus infections. Instead, fluoroquinolone resistance in MRSA 

may be evidence of bystander selection, where usage of this antibiotic to treat an 

unrelated infection in an individual selects for resistance in S. aureus present in the 

same individual (Knight et al., 2012; Tedijanto et al., 2018). Alternatively, this may be 

due to co-selection, whereby selection for one antibiotic resistance in a bacterial 

population jointly selects for resistance to a different antibiotic, even in the absence of 

this second antibiotic. This can occur because of linkage, when the two resistance 

genes are co-located on a single MGE, and are therefore frequently present together 

in bacteria. Interestingly, fluoroquinolone exposure is a risk factor for MRSA 

colonisation (Couderc et al., 2014), hence understanding the mechanism behind 

selection of this resistance could reveal insights into potential strategies to control the 

incidence of MRSA. Vancomycin resistance is a major preoccupation since, as 

mentioned above, this is currently the antibiotic of choice to treat severe MRSA 

infections (McGuinness, Malachowa and DeLeo, 2017). Widespread vancomycin 

resistance would substantially complicate the treatment of MRSA infections, and 

require alternative treatment strategies. Resistance can be acquired via the vanA 

gene, which prevents vancomycin from disrupting cell wall synthesis (Périchon and 

Courvalin, 2009). This gene is currently rare in S. aureus, but commonly found in 

enterococci, which are commensals of the human gut (French, 1998). Events where 

S. aureus acquired vanA from enterococci have previously been described 

(McGuinness, Malachowa and DeLeo, 2017).  

1.3.3.4 Diversity in S. aureus populations 

As highlighted above, there are many characteristics which can define S. aureus 

isolates. These characteristics are not uniformly distributed temporally and 

geographically. As mentioned above, there are distinct MRSA groups, each with their 

own reservoir (HA-MRSA, CA-MRSA, LA-MRSA), although these can cross-over 

between their respective settings (e.g. LA-MRSA colonisation in humans, or CA-

MRSA infections in healthcare environments). The relative prevalence of the 10 main 
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S. aureus lineages in humans varies over time (Lindsay et al., 2006); in the UK for 

example, the dominant MRSA lineage changed from CC30 to CC22 between 1999 

and 2009 (Wyllie, Paul and Crook, 2011; Knight et al., 2012). The distribution of S. 

aureus lineages also varies between countries and regions (Grundmann et al., 2010). 

Similar geographical and temporal variations have been seen between the 13 different 

types of MRSA SCCmec elements (Hanssen and Ericson Sollid, 2006; Singh-Moodley 

et al., 2020). It is currently unclear why variations in the dominant lineages or SCCmec 

elements occur, highlighting the importance of understanding how S. aureus strains 

evolve, and the selection pressures affecting them. 

 

There can also be substantial diversity even between S. aureus isolates present within 

the same population (e.g. within the same host). Firstly, joint colonisation by both 

MRSA and MSSA is possible, with previous studies finding this to occur in 21% of 

hospital patients (Mongkolrattanothai et al., 2011). This same study also detected 

multiple genotypes in 30% of patients, identified using multiple-locus variable-number 

tandem-repeat fingerprinting. Isolates in a single host can vary according to their 

antibiotic resistances, which is strongly linked to the MGEs they carry (Haaber, 

Penadés and Ingmer, 2017). A study from 2015 looking at within-host MRSA 

populations found that 24% of patients sampled carried multiple strains, each resistant 

to different antibiotics (Stanczak-Mrozek et al., 2015). Finally, we see variation in the 

types of biological entities that coexist alongside S. aureus populations, 

bacteriophage, presented in the next section of this Introduction. 

 

Information on this within-host diversity can be valuable to track transmission of S. 

aureus between individuals (Hall et al., 2019). In addition, monitoring changes in AMR 

diversity over time may provide valuable insights into the frequency of AMR evolution 

within-host and the drivers of this evolution, which we must understand to design 

efficient interventions against this public health threat (Winstanley, O’Brien and 

Brockhurst, 2016). Although the substantial genetic diversity identified in the studies 

above suggests that gain and loss of genetic material occurs frequently in S. aureus, 

these studies only assessed individual within-host diversity at single timepoints. There 

is therefore a lack of longitudinal data to improve our currently limited understanding 

of how this diversity may change over time. 
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1.4 Bacteriophage: abundant predators of S aureus 

1.4.1 Phage form a key part of the S. aureus ecosystem 

1.4.1.1 Phage life cycles 

Bacteriophage (phage) are viruses of bacteria, and likely the most abundant biological 

entities on Earth (Clokie et al., 2011). There are more than 10 families of phage, 

defined by their morphology (shape, presence or absence of a protein tail etc.) and 

genome (size, single or double-stranded etc.) (Hyman and Abedon, 2012). Their main 

interaction with bacteria is a predator-prey relationship, as phage can infect and lyse 

bacteria through the “lytic cycle” (Figure 1.1). This process begins with a phage binding 

to a bacterium, and injecting its genetic material. The phage will then take over 

bacterial machinery to replicate, degrading bacterial DNA in the process. Importantly, 

as this process relies on bacterial machinery, the bacteria must be themselves capable 

of growth in order for the phage to replicate (Kokjohn and Sayler, 1991; Hadas et al., 

1997; Santos et al., 2014). This replication process leads to multiple copies of the 

phage genome being created, as well as new phage capsids to package these 

genomes. Recognition of the phage DNA for packaging is mediated by the terminase 

subunit of the capsid. In cos-type phage, the terminase recognises specific cos sites 

at the beginning and end of a complete phage genome, allowing for precise packaging 

(Casjens and Gilcrease, 2009). Meanwhile, the terminase in pac-type phage only 

recognises a pac site to initiate packaging, and halts this process by making a non-

specific cut in the DNA once the capsid is full, leading to the packaging of between 

102-110% of the full phage genome in each capsid (Casjens and Gilcrease, 2009). 

Ultimately, the lytic cycle causes the bacterial cell to lyse, busting open to release the 

new phage in the surrounding environment. 

 

In addition to this, some phage can undergo a “lysogenic cycle” upon initially entering 

the bacterium (Figure 1.1). In that case, the phage genome integrates in the bacterial 

chromosome, forming what is known as a “prophage”, and remains in a dormant state. 

During that time, the lysogenic bacterium may undergo several rounds of replication, 

each time copying the prophage as part of its genome. Lysogenic bacteria typically 

acquire lysogenic immunity, protecting them from lytic infection by the same phage as 
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their prophage (Lwoff, 1953). Eventually, the prophage may excise from the 

chromosome, often upon activation of bacterial signalling pathways indicating stress, 

such as the SOS response. This can occur following bacterial DNA degradation by 

ultraviolet light or chemicals (e.g. mitomycin C) (Howard-Varona et al., 2017). Upon 

excision of the prophage, the lytic cycle may then begin as detailed above. 

 

The predator-prey relationship between phage and bacteria has led to a constant arms 

race between these organisms (Hampton, Watson and Fineran, 2020). Recent efforts 

have uncovered a substantial diversity in phage resistance mechanisms present in 

bacteria, with tools such as the PADLOC database to reveal and record new defence 

systems (Payne et al., 2021). In addition to mechanisms such as restriction-

modifications systems (mentioned earlier in this Introduction), CRISPR-Cas systems 

are a famous example of a bacterial defence mechanism (Barrangou et al., 2007). 

These systems are composed of proteins (Cas) which target foreign DNA by matching 

it to fragments stored in a genetic library (CRISPR), allowing the bacteria to recognise 

and cleave phage DNA as soon as it enters the cell. Resistance can also be mediated 

by bacterial surface modification mutations, which prevent phage from binding to 

bacteria and initiating the infection process (Hampton, Watson and Fineran, 2020). 

Note that while such surface modifications are possible in S. aureus, current evidence 

suggests that these are exceedingly rare due to the fitness cost incurred (Dalen, 

Peschel and Sorge, 2020). Inversely, phage have developed mechanisms to 

neutralise these defences, such as anti-CRISPR systems (Bondy-Denomy et al., 

2013). There is therefore constant co-evolution between bacteria and phage, shaping 

the structure of these populations in various environments (Koskella and Brockhurst, 

2014). 

 

The ability for phage to undergo either the lytic or lysogenic cycle varies depending on 

the infected bacteria, environmental conditions, and between phage families. Phage 

only capable of undergoing the lytic cycle are referred to as “lytic phage”, while phage 

capable of entering the lysogenic cycle are called “temperate phage”. The lysogenic 

cycle requires the phage to carry specific integrase genes which allow them to 

integrate and persist in the bacterial chromosome (Deghorain and Van Melderen, 

2012).  
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Figure 1.1: Phage life cycles and transduction. a) Lytic cycle and generalised 

transduction. b) Lysogenic cycle and specialised transduction. Figure adapted 

from (Leclerc et al., 2022). 

b) 

a) 
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1.4.1.2 Phage of S. aureus 

Phage and S. aureus frequently coexist, with all known strains of S. aureus carrying 

at least one prophage, although the distribution of prophage varies between S. aureus 

lineages (McCarthy, Witney and Lindsay, 2012). Phage-bacteria coexistence has 

been observed in multiple species, and suggests the existence of mutualistic 

interactions between phage and bacteria, in addition to their typical prey-predator 

relationship (Shkoporov, Turkington and Hill, 2022). In S. aureus,  this coexistence is 

partly explained by the fact that phage frequently carry genes that are beneficial to the 

bacteria, encoding immune evasion and virulence factors for example (Deghorain and 

Van Melderen, 2012). However, it is interesting to note that phage of S. aureus rarely 

encode AMR genes in their own genome (Kondo, Kawano and Sugai, 2021; Nepal et 

al., 2021). A previous study of patients colonised with MRSA also detected free phage 

particles capable of lysing S. aureus in at least 50% of these patients (Stanczak-

Mrozek et al., 2015). Phage of S. aureus are mostly part of the Siphoviridae family, 

with long non-contractile tails and icosahedral capsids (Deghorain and Van Melderen, 

2012). S. aureus phage genomes range from less than 20 to more than 125 kilo-base 

pairs (Kwan et al., 2005), with the most common size being approximately 45 kilo-

base pairs, equivalent to 1.6% of the complete S. aureus genome size (Deghorain and 

Van Melderen, 2012). Commonly studied bacteriophage of S. aureus include 80α and 

ϕ11, both labelled as temperate phage (i.e. able to enter the lysogenic cycle and 

integrate in the genome) since they carry integrase genes (Xia and Wolz, 2014).  

 

1.4.2 Phage as a solution to MRSA 

1.4.2.1 Phage therapy 

The predator-prey relationship of phage and bacteria makes phage particularly 

interesting as novel antimicrobial agents, providing a potential solution to treat 

infections by antibiotic-resistant bacteria (Brives and Pourraz, 2020). Phage therapy 

was originally introduced in the early 20th century, and relies on using the lytic abilities 

of phage to decrease a bacterial population during an infection. Phage therapy design 

first requires the identification of phage that are highly lytic against the pathogen of 

interest, with multiple pipelines currently being developed for this purpose (Gelman et 
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al., 2021). The attractiveness of phage to treat bacterial infections is in part due to their 

narrow spectrum. Phage can only bind to specific receptor proteins present on their 

target bacteria, as opposed to antibiotics, which are less specific and can affect other 

bacteria in the same environment as the target, potentially causing undesirable side 

effects (Lin, Koskella and Lin, 2017). In S. aureus for example, the only known receptor 

for phage binding is wall teichoic acid (Park et al., 1974). 

1.4.2.2 Current status of phage therapy against MRSA 

The ever-increasing risk of multidrug resistance in MRSA makes phage therapy an 

attractive alternative treatment strategy (Walsh et al., 2021). Phage therapy against S. 

aureus is not currently commercially available, and treatment of patients is mostly 

restricted to compassionate use, to attempt to treat infections by bacteria resistant to 

all available antibiotics. Clinical trials of phage therapy against S. aureus are currently 

ongoing in patients with chronic or wound infections (Adaptive Phage Therapeutics, 

Inc., 2022; Centre Hospitalier Universitaire de Nīmes, 2022). Preliminary results 

suggest that phage therapy is safe and well tolerated in patients, but information on 

efficacy is limited (Fish et al., 2016; Ooi et al., 2019; Petrovic Fabijan et al., 2020). 

Aside from these trials, there are ongoing in vitro efforts to identify other phage that 

may be used therapeutically (Lehman et al., 2019; Berryhill et al., 2021). 

 

Several practical and regulatory challenges currently prevent widespread use of phage 

therapy to treat S. aureus infections (Brives and Pourraz, 2020). Firstly, the unique 

nature of phage as “living antimicrobials” leads to complex pharmacokinetics and 

pharmacodynamics (PKPD), which describe the fate of an antimicrobial (here, phage) 

during treatment, and how it affects its target (bacteria) (Payne and Jansen, 2003). 

This complexity arises due to the ability of phage to replicate whilst killing bacteria 

during treatment, as opposed to antibiotics PKPD which are mostly dependent on the 

initial concentration of antibiotics provided (Payne and Jansen, 2000; Nielsen and 

Friberg, 2013). Interestingly, this complexity could be leveraged in phage therapy 

design, by administering an initial dose of phage which by itself is too low to clear all 

the bacteria bacteria, yet will be able to ultimately achieve this as the phage will 

replicate whilst killing the bacteria (Payne and Jansen, 2001). This corresponds to 

active therapy, as opposed to passive therapy which requires a higher dose of phage 

to clear the bacteria without the need for replication. Secondly, bacterial resistance to 
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phage is a major preoccupation, as resistance evolution is frequently observed in vitro 

(Berryhill et al., 2021). To reduce the risk of bacteria developing resistance to the 

phage during treatment, phage cocktails are being considered instead of single phage 

strains (Molina et al., 2021). Phage cocktails consist of multiple different phage 

species, each with different infection mechanisms. This reliance on multiple infection 

mechanisms guarantees that the bacteria cannot easily become resistant to all the 

phage in the cocktail by acquiring a single resistance mechanism (Abedon, Danis-

Wlodarczyk and Wozniak, 2021). Instead, they would have to acquire multiple 

resistance mechanisms, which is unlikely to occur in the interval between phage 

introduction and bacterial clearance. This also allows for greater odds of treatment 

success without requiring precise knowledge of the causative bacteria, since a greater 

diversity of phage infection mechanisms in the cocktail extends the range of bacteria 

against which therapy will be effective. However, this creates further challenges, as 

phage cocktail design requires the correct diagnosis of the bacteria responsible for an 

infection, and identification of the appropriate phage to target them. This places phage 

therapy in the category of personalised medicine (Loh and Leptihn, 2020), as opposed 

to antibiotics which affect bacteria more broadly and hence do not generally require 

such a detailed screening process to be matched to the specific bacteria responsible 

for the infection. 

 

1.4.3 Phage, S. aureus, and antibiotics interactions 

Although an objective of phage therapy research is to design standalone phage 

treatments, ethical considerations mean that in ongoing trials, phage are 

systematically delivered alongside antibiotics (Brives and Pourraz, 2020). Phage may 

also be more widely found alongside antibiotics in the environment (Larsson, 2014). It 

is therefore essential to understand how phage and antibiotics interact with each other. 

Previous studies, mostly focused on other organisms than S. aureus, have found 

evidence of both synergism and antagonism between phage and antibiotics (Abedon, 

2019; Li et al., 2021). One example in S. aureus is (Rahman et al., 2011), who showed 

that a S. aureus population exposed to both phage and rifampicin at 10 x MIC will be 

affected by a stronger decrease than when exposed to either alone. On the other hand, 

(Valério et al., 2017) find that an E. coli phage population will not increase if the 
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bacteria are simultaneously exposed to tetracycline at 1 x MIC, suggesting an 

antagonistic effect of the antibiotic. There is therefore conflicted evidence on this topic. 

Previous experimental work suggests that timing and concentration may determine 

the joint effect of phage and antibiotics on bacteria, including S. aureus, although the 

precise nature and dynamics of this relationship are still unclear (Lopes, Pereira and 

Almeida, 2018; Berryhill et al., 2021). Furthermore, this joint effect may depend on the 

type of antibiotic used, as bactericidal antibiotics can complement the action of phage 

whilst bacteriostatic antibiotics may prevent phage replication, as they inhibit the 

bacterial machinery required for phage replication, hence limiting the usefulness of 

phage (Payne and Jansen, 2003; Berryhill et al., 2021). 

 

1.5 Phage-mediated AMR gene transfer in S. aureus 

by generalised transduction 

1.5.1 Transduction as a mechanism of horizontal gene 

transfer of AMR 

1.5.1.1 Biology and types of HGT 

As is the case with other organisms, genes spread in bacterial populations by “vertical 

gene transfer”, where they are inherited by progeny bacteria after the division of their 

parent, but also by “horizontal gene transfer” (HGT) (Hall, Brockhurst and Harrison, 

2017). Here, I use the term HGT to refer to the capacity of bacteria to exchange genetic 

material between themselves, including bacterial chromosome genes and MGEs. The 

latter can persist in the bacteria by either existing independently of the core bacterial 

genome, or integrating into it, and can contain virulence as well as AMR genes, 

increasing bacterial pathogenicity (Ochman, Lawrence and Groisman, 2000; Thomas 

and Nielsen, 2005; von Wintersdorff et al., 2016). There are three main mechanisms 

by which HGT can occur: conjugation, transformation and transduction. 

 

In conjugation, bacteria form a conjugative bridge to directly exchange DNA (Ochman, 

Lawrence and Groisman, 2000). This mechanism requires the bacteria to be physically 
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located next to each other, which limits the speed at which genes can spread 

throughout a bacterial population. Conjugation of AMR genes is common in 

Enterobacteriaceae for example (Huddleston, 2014).  

 

On the other hand, transformation designates the capacity for bacteria to uptake DNA 

from their surrounding environment, which can be present after other bacteria have 

lysed and released their own genetic material (Ochman, Lawrence and Groisman, 

2000). In addition to facilitating intra-species HGT, this mechanism is likely an 

important method for inter-species gene exchange since it does not require the 

bacteria to achieve direct physical contact (von Wintersdorff et al., 2016). 

Transformation was first identified in Streptococcus pneumoniae (Griffith, 1928), and 

transfer of AMR genes by this method was subsequently observed in other species 

such as Neisseria and Bacillus (von Wintersdorff et al., 2016). 

1.5.1.2 Specialised and generalised transduction 

Transduction, which is the focus of this thesis, broadly describes the ability for phage 

to act as vectors of DNA, moving genes between bacteria; here, I specifically use the 

term transduction to describe the transfer of bacterial genes by phage (Griffiths et al., 

2000). Tied to the two life cycles of phage, there are two main types of transduction: 

generalised and specialised (Figure 1.1). Generalised transduction occurs during the 

lytic cycle, at the phage packaging step. It is the result of an error where the terminase 

accepts DNA without the correct pac or cos site, leading to the packaging of bacterial 

DNA instead of the phage genome. Generalised transduction can in theory lead to the 

packaging of any DNA present in the bacteria, including plasmids. On the other hand, 

specialised transduction is linked to the lysogenic cycle. This occurs when the 

prophage excises from the bacterial chromosome and accidentally picks up adjacent 

bacterial DNA. This type of transduction is therefore restricted to DNA adjacent to the 

phage insertion site in the bacterial chromosome. The resulting transducing phage will 

carry both phage and bacterial DNA. 

 

Variations of generalised and specialised transduction have been identified in recent 

years. Auto-transduction for example describes a specific interaction involving 

lysogenic phage and transduction (Haaber et al., 2016). The principle of auto-

transduction is that bacteria which acquire a prophage will gain lysogenic immunity, 
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protecting them from lysis by phage of the same species. However, phage can still 

bind to these lysogenic bacteria and inject the DNA they contain. Therefore, these 

lysogenic bacteria can still benefit from transduction, accumulating new genes whilst 

being protected from lysis by the phage.  

 

Another identified mechanism is lateral transduction, a variation of specialised 

transduction, where phage packaging occurs before a prophage is excised from the 

bacterial chromosome (Chen et al., 2018). This has been suggested as leading to 

transfer of bacterial DNA located several thousands of kilobases downstream of the 

prophage, much further than theoretically possible by regular specialised transduction.  

 

Overall, these studies highlight the many unknown aspects of transduction that still 

remain, finding instances of gene transfer mediated by bacteriophage which cannot 

be easily explained using our current biological understanding of this HGT mechanism. 

1.5.1.3 Complex dynamics of transduction 

The dynamics of transduction are unique compared to conjugation and transformation, 

in the sense that this mechanism relies on a vector (the phage) to actively package 

and carry the DNA between bacteria, and that it will occur in parallel to killing of the 

bacteria by these same vectors. This means that rates of transduction may vary 

depending on the characteristics and concentrations of both phage and bacteria. For 

example, pac phage are likely able to perform generalised transduction more 

frequently that cos phage, due to their less selective packaging mechanism (Casjens 

and Gilcrease, 2009). Transduction is also affected by complex factors which broadly 

apply to all HGT mechanisms, including conjugation and transformation. For example, 

transduction in S. aureus has been found to occur at a higher rate in vivo rather than 

in vitro, suggesting that environmental conditions likely play an important role in this 

process (McCarthy et al., 2014). The action of the immune system or antibiotics can 

affect bacterial or phage prevalence, potentially further affecting predation and 

transduction dynamics (Banuelos et al., 2021). Antibiotics present at sub-inhibitory 

concentrations may also increase the production of transducing phage independently 

of lytic phage via currently unknown mechanisms (Stanczak-Mrozek, Laing and 

Lindsay, 2017). 
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1.5.1.4 Importance of HGT in the context of AMR 

Observations in the last decades suggest that instead of considering the spread of 

AMR as analogous to the spread of bacteria carrying genes encoding AMR 

mechanisms, we should study the spread of these genes in the bacterial population. 

All the HGT mechanisms described above have been shown as capable of spreading 

AMR genes (von Wintersdorff et al., 2016). A novel AMR gene may initially arise in 

one bacterial population, and subsequently rapidly spread to other populations 

belonging to the same family via HGT. For example, the mcr-1 gene conferring colistin 

resistance, first identified in E. coli and subsequently in other Enterobacteriaceae 

(Klebsiella, Salmonella etc.), initially integrated in a single transposon which then 

stabilised in various plasmids, allowing the gene to spread across various 

Enterobacteriaceae populations (Wang et al., 2018). HGT can also help bacteria to 

efficiently acquire multidrug resistance, since two separate bacterial populations could 

each independently acquire a different, novel resistance, then share these with each 

other. HGT can allow antibiotic resistance to persist in bacterial populations in cases 

where it would otherwise become extinct in the absence of a selection pressure 

(Brockhurst and Harrison, 2021). HGT can also help to maintain the overall bacterial 

population diversity in microbial communities, by increasing stability when these 

communities are exposed to antibiotics (Coyte et al., 2022). For example, if a 

resistance gene can move easily between bacteria and spread, it will be present in 

many bacteria with diverse genetic profiles, and would allow all of these to survive 

antibiotic exposure. On the other hand, a non-mobile resistance gene will only be 

associated with one genetic profile, hence only this profile would remain following 

antibiotic exposure, likely reducing the genetic diversity of the bacterial community 

(Coyte et al., 2022). 
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1.5.2 The complex dynamics of generalised transduction of 

AMR in S. aureus 

1.5.2.1 The importance of generalised transduction as a 

mechanism of HGT of AMR in S. aureus 

The major mechanism by which HGT occurs in S. aureus is likely to be transduction 

(Lindsay, 2014). As explained above, transduction is mediated by phage, and these 

are extremely common amongst S. aureus populations, with clinical S. aureus strains 

found to almost always carry at least one prophage in their genome (Lindsay et al., 

2006; McCarthy, Witney and Lindsay, 2012; Lindsay, 2014). There is clear evidence 

that transduction can occur at a high rate in S. aureus in vitro and in vivo (McCarthy 

et al., 2014). Inversely, conjugation is rare in S. aureus, as an analysis of S. aureus 

plasmids found that only 5% of these carry the necessary tra genes to be self-

transmissible by conjugation (McCarthy and Lindsay, 2012). As for transformation, 

previous work indicates that it is unlikely to frequently transfer small DNA fragments 

like AMR genes, as the sigma H factor required for this process is only expressed by 

S. aureus under specific environmental conditions (Morikawa et al., 2012). However, 

transformation may be important in the extremely rare cases where it allows to the 

transfer of large portions of S. aureus genome, including SCCmec elements (Robinson 

and Enright, 2004). 

 

Of the two mechanisms of transduction, generalised transduction has a greater 

potential to substantially contribute to the spread of many different AMR genes in S. 

aureus, as it can lead to the transfer of any bacterial DNA including plasmids, major 

vectors of AMR genes (von Wintersdorff et al., 2016). In fact, many plasmids in S. 

aureus are less than 45kb in length, which matches the packaging size of common S. 

aureus phage and further suggests that these non-self-transmissible plasmids are 

transferred by generalised transduction (Deghorain and Van Melderen, 2012; 

McCarthy and Lindsay, 2012). On the other hand, specialised transduction can only 

lead to the transfer of AMR genes adjacent to the prophage insertion site in the 

bacterial chromosome. Although we are currently lacking data to quantify this, 

generalised transduction may occur substantially in the human population, since at 
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least 50% of individuals colonised by S. aureus also carry phage capable of 

generalised transduction (Stanczak-Mrozek et al., 2015). 

 

Previous attempts to quantify transduction of AMR in S. aureus and E. coli have 

estimated frequencies of transducing phage per non-transducing phage between 10-5 

to 10-11, depending on the bacteria and phage used (Jiang and Paul, 1998; Mašlaňová 

et al., 2016). Note that these values were obtained by generating a mixed population 

of lytic phage and an unknown amount of transducing phage carrying a marker gene, 

briefly exposing bacteria to this mixed phage population, rapidly neutralising all the 

phage to prevent bacterial killing, and counting how many bacteria gained the marker 

gene via transduction during this exposure. These experiments therefore did not 

measure the incidence of transduction over time, instead providing only point 

estimates for the frequency of transducing phage in a phage population. 

1.5.2.2 The risk of transduction in the context of S. aureus 

phage therapy 

One key recommendation for phage therapy is to select phage which have a high 

capacity to lyse the bacteria, and a low capacity to perform transduction (Verheust et 

al., 2010; Jassim and Limoges, 2014). Otherwise, if the phage fail to clear all of the 

bacteria, by performing transduction they could spread bacterial genes encoding for 

AMR mechanisms, virulence factors, or other undesirable characteristics in the 

bacterial population, leaving the patient at a subsequent risk of a more severe 

infection, or non-responsive to antibiotic treatment. As phage therapy aims to use lytic 

phage only, this removes lysogeny and therefore the risk of specialised transduction, 

but generalised transduction remains. As generalised transduction is a mistake during 

the lytic cycle, we currently do not know how to prevent it from happening. Yet, the 

consequences of generalised transduction happening during phage therapy are 

unknown, and recent reviews have highlighted the worrying lack of research on this 

topic (Raj and Karunasagar, 2019; Hassan et al., 2021). No estimates for potentially 

acceptable rates of generalised transduction have yet been established. To the best 

of my knowledge, the risk for transduction to occur is not currently explored in ongoing 

clinical trials of S. aureus phage therapy, possibly due to insufficient evidence 

regarding its consequences, and the complexity of measuring the impact of 
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transduction of AMR in vivo. In theory, even if transduction occurred rarely, a more 

widespread use of phage for treatment could facilitate frequent within-host evolution 

of multidrug-resistant bacteria. 

1.5.2.3 The unknown impact of transduction when phage, S. 

aureus, and antibiotics are jointly present 

As mentioned earlier in this Introduction, the dynamics of phage predation and 

antibiotics are already complex, yet to my knowledge the consequences of 

transduction of AMR genes in an environment where bacteria, phage, and antibiotics 

are all jointly present are unknown. In addition to decreasing bacterial prevalence in 

an environment and potentially increasing transduction rates at sub-inhibitory 

concentrations (Stanczak-Mrozek, Laing and Lindsay, 2017), antibiotics may act as 

an important selection pressure for AMR genes transferred by transduction. For 

example, phage could generate multidrug-resistant bacteria by transduction, which 

may then gain a selective advantage due to the antibiotics present in the same 

environment. Under these conditions, multidrug-resistant bacteria may be able to 

persist for prolonged periods of time, during which they could be transmitted to 

individuals or acquire further adaptations such as phage resistance or compensatory 

mutations to overcome fitness costs. 

 

Overall, the appearance and persistence of multidrug-resistant bacteria may therefore 

depend on the frequency of transduction, the predator-prey relationship of phage and 

bacteria, and the effect of antibiotics, potentially acting in synergy with phage or 

inhibiting phage replication via inhibition of bacterial growth. These interactions are 

complex, requiring specific tools to be disentangled and to reveal the underlying 

dynamics of bacteria, phage and antibiotics which are invisible when only using 

experimental data. 
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1.6 Mathematical modelling of AMR gene transfer by 

generalised transduction 

1.6.1 Mathematical modelling of AMR  

1.6.1.1 Principles of mathematical modelling 

Mathematical modelling is a tool commonly employed to simulate real-life processes, 

with model structure and parameter values informed by our understanding of the 

underlying characteristics of these processes, and by data when available. A model 

provides an environment in which the dynamics of these real-life processes can be 

studied with greater flexibility. The concept of modelling infectious diseases was 

originally proposed by Kermack and McKendrick, as a method to summarise simple 

epidemic dynamics in a few equations (Kermack and McKendrick, 1927). Since then, 

models have been used to study more complex disease dynamics such as spatial 

heterogeneity in transmission, or vector-borne pathogens (Anderson and May, 2010; 

Heesterbeek et al., 2015). Modelling is a powerful tool to gain an understanding of the 

dynamics governing in a system which cannot be obtained using classical 

experimental methods alone, and to identify potential opportunities to affect these 

dynamics. For example, a model of disease spread can be used to explore the 

theoretical effect of a reduction in contact rate between susceptible and infectious 

individuals to reduce the number of new cases. Mathematical models are now often 

implemented via computer software, allowing the equations to be solved numerically 

by running simulations, instead of only analytically. 

1.6.1.2 Complexity in mathematical models 

In general, the population represented in mathematical models is separated into 

compartments, and the numbers of individuals in each compartment are tracked over 

time as they change. The interactions between compartments are generally 

represented using a density- or frequency-dependent approach. An example of a 

density-dependent interaction is predator-prey dynamics in Lotka-Volterra equations, 

where the increase in predator numbers and decrease in prey numbers are dependent 

on the density of predator, multiplied by the density of prey and by an interaction term 
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(Bacaër, 2011). In that case, an increase in either predator or prey numbers leads to 

an equivalent increase in the strength of their interaction. On the other hand, 

frequency-dependent interactions are often used in mathematical models of infectious 

diseases in humans. In that case, the number of new infections during a time period t 

is estimated by multiplying the number of susceptible individuals, their contact rate 

over the period t, and the proportion of infected people in the total population (rather 

than number of infected) (Keeling and Rohani, 2008).. This is more biologically 

accurate in this context, since the contact rate of an individual during the period t is 

independent of the total population size, and hence limits the number of new infections 

(McCallum, Barlow and Hone, 2001). The clearest examples to show the importance 

of frequency-dependent transmission are sexually-transmitted infections, such as 

human immunodeficiency virus infection, since transmission relies on sexual contact, 

and the distribution of sexual partners in humans is only weakly correlated with total 

population size (May and Anderson, 1987). 

 

Models can include more than one population, as is the case with malaria models for 

example which often include both humans and mosquitoes (Anderson and May, 2010). 

The number of compartments can range from two (e.g. in an infectious disease model, 

one for healthy and one for infected individuals), up to one compartment for each 

single individual in the model, in which case we talk about “individual-based” or “agent-

based” models. A model with fewer compartments will be less computationally 

expensive and easier to solve analytically, at the cost of more assumptions and 

simplifications in the representation of the system of interest. On the other hand, an 

agent-based model will allow for a greater representation of possible individual 

behaviours, and therefore increased biological accuracy with a reduced number of 

assumptions, at the cost of a higher computational cost and a difficulty to disentangle 

the underlying dynamics in the system of interest. 

 

We then distinguish between two classes of models: “deterministic”, which always 

generate the same results for a given set of parameters, and “stochastic”, where 

events are random (Anderson and May, 2010). Deterministic models are often 

represented as a series of ordinary differential equations, which can be solved 

analytically (depending on the other sources of complexity in the model, such as 

number of compartments). Deterministic models allow the identification of key 
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thresholds in population numbers or parameter values which affect the outcome of a 

simulation, as well as potential equilibria, but do not account for the randomness which 

can play an important role in certain processes. For this reason, deterministic models 

are more appropriate when representing larger populations, where it is reasonable to 

summarise individual variability into a single, average behaviour at the entire 

population level. On the other hand, stochastic models can capture random events 

which are particularly relevant for smaller populations, such as the appearance of a 

new mutation in a bacterial population which provides no advantage nor cost, and may 

therefore disappear or persist simply by chance. However, stochastic models are 

harder to solve analytically, and have a higher computational cost. Note that, for 

greater flexibility, some components within a single model can be deterministic and 

others stochastic. 

 

As there are multiple ways to design mathematical models, it is essential to identify 

the relevant underlying characteristics of the processes we are aiming to model. 

Models must be designed with the appropriate level of complexity, capturing the 

relevant properties of the system represented, whilst ensuring that these properties 

can still be parameterised and that analysis of the model remains feasible (both 

mathematically and computationally) (Brooks and Tobias, 1996). For example, bed 

occupancy in a single hospital is more accurately estimated when taking into 

consideration all the different patient movements between bed types (general ward, 

intensive care etc.), yet this same complexity is not appropriate when attempting to 

model bed occupancy across an entire country, due to lack of data and computational 

cost (Leclerc et al., 2021).  

1.6.1.3 Fitting models to data 

The values of parameters in mathematical models are often informed by data. This is 

essential to ensure that the conditions modelled are realistic, and that we can gain a 

meaningful understanding of real-life processes through the model. Some parameter 

values can be measured directly, such as the contact rate between individuals which 

can be obtained via contact surveys (Mossong et al., 2008). However, for other 

parameters this may not be feasible. For example, disease transmission during a 

contact between infectious and susceptible individuals cannot be directly observed, 

hence the corresponding parameter value (probability for disease transmission during 
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such a contact) cannot be directly measured. In such cases, parameter values can be 

estimated by fitting the model to data (Kirkeby et al., 2017). By obtaining the incidence 

curve for cases of an infectious disease over time, we can test multiple possible values 

for the probability of transmission, and identify the ones which allow the model to 

replicate this curve as best as possible. 

 

Bayesian methods are commonly used for model fitting, such as Markov chain Monte-

Carlo (Gelman et al., 2015). This involves running the model repeatedly, each time 

slightly changing the value of the parameters we are attempting to estimate, and 

calculating the likelihood that the data could have been generated from this model and 

with this set of parameter values. Over time, the algorithm will converge towards the 

values which are most likely to correspond to reality, and will generate distributions to 

summarise the likelihood of these values. The ability for different models to reproduce 

the same data can be compared through this approach, using metrics such as the 

Deviance Information Criteria (Spiegelhalter et al., 2002). This rewards models for 

their ability to reproduce data, whilst penalising their complexity (e.g. penalising 

models with more parameters). This process aims to identify the most appropriate 

model to use, which can reproduce the dynamics of interest whilst maintaining a 

reasonable level of complexity. 

1.6.1.4 Modelling AMR in humans 

Mathematical modelling is a valuable tool to study AMR dynamics in the human 

population (Opatowski et al., 2011; van Kleef et al., 2013; Knight et al., 2019; 

Niewiadomska et al., 2019). In particular, it is commonly used to understand the 

spread of infection by antibiotic-resistant bacteria in human populations, and the 

effects of interventions to reduce this burden. For example, previous work has shown 

that antibiotic stewardship in the community can reduce AMR prevalence both in the 

community and in hospitals, as opposed to stewardship in hospital which will mostly 

reduce the prevalence of AMR in hospitals only (MacFadden et al., 2019). This 

example highlights the differential impact of interventions against AMR depending on 

the setting.  
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Mathematical models have also been used to look at infections by antibiotic-resistant 

S. aureus, mostly focusing on MRSA (Niewiadomska et al., 2019). These studies are 

particularly useful to reveal the potential impact of interventions against MRSA which 

may not otherwise be measurable, such as vaccines (Tekle et al., 2012; Joice and 

Lipsitch, 2013). A previous modelling study was notably able to quantify the indirect 

impact of influenza vaccination on the burden of antibiotic-resistant S. aureus, via the 

resulting reduction in inappropriate antibiotic prescribing in cases of influenza 

infections (Chae et al., 2020). Mathematical models can also reveal the dynamics of 

nosocomial transmission of MRSA, highlighting the importance of initial transmission 

from the community to the hospital, and suggesting interventions to prevent this such 

as the systematic identification and decolonisation of MRSA carriers upon admission 

(Pei et al., 2018). 

1.6.1.5 Epidemiological modelling of AMR 

Since AMR is a global problem, it is essential to understand its distribution across 

space and time. This type of epidemiological analysis relies on using large datasets to 

monitor various trends related to AMR. For example, (Bruinsma et al., 2004) used 

routinely collected antibiotic susceptibility results for Streptococcus pneumoniae to 

estimate and forecast trends in antibiotic resistance in Europe. Epidemiological 

analysis of such large datasets has also been used to estimate the relative impact of 

various factors affecting AMR, such as antibiotic consumption, governance, and 

healthcare infrastructure (Collignon et al., 2018). However, these studies and others 

have highlighted a key challenge: the lack of appropriate data to inform model design 

and parameterisation (Birkegård et al., 2018). Epidemiological analysis often relies on 

datasets collected from routine surveillance at a local level (e.g. hospital, such as the 

ECDC data (European Centre for Disease Prevention and Control, 2022)), which are 

then aggregated at a national or international level. The problem is that variability in 

how the information in these datasets is collected at these local levels can limit the 

usefulness of these aggregated datasets for analysis. If only isolates from severely ill 

patients are collected for example, this would bias the dataset towards showing higher 

rates of antibiotic resistance (Leclerc et al., 2020; Catalán et al., 2022). Acknowledging 

these potential sources of variability and biases in essential. In addition, such datasets 

are often not publicly available, or may simply not exist in resource-limited settings. 

There have been recent attempts to use modelling to overcome these limitations and 
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fill in gaps in AMR surveillance datasets, but this still requires assumptions to be made, 

and hence we still cannot be completely confident in the conclusions made by such 

analyses (Murray et al., 2022). 

 

1.6.2 Mathematical modelling to study HGT of AMR 

1.6.2.1 Modelling bacteria dynamics 

Models are useful at a human population level, but also at a smaller scale. The 

dynamics of bacterial populations are arguably as complex as human ones, and 

modelling has previously been used to gain greater insight into these (Vlazaki, Huber 

and Restif, 2019). For example, data generated in the lab can be used alone to show 

that specific events of interest happened (e.g. multidrug-resistant bacteria have 

appeared following exposure of a bacterial population to phage capable of 

transduction), but cannot easily reveal the complete dynamics behind these events 

(e.g. what is the rate at which phage and bacteria interacted to generate these 

multidrug-resistant bacteria), which is where modelling can help. 

 

 

A relatively simple and common use of modelling bacterial dynamics is 

pharmacodynamic modelling, to study how bacteria grow and are affected by an 

antibiotic (Nielsen and Friberg, 2013). This often relies on a Hill function, shown in 

equation 1.1, which can be used to express the effect of an antibiotic on bacteria as a 

function of antibiotic concentration. 

 

𝐸(𝐶)  = 𝐸𝑚𝑎𝑥 ∗ 𝐶𝐻/(𝐶𝐻 + 𝐸𝐶50𝐻)   (1.1) 

 

Here, the effect of the antibiotic on bacteria (E(C)) increases up to a maximum effect 

(Emax) as the concentration of antibiotic increases (C). The speed of this increase is 

controlled by the concentration at which the effect is half the maximum (EC50), and a 

Hill coefficient (H). This type of equation can be easily parameterised with a few 

experiments using predetermined concentrations of antibiotics (typically doubling from 

0.25 to 32 mg/L), and can then be used to predict the effect of a wide, continuous 
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range of different concentrations. The flexibility of this equation means that it can 

successfully reproduce the saturating dynamics of antibiotic-mediated bacteria killing 

for different combinations of bacteria and antibiotics, with an example shown in Figure 

1.2. This demonstrates the usefulness of mathematical models to infer trends from 

data generated in the lab, reveal the underlying dynamics of organisms and antibiotics 

of interest, and allow a faster exploration of alternative conditions, instead of having to 

rely on multiple, time-consuming experiments. 

 

 

Figure 1.2: Measured effect of antibiotics on bacteria (pink) versus model-

predicted effect after fitting a Hill equation (blue). All bacteria are S. aureus. 

NE201KT7 carries a tetK gene granting tetracycline resistance, NE327 carries an 

ermB gene granting erythromycin resistance, and DRPET1 carries both tetK and 

ermB. Figure reproduced from (Leclerc, Lindsay and Knight, 2022). 

 

1.6.2.2 Modelling HGT of AMR 

Mathematical models have also been used to study within-host bacterial dynamics 

during infection or colonisation of humans by resistant bacteria. These models 

generally only represent within-host AMR diversity as the co-existence of two bacterial 
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strains, one susceptible and one resistant to an antibiotic of interest (Davies et al., 

2019; Smith, Temime and Opatowski, 2021). New antibiotic resistant bacteria are 

often assumed to appear at a constant rate (corresponding to mutations), or at a rate 

which depends on antibiotic usage (Niewiadomska et al., 2019). In reality however, as 

highlighted earlier in this Introduction, there is substantial AMR diversity in within-host 

populations, with multiple resistance genes circulating between bacteria via HGT. 

Mathematical models are likely to be valuable tools in the study of factors shaping 

within-host diversity and evolution (Metcalf et al., 2015), yet the degree to which they 

capture the relevant and complex microbiological processes of HGT of AMR was 

previously unknown when this thesis commenced (Opatowski et al., 2011). Clarifying 

this is essential, as models which do not include this complexity at the microbiological 

level may then inaccurately estimate the prevalence of AMR in bacterial population, in 

turn leading to an inaccurate estimate of AMR at the human level, and hence an 

incorrect evaluation of the impact of potential interventions to reduce the health burden 

of AMR (Spicknall et al., 2013). 

 

To address this, I conducted a systematic review of studies describing mathematical 

models of HGT of AMR (Leclerc, Lindsay and Knight, 2019). This systematic review is 

presented in the next Chapter of this thesis. In summary, I found that the majority of 

studies focused on conjugation in E. coli. In this review conducted in 2019, I only 

identified a single study which modelled transduction of AMR (Volkova et al., 2014), 

and none which focused on S. aureus. Importantly, this lack of knowledge of HGT 

dynamics may be partly due to limited data available on HGT of AMR in within-host 

bacterial populations. Generating new data on HGT in vivo is difficult, as this requires 

longitudinal sampling of individuals, which limits the study sample size due to costs 

and practical challenges. Instead, it may be relevant to identify alternative, routinely 

collected data already available, to identify instances where HGT of AMR may be 

occurring in vivo and driving AMR evolution. 
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1.6.3 Mathematical modelling to study transduction of AMR 

1.6.3.1 Modelling phage predation dynamics 

To study the dynamics of transduction, it is firstly essential to consider the dynamics 

of phage predation, as the process of transduction relies on these. Mathematical 

models have been used to understand the complex predator-prey relationship of 

phage and bacteria; for example, by decreasing bacteria numbers now, phage are 

restricting their ability to replicate later, as they will have removed the organisms they 

need to replicate (Payne and Jansen, 2001). This type of work disentangling these 

interactions has been particularly used in the context of phage therapy, for example to 

show how the concentration and timing of phage presence can determine the success 

of phage therapy to clear a bacterial population (Cairns et al., 2009). 

A simple deterministic compartmental model of phage predation is shown in equations 

1.2 and 1.3. 

 

𝑑𝐵/𝑑𝑡 =  𝜇 ∗ 𝐵 − 𝛽 ∗ 𝑃 ∗ 𝐵    (1.2) 

𝑑𝑃/𝑑𝑡 =  𝛽 ∗ 𝑃 ∗ 𝐵 ∗ 𝛿 −  𝛽 ∗ 𝑃 ∗ 𝐵 − 𝛾 ∗ 𝑃  (1.3) 

 

In this system, bacteria (B) grow at a constant rate (μ), and phage (P) infect bacteria 

following a density-dependent process, the speed of which depends on the phage 

adsorption rate (β). Infected bacteria then burst, releasing more phage depending on 

the burst size (δ). Finally, free phage can decay in this system at a constant rate (γ). 

This central modelling structure has been adapted and applied to different 

environments, for example to quantify the synergistic bacterial-killing effect of 

antibiotics and phage (Rodriguez-Gonzalez et al., 2020), or to highlight the important 

role of the immune system to guarantee bacterial eradication during phage therapy 

(Roach et al., 2017). 

1.6.3.2 Modelling transduction of AMR 

As mentioned in my systematic review I originally identified only one study which 

attempted to model the dynamics of transduction of AMR (Volkova et al., 2014). This 

model represented transduction in E. coli with great biological detail, with multiple 

phage binding and infection steps before a successful transduction event could occur. 
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The authors chose to represent the complete dynamics of a temperate phage, 

including the lytic and lysogenic cycles, and both generalised and specialised 

transduction. They concluded that, in E. coli and for their assumed conditions 

(representing the large intestine of cattle), a plasmid carrying an AMR gene was 

transferred 1000 times more frequently by conjugation than by transduction. However, 

the complexity in their model meant that they did not generate data to parameterise it, 

relying instead on assumptions and values estimated in previous studies. This is an 

important limitation, as combining these external sources requires the implicit 

assumption that all these parameter values are applicable to the system of interest, 

which may not always be true. Different independent studies are often not conducted 

following the same experimental protocol (bacteria growth conditions, plating 

techniques etc.). Even if different studies focused on the same species, they may have 

used different strains. As highlighted earlier in this Introduction with S. aureus, these 

strains may differ in their biological characteristics (growth rate, susceptibility to phage 

etc.). Finally, these limitations apply to the sources cited themselves, as some of these 

may also be modelling studies which again relied on combining multiple, previous 

sources to inform their model and estimate the parameter value being reused here.  

 

After this systematic review was completed in 2019, two other studies modelling 

transduction were published. In (Fillol-Salom et al., 2019), the authors focused on S. 

aureus. They used a detailed stochastic agent-based model to simulate phage-

bacteria dynamics in a non-specific environment containing up to 104 bacteria, 

allowing for both lysis and lysogeny alongside generalised transduction of a single 

AMR gene, with a fitness cost. This study showed that phage and bacteria may benefit 

from lysogeny and transduction in the presence of antibiotics, as phage can persist for 

long time periods via lysogeny, and occasional transduction events increase the 

prevalence of the AMR gene in the bacterial population. Although the authors included 

a sensitivity analysis, and some in vitro work to generate hypotheses to study, their 

model parameter values were again either assumed or taken from multiple previous 

studies. 

 

In (Arya et al., 2020), the authors employed both deterministic and stochastic models 

to study the evolutionary implications of generalised transduction of AMR in a small E. 

coli population (168 bacteria) living in a non-specific environment. This model only 
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included the phage lytic cycle and generalised transduction, but allowed bacteria to 

become resistant to phage infection. The authors focused on a single AMR gene with 

a fitness cost, and examined the consequences of including the corresponding 

antibiotic in the environment. This study showed that stochasticity in phage-bacteria 

interactions, fitness costs for bacterial carriage of AMR, and fitness costs for phage 

resistance greatly determined if these very small populations of phage and bacteria 

could co-exist, and if AMR genes could be transferred by transduction. Once again 

however, parameter values were not derived from in vitro data generated as part of 

the study, and instead taken from previous studies or assumed. 

 

 

In my project, I chose not to directly adapt the models or use the parameter values 

from these three previous studies (Volkova et al., 2014; Fillol-Salom et al., 2019; Arya 

et al., 2020). These studies designed their models with a structural complexity that 

was not fully and robustly parameterised using data from a single set of in vitro 

conditions and environment, and therefore only provided a theoretical understanding 

of the dynamics of transduction. Instead, in this thesis I focus on capturing the key 

fundamental interactions underlying the dynamics of phage predation and generalised 

transduction, as the degree to which they are appropriately represented in these 

mathematical models is unclear (Leclerc, Lindsay and Knight, 2019). I believe that this 

can only be correctly captured using a mathematical model developed alongside in 

vitro experiments. This simultaneously allows me to be confident that I am including in 

my model all the relevant biological characteristics shaping the interaction between 

phage and bacteria in my experimental system, and that my model is robustly 

parameterised. Using further data analysis, I can then translate these findings from in 

vitro to in vivo, suggesting how transduction may shape AMR evolution in within-host 

bacterial populations. 
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1.7 Thesis aim and objectives 

In summary, antimicrobial resistance in the major nosocomial pathogen 

Staphylococcus aureus represents a significant public health threat. The prevalence 

of infections by antibiotic-resistant S. aureus is linked to the prevalence of resistance 

genes in bacterial populations. In S. aureus, generalised transduction mediated by 

bacteriophage is a major process responsible for the horizontal gene transfer of AMR, 

affecting the prevalence of these genes. However, the dynamics of this generalised 

transduction, how to best represent them mathematically, and how these may 

ultimately affect the AMR diversity of within-host S. aureus populations are unclear. 

This research gap must be urgently addressed to ensure we are correctly 

understanding how AMR arises and spreads, and hence that we are designing 

effective interventions to reduce the health burden of infections by antibiotic-resistant 

bacteria. To do this, I combined laboratory, epidemiological data and mathematical 

modelling methods, overcoming some limitations of each of these individual disciplines 

and best utilising them to complement each other. 

My first objective was to identify our current understanding of the dynamics of 

transduction of AMR, which I addressed by completing a systematic review of 

published literature on mathematical modelling of HGT of AMR. This allowed me to 

identify previous methodologies to inform my own framework, and suggest directions 

to further develop this field. 

My second objective was to gain fundamental knowledge of the dynamics of phage 

predation and generalised transduction of AMR in S. aureus. To do this, I developed 

a joint experimental and modelling framework, where I first co-cultured single 

antibiotic-resistant S. aureus strains alongside phage, and observed the appearance 

of double antibiotic-resistant bacteria via transduction. I then used this data to build 

and parameterise several models representing this system, to test different predation 

interactions between phage and bacteria, and reveal the invisible underlying dynamics 

of generalised transduction. 

My third objective was to identify how the impact of transduction on AMR evolution in 

S. aureus may vary when antibiotics are jointly present, which could occur either in the 

environment or during phage therapy. For this, I extended the framework developed 
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as part of my second objective to include pharmacodynamics of antibiotics, generated 

further in vitro data to parameterise this addition, and conducted simulations with 

varying timings and concentrations of phage and antibiotics. 

My final objective was to understand how the findings from objectives two and three 

on transduction of AMR in vitro may translate to an in vivo setting, as we currently 

have a limited knowledge of how often these events may shape AMR within-host 

diversity, notably due to lack of longitudinal data. For this, I analysed 20 years of 

pseudonymised routinely-collected patient data from Great Ormond Street Hospital, 

with detailed information on the sensitivity of bacterial isolates to multiple antibiotics. 

This allowed me to test if I could detect within-host S. aureus diversity, and identify 

potential changes in diversity over time that may be due to HGT. 
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2 Mathematical modelling to study the 

horizontal transfer of antimicrobial resistance 

genes in bacteria: current state of the field and 

recommendations 

2.1 Overview 

As explained in the Introduction of this thesis, the appearance of new antibiotic 

resistant bacteria is often represented as occurring at a constant rate in mathematical 

models of AMR. In reality however, resistance genes can circulate between bacteria 

via HGT, which affects the overall prevalence of AMR in bacterial populations. The 

rate at which HGT occurs is affected by multiple factors (mechanism, environment, 

bacteria, presence of antibiotics etc.), and the extent to which mathematical models 

appropriately capture these dynamics was unknown before this thesis commenced. In 

this Chapter, I aimed to clarify the current state of this research field, as models which 

do not appropriately capture HGT complexity at the microbiological level may then 

inaccurately estimate the prevalence of AMR at that scale. This in turn can lead to an 

inaccurate estimate of AMR at the human level, and hence an incorrect evaluation of 

the impact of potential interventions to reduce the health burden of AMR. 

 

To address this, I systematically reviewed studies describing mathematical models of 

HGT of AMR. I devised a list of 11 elements to extract from each study, including 

information on the mechanism of HGT represented (conjugation, transformation, or 

transduction), the bacterial species, and the source for model parameters (whether 

they were estimated from data generated as part of the same study, taken from 

previous studies, assumed, or a combination of these sources). The aim of this work 

was to broadly assess mathematical models of HGT of AMR, identify potential 

research gaps in this field, and particularly to search for previous models of 

transduction of AMR which may be useful to inform the work in this thesis. 
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This work has been published following peer-review in the Journal of the Royal Society 

Interface (Leclerc, Lindsay and Knight, 2019). The co-authors are Quentin J Leclerc, 

Jodi A Lindsay, and Gwenan M Knight. The version included below is the author 

accepted manuscript. 
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2.3 Abstract 

Antimicrobial resistance (AMR) is one of the greatest public health challenges we are 

currently facing. To develop effective interventions against this, it is essential to 

understand the processes behind the spread of AMR. These are partly dependent on 

the dynamics of horizontal transfer of resistance genes between bacteria, which can 

occur by conjugation (direct contact), transformation (uptake from the environment) or 

transduction (mediated by bacteriophages). Mathematical modelling is a powerful tool 

to investigate the dynamics of AMR, however the extent of its use to study the 

horizontal transfer of AMR genes is currently unclear. In this systematic review, we 

searched for mathematical modelling studies which focused on horizontal transfer of 

AMR genes. We compared their aims and methods using a list of predetermined 

criteria, and utilised our results to assess the current state of this research field. Of the 

43 studies we identified, most focused on the transfer of single genes by conjugation 

in Escherichia coli in culture, and its impact on the bacterial evolutionary dynamics. 

Our findings highlight the existence of an important research gap on the dynamics of 

transformation and transduction, and the overall public health implications of horizontal 

transfer of AMR genes. To further develop this field and improve our ability to control 

AMR, it is essential that we clarify the structural complexity required to study the 

dynamics of horizontal gene transfer, which will require cooperation between 

microbiologists and modellers. 

 

2.4 Introduction 

Antimicrobial resistance (AMR) is undeniably one of the greatest global public health 

challenges we are currently facing [1]. The recent discoveries on the spread of 

resistance genes for key antimicrobials such as NDM-1 for carbapenem resistance [2–

4] suggest that to tackle this challenge, instead of only studying the spread of resistant 

bacteria, we must understand the processes by which individual resistance genes 

spread. The first is “vertical gene transfer”, where genes are passed from parent to 

progeny during bacterial replication. The second, which is our focus here, is “horizontal 

gene transfer” (HGT). This allows bacteria to acquire genetic material, including AMR 

genes, from their environment or other bacteria [5–7]. There are three mechanisms of 
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HGT. Firstly, “transformation” is the capacity of bacteria to intake genetic material from 

their environment. Secondly, “conjugation” occurs when two bacteria come into 

contact with each other and form a conjugative bridge, enabling direct exchange of 

genetic material. Finally, “transduction” occurs when a bacteriophage (a virus that can 

infect bacteria) replicates and packages a bacterial gene instead of its own genetic 

material, then acts as a vector and transfers this gene into another bacterium. 

 

The consequences of HGT of AMR in a bacterial population are varied and can change 

depending on the setting that this process occurs in. Firstly, HGT can often be at the 

origin of new combinations of resistances to multiple antimicrobials in single bacteria 

strains [8]. This is amplified by the fact that HGT can occur both intra- and inter-species 

[9], therefore allowing for mixing between many different gene pools. Fortunately, 

these resistance mechanisms often impose a fitness cost which reduces the 

competitiveness of bacteria with AMR genes in settings where antibiotics are absent 

[10], thereby limiting the increase in the prevalence of these bacteria in the 

environment. Studying HGT of AMR can be further complicated by differences in 

transfer rates and importance of transfer mechanisms between bacterial species [11], 

with transformation for example being rare for Staphylococcus aureus [12] but 

common for Neisseria gonorrhoea [13], and by differences between rates estimated 

in-vitro and in-vivo, as was seen with transduction in Staphylococcus aureus [14] and 

conjugation in Klebsiella pneumoniae and Escherichia coli [15]. Lastly, HGT dynamics 

appear to vary depending on the presence or absence of antibiotics in the surrounding 

environment [16–20], therefore requiring studies to be conducted in multiple settings 

to fully capture this process. 

 

It is essential to fully understand HGT of AMR since it can impact the overall 

transmission of AMR, and therefore the predicted effect of interventions against 

bacterial infections, to varying degrees depending on the setting. A most striking 

example of this is phage therapy, where bacteriophages are proposed as 

antimicrobials. A risk is that therapeutic phages could perform transduction and 

increase the proportion of bacteria in the patient that carry a resistance gene. In that 

case, if the phage therapy treatment fails to clear all the bacteria this could leave the 

patient at a higher risk of antimicrobial-resistant bacteria infection [21,22]. In addition 

to the aforementioned differences between bacterial species, HGT mechanisms 
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themselves are biologically complex. For example, the capacity to form a conjugative 

bridge generally requires the presence of a specific set of “tra” genes [23]. These can 

themselves be transferred, leading to an increase through time in the prevalence of 

bacteria that can perform conjugation. Transformation gene expression is extremely 

variable depending on the environmental conditions that bacteria are exposed to [6], 

therefore we cannot realistically assume that bacteria are able to perform 

transformation at all times. Finally, some phages can either undergo a “lytic cycle”, 

where they immediately replicate upon infecting a bacterium, or a “lysogenic cycle”, 

where they first integrate into the bacterial genome for a variable duration [12]. 

Consequently, transduction dynamics can be further complicated by the 

characteristics of the phage life cycle. 

 

HGT is therefore complex in its dynamics, and studying these requires appropriate 

tools. Mathematical modelling is often used to study infectious disease processes [24]. 

It provides a simulation environment that can be informed by real-life data, in which 

dynamics can be disentangled and easily studied. Mathematical models can be split 

into “deterministic models”, which always generate the same results for a given set of 

parameter values [24], and “stochastic models”, which generate variability in their 

results using random events [24]. Mathematical modelling is already being used to 

study AMR dynamics and their public health implications [25,26]. For example, it has 

been employed to study within-host bacterial dynamics (i.e. the bacterial processes 

that occur during colonisation or infection of a host) and derive conclusions on patterns 

of AMR seen in the host population [27]. Consequently, it can provide novel insight 

into optimal strategies to combat AMR spread by analysing the effect that these have 

on the transmission dynamics [28]. However, existing models may not always capture 

the relevant and complex microbiological dynamics of HGT. In this systematic review, 

we aimed to find modelling studies which focus on HGT of AMR, to record their 

methods and research questions, and hence, to identify potential research gaps and 

areas for improvement in this field. 
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2.5 Methods 

The methodology of our systematic review follows the recommended PRISMA 

guidelines [29]. 

2.5.1 Inclusion criteria 

In order to be included in this review, studies had to fulfil all of the following criteria: 

1) Study the horizontal transfer of genes between bacteria 

2) The genes studied must explicitly be identified as genes encoding antimicrobial 

resistance 

3) Use at least one dynamic population model. A model is “dynamic” if it tracks the 

changes in the number of bacteria belonging to various populations (e.g. 

antibiotic-resistant and susceptible bacteria) over time 

 

2.5.2 Screening process 

The entire screening process is summarised in Figure 2.1. We searched two 

databases on the 26th of April 2019 using the following terms: 

- PubMed search: “(antimicrobial OR antibacterial OR antibiotic) resist* AND 

(horizontal transfer OR mobile genetic element OR plasmid OR 

transformation OR conjugation OR transduction OR phage) AND (math* OR 

dynamic*) model*”, 171 results 

- Web of Science search: “TS = ((antimicrobial OR antibacterial OR antibiotic) 

resist* AND (horizontal transfer OR mobile genetic element OR plasmid OR 

transformation OR conjugation OR transduction OR phage) AND (math* OR 

dynamic*) model*)”, 185 results 

After removal of duplicates, these combined searches yielded a list of 272 studies. 

Both QL and GK independently screened the titles and abstracts of all 272 studies. 54 

studies were retained by both authors, and two more were discussed and retained 

after an additional screen of the methods due to uncertainty, leading to a total of 56 

studies retained after the first screening step. 
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The full texts of these 56 studies were then screened by QL, leading to 34 studies 

being retained as relevant for this review. Finally, by screening the reference lists in 

these 34 studies, nine more were included, leading to a total of 43 studies to discuss 

in this review. 

 

 

 

Figure 2.1: PRISMA flow diagram of the search and exclusion process. 
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2.5.3 Information extracted from the included studies 

To maximise comparability between studies, we devised a list of 11 elements to extract 

from every study. These are summarised and explained in Table 2.1. 

 

 

 

Table 2.1: Elements recorded from all included studies. Where no “Possible 

values” are given in the table, this indicates that the values were not restricted to a 

predetermined list. 

RECORDED ELEMENT SIGNIFICATION POSSIBLE VALUES 

Transfer mechanism Biological mechanism of 
horizontal gene transfer 
modelled 

“Conjugation” or 
“Transformation” or 
“Transduction” 

Bacteria Any species of bacteria 
explicitly modelled 

-  

Aim of the study Whether the study looked at 
gene transfer to understand 
evolutionary trends seen in 
the bacterial population, or to 
understand its impact on 
public health, or both 

“Evolutionary” or “Public 
Health” or “Both” 

Bacterial environment Any environment which 
contained bacteria in the 
model 

- 

Antibiotic effect 
considered 

Whether one or more 
antibiotic(s) were present in 
the model(s) 

“Yes” or “No” 

Multiple resistances 
considered 

Whether the model(s) 
tracked multiple resistance 
genes that could be 
transferred separately 

“Yes” or “No” 

Fitness cost of 
resistance considered 

Whether the model(s) 
included a fitness cost for 
bacteria carrying a 
resistance gene 

“Yes” or “No” 

Source of model 
parameters 

Whether the study also 
generated its own 
experimental data to support 
its parameter values, or 
chose values informed by 
previous studies (which 
could be experimental 
studies or not), or assumed 
values 

“Experimental” and/or 
“External” and/or 
“Assumed” 
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Type of model Whether the structure of the 
model(s) was deterministic, 
or stochastic, or both (if the 
study presented more than 
one model) 

“Deterministic” or 
“Stochastic” or “Both” 

Type of parameter 
values 

If the model(s) structure was 
“Deterministic”, whether the 
parameter values were 
constant or were sampled 
from distributions before 
each model run 

“Constant” or “Sampled” 

Sensitivity analysis 
performed 
 

 

Whether the study 
performed any type of 
sensitivity analysis of the 
effect of model parameter 
values on the results 

“Yes” or “No” 

 

 

Note that in our analysis, “Type of parameter values” and “Sensitivity analysis 

performed” are two independent criteria. We can therefore report that a study only 

uses “Constant” parameter values, yet still performs a sensitivity analysis. If a study is 

reported to have “Sampled” parameters, this means that the values of the parameters 

vary for each model run, and that this is represented in the main results, with figures 

showing model output with ranges instead of single lines for example. If a sensitivity 

analysis was performed, this means that the authors report conducting such a 

procedure to support their findings (e.g. to argue that their choice of “Constant” 

parameter values is a reasonable assumption, and does not significantly affect their 

results). 

 

2.6 Results 

The table showing all of the recorded elements from the 43 included studies can be 

found in the Supplementary Material of this paper (Supplementary Table 2.1). 

 

Firstly, when looking at the transfer mechanism modelled by these studies, we observe 

that almost all exclusively focus on conjugation (40 out of 43) [30–69] (Figure 2.2). Of 

the remaining three, two focused on transformation [70,71], and one on transduction 

[72]. Additionally, more than a third of the studies (16/43) chose exclusively 
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Escherichia coli (E. coli) as the bacteria in which to model the transfer processes 

[30,34,36,41–46,52,53,59,64,66,68,72] (Figure 2.2). It is also worth noting that 

another third of the studies (15/43) do not model a specific organism, and instead 

indicate that they are looking at bacteria in general [31,32,37,38,48,51,54,56–

58,61,62,65,67,69]. Finally, while eight studies applied their model to more than one 

bacterial species [33,35,39,40,47,49,60,63], only four of these modelled two strains of 

bacteria simultaneously and captured inter-species transfer of resistance genes 

[39,49,60,63].  

 

 

Figure 2.2: Transfer mechanisms and bacterial species modelled in the 43 

studies included in our review. 

 

 

In terms of the aims of these studies, all except eight [32,55,58,60,63–65,69] used 

modelling approaches exclusively to improve the understanding of bacterial 

evolutionary dynamics (Figure 2.3). This covered questions such as how the 

prevalence of resistance genes in the bacterial population changes over time (as in 

[34] for example), or how the rise of multi-drug resistant bacteria varied under different 

environmental conditions (as in [30] for example). Inversely, the remaining eight 

studies [32,55,58,60,63–65,69] attempted to place at least some of their results in a 

public health setting by, for example, quantifying the impact of transfer on the 
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incidence of multi-drug resistant bacteria infection in humans [32,69]. In accordance 

with this previous point, almost half of the studies (20/43) modelled bacteria 

exclusively in culture [33–42,47,49,50,52,53,58,59,66,70,71], and only seven 

modelled bacteria in humans [30,32,55,60,63,65,69] (Figure 2.3). In the remaining 

studies, seven did not specify an environment for their bacteria [31,48,56,57,61,62,67]. 

 

 

Figure 2.3: Aims and environments modelled in the 43 studies included in our 

review. 

 

 

Almost all of the studies included a bacterial fitness cost for the carriage of a resistance 

gene in their models (Table 2.2), except for six [32,42,48,63,66,71]. On the other hand, 

despite the fact that in reality bacteria can acquire multiple AMR genes independently 

(i.e. the acquisition of each gene is a separate HGT event), only four studies included 

this feature [30,32,60,69] (Table 2.2). Lastly, it is important to note that almost half of 

the studies did not model the presence of antibiotics, and therefore did not consider 

the effect of antibiotics on transfer rates [33–36,39–42,47,52,53,59,63,66,68,71,72] 

(Table 2.2).  
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Table 2.2: Summary of the presence or absence of model characteristics in the 43 

studies we reviewed. 

 
Include 

antibiotic 
effect 

Include 
multiple AMR 

genes 

Include fitness 
cost 

Include 
sensitivity 
analysis 

Yes 26 4 37 29 

No 17 39 6 14 

 

 

Almost half of these modelling studies (19/43) included their own experimental work 

to generate data and estimate at least some parameter values for their models [33–

36,39–42,47,49,51–54,59,66,68,70,71] (Figure 2.4). On the other hand, more than 

half (23/43) chose to assume the values of at least some of their parameters, without 

explicitly citing any sources to support their choices, and a quarter (12/43) assumed 

the values of all of their parameters [31,32,37,38,65,67]. Finally, a third (15/43) used 

previous studies to obtain at least some of their parameter values. For these, except 

for three studies (two of which were each the direct follow-up of another one on the 

same topic [44,50], and one an analysis of data collected during an outbreak [63]), 

more than one previous study was taken to estimate the value of parameters, with a 

median number of studies of 8 and a maximum of 42.  
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Figure 2.4: Sources of parameter values in the 43 studies included in our review. 

“Assume” (top, green): no clear reference is given to support the choice of parameter 

value; “Experimental” (right, orange): the study generated its own experimental data 

to support the choice of parameter value; “External” (left, brown): the study references 

a previous study to support the choice of parameter value. Studies in an overlap region 

used each of the corresponding methods at least once to estimate the value of their 

parameters. 

 

 

Finally, more than three quarters of the studies (33/43) exclusively relied on 

deterministic models to obtain their results [30,32,34,36–40,42,43,45,47–51,53–

56,58,59,61,63–69,71–73]. All of these deterministic models were composed of a set 

of ordinary differential equations to track the different sub-populations (susceptible 

bacteria, resistant bacteria etc.) through time. As for the ten studies which relied on 

stochastic models [31,33,35,41,44,52,57,60,62,70], most of these were agent-based 

models, where the bacteria were tracked individually [31,33,41,52,57,60], while the 
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remaining ones either used stochastic differential equations [44,62,70] or difference 

equations [35]. Out of the studies which exclusively used deterministic models, only 

eight acknowledge variability in the parameter values by running their model multiple 

times and sampling parameters from distributions instead of assuming them to be 

constant [32,38,43,46,56,64,65,72]. Nevertheless, most studies performed sensitivity 

analyses of the effect of their parameter values on their model results (Table 2.2). 

Overall, nine studies still relied solely on a deterministic model without either sampling 

their parameter values or performing sensitivity analyses 

[30,36,40,42,48,54,55,58,68]. We also noted that except for the one study on 

transduction [72], all the studies modelled transfer as a mass-action process. This 

assumes that the number of transfer events is determined by multiplying the number 

of bacteria that can receive the gene, the number of bacteria that can transfer the 

gene, and the rate at which transfer occurs. This is therefore generally written as some 

form of β*S*R/N, where β is a rate of transfer, S is the number of bacteria that can 

receive the resistance gene, R is the number of bacteria that can provide the 

resistance gene, and N is the total bacterial population in the system. 

 

2.7 Discussion 

We used a systematic literature review of mathematical models of horizontal gene 

transfer (HGT) to determine our current understanding of the dynamics of HGT of 

AMR. The first main observation from our results is that the majority of studies 

assessed only focus on HGT by conjugation (40 out of 43). The likely reason for this 

is the simplicity of conjugation dynamics. Effectively, these are comparable to 

infections transmitted upon contact, such as influenza, where established modelling 

exists using mass-action dynamics [24]. Consequently, modelling conjugation does 

not require much complexity to be added to these models. However, we know that 

transformation and transduction also contribute to HGT [7,14] and the lack of studies 

on these mechanisms is worrying.  

 

Conjugation, transformation and transduction fundamentally differ in their biology, 

making it essential to study each of them in their own modelling framework; it is 

unknown whether models of conjugation could be directly applied to transformation 
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and transduction. When looking at the studies which attempted to model these two 

processes, we first see that the one which focused on transduction [72] attempted to 

place it in a complex setting, with the phage able to undergo both lytic and lysogenic 

cycle, and the possibility for some bacteria to be resistant to phage infection. 

Transduction is represented as a multi-step process in this model, as opposed to 

relying on a single rate. The phage must first successfully infect a bacterium, then pick 

up a resistance gene, before successfully transferring this gene to a different 

bacterium. This model aims to accurately represent most of the biological complexity 

of transduction, which necessarily requires many assumptions regarding parameter 

values. Further study of this trade-off would be greatly beneficial; it is currently unclear 

whether this complexity is required, at the cost of more assumptions, or if the process 

of transduction could be simplified and modelled using fewer parameters, which could 

be estimated from experimental data. The two studies which focused on 

transformation [70,71] applied similar mass-action dynamics to this process as what 

can be seen in models of conjugation. However, this approach assumes that the 

number of resistance genes available in the environment is equivalent to the number 

of bacteria carrying these genes. This is questionable, as we would only expect these 

genes to be available in the environment after the bacteria die and release their genetic 

material; while it is possible for bacteria to actively release their genetic material while 

still alive, the extent of this phenomenon is unclear [6]. Further exploration of this 

assumption, and perhaps redesigns of model structures for transformation would be 

of value. 

 

E. coli is the most commonly studied model organism for bacteria in general [74]. Its 

rapid growth and consistent behaviour in in-vitro settings make it amenable to 

experimental work, including transfer studies, therefore its overwhelming presence as 

the organism of choice for studies modelling HGT of AMR genes is not a surprise. 

However, HGT is known to occur with varying rates in multiple bacterial species, 

consequently it is unlikely that the rates of transfer estimated by looking at E. coli are 

equally applicable to other bacterial species [7]. In addition, HGT of AMR is a process 

that can also occur between bacterial species [9,11], while most models here 

exclusively focused on E. coli alone. Some resistances in bacterial species are in fact 

thought to have been originally acquired following a gene transfer event with another 
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species, such as the mecA resistance gene in Staphylococcus aureus acquired from 

S. fleurettii [75].  

 

Despite the fact that the carriage of an AMR gene often imposes a reduction in the 

growth rate of the bacteria [10], a few studies did not model this (6/43), but only one 

argued that this element could be ignored after fitting their model to experimental data 

[66]. However, this was once more only based on observations in-vitro, which are likely 

to differ from the in-vivo reality. Including a fitness cost, while requiring the estimation 

of an additional parameter, does not add any particular complexity to the model 

structure itself, effectively only requiring a reduced growth rate value for the bacteria 

carrying AMR genes as opposed to bacteria susceptible to the modelled antibiotic (as 

can be seen in [68] for example), and should therefore be included at least for 

sensitivity analyses. In addition, although it is understandable that the first models of 

HGT of AMR should focus on tracking single genes to understand the basic dynamics 

of this process, in reality many bacteria carry multiple AMR genes that can be 

transferred independently [8]. However, we only identified four studies in our review 

which included more than one independent AMR gene in their model [30,32,60,69]. 

13 studies did model the transfer of multiple linked genes [34,35,66,68,70,40–

42,47,49,53,55,59]; however in these cases a single HGT event causes the transfer 

of all of these genes, therefore there is little difference between the model structures 

of these 13 studies and those of other studies which modelled the transfer of single 

genes. 

 

Many studies did not allow for the presence of an antibiotic in their model. However, 

antibiotics are likely to modify HGT dynamics by directly affecting transfer rates, as 

well as the survival of bacteria not carrying the AMR gene [16–20]. The former has 

been shown to occur for transduction in S. aureus, where the addition of antibiotics 

induced a higher proportion of transducing phage compared to lytic phage [76]. On the 

other hand, some studies correctly argue that it is equally important to understand the 

dynamics of HGT in the absence of antibiotics. Effectively, it is common for bacterial 

populations to rapidly transition between being exposed to antibiotics or not, with the 

most obvious example being individuals transiently consuming antibiotics. 

Consequently, understanding the dynamics of HGT of AMR both in the presence and 

absence of antibiotics is essential. 
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HGT of AMR has been studied in laboratory settings, consequently data around which 

models can be built have been generated and are available [7,77]. However, we note 

that, to the best of our knowledge, most data appear to focus on conjugation in in-vitro 

settings. The availability of experimental data on HGT of AMR by transformation or 

transduction, and on any of the three HGT mechanisms in more complex settings 

(such as in-vivo), is unclear. This should be investigated in future work to further refine 

the recommendations we make here, and identify where more data are needed to 

support the development of mathematical models. This is essential to understand 

which of the gaps we identify are due to theory outpacing data collection, and which 

are due to under-utilisation of available data. In any case, using these external data 

sources for purposes they were not originally designed for can require assumptions to 

be made in the model structure and parameters. In addition, it is essential to bear in 

mind how these data were originally collected, since for example combining sources 

which look at bacteria in multiple environments to derive parameters in a single 

environment-specific model is far from ideal. On the other hand, the fact that a quarter 

of the studies we reviewed (12/43) assumed all of their parameter values is worrying. 

While the purpose of some of these studies was to exclusively test a range of 

parameter values to identify conditions for a specific event to occur (e.g. AMR 

prevalence increases), the absence of any clear sources for the limits of these ranges 

is questionable. Looking at studies which determined their parameter values 

experimentally, we see that some of these also assume values such as the initial 

proportion of bacteria capable of performing transformation and the rate at which they 

can gain this ability [70], the bacterial growth rate and the conjugation rate [40], or the 

fitness cost of carrying an AMR gene and the rate at which such genes are lost by the 

bacteria [34]. Informing models with data is essential to ensure that they are accurate 

representations of reality, therefore, as stated above, we believe that further work is 

required to review the availability of data on HGT of AMR, and the methods that could 

be used to generate them when they are currently missing. 

 

Regarding model structures, the majority of studies relied on deterministic models. To 

allow variability in the dynamics and therefore increased realism, studies more often 

chose to sample their parameter values, run their deterministic model, and repeat this 

process a number of times (as can be seen in [32,38,43,46,56,64,65,72]), a simpler 

alternative to developing new stochastic models. Acknowledging stochasticity when 
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looking at HGT is essential; HGT rates are typically low (estimates from studies in our 

review include for example 5.1*10-15(cells/mL)-1hour-1 for conjugation [49] and 10-

16(cells/mL)-1hour-1 for transformation [70]). These are therefore models of rare events 

which, by chance, might not always occur as expected, a feature which deterministic 

models fail to capture [24]. Sensitivity analysis is extremely important in any case since 

a small change in parameter value can lead to a greater change in the results. Despite 

this, nine studies exclusively relied on a deterministic model without sampling 

parameters or performing sensitivity analyses [30,36,40,42,48,54,55,58,68]. 

Interestingly, five of these nine studies also generated their own parameter values 

experimentally [36,40,42,54,68]. Although they capture variation when measuring the 

parameters experimentally, often providing distributions for their values, they then only 

retain fixed point estimates for their corresponding model parameter values instead of 

sampling them from these distributions, and only use these fixed estimates to derive 

their conclusions. Acknowledging variability in microbiological observations by 

specifying distributions rather than point estimates is essential, and this must be 

represented in the corresponding mathematical models. 

 

This also raises the question of how to best represent these microbiological events in 

mathematical models. Effectively, almost all of the models here describe transfer as a 

mass-action process (42/43). However, as stated above this approach is acceptable 

for conjugation, but might not fully apply to transformation, where transfer depends on 

the density of DNA in the surrounding environment rather than the number of bacteria, 

and transduction, which follows vector-like dynamics with the phage acting as carriers 

of resistance genes between bacteria. Transformation dynamics might therefore be 

better represented by models of environmental transmission of infections (such as 

[78]), and transduction by models of vector-borne diseases (such as [79]), as opposed 

to mass-action models. The degree of modelling complexity required to accurately 

represent HGT is therefore unclear. This is also true for models designed to 

understand the public health implications of HGT of AMR, for which the level of detail 

required to represent within-host dynamics must be clarified. In addition, since transfer 

dynamics have thus far been mostly studied in bacterial culture, mostly “short” time-

frames have been explored (hours or days), with long term dynamics remaining 

unclear despite our knowledge that even resistant bacteria can colonise us for weeks 

or months [80–82]. To best guide our public health policies with mathematical 
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modelling, we must first clarify the complexity of the process we are actually attempting 

to model, and the time required to fully capture its in-vivo dynamics. 

 

This is the first attempt at providing an overview of existing mathematical modelling 

work on HGT of AMR. Our systematic review methods, with two individuals separately 

screening the titles and abstracts of candidate studies, allowed us to identify and bring 

together key studies on this topic. Using our list of comparison elements, we extracted 

and contrasted essential information between studies, overall allowing us to obtain a 

broad overview of the field and identify research gaps. However, our approach also 

has some limitations. Firstly, it was necessary for us to specify “(math* OR dynamic*) 

model*” rather than just “model*” in the search, since otherwise it would have returned 

results on experimental models (e.g. mice) as opposed to mathematical models. 

Effectively, repeating our search with “model*” instead of “(math* OR dynamic*) 

model*” yields 2,360 and 1,560 results on PubMed and Web of Science respectively, 

as opposed to our 171 and 185 results. The consequence of our choice however was 

that nine relevant studies were missed in the search, and were only identified by 

screening the references of already included studies. These nine studies were missed 

in the original literature search due to the absence of at least one of the search terms, 

with some studies for example referring to their models as “mass action models” 

instead of “mathematical models”. In addition, we only searched for studies which 

modelled transfer of AMR genes, as opposed to HGT of any gene. This is firstly due 

to our specific research interest; horizontal transfer of AMR genes is an especially 

strong evolutionary driver for bacterial populations, compared to transfer of other 

genes. This is because AMR genes can be strongly selected for by environmental 

factors, such as the presence of antibiotics, while many other genes are often not 

subject to such selection pressures. In addition, AMR genes can be selected in more 

settings compared to other genes; for example, genes involved in immune evasion will 

only be selected for during infection of the host, while AMR genes can also be selected 

for during asymptomatic colonisation. The consequences of HGT of AMR in the 

bacterial population can therefore be greater than for other genes, which is why we 

believe it is important to study this process. Secondly, repeating the search without 

“(antimicrobial OR antibacterial OR antibiotic) resist*” yields 12,236 and 38,148 results 

on PubMed and Web of Science respectively, which would be too many to cover in a 

single systematic review. Nevertheless, this suggests that there are other studies 
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which model HGT more broadly. These could be a source of methodologies that could 

be applied to further develop the specific field of HGT of AMR modelling. In terms of 

the elements gathered from the studies to compare them, we were unable to extract 

any meaningful quantitative data (e.g. estimated gene transfer rates) common to all 

studies due to the high variability of study designs. This variability also prevented us 

from identifying common measures of study quality we could report aside from the 

presence or absence of sensitivity analysis. 

 

Studying the effect of HGT of AMR on bacterial evolutionary dynamics is a necessary 

first step to understand the overall importance of this process. This has been the focus 

of the vast majority of the studies identified in this review, however the public health 

implications remain vastly unknown. This is related to the observation that the majority 

of studies model bacteria in an in-vitro setting; to understand the public health impact 

of HGT of AMR, it is essential to expand this to include other bacterial environments 

such as within humans and animals. In addition, important differences have been 

identified between transfer rates estimated in-vitro and in-vivo, with in-vivo 

transduction rates in S. aureus and conjugation rates in K. pneumoniae and E. coli for 

example being much higher than expected [14,15]. This difference in dynamics is 

attributable to the fact that in-vitro conditions fail to capture essential biological 

mechanisms influencing bacteria and therefore HGT [6,10]. Studying HGT in-vitro 

allows for a controlled environment to understand the basic dynamics of this process 

and the factors that might influence them (e.g. antibiotic exposure), and consequently 

offers a starting point to inform in-vivo models. We therefore recommend that future 

modelling studies should build upon the work of existing in-vitro studies to evaluate 

HGT of AMR in more complex scenarios, utilising parameter estimates from in-vitro 

studies as a baseline and refining them using data generated with in-vivo model 

organisms such as mice [68]. Due to the added complexity (e.g. immune system, 

simultaneous within-host and between-hosts dynamics, rapidly varying host exposure 

to antibiotics and therefore selection pressure on the bacteria etc.), this will require 

major extensions to existing models. However, we believe that this is necessary to 

truly assess the potential consequences of HGT of AMR on human well-being. 
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This systematic review allowed us to identify key research gaps on the dynamics of 

HGT of AMR. Firstly, we recommend that future studies should focus on developing 

models of transformation and transduction to determine the required complexity to 

represent these dynamics. Since these mechanisms fundamentally differ in their 

biological characteristics, this will likely require substantial, novel modelling work as 

opposed to the extension of existing models of conjugation. In parallel, since the basic 

dynamics of conjugation are already reasonably well understood, future studies on this 

mechanism should focus on other bacterial species than E. coli, preferably in a setting 

where inter-specific HGT and the movement of multiple, separate AMR genes can 

both be observed. This should be achievable simply by re-parameterisation or minor 

extension of existing models; the greatest challenge would be to generate new data 

on HGT in these currently unexplored settings. The optimal solution to address these 

research questions would be to design frameworks to study HGT of AMR that 

encompass both laboratory and modelling work; this would ensure that the data 

collected are appropriate for the modelling needs, and that the actual model is a good 

representation of the situation measured in the laboratory. We therefore believe that, 

to fully understand the complexity of both the biology and the dynamics of HGT, 

collaboration of both microbiologists and mathematical modellers would be the best 

strategy for future research on this topic, and that studies should attempt to generate 

both their own data and models to reduce the assumptions they require. 

 

While exclusively microbiological approaches have successfully been used to identify 

when HGT occurs, combining these with modelling has allowed us to estimate rates 

at which these events occur, and to disentangle the finer temporal dynamics of this 

process. For example, some studies we identified in our review which combined 

microbiology and modelling work answered questions such as how changing the 

exposure of bacteria to antibiotics influences HGT rates [49], how a bacterium 

interacts in space with its neighbours to perform HGT [31], or how to adjust shaking 

speed to maximise contact between bacteria, and thus the rate of HGT, in a liquid 

culture [66]. Modelling also allows faster exploration of situations that could be harder 

to test using only microbiological methods, since an experiment where the bacteria 

need to grow for 24 hours in the lab could be completed in a few seconds using a 

mathematical model. Crucially, this requires the model to be an accurate 

representation of reality, which in turn requires it to be informed by microbiological 
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data to begin with. Our conclusion here is therefore not that either one of modelling or 

microbiology is superior to the other, but that both approaches complement each 

other. Consequently, we believe that close cooperation between these two fields 

would allow us to greatly improve our understanding of complex microbiological 

processes, such as HGT of AMR. 

 

2.8 Conclusions 

In this systematic review, we aimed to assess the current state of mathematical 

modelling as a tool to improve our understanding of horizontal gene transfer of 

antimicrobial resistance. From the 43 studies identified, we found that the majority 

focused on conjugation in E. coli, exploring evolutionary dynamics of HGT in culture. 

Whilst this provides a solid base for a key method of HGT, future work must also 

consider HGT by transformation and transduction which are also essential drivers of 

HGT in bacteria. Importantly for public health implications, only one bacterial species 

was considered in most models when we know that inter species transfer is 

responsible for many of our epidemic AMR clones and much of the work was fitted to 

data in the absence of antibiotic exposure. Crucially, to answer these questions we 

must first clarify the level of modelling complexity required to accurately represent HGT 

dynamics, as well as the availability and capacity to generate experimental data on 

these processes. This complex topic requires close collaboration between 

mathematical modellers and microbiologists in order to determine the full impact of 

these processes on our ability to control the public health threat posed by antimicrobial 

resistance.  
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3 Growth-dependent predation and 

generalised transduction of antimicrobial 

resistance by bacteriophage 

3.1 Overview 

The systematic review I conducted, presented in Chapter 2, highlighted an important 

lack of knowledge on the dynamics of transduction of AMR, and how to best represent 

them mathematically. This research gap is particularly worrying in the case of S. 

aureus, as transduction is the main mechanism of HGT in these bacteria, and existing 

evidence suggests that AMR genes may frequently move within S. aureus populations. 

The three studies modelling transduction published before this thesis explored these 

dynamics in complex settings, aiming to obtain a theoretical understanding of this 

process. In this Chapter, I instead aimed to gain a fundamental understanding of the 

core dynamics of generalised transduction in S. aureus, as well as the dynamics of 

phage predation which must be considered since generalised transduction is directly 

dependent on these. 

 

I designed this work with an interdisciplinary approach, combining lab work and 

mathematical modelling. I first conducted in vitro experiments, where I co-cultured 

single antibiotic-resistant strains of S. aureus alongside phage capable of generalised 

transduction, with hourly counts of bacteria and phage concentrations in the co-culture 

over 24h. Via generalised transduction, double antibiotic-resistant bacteria appeared, 

whilst bacteria simultaneously grew by replication, and phage multiplied via lytic 

infection. Lysogeny and specialised transduction were not detected in this system. The 

advantage of these well-defined experimental conditions is that I was able to design a 

mathematical model with a structure mirroring the in vitro environment. I then 

considered several interaction terms to represent phage predation, based on elements 

suggested in previous studies, yet never combined. This included linear versus 

saturated predation, and a link between bacterial growth and either or both phage 

adsorption rate and burst size. By fitting the model to the data, I was then able to 
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identify the underlying biological mechanisms behind phage predation and quantify 

generalised transduction dynamics in S. aureus. 

 

This work has been published following peer-review in mSystems (Leclerc et al., 

2022). The co-authors are Quentin J Leclerc, Jacob Wildfire, Arya Gupta, Jodi A 

Lindsay, and Gwenan M Knight. The version included below is the author accepted 

manuscript, with some changes following examiner corrections which will be submitted 

as a correction to the published article. Importantly, the manuscript only presents the 

final in vitro results, and therefore does not reflect the initial experimental work 

conducted to design the protocol, and the work necessary to optimise the experimental 

conditions and replicate results consistently. Overall, the experimental work presented 

in this Chapter was conducted over a period of 21 months (February 2019 to October 

2020), although this included a 4 months disruption due to the COVID-19 pandemic. 
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3.3 Abstract and Author Summary 

3.3.1 Abstract 

Bacteriophage (“phage”) are both predators and evolutionary drivers for bacteria, 

notably contributing to the spread of antimicrobial resistance (AMR) genes by 

generalised transduction. Our current understanding of this complex relationship is 

limited. We used an interdisciplinary approach to quantify how these interacting 

dynamics can lead to the evolution of multi-drug resistant bacteria. We co-cultured two 

strains of Methicillin-resistant Staphylococcus aureus, each harbouring a different 

antibiotic resistance gene, with generalized transducing phage. After a growth phase 

of 8h, bacteria and phage surprisingly coexisted at a stable equilibrium in our culture, 

the level of which was dependent on the starting concentration of phage. We detected 

double-resistant bacteria as early as 7h, indicating that transduction of AMR genes 

had occurred. We developed multiple mathematical models of the bacteria and phage 

relationship, and found that phage-bacteria dynamics were best captured by a model 

in which phage burst size decreases as the bacterial population reaches stationary 

phase, and where phage predation is saturated at high concentrations. We estimated 

that one in every 108 new phage generated was a transducing phage carrying an AMR 

gene, and that double-resistant bacteria were always predominantly generated by 

transduction rather than by growth. Our results suggest a shift in how we understand 

and model phage-bacteria dynamics. Although rates of generalised transduction could 

be interpreted as too rare to be significant, they are sufficient in our system to 

consistently lead to the evolution of multi-drug resistant bacteria. Currently, the 

potential of phage to contribute to the growing burden of AMR is likely underestimated. 

 

3.3.2 Author Summary 

Bacteriophage (phage), viruses that can infect and kill bacteria, are being investigated 

through phage therapy as a potential solution to the threat of antimicrobial resistance 

(AMR). In reality, however, phage are also natural drivers of bacterial evolution by 

transduction when they accidentally carry nonphage DNA between bacteria. Using 

laboratory work and mathematical models, we show that transduction leads to 
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evolution of multidrug-resistant bacteria in less than 8 h and that phage production 

decreases when bacterial growth decreases, allowing bacteria and phage to coexist 

at stable equilibria. The joint dynamics of phage predation and transduction lead to 

complex interactions with bacteria, which must be clarified to prevent phage from 

contributing to the spread of AMR. 

 

3.4 Introduction 

Bacteriophage (or “phage”) are major bacteria predators and the most abundant 

biological entities on the planet 1. However, phage are also natural drivers of bacterial 

evolution through horizontal gene transfer by “transduction” 2,3. Antimicrobial 

resistance (AMR) genes can be transferred by transduction at high rates, both in vitro 

and in vivo 4–6, meaning that phage may be substantially contributing to the rapidly 

increasing global public health threat of AMR 7. However, our understanding of these 

joint dynamics of predation and transduction and how to best represent them is limited. 

 

There are two main types of transduction; here, we focus on “generalised 

transduction”, which occurs during the phage lytic cycle, when non-phage genome 

DNA is mistakenly packaged in a new phage particle (Figure 3.1). The resulting 

transducing phage released upon lysis can then inject this genetic material into 

another bacterium. The second type of transduction, specialised transduction, relies 

on lysogeny, during which sections of bacterial DNA adjacent to the prophage 

integration site may be transferred upon excision of the prophage 8,9. Generalised 

transduction is currently often dismissed as too rare to be significant, yet it is likely a 

substantial contributor to AMR spread as it is a common mechanism for the transfer 

of plasmids, major vectors of AMR genes 2. There are currently no estimates or work 

quantifying rates of transduction of AMR genes under various conditions. Previous 

reviews have highlighted the necessity to further investigate the potential impact of 

transduction in the context of phage therapy, where phage are used as antimicrobial 

agents against bacteria 10–13. 
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Figure 3.1: Phage lytic cycle and generalised transduction. In this environment, 

only some bacteria carry an antimicrobial resistance (AMR) gene (shown in green). 

The lytic cycle starts when a lytic phage infects a bacterium by binding and injecting 

its DNA (1). Phage molecules degrade bacterial DNA and utilise bacterial resources 

to create new phage components and replicate (2). These components are then 

assembled to form new phage particles (3). At this stage, bacterial DNA leftover in the 

cell can be packaged by mistake instead of phage DNA, which creates a transducing 

phage and starts the process of generalised transduction. In our example, the 

transducing phage carries the AMR gene. After a latent period of typically several 

minutes, the phage trigger lysis of the bacterium, bursting it and releasing the phage 

(4). The transducing phage can infect another bacterium, binding and injecting the 

AMR gene it is carrying (5). If this gene is successfully integrated into the bacterial 

chromosome (6), this creates a new transductant bacterium carrying this AMR gene 

(7). Note that the transduced bacterial DNA could also be a plasmid, in which case it 

would circularise instead of integrating into the chromosome of the transductant 

bacterium. Not to scale. 
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Mathematical models have been used to gain insights into phage predation dynamics 

which cannot be obtained solely with experimental work, such as rates of predation 

and optimal conditions for phage to clear bacteria 14. Such models typically assume a 

density-dependent interaction, with new phage infections calculated as the number of 

susceptible bacteria, multiplied by the number of phage and an adsorption constant 

14–16. This approach has limitations, as density-dependent models have failed to 

predict equilibria observed in some in vitro conditions between phage and E. coli 17. 

Moreover, phage and bacterial replication are likely to be linked, as they both rely on 

the bacterial machinery; phage predation may slow as bacteria reach stationary phase 

14,17–23. However, this is a feature which is not commonly included in mathematical 

models of phage-bacteria dynamics 14. Finally, models often only rely on data of 

phage-bacteria interactions measured once per day, or for a few hours 17–19,24. A 

current lack of detailed data means that capturing these underlying dynamics which 

occur in less than an hour has not yet been possible. 

 

To the best of our knowledge, only three modelling studies have included transduction 

of AMR genes 25–27. All three modelled complex environments, including resistance to 

phage, antibiotics, and both lytic and lysogenic cycles. This complexity, combined with 

the fact that these studies were not paired with complementary in vitro or in vivo data, 

means that they relied on assumptions and previously published estimates, instead of 

parameter values derived from a single environment and set of conditions. This limits 

the wider reliability of conclusions made using these models 12. 

 

In this article, we investigate the dual nature of phage dynamics using the clinically 

relevant bacteria Methicillin-resistant Staphylococcus aureus (MRSA) 28. Transduction 

is the main mechanism of horizontal gene transfer driving evolution for these bacteria 

29, and phage therapy is currently being investigated to treat MRSA infections 30,31. We 

aim to clarify the joint dynamics of predation and generalised transduction between 

MRSA and phage by generating novel in vitro data, identifying biologically plausible 

hypotheses which may explain the dynamics seen, and developing mathematical 

models to test the validity of these hypotheses in our system. 
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3.5 Results 

3.5.1 Transduction and phage predation dynamics in vitro 

We focused on two laboratory strains of Staphylococcus aureus, each resistant to 

either erythromycin (and referred to as BE) or tetracycline (BT). In our experimental 

conditions, the antimicrobial resistance (AMR) genes can only be transferred between 

bacteria by generalised transduction mediated by exogenous phage. Transduction of 

either AMR gene to the other strain will result in the formation of double-resistant 

progeny (referred to as BET). 

 

We conducted a co-culture with only the two single-resistant strains and exogenous 

phage (PL) capable of generalised transduction. We detected double-resistant 

progeny (BET) as early as 7h in our co-cultures, indicating that transfer of AMR genes 

by generalised transduction had occurred (Figure 3.2). BET numbers remained below 

100 cfu/mL after 24h, but were consistently generated in each of our experimental 

replicates. Colonies of double-resistant progeny were screened using polymerase 

chain reaction (PCR) to confirm that they contained both resistance genes ermB and 

tetK, and had not instead gained resistance to either antibiotic by mutation 

(Supplementary Figure 3.1). 

 



103 
 

 

Figure 3.2: The starting concentration of exogenous phage 80α affected the 

equilibrium values of phage and bacteria in our co-cultures. The starting 

concentration of both single-resistant S. aureus parent strains (BE to erythromycin & 

BT to tetracycline) was 104 colony-forming units (cfu) per mL. Each panel shows the 

results with a different starting concentration of exogenous phage (PL): either 103, 104 

or 105 plaque-forming units (pfu) per mL. We detected double-resistant progeny (BET) 

as early as 7h, indicating that transduction occurred rapidly. Error bars indicate mean 

+/- standard error, from 3 experimental replicates. There is no data for the time period 

9h-15h. 

 

The starting concentration of exogenous phage affected whether phage and bacteria 

were able to reach an equilibrium and co-exist without increasing or decreasing in our 

co-cultures (Figure 3.2). With a starting concentration of either 103 or 104 pfu/mL 

(equivalent to multiplicities of infection of 0.1 or 1, defined as starting ratio of phage to 

bacteria 32), lytic phage reached a steady-state after 8h (at approximately 105 pfu/mL 

for a starting concentration of 103, and 107 pfu/mL for 104). In both cases, bacteria 

replicated for 8h before reaching a steady-state around 109 cfu/mL, similar to what 

was seen in the absence of exogenous phage (Supplementary Figure 3.2). With a 
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starting phage concentration of 105 pfu/mL (multiplicity of infection of 10), we did not 

see an equilibrium between phage and bacteria, as phage numbers kept increasing 

up to 1010 pfu/mL by 24h, and bacteria numbers started decreasing after 20h. The 

datasets are shown overlaid in Supplementary Figure 3.3. 

 

3.5.2 Absence of lysogeny in our co-culture 

The phage we used in our experiments is 80α, a well-known generalised transducing 

phage. It has also been reported as a temperate phage, which means that it may 

undergo lysogeny and integrate in the bacterial chromosome as a prophage 33. This 

would grant lysogenic immunity to the bacteria, preventing further lytic infection by 

80α, and potentially explaining why bacteria and phage densities reached steady-

states in our experiments (Figure 3.2). 

 

To investigate whether this was a potential mechanism, we initiated co-cultures either 

with stock bacteria, or bacteria exposed to phage during a previous co-culture. We did 

not see any difference in phage and bacteria numbers after 24h regardless of whether 

or not the bacteria had been previously exposed to phage, suggesting that lysogenic 

immunity, or any other mechanism of phage resistance (e.g. surface modification), has 

not been substantially gained by bacteria over 24h (Figure 3.3a). 
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Figure 3.3: 80α lysogeny does not occur at a detectable level in our co-culture. 

(a) Co-cultures with bacteria not exposed or previously exposed to phage. The 
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starting concentration of both single-resistant S. aureus parent strains (BE to 

erythromycin & BT to tetracycline) was 104 colony-forming units (cfu) per mL, and the 

starting concentration of exogenous phage 80α (PL) was 104 plaque-forming units (pfu) 

per mL. Double-resistant progeny (BET) are generated by transduction. The initial co-

culture was diluted in fresh media after 24h, to form a new co-culture with bacteria 

previously exposed to phage. Phage were added in the new co-culture to reach a 

concentration of 104 pfu/mL. Error bars indicate mean +/- standard error, from 3 

experimental replicates. (b) Confirmation of absence of detectable lysogeny by 

polymerase-chain reaction. DNA was extracted from the co-cultures after 24h. S. 

aureus RN4220 strains lysogenic and non-lysogenic for 80α were used as positive 

and negative controls. L: ladder; attL: left prophage junction; attR: right prophage 

junction; attB: bacterial insertion site. Detection of attL and attR indicates that 

prophage are present in the DNA, while detection of attB indicates the presence of 

bacteria not lysogenic for 80α. 

 

 

In addition, we extracted DNA from 1mL of co-cultures after 24h, and conducted PCRs 

targeting the prophage junctions (attL and attR) and bacterial insertion site (attB) with 

a positive control of a strain lysogenic for 80α. This DNA extraction from population 

samples and PCR protocol mean that the detection limit for our protocol is a frequency 

of at least 3.3 x 10-8 lysogenic per non-lysogenic bacteria after 24h of co-culture (see 

Materials and Methods for details). Only the intact bacterial insertion site was detected 

in our samples, indicating an absence of prophage in our bacteria above this detection 

limit (Figure 3.3b). 

 

Another concern linked to lysogeny we must address is that, if lysogeny did occur, the 

movement of the resistance genes tetK and ermB could have occurred by specialised 

instead of generalised transduction. However, this is unlikely to be the case in our 

system since specialised transduction can only lead to transfer of genes adjacent to 

the integrated prophage 8,9. This adjacency limitation also applies to lateral 

transduction, a type of specialised transduction reported for 80α leading to higher rates 

of transfer for DNA located downstream of the insertion site 34. This condition of 

proximity to the insertion site is not met in our system. The tetracycline resistance 

marker tetK is located on a plasmid, where 80α cannot integrate, thus preventing 
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specialised and lateral transduction. As for the erythromycin resistance marker ermB, 

the distance between the location of this gene on the chromosome (position 

2,126,759bp 35) and the 80α integration site (next to the rpmF gene 33, position 

1,122,198bp 35) suggests specialised and lateral transduction are unlikely. 

 

Overall, these results suggest that after 24h the frequency of lysogenic per non-

lysogenic bacteria is less than 3.3 x 10-8 in our co-culture, and hence it is reasonable 

to exclude any dynamics relating to lysogeny and specialised or lateral transduction in 

our analysis and model below. Therefore, phage lysis and generalised transduction 

are likely the main mechanisms shaping phage-bacteria interactions in our co-culture. 

 

3.5.3 Bacterial growth estimates in the absence of 

exogenous phage 

When grown together in the absence of exogenous phage, single and double resistant 

bacteria replicated exponentially and reached stationary phase after 8h at 

approximately 2 x 109 colony-forming units (cfu) per mL (Supplementary Figure 3.2).  

 

BE did not show a significant fitness cost relative to BT over 24h of growth (mean 

relative fitness 1.02, sd 0.03). The double-resistant progeny BET did not show a 

significant fitness cost relative to either single-resistant parent strain (mean relative 

fitness to BE: 0.96, sd 0.06; mean relative fitness to BT: 0.98, sd 0.03). 

 

We obtained maximum growth rate estimates by fitting a logistic growth model to the 

in vitro data. The median estimated maximum growth rates were 1.61 for BE (95% 

credible interval 1.59-1.63), 1.51 for BT (1.49-1.53) and 1.44 for BET (1.42-1.47), with 

a total carrying capacity of 2.76 x 109 cfu/mL (2.61 x 109 - 2.98 x 109). 
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3.5.4 Investigation of possible phage-bacteria interactions 

using a flexible modelling framework 

3.5.4.1 Model structure 

We designed a mathematical model to reproduce the in vitro phage-bacteria 

dynamics, including generalised transduction of resistance genes. During our 

experiment, our co-culture contained up to three strains of bacteria: the two single-

resistant parents (BE, BT) and the double-resistant progeny (BET). Although we were 

only able to count lytic phage (PL), based on the biology of generalised transduction 

(Figure 3.1) we know that there were also transducing phage carrying either the 

erythromycin resistance gene (PE), or the tetracycline resistance gene (PT). Since we 

did not detect any evidence of 80α lysogeny in our co-culture after 24h, we did not 

include this feature in the model. The corresponding model diagram is shown in Figure 

3.4a. The complete model equations can be found in Methods.  

 

Using this modelling framework, we explored a combination of different phage-bacteria 

interactions, described below (Figure 3.4b-c). By fitting the models to our experimental 

data, we could rule out certain interactions and suggest the best model to reproduce 

the phage-bacteria dynamics seen in vitro. 
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Figure 3.4: Phage predation and generalised transduction model diagram, and 

different phage-bacteria interactions considered. (a) Model diagram. Each 

bacteria strain (BE resistant to erythromycin, BT resistant to tetracycline, or BET 

resistant to both) can replicate (purple). The lytic phage (PL) multiply by infecting a 

bacterium and bursting it to release new phage (gold). This process can create 

transducing phage (PE or PT) carrying a resistance gene (ermB or tetK respectively) 

taken from the infected bacterium (green). These transducing phage can then 

generate new double resistant progeny (BET) by infecting the bacteria strain carrying 

the other resistance gene (green). (b) Phage predation in the model is either linear 

or saturated. With a linear interaction, the number of infections scales linearly with 

the number of phage and bacteria (top). A saturated interaction illustrates that at high 

phage concentrations, multiple phage may bind to the same bacterium, hence limiting 

the rate at which bacteria are lysed by phage (bottom). (c) Phage predation in the 

model can decrease as bacterial growth decreases. A change in bacterial growth 

phase can affect surface receptors, leading to a reduced phage adsorption rate (top). 

Since phage replication relies on bacterial processes, a reduced bacterial growth can 

translate into a reduced phage burst size (bottom). (d) Proposed function linking 

phage predation parameters to bacterial growth. This shows the multiplier applied 

to decrease phage parameters as the bacterial population increases towards carrying 

capacity, equivalent to a decrease in bacterial growth. Here, the carrying capacity is 

2.76 x 109 colony-forming units (cfu)/mL, estimated from our data.  

 

3.5.4.2 First phage-bacteria interaction: linear versus saturated 

phage predation 

The most common approach to model phage-bacteria dynamics is to assume that 

phage predation is density-dependent and linear 14. This means that, over one time 

step, the number of phage infecting bacteria and the number of bacteria infected by 

phage are both equal to the product of the number of bacteria (B), phage (P), and a 

constant phage adsorption rate (β), as shown in equation (3.1). 

 

𝐵 ∗ 𝑃 ∗ 𝛽  (3.1) 
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This interaction implies that the number of new infections scales linearly with the 

number of phage and bacteria (Figure 3.4b). Therefore, even if we keep a constant 

number of phage, increasing bacteria numbers always leads to a linear increase in the 

estimated number of new infections. Although this simplification is useful and holds for 

a range of values, it has been suggested that it is not biologically realistic for high 

concentrations of phage, since multiple phage may bind to the same bacterium, 

leading to a sublinear increase in the number of infections 17.  

 

To overcome these issues, we consider an alternative interaction, where phage 

predation is saturated 36. This accounts for the fact that one phage does not 

necessarily always lead to one infection. For example, multiple phage may bind to the 

same bacterium 32 (Figure 3.4b). The number of new infections is restricted with the 

use of a Hill function, as shown in equation (3.2). 

 

𝐵 ∗ 𝑃 ∗ 
𝛽

(1+
𝑃

𝑃50
)
 (3.2) 

 

with P50 corresponding to the phage concentration at half saturation, where the 

adsorption rate is equal to half the maximum. This heuristic approach was originally 

proposed in 36, as it captured well the dynamics of lytic phage and bacteria. 

3.5.4.3 Equilibrium analysis for the density-dependent model 

with linear phage predation 

Despite this being a common method to represent phage-bacteria interactions in 

mathematical models, previous analyses have suggested that  a density-dependent 

interaction alone cannot capture the equilibrium levels we and others have seen 18,37. 

We explore this in the context of our own in vitro data using equilibrium analyses. 

 

Assuming that transduction and the phage latent period are negligible, which a 

simplified model representing phage predation as a density-dependent process is 

shown in equations (3.3) and (3.4). 

 

𝑑B

𝑑𝑡
= 𝜇𝑚𝑎𝑥 ∗ 𝐵 ∗ (1 −

𝐵

𝐵𝑚𝑎𝑥
) − 𝐵 ∗  𝑃 ∗ 𝛽  (3.3) 
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𝑑P

𝑑𝑡
= 𝐵 ∗ 𝑃 ∗  𝛽 ∗ 𝛿′ − 𝛾 ∗ 𝑃   (3.4) 

 

Where µmax is the maximum bacterial growth rate, Bmax is the carrying capacity, β is 

the phage adsorption rate, γ is the phage decay rate, and δ is the phage burst size, 

with δ’ equal to δ - 1. To solve for equilibrium (i.e. 
𝑑B

𝑑𝑡
=

𝑑P

𝑑𝑡
= 0), equations (3.3) and 

(3.4) can be rewritten as equations (3.5) and (3.6). 

 

𝜇𝑚𝑎𝑥 ∗ 𝐵 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
) − 𝐵 ∗ 𝑃 ∗ 𝛽 = 0  (3.5) 

𝐵 ∗ 𝑃 ∗  𝛽 ∗ 𝛿′ − 𝛾 ∗ 𝑃 = 0   (3.6) 

 

Since we are interested in an equilibrium with the condition that there are still bacteria 

and phage in the environment (i.e. B≠0 and P≠0), we can divide equations (3.5) and 

(3.6) by B and P respectively to obtain equations (3.7) and (3.8). These must hold true 

for there to be a non-zero bacteria and phage population at equilibrium.  

 

𝜇𝑚𝑎𝑥 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
) −  𝑃 ∗ 𝛽 = 0  (3.7) 

𝐵 ∗  𝛽 ∗ 𝛿′ − 𝛾 = 0   (3.8) 

 

We then obtain equations (3.9) and (3.10) by rearranging (3.7) and (3.8) to give 

expressions for P and B at equilibrium. 

 

P =  
𝜇𝑚𝑎𝑥

𝛽
 ∗ (1 −

𝐵

𝐵𝑚𝑎𝑥
)  (3.9) 

𝐵 =
𝛾

𝛽 ∗ 𝛿′
   (3.10) 

 

 

In our experiment with a starting phage concentration of 104 plaque-forming units 

(pfu)/mL, after 24h the bacteria concentration was approximately 109 colony-forming 

units (cfu)/mL, and the phage concentration was 105 pfu/mL. If we replace the 

corresponding terms in equations (3.9) and (3.10) with these values, alongside the 

carrying capacity (2.8 x 109) and average of the growth rates estimated (1.52), we 

obtain equations (3.11) and (3.12). 
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105 =
1.52

𝛽
 ∗ (1 −

109

2.8∗109)  (3.11) 

109 =
𝛾

𝛽 ∗ 𝛿′
   (3.12) 

 

Rearrangement of equation (3.11) leads to a solution for phage adsorption (β) 

(equation (3.13)). 

 

𝛽 = 9.77 ∗ 10−6  ≈  10−5   (3.13) 

 

Substituting this into equation (3.12) leads to a value for phage decay rate (γ) (equation 

(3.14)). 

 

𝛾 =  109 ∗  10−5  ∗  𝛿′ ≈  104 ∗  𝛿′ (3.14) 

 

Giving rise to the condition that the phage decay rate γ must be approximately 104 

times greater than the burst size δ’. This is not biologically plausible, since phage 

decay rates are typically several orders of magnitude lower, and not greater, than burst 

size. For example, phage decay rates are estimated to be at most 0.1 phage-1.h-1 44, 

while an estimate for the burst size of 80α is 40 39.  

 

 

 

Even though these analyses rely on a simplified set of equations, using realistic 

parameter values we have shown that a non-zero equilibrium, as we have seen in 

vitro, cannot be reproduced using models with only a density-dependent interaction. 

Note that the inclusion of the phage latent period in these equations would not change 

the outcome of the equilibrium analysis, as this would only briefly delay the increase 

in phage numbers following bacterial infection (by approximately 40mins with 80α 39), 

and not otherwise restrict phage predation. Instead, phage-bacteria co-existence may 

be explained by variations in phage predation parameters depending on bacterial 

resources availability, or bacterial growth rate 14,17–22. However, to the best of our 

knowledge a simple mathematical expression linking phage predation to bacterial 

growth has not yet been developed. 
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3.5.4.4 Second phage-bacteria interaction: dependence of 

phage predation on bacterial growth 

Here, we consider that a decrease in bacterial growth as bacteria reach stationary 

phase could firstly affect the phage adsorption rate β, due to changes in receptors on 

bacterial surfaces, which affect opportunities for phage to bind (Figure 3.4c). Secondly, 

this could affect phage production, and thus burst size δ, as phage replication relies 

on bacterial processes and may decrease when bacterial growth slows down (Figure 

3.4c). Using a single phage predation multiplier, with the same principle of logistic 

growth applied to bacteria, we allow either or both β and δ to decrease as bacterial 

growth decreases in our model (equations (3.15) and (3.16)). 

 

𝛽 = β𝑚𝑎𝑥 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
)  (3.15) 

𝛿 = δ𝑚𝑎𝑥 ∗ (1 −
𝐵

𝐵𝑚𝑎𝑥
)  (3.16) 

 

These equations imply that, as bacterial population size increases towards carrying 

capacity (Bmax), phage parameters will be reduced (Figure 3.4d). 

 

3.5.5 Identification of the best-fitting phage-bacteria 

interactions to reproduce the in vitro dynamics 

Overall, we considered 6 different models, with either linear or saturated phage 

predation, and with either or both the phage adsorption rate and burst size linked to 

bacterial growth. Note that we did not include a phage decay rate in these models, as 

this did not affect the dynamics of the system over 24h, for a wide range of decay rates 

(Supplementary Figure 3.4), and this value systematically tended towards 0 when 

included in the model fitting process.  

 

All models successfully reproduced the trends seen in vitro when the phage were 

started at either 103 and 104 pfu/mL (Figure 3.5a-b). However, only the two models 

where only phage burst size decreases as the bacteria population approaches 

carrying capacity were able to reproduce the increase in phage numbers seen in the 
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later hours of the 105 pfu/mL dataset, despite all models having been fitted to this 

dataset (Figure 3.5a-b). This was confirmed by calculating the average Deviance 

Information Criteria (DIC) value for the models, which favours best-fitting models while 

penalising more complex models (i.e. with more parameters) 38. The two models where 

only phage burst size decreases as the bacteria population approaches carrying 

capacity had the lowest DIC values, indicating that they were the better-fitting models 

(Table 3.1). 

 

 

Figure 3.5: Accuracy of the best-fitted models to reproduce in vitro phage-

bacteria dynamics. (a-b) The models with only phage burst size linked to 

bacterial growth are the most accurate to reproduce in vitro trends in lytic phage 

(a) and double resistant bacteria (b) numbers, starting from a bacteria 

concentration of 104 cfu/mL and varying phage concentrations. All models 

(dashed lines) can reproduce the trends seen in vitro when phage are started at 103 

or 104 pfu/mL (data in solid lines), but only the models with just the phage burst size 

linked to bacterial growth (coloured model output) can reproduce the trend seen when 
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phage are started at 105 pfu/mL. Other models (grey) either only have the phage 

adsorption rate linked to bacterial growth, or both the phage adsorption rate and burst 

size. Models are fitted to the 103 and 105 data, and tested with the 104 data. Parameter 

values used are the median fitted values (Table 1). Shaded areas indicate standard 

deviation generated from Poisson resampling of model results. Error bars for the data 

(solid lines) indicate mean +/- standard error, from 3 experimental replicates. (c) When 

further testing fitted model dynamics starting from 106 cfu/mL bacteria and 

varying phage concentrations, the model with linear phage predation incorrectly 

predicts bacterial extinction, while the model with saturated predation 

reproduces the trend, but not the exact values of the 24h data. In the co-culture 

used to generate the data, each single-resistant parent strain (BE and BT) is added at 

a starting concentration of 106 cfu/mL, and no double-resistant progeny (BET) are 

initially present. The starting concentration of lytic phage (PL) varies (x axis). Points 

indicate mean results, and are each slightly shifted horizontally to facilitate viewing. 

Error bars indicate either mean +/- standard deviation for the models (left/centre 

panels), or mean +/- standard error for the data (right panel). Parameter values used 

are the median fitted values (Table 3.1). 
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Table 3.1: Estimated parameter values from fitting to in vitro data. Values show median and 95% credible intervals for posterior 

distributions. Parameter units are indicated in parentheses. Fitting was performed using the Markov chain Monte Carlo Metropolis–

Hastings algorithm and the data from the co-culture with a starting bacterial concentration of 104 cfu/ml and phage concentration of 

103 and 105 pfu/ml. DIC: Deviance Information Criteria. A smaller DIC indicates better model fit. DIC values are relative to the smallest 

DIC calculated, which is for the frequency-dependent model with only burst size linked to bacterial growth (line 5, parameters in bold). 

Interaction 

type 

Adsorption 

rate linked 

to growth 

Burst size 

linked to 

growth 

Adsorption rate 

β (phage-1 

bacteria-1 hour-1) 

Burst size 

δ (phage) 

Transducing phage 

proportion α 

(proportion of burst 

size) 

Phage latent 

period τ (hour) 

Phage 

concentration at 

half-saturation P50 

(phage) 

DIC 

Linear Yes No 4.5 x 10-9 (4.1 x 

10-9 ; 5.0 x 10-9) 

12 (10 ; 14) 3.1 x 10-8 (1.5 x 10-8 ; 

5.8 x 10-8) 

0.64 (0.55 ; 0.73) N/A 110

4 

No Yes 1.6 x 10-10 (1.5 x 

10-10 ; 1.7 x 10-10) 

79 (72 ; 86) 1.4 x 10-8 (1.1 x 10-8 ; 

1.7 x 10-8) 

0.65 (0.62 ; 0.69) N/A 995 

Yes Yes 4.3 x 10-9 (3.9 x 

10-9 ; 4.6 x 10-9) 

43 (37 ; 49) 1.2 x 10-8 (6.4 x 10-9 ; 

2.3 x 10-8) 

0.93 (0.86 ; 0.99) N/A 774 

Saturated Yes No 3.3 x 10-9 (1.8 x 

10-9 ; 5.6 x 10-9) 

14 (11 ; 21) 2.5 x 10-7 (1.2 x 10-7 ; 

5.5 x 10-7) 

0.67 (0.60 ; 0.78) 5.1 x 1010 (2.8 x 109 ; 

9.7 x 1010) 

631 

No Yes 2.3 x 10-10 (2.1 x 

10-10 ; 2.7 x 10-10) 

50 (43 ; 54) 1.2 x 10-8 (1.1 x 10-9 ; 

1.3 x 10-8) 

0.60 (0.60 ; 0.61) 1.2 x 1010 (1.0 x 1010 

; 1.3 x 1010) 

0 

Yes Yes 2.6 x 10-9 (1.9 x 

10-9 ; 3.4 x 10-9) 

36 (28 ; 43) 1.4 x 10-7 (9.21 x 10-8 ; 

2.2 x 10-7) 

0.75 (0.63 ; 0.80) 5.1 x 1010 (3.6 x 109 ; 

9.8 x 1010) 

385 
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Our initial experiments considered the dynamics over 24h for varying phage starting 

concentrations. To test the ability of our model to recreate the dynamics under 

changing bacterial levels, we replicated our transduction co-culture experiments with 

starting concentrations of 106 cfu/mL bacteria instead of 104 cfu/mL, varying the 

starting phage concentration between 104 and 106 pfu/mL, and measuring bacteria 

and phage numbers after 24h of co-culture. We then used the estimated parameter 

values (Table 3.1) to try to reproduce these 24h numbers of bacteria and phage. 

 

Increasing the starting phage concentration led to an increase in the number of phage 

after 24h (Figure 3.5c). For a starting phage concentration between 104 and 106 

pfu/mL, increasing starting phage numbers did not affect single-resistant parents BE 

and BT numbers after 24h, but led to a progressive increase in double-resistant 

progeny BET numbers. Increasing starting phage numbers above 106 pfu/mL caused 

bacteria numbers after 24h to decrease. 

 

Using the estimated parameter values (Table 3.1) with the model where only burst 

size is linked to bacterial growth, we see that the model with linear phage predation 

cannot reproduce these dynamics as it predicts that bacteria become extinct rapidly 

(Figure 3.5c). The model with saturated predation is able to reproduce these trends, 

but fails to recreate the exact same numbers of phage and bacteria, predicting a 

decline in bacterial levels when the starting phage concentration increases above 105 

pfu/mL, a lower threshold than seen in the data (Figure 3.5c). The same overall trends 

are seen for the models where only the adsorption rate is linked to bacterial growth, or 

both adsorption rate and burst size (Supplementary Figure 3.5).  

 

3.5.6 Analysis of phage predation and transduction 

dynamics 

Parameter estimates for our best-fitting model (with a saturated phage predation and 

a link between phage burst size and bacterial growth only) suggest that the adsorption 

rate is 2.3 x 10-10 (95% credible interval: 2.1 x 10-10 - 2.7 x 10-10) which is the smallest 

estimate from the models (Table 3.1). On the other hand, the estimated burst size is  

50 (43 - 54) phage, similar to a previous in vitro estimate for 80α of 40 39. However, 
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due to the decrease in burst size when bacteria are in stationary phase, we expect 

that this number would change depending on the conditions under which it is 

measured (Figure 3.6a). Finally, the estimated latent period of 0.60h (0.60 - 0.61) is 

slightly shorter than a previous in vitro estimate of 0.67h 39. Regarding the other 

models, we note some biologically unlikely parameter estimates which further suggest 

that these models are inappropriate, such as the low burst size for the models with 

only the adsorption rate linked to bacterial growth (12 (10 - 14) and 14 (11 - 21)), or 

the high latent period for the models with both adsorption rate and burst size linked to 

bacterial growth (0.93 (0.86 - 0.99) and 0.75 (0.63 - 0.80)) (Table 3.1). 
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Figure 3.6: Underlying phage and bacteria dynamics generated by the best-

fitting model with saturated phage predation and burst size linked to bacterial 

growth. Model parameters are the median estimates from model fitting (Table 3.1). 

(a) Phage burst size over time, by starting phage concentration. As bacteria reach 

stationary phase after 8h, phage burst size decreases. In the 105 dataset, we see that 

burst size is predicted to increase again after 20h. This is due to bacterial numbers 

decreasing as bacteria are being lysed by phage. (b) Relative change in phage and 

bacteria numbers over time, by starting phage concentration. The number of new 

phage generated at each time step increases (positive value) until bacteria reach 
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stationary phase around 8h. This applies to lytic and transducing phage. In the 105 

dataset, phage keep increasing after 10h, eventually causing a decrease in bacterial 

numbers (negative value), which translates into a further acceleration in the increase 

in phage numbers due to the increased burst size (Figure 5a). After 8h, the relative 

changes in lytic and transducing phage numbers are identical. (c) Incidence of lytic 

(gold) and transducing (green) phage over time, by starting phage concentration 

(linetype). For any dataset and time-point, there is approximately 1 new transducing 

phage generated for each 108 new lytic phage. (d) Fraction of double-resistant 

progeny (DRP) generated by transduction each hour over time, by starting 

phage concentration (linetype). DRP generation always occurs predominantly by 

transduction, rather than by growth of already existing DRP. Note that the time at which 

DRP are first generated varies by starting phage concentration. 

 

 

We used our best-fitting model to reproduce our in vitro data (Figure 3.2) and uncover 

the underlying phage-bacteria dynamics. Due to the link between phage burst size and 

bacterial growth, burst size decreases as bacteria reach carrying capacity after 8h 

(Figure 3.6a-b). This is reflected in the relative change in phage numbers, which tends 

towards 0 after 8h (Figure 3.6b). After this point, phage incidence remains stable for 

the 103 and 104 pfu/mL dataset, but starts increasing again significantly after 20h for 

the 105 pfu/mL dataset as bacteria numbers start decreasing due to phage predation, 

allowing burst size to increase again (Figure 3.6a-c). 

 

We estimate that for every 108 new lytic phage released during burst, there was 

approximately one transducing phage carrying an antibiotic resistance gene (Table 

3.1, Figure 3.6c). Note that new double-resistant progeny (DRP) can either be 

generated by transduction, or by replication of already existing DRP. Using the model, 

we found that DRP were always predominantly generated by transduction rather than 

by growth (Figure 3.6d). This is because after 4h bacterial growth rate starts 

decreasing as the total bacteria population approaches carrying capacity (Figure 

3.6b&d). 
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3.6 Discussion 

3.6.1 Results in context 

We observed rapid in vitro horizontal gene transfer of antimicrobial resistance (AMR) 

by generalised transduction in Staphylococcus aureus, alongside equilibria in phage 

and bacteria numbers which varied depending on the starting number of phage. The 

most accurate mathematical model to replicate phage-bacteria dynamics, including 

generalised transduction, represented phage predation as a saturated process, and 

linked phage burst size to bacterial growth. To the best of our knowledge, these two 

elements have both been suggested previously 17,18,36, yet never combined. 

 

Density-dependent models with linear phage predation have been compared to data 

at less fine time scales (e.g. daily time points) or over smaller time periods (e.g. less 

than 8h), where they were able to reproduce in vitro values from experiments in 

chemostats, and have been helpful to improve our basic understanding of phage-

bacteria dynamics 14–16. However, here we show that this type of interaction is not able 

to reproduce finer hourly dynamics, and does not perform consistently when varying 

concentrations of starting phage and bacteria. Using this, alongside a critique of the 

mathematical implications of this process, we argue that linear phage predation is not 

a biologically accurate representation of phage predation, as it fails to reproduce these 

dynamics at high numbers of phage and bacteria, which would correspond to 

scenarios potentially seen during phage therapy.  

 

Our work adds to the growing body of evidence that phage predation depends on 

bacterial growth 14,17–23. This has implications for antibiotic-phage combination 

therapy, as it suggests that bacteriostatic antibiotics, which prevent bacterial growth, 

could reduce phage predation. This effect has been previously seen in S. aureus 40. 

In the environment, including in persistent infections, bacteria spend most of their time 

in stationary phase 41. This suggests that bacteria and phage may be able to co-exist 

for prolonged periods of time in a broad range of settings, without the phage 

systematically eradicating the bacteria. Under such conditions, phage may mediate 

horizontal gene transfer by transduction between bacteria at relatively low levels, but 

for prolonged periods of time. This may be particularly relevant for S. aureus, since 
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approximately 20% of humans are colonised asymptomatically by this bacterium at 

any given time 42, and at least 50% of these carriers may also carry phage capable of 

generalised transduction 43, suggesting a constant background evolution rate for S. 

aureus in the human population. Combined with environmental exposure to antibiotics 

which acts as a selective pressure, this may contribute to the risk of multidrug-resistant 

bacteria evolution. 

 

3.6.2 Strengths and limitations 

Our experimental design is both a strength and a limitation of our study. Since we 

jointly designed the experiments and models, we are confident that we have included 

in our mathematical model all the organisms and interactions present in vitro. We are 

therefore confident in the conclusions on model structure, which is generalizable to 

other systems. Saturated phage predation is biologically plausible for lytic phage in 

general, a link between phage predation and bacterial growth has been seen in other 

systems 14,17–23, and our model includes the relevant biological characteristics of 

generalised transduction 2,3, requiring a transducing phage to first be generated before 

the transfer of the AMR gene to another bacterium can occur. In addition, our 

equations for phage-bacteria interaction can be directly applied to systems containing 

more strains of phage and bacteria than in our study. 

 

However, the usage of such a specific experimental system with two bacterial strains 

of the same genetic background and one phage limits the generalisability of our 

parameter values, as these will likely vary for different bacteria and phage. Growth 

conditions will likely also differ between the in vitro environment studied here, and in 

vivo conditions. Here, our model assumes that phage do not decay, that bacteria do 

not become resistant to phage, and that their growth is only limited by carrying capacity 

and not nutrients, as they are observed in a rich medium for 24h only, but over longer 

periods of time it may be necessary to revisit these assumptions, by including for 

example a finite concentration of resources which are consumed during growth 44. The 

role of the immune system may have to be considered in vivo, as this could impact 

both the numbers of phage and bacteria 45,46, and our model could be extended to 

include this. We assumed that the proportion of transducing phage created was 
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independent of the gene being transduced (ermB, on the bacterial chromosome, or 

tetK, on a plasmid). This was supported by preliminary work (see Material and 

Methods), but should be further investigated to improve our understanding of the 

factors that can facilitate or prevent transduction of different genes. Finally, our model 

does not include lysogeny and specialised transduction, and would therefore need to 

be extended with additional compartments for lysogenic bacteria to represent these 

dynamics. To answer all of these questions, future work should investigate both phage 

predation and transduction dynamics over longer time periods, with different strains of 

bacteria and phage. 

 

All our models captured certain aspects of the trends seen in vitro, but also 

underestimated phage numbers between 5-7h by up to 20 times. This is likely a 

consequence of our experimental design. To count lytic phage, we centrifuged and 

filtered the co-culture to remove bacteria. This could have caused the premature burst 

of some phage-infected bacteria, artificially increasing the numbers of phage we then 

counted 47. Since the period between 5-7h is when phage infections are highest 

(Figure 3.6b), this is why we would see such a large discrepancy at this stage. We 

also note that the models with only phage burst size linked to bacterial growth 

underestimated the number of double-resistant progeny (DRP). This small difference 

(up to 10 cfu/mL) is likely due to our choice of using a deterministic model. This type 

of model is useful for our purpose of fitting to in vitro data and analysing the underlying 

dynamics here, but mathematically allows for fractions of bacteria to exist, instead of 

just whole numbers. Future analyses using a stochastic model would better capture 

random effects, which can have an important impact at low numbers.  

 

Multiplicity of infection (MOI, starting ratio of phage to bacteria) is a commonly used 

metric to present results of experiments with these organisms 32. With a starting 

concentration of 104 bacteria per mL, we were able to fit our model to the dynamics 

for two MOI (0.1 and 10), and replicate those of a third (1). However, when trying to 

use the same model for these same three MOI, but with a starting bacterial 

concentration to 106, we found differences between our model and values seen after 

24h. This indicates that MOI is not appropriate to summarise all the complexity of the 

underlying phage-bacteria dynamics. Future experimental studies should express 
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their results as a function of their starting concentration of phage and bacteria, not just 

MOI. 

In any case, the failure of our model to replicate 24h values with a different starting 

bacteria concentrations shows that, whilst we have reduced the model structure 

uncertainty, we are still not fully capturing the phage-bacteria interaction. Currently, 

our model predicts that, for a starting concentration of 106 bacteria, a starting 

concentration of 105 phage or more will be enough to cause a decrease in bacterial 

numbers after 24h, while our data shows that the starting concentration of phage must 

be higher than 106 for this to happen. In vitro, it is likely that slower bacterial growth 

simultaneously affects the phage adsorption rate, latent period and burst size, each to 

varying extents 14,17–23. This would explain why we would need a higher starting 

concentration of phage for a higher starting concentration of bacteria, to exert a strong 

enough predation pressure before bacteria reach stationary phase, causing a 

reduction in phage predation. However, here we have only made the first step in this 

process, having linked the burst size linearly to the bacterial growth rate, instead of 

trying to link different phage predation parameters to bacterial growth using different 

functions. These complexities need to be explored further, supported by in vitro work 

measuring phage predation parameters at various time points. In S. aureus, wall 

teichoic acid (WTA) is the phage receptor 48,49. Lack of WTA glycosylation has been 

shown to induce phage resistance 50, and changes in WTA structure at different growth 

phases may be possible, since one of the genes involved in its synthesis is repressed 

by a quorum sensing system 51. However, to the best of our knowledge this has not 

yet been investigated, although changes in WTA are unlikely to occur at high rates 

due to the resulting fitness costs 52. 

 

3.6.3 Implications 

Despite being recognised as a major mechanism of horizontal gene transfer, thus far 

there have been limited mathematical modelling studies on the dynamics of 

transduction of AMR 12. Using our model, we are able to estimate numbers of 

transducing phage which we cannot count in vitro, and see that approximately 1 

generalised transducing phage is generated per 108 lytic phage, consistent with 

previous estimates 53,54. Here, we show that this number, which may seem 
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insignificant, is enough to consistently lead to the successful horizontal gene transfer 

of AMR, resulting in DRP after only 7h from phage addition, substantially less than the 

usual duration of antibiotic treatment. We also show that transduction is the dominant 

mechanism to create new DRP throughout the entire experiment, rather than growth 

of existing DRP. This echoes the conclusions of previously published work on the 

importance of transduction, including in vivo experiments and with other 

Staphylococcus species 4,5,29,55.  

 

Our findings suggest that transduction is currently under-emphasised in the 

exploration of phage-bacteria dynamics. Future studies on this topic should not 

assume that transduction can be dismissed by default, but instead investigate whether 

it is relevant in their system. This requires further in vitro and in vivo monitoring to 

identify scenarios where transduction plays a significant role in the transfer of AMR 

genes, likely depending on the environment, and characteristics of the bacteria and 

phage present. This will require new experimental designs, since counting phage 

numbers can be difficult, notably with clinical strains of bacteria. This should also be 

investigated in the presence of antibiotics, where the importance of selection enters, 

increasing the fitness of the small numbers of DRP generated by transduction.  

 

Our results confirm that generalised transduction can consistently lead to the spread 

of AMR genes, yet to the best of our knowledge there have not been any attempts to 

evaluate the potential consequences of this process during phage therapy. Unlike 

specialised transduction, likely not relevant in the context of phage therapy as 

temperate phage would not be used for this purpose, generalised transduction is by 

definition a mistake during the lytic cycle, therefore difficult to prevent 8,9. As phage 

therapy is generally administered alongside antibiotics 56, and we know that patients 

can be colonised and infected with strains carrying different resistance genes 42, a 

potential risk is for multidrug-resistant strains to be generated by transduction, and 

then selected for by these antibiotics. These new strains could in turn be transmitted 

to other individuals, or gain resistance to phage infection, which would lead to a worse 

treatment outcome for the patient. Echoing recommendations from previous reviews 

10–12, we suggest that future studies of phage therapy should acknowledge the risk of 

generalised transduction, and evaluate the impact of this on in vivo bacterial evolution 

during therapy. 
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3.6.4 Conclusion 

The joint dynamics of phage predation and transduction lead to complex interactions 

with bacteria. These dynamics must be clarified, to correctly evaluate the extent to 

which phage contribute to the global spread of AMR. We must also understand these 

dynamics in the context of phage therapy, as transduction may lead to worse health 

outcomes in patients if phage contribute to spreading AMR instead of overcoming it. 

Current modelling research that ignores transduction may underestimate AMR 

development in various systems. Interdisciplinary work will be essential to answer 

these urgent public health questions in the near future. 

 

3.7 Material and Methods 

All analyses were conducted using the statistical software R 57. The underlying code 

and data are available in a GitHub repository: 

https://github.com/qleclerc/mrsa_phage_dynamics.  

 

3.7.1 Experimental methods 

3.7.1.1 Strains and phage used 

The Staphylococcus aureus parent strains used for our transduction experiment were 

obtained from the Nebraska Transposon Mutant Library 35. These were strain NE327, 

carrying the ermB gene encoding erythromycin resistance and knocking out the φ3 

integrase gene, and strain NE201KT7, a modified NE201 strain with a kanamycin 

resistance cassette instead of the ermB gene knocking out the φ2 integrase gene, and 

a pT181 plasmid carrying the tetK gene encoding tetracycline resistance 58. Previous 

work estimated that the pT181 copy number was 20 in S. aureus 59, however this old 

number may not be applicable to our specific NE201KT7 strain, and there is ongoing 

whole-genome sequencing work in our group to generate an updated estimate. 

Growing these strains together in identical conditions as our co-culture below, but 

without the addition of exogenous phage, does not lead to detectable horizontal gene 

transfer (HGT; data not shown). To enable HGT, exogenous 80α phage was used, a 
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well-characterised temperate phage of S. aureus capable of generalised transduction 

33. To count lytic phage, S. aureus strain RN4220 was used, a restriction deficient 

strain highly susceptible to phage infection 60. 

3.7.1.2 Transduction co-culture protocol 

Pre-cultures of NE327 and NE201KT7 were prepared separately in 50mL conical 

tubes with 10mL of Brain Heart Infusion Broth (BHIB, Sigma, UK), and incubated 

overnight in a shaking water bath (37°C, 90rpm). The optical densities of the pre-

cultures were checked at 625nm the next day to confirm growth. The pre-cultures were 

diluted in phosphate-buffered saline (PBS), and added to a glass bottle of fresh BHIB 

to reach the desired starting concentration in colony forming units per mL (cfu/mL) for 

each strain, forming a master mix for the co-culture. CaCl2 was added at a 

concentration of 10mM to the master mix. Phage 80α stock was diluted in phage buffer 

(50 mM Tris-HCl pH 7.8, 1 mM MgSO4, 4 mM CaCl2 and 1 g/L gelatin; Sigma–

Aldrich), and added to the master mix to reach the desired starting concentration in 

plaque forming units per mL (pfu/mL). Ten 50mL conical tubes were prepared (one 

co-culture tube for each timepoint, from 0 to 8h and 16 to 24h), each with 10mL from 

the master mix. Each co-culture tube was then incubated in a shaking water bath 

(37°C, 90rpm) for the corresponding duration. 

 

Bacteria counts for each timepoint were obtained by diluting the co-culture in PBS 

before plating 50μL on selective agar, either plain Brain Heart Infusion Agar (BHIA, 

Sigma, UK), BHIA with erythromycin (Sigma, UK) at 10mg/L, BHIA with tetracycline 

(Sigma, UK) at 5mg/L, or BHIA with both erythromycin and tetracycline (10mg/L and 

5mg/L respectfully). Note we plated 500μL instead of 50 on the plates with both 

antibiotics, to increase the sensitivity of the assay. This allowed distinction between 

each parent strain, resistant to either erythromycin or tetracycline, and the double 

resistant progeny (DRP) generated by transduction. Plates were then incubated at 

37°C for 24h, or 48h for plates containing both antibiotics. Colonies were counted on 

the plates to derive the cfu/mL in the co-culture for that timepoint. 

 

Previous work in our lab conducted by Lorna Chapman found that there was no 

substantial difference in the direction of transfer between NE327 and NE201KT7. This 

was done by screening DRP for kanamycin resistance, with the assumption that DRP 
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also resistant to kanamycin would be from the NE201KT7 background, as they would 

possess the kanamycin resistance cassette. On the other hand, kanamycin-

susceptible DRP would be from the NE327 background. 16 DRP were screened, with 

10 resistant to kanamycin and 6 susceptible. Here, and in the model below, we 

therefore assume that transfer occurs at equal frequency between NE327 and 

NE201KT7. 

 

Lytic phage counts for each timepoint were obtained using the agar overlay technique 

61. Briefly, the co-culture was centrifuged at 4000rpm for 15 minutes, filtered twice with 

10μm filters, and diluted in Nutrient Broth No. 2 (NB2, ThermoFisher Scientific, UK). 

15mL conical tubes were prepared with 300μl of RN4220 grown overnight in NB2, and 

CaCl2 at a concentration of 10mM. 200μl of diluted phage were added, and the tubes 

were left to rest on the bench for 30 minutes. The contents of the tubes were then 

mixed with 7mL of phage top agar, and poured on phage agar plates. Phage agar was 

prepared using NB2, supplemented with agar (Sigma, UK) at 3.5g/L for top agar and 

7g/L for plates. The plates were incubated overnight at 37°C. Clear spots in the 

bacterial lawn were counted to derive the pfu/mL in the co-culture for that timepoint. 

3.7.1.3 Relative fitness 

Relative fitness was calculated using data from co-cultures of NE327, NE201KT7, and 

DRP, in the absence of phage. For each pair of strains, we estimated relative fitness 

W using Equation 3.17. 

 

𝑊 =  
𝑙𝑛[

𝑆1(24)
𝑆1(0)

]

𝑙𝑛[
𝑆2(24)
𝑆2(0)

]
  (3.17) 

 

Where S1(t) and S2(t) represent the number of bacteria (in cfu/mL) from the chosen 

strains 1 and 2, at times t = 0 or 24 hours. 

3.7.1.4 Polymerase chain reaction protocols 

To confirm that DRP contained both the ermB and tetK genes, primers ermBF (5′-

CGTAACTGCCATTGAAATAGACC-3′), ermBR (5′-AGCAAACTCGTATTCCACGA-

3′), tetKF (5′-ATCTGCTGCATTCCCTTCAC-3′), and tetKR (5′-
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GCAAACTCATTCCAGAAGCA-3′) were used. Strains NE327 (only containing ermB) 

and NE201KT7 (only containing tetK) were used as positive and negative controls. 

 

To confirm that 80α lysogeny did not occur in our co-culture, we applied a previously 

published method 33 and used a combination of four primers: SaRpmF (5′-

GACTGAATGCCCAAACTGTG-3′) in the S. aureus rpmF gene, SMT178 (5’-

GGCTGGGAATTAATGGAAGATG-3′) in the 80α integrase, SaSirH (5′-

TTAAGTAGCATCGTTGCATTCG-3′) in the S. aureus sirH gene, and SMT179 (5′-

GAGTCCTGTTTGCGAATTAGG-3′) in the 80α ORF73 region. SaRpmF and SMT178 

were used to amplify the left prophage junction (attL), SaSirH and SMT179 to amplify 

the right junction (attR), and SaRpmF and SaSirH to amplify the bacterial insertion site 

(attB). RN4220 was used as a negative control for lysogeny, and JP8488, an RN4220 

strain lysogenic for 80α, was used as a positive control (obtained from José Penadés 

and Nuria Quiles, Imperial College London). 

 

All PCRs were conducted using OneTaq Hot Start Quick-Load 2X Master-mix, 

following the manufacturer’s protocol. Tested samples were homogenised in 20µl 

nuclease-free water, except for samples used to test for lysogeny which were 

generated by DNA extraction and therefore already suspended in nuclease-free water 

(see below). 1.5µl of each suspension was used as template for a total reaction volume 

of 25µl. 

3.7.1.5 DNA extraction protocol 

To prepare samples for PCR to detect lysogeny, we extracted DNA from a 1mL sample 

of our NE327, NE210KT7 and 80α co-culture after 24h (approximately 109 bacteria) 

using the bacterial genomic DNA purification kit PurElute (Edge Biosystems), 

supplemented with 2.5µl of lysostaphin (10mg/mL, Sigma–Aldrich) 43. 

 

Since the final DNA suspension was in 50µl of nuclease free water, and we used 1.5µl 

of this suspension as a template for the PCR and conducted three experimental 

replicates, this is equivalent to saying that we tested DNA from approximately 9 x 107 

bacteria (109 x (1.5/50) x 3 = 9 x 107). Using a Binomial probability density function 

and assuming a 100% PCR specificity, we estimate that the probability for a false 

negative result (i.e. that the PCR results are negative yet that the true number of 
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lysogenic bacteria is greater than 0) exceeds 5% only if the frequency of lysogenic 

bacteria in our sample is lower than 3.3 x 10-8. We therefore consider that the detection 

limit of our protocol is a frequency of 3.3 x 10-8 lysogenic per non-lysogenic bacteria 

after 24h of our co-culture. This means that, in our system, we would be able to detect 

lysogenic bacteria if there were more than (3.3 x 10-8 x 109 = 33) 33 lysogenic bacteria 

in 1mL of our co-culture after 24h. 

 

3.7.2 Mathematical modelling methods 

3.7.2.1 General model structure 

We designed a deterministic, compartmental model to replicate our experimental 

conditions. We included 6 populations: BE (corresponding to ery-resistant NE327), BT 

(tet-resistant NE201KT7), BET (double resistant progeny, DRP), PL (lytic phage), PE 

(phage transducing ermB) and PT (phage transducing tetK). Their interactions are 

represented in Figure 3.2.  

 

Bacteria from each strain θ (θ ∈ {E, T, ET}) can multiply at each time step t following 

logistic growth at rate µθ, with a maximum value µmaxθ which declines as the total 

bacteria population N (= BE + BT + BET) approaches carrying capacity Nmax. 

 

𝜇𝜃 =  𝜇𝑚𝑎𝑥𝜃
∗ (1 −

𝑁

N𝑚𝑎𝑥
)  (3.18) 

 

At each time step t, lytic phage (PL) infect bacteria according to the function F(PL), 

replicate, and burst out from the bacteria with a burst size δ + 1 after a latent period τ. 

During phage replication, a proportion α of new phage are transducing phage. The 

nature of the transducing phage (PE or PT) depends on the bacteria being infected 

(e.g. BE bacteria can only lead to PE phage). Then, these transducing phage (PE or PT) 

infect bacteria according to F(PE) and F(PT). If they successfully infect a bacterium 

carrying the other resistance gene (e.g. PE phage infecting a BT bacterium), this 

creates double resistant progeny (BET). The complete model equations can be found 

below. 
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𝑑𝐵𝐸

𝑑𝑡
= 𝜇𝐸 ∗ 𝐵𝐸 − 𝐵𝐸 ∗ 𝐹(𝑃𝐿) − 𝐵𝐸 ∗  𝐹(𝑃𝑇)   (3.19) 

{Change in BE = growth of BE – infections by PL – infections by PT} 

𝑑𝐵𝑇

𝑑𝑡
= 𝜇𝑇 ∗ 𝐵𝑇 − 𝐵𝑇 ∗ 𝐹(𝑃𝐿) − 𝐵𝑇 ∗ 𝐹(𝑃𝐸)  (3.20) 

{Change in BT = growth of BT – infections by PL – infections by PE} 

𝑑𝐵𝐸𝑇

𝑑𝑡
= 𝜇𝐸𝑇 ∗ 𝐵𝐸𝑇 − 𝐵𝐸𝑇 ∗ 𝐹(𝑃𝐿) + 𝐵𝑇 ∗ 𝐹(𝑃𝐸) + 𝐵𝐸 ∗ 𝐹(𝑃𝑇) (3.21) 

{Change in BET = growth of BET – infections by PL + infections of BT by PE + 

infections of BE by PT} 

𝑑𝑃𝐿

𝑑𝑡
= [(𝐵𝐸 + 𝐵𝑇) ∗ 𝐹(𝑃𝐿)](𝑡 − τ) ∗ 𝛿 ∗ (1 − α) + [𝐵𝐸𝑇 ∗ 𝐹(𝑃𝐿)](𝑡 − τ) ∗ 𝛿 ∗ (1 − 2 ∗ α) −

𝑁 ∗ 𝐹(𝑃𝐿) (3.22) 

{Change in PL = new PL phage – PL phage infecting bacteria} 

𝑑𝑃𝐸

𝑑𝑡
= [(𝐵𝐸 + 𝐵𝐸𝑇) ∗ 𝐹(𝑃𝐿)](𝑡 − τ) ∗ 𝛿 ∗ α − 𝑁 ∗ 𝐹(𝑃𝐸)  (3.23) 

{Change in PE = new PE phage – PE phage infecting bacteria} 

𝑑𝑃𝑇

𝑑𝑡
= [(𝐵𝑇 + 𝐵𝐸𝑇) ∗ 𝐹(𝑃𝐿)](𝑡 − τ) ∗ 𝛿 ∗ α − 𝑁 ∗ 𝐹(𝑃𝑇)  (3.24) 

{Change in PT = new PT phage – PT phage infecting bacteria} 

 

Some parameters (τ, α) are constant, while others (µE, µT, µET,, δ) and the function 

F(Pθ) (θ ∈ {L, E, T}) can change at each time step and depending on the specified 

interaction mechanism. Note that since BET can give rise to both types of transducing 

phage PE and PT, as it carries the two resistance genes as opposed to BE and BT which 

only carry one, we assume that transducing phage carrying an AMR gene are twice 

as likely to be produced by BET than by BE or BT, hence the multiplication of α by 2 in 

Equation 3.22. 

3.7.2.2 Phage predation function 

Over one time step, both the number of phage Pθ (θ ∈ {L, E, T}) infecting bacteria Bε 

(ε ∈ {E, T, ET}) and the number of bacteria infected by phage are equal to  

𝐵𝜀 ∗ 𝐹(𝑃𝜃) (3.25) 

In our equations for linear phage predation, the phage adsorption rate β is constant, 

hence F(Pθ) is equal to: 

 

𝐹(𝑃𝜃) =  𝑃𝜃 ∗ 𝛽 (3.26) 
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On the other hand, the saturated phage predation equation limits the number of phage 

infecting bacteria over one time step at higher phage concentrations according to a 

Hill function. Equations (3.26) then becomes: 

 

𝐹(𝑃𝜃) = 𝑃𝜃 ∗  
𝛽

(1+
𝑃𝜃

𝑃50
)
  (3.27) 

 

With P50 corresponding to the phage concentration at which the adsorption rate is 

equal to half the maximum value. We assume that the adsorption and saturation 

process is the same regardless of whether the phage is lytic or transducing, hence we 

estimate only a single set of β and P50 parameters which we apply to all phage. 

3.7.2.3 Link between bacterial growth and phage predation 

We consider that reduced bacterial growth can lead to decreased phage predation, 

through reduced adsorption (β) and/or burst size (δ). Equations (3.28) and (3.29) allow 

these parameters to decrease as bacterial growth decreases, using the same principle 

of logistic growth as seen in equation (3.18). 

 

 

𝛽 = β𝑚𝑎𝑥 ∗ (1 −
𝑁

N𝑚𝑎𝑥
)  (3.28) 

𝛿 = δ𝑚𝑎𝑥 ∗ (1 −
𝑁

N𝑚𝑎𝑥
)  (3.29) 

 

If we do not link these parameters to bacterial growth, we assign them their maximum 

values. 

 

𝛽 = β𝑚𝑎𝑥 (3.30) 

𝛿 = δ𝑚𝑎𝑥 (3.31) 

 

3.7.2.4 Model fitting 

We fit our model to the in vitro data using the Markov chain Monte Carlo Metropolis–

Hastings algorithm. For every iteration, this algorithm slightly changes the parameter 

values, runs the model, assesses the resulting model fit to the data, and accepts or 
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rejects these new parameter values based on whether the model fit is better or worse 

than with the previous set of values. We run the algorithm with two chains, and once 

convergence has been reached (determined using the Gelman-Rubin diagnostic, once 

the multivariate potential scale reduction factor is less than 1.2 62), we generate 50,000 

samples from the posterior distributions for each parameter. 

 

In a first instance, we used our growth co-culture data, where phage are absent, to 

calibrate the bacterial growth rate parameters µmaxθ for each bacteria strain θ (θ ∈ {E, 

T, ET}), as well as the carrying capacity Nmax using a simple logistic growth model 

(equation (3.32)). All other parameters related to phage predation were set to 0.  

 

𝑑𝐵𝜃

𝑑𝑡
= 𝜇𝑚𝑎𝑥𝜃

∗ 𝐵𝜃 ∗ (1 −
𝐵𝜃

𝑁𝑚𝑎𝑥
)  (3.32) 

 

The phage predation parameters (τ, α, βmax, δmax) were jointly estimated by fitting to 

the phage and double resistant bacteria numbers from the transduction co-culture 

data. We fitted to the transduction co-culture datasets with starting phage 

concentrations of 103 and 105 pfu/mL, and tested whether the estimated parameters 

could reproduce the dynamics seen with the starting phage concentration of 104 

pfu/mL. Convergence and posterior distribution plots for our best-fitting model are 

shown in Supplementary Figure 3.6. 

 

To mirror our experimental sampling variation, in vitro data points were scaled down 

to be between 1 and 100 before fitting, with the same correction applied to the 

corresponding model-predicted value for the same timepoint generated using a set of 

parameter values Θ. For example, if at 1h there are 1.4 x 104 phage in vitro, this is 

scaled down to 14, and if the corresponding model value is 5.3 x 106, this is scaled 

down by the same magnitude (i.e. 103), resulting in a value of 5300. We then 

calculated the log-likelihood of the in vitro data point (Y) being observed in a Poisson 

distribution, with the corresponding model data point (X) as a mean, hence assuming 

Y ~ Poisson(X). In our example with Y = 14 and X = 5300, we would calculate the log-

likelihood of observing 14 phage from a Poisson distribution with a mean of 5300. This 

process is repeated separately for each data point and corresponding model point 
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generated using the set of parameter values Θ, then all the log-likelihoods are summed 

to obtain a single value, representing the log-likelihood of Θ. 

 

Previous research estimated that the latent period for 80α in S. aureus was 

approximately 40mins (0.67h), and that the burst size was approximately 40 phage 

per bacterium 39. Since this study did not provide error values for these point estimates, 

we assumed the standard deviation and chose the following informative priors for 

these parameters: τ ~ Normal(0.67, 0.07) (95% confidence interval: 0.53-0.81) and 

δmax ~ Normal(40, 7) (95% confidence interval: 54-26). Due to a lack of available data, 

we used uninformative priors for the remaining parameters: α ~ Uniform(0, 1) and βmax 

~ Uniform(0, 1). 
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4 Modelling the joint dynamics of 

bacteriophage and antibiotics: killers and 

drivers of resistance evolution 

4.1 Overview 

Through the interdisciplinary approach presented in Chapter 3, I obtained a 

fundamental understanding of phage predation and generalised transduction 

dynamics in S. aureus, and designed a mathematical model supported by in vitro data 

to explore these processes. The next step was to examine the effect of antibiotics on 

phage-bacteria dynamics, since in reality these may often be present alongside S. 

aureus and their phage. Evidence on the joint killing effect of phage and antibiotics on 

bacteria is conflicted, and the role of transduction as a potential driver of antibiotic-

resistance in environments where antibiotics, phage and bacteria are all present is 

unknown. In this Chapter, I generated further in vitro data and extended the 

mathematical model developed in Chapter 3 to identify conditions where phage and 

antibiotics either remove bacteria synergistically, or drive AMR evolution. 

 

This Chapter relied again on an interdisciplinary approach, since using experimental 

methods alone would not be sufficient to disentangle the interactions between 

antibiotics, phage, and bacteria. Instead, by generating further in vitro data to 

parameterise the effect of antibiotics on S. aureus, I was then able to use this extended 

model to explore a wide range of scenarios, with varying phage and antibiotic presence 

timing and concentration. This approach allowed me to identify conditions under which 

the action of the phage complements the antibiotic, leading to a faster decline in the 

bacterial population, and conditions where, due to the antibiotics restricting bacterial 

growth and hence phage growth, double antibiotic-resistant bacteria are generated via 

transduction, not killed by phage, and then selected for by the antibiotics. 

 

At the time of writing, this work is available as a preprint (Leclerc, Lindsay and Knight, 

2022), and is being revised for resubmission to PLoS Computational Biology following 

reviewer comments obtained on 25/05/2022. The co-authors are Quentin J Leclerc, 
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Jodi A Lindsay, and Gwenan M Knight. The version included below is the preprint, with 

some minor changes in response to reviewer comments. 
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4.3 Abstract and Author Summary 

4.3.1 Abstract 

Bacteriophage (phage) are bacterial predators that can also spread antimicrobial 

resistance (AMR) genes between bacteria by generalised transduction. Phage are 

often present alongside antibiotics in the environment, yet evidence of their joint killing 

effect on bacteria is conflicted, and the dynamics of transduction in such systems are 

unknown. Here, we combine in vitro data and mathematical modelling to identify 

conditions where phage and antibiotics act to remove bacteria synergistically, or drive 

AMR evolution. 

We adapt a published model of phage-bacteria dynamics, including transduction, to 

add the pharmacodynamics of erythromycin and tetracycline, parameterised from new 

in vitro data. We simulate a system where two strains of Staphylococcus aureus are 

present at stationary phase, each carrying either an erythromycin or tetracycline 

resistance gene, and where multidrug-resistant bacteria can be generated by 

transduction only. We determine rates of bacterial clearance and multidrug-resistant 

bacteria appearance, when either or both antibiotics and phage are present at varying 

timings and concentrations.  

Although phage and antibiotics act in synergy to kill bacteria, by reducing bacterial 

growth antibiotics reduce phage production. A low concentration of phage introduced 

shortly after antibiotics fails to replicate and exert a strong killing pressure on bacteria, 

instead generating multidrug-resistant bacteria by transduction which are then 

selected for by the antibiotics. Multidrug-resistant bacteria numbers were highest when 

antibiotics and phage were introduced simultaneously. 

The interaction between phage and antibiotics leads to a trade-off between a slower 

clearing rate of bacteria (if antibiotics are added before phage), and a higher risk of 

multidrug resistance evolution (if phage are added before antibiotics), exacerbated by 

low concentrations of phage or antibiotics. Our results form hypotheses to guide future 

experimental and clinical work on the impact of phage on AMR evolution, notably for 

studies of phage therapy which should investigate varying timings and concentrations 

of phage and antibiotics. 
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4.3.2 Author Summary 

Bacteriophage (“phage”) are viruses that can infect and kill bacteria, but also natural 

drivers of antimicrobial resistance (AMR) evolution by transduction, when they 

accidentally carry non-phage DNA between bacteria, including AMR genes. Phage 

are often present alongside antibiotics in the environment and in humans, yet the joint 

dynamics of phage, antibiotics, and bacteria are unclear. Using laboratory work and 

mathematical modelling, we show for the first time that depending on timing and 

concentration, phage and antibiotics can either work together to kill bacteria faster, or 

phage can generate multidrug-resistant bacteria by transduction which are then 

selected for by antibiotics. This may be particularly important in the context of phage 

therapy, where phage are used to treat bacterial infections, often alongside antibiotics. 

Our conclusions highlight the urgent need for clinical and laboratory work to quantify 

the currently unknown contribution of phage to AMR evolution in humans. Otherwise, 

we may be missing opportunities to reduce the global public health burden of AMR. 

 

4.4 Introduction 

Bacteriophage (phage) are major bacterial predators and the most common organisms 

on the planet [1]. Phage are often present alongside antibiotics, naturally or in the 

context of antibacterial treatment [2–4], yet reports on their combined effect on 

bacteria are conflicting. Some previous studies showed that phage and antibiotics 

work synergistically to clear bacteria [5–7], while others have demonstrated that 

antibiotics reduce phage production [8,9]. This is further complicated by the fact that 

phage are also major drivers of bacterial evolution via horizontal gene transfer by 

transduction [10,11], which can notably contribute to antimicrobial resistance (AMR) 

spread [12,13]. If multidrug-resistant bacteria are generated by transduction, 

antibiotics present in the same environment may act as a selective pressure to 

increase their prevalence, yet to our knowledge the dynamics of transduction have not 

yet been investigated in such systems [14]. 

 

There are two types of transduction: specialised and generalised [15,16]. Specialised 

transduction occurs when a prophage accidentally picks up adjacent bacterial DNA 
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upon excision from the bacterial chromosome, at the end of the lysogenic cycle. On 

the other hand, generalised transduction occurs during phage replication, when non-

phage DNA is packaged by mistake in a new phage particle. The resulting transducing 

phage is released upon bacterial lysis, and injects this DNA in another bacterium. 

Generalised transduction is likely the most important type of transduction in the context 

of AMR, as it can lead to the horizontal transfer of any genetic material contained in a 

bacterium (including plasmids, major vectors of AMR genes) [10]. 

 

A major bacterial pathogen often exposed to phage is Staphylococcus aureus, which 

at any given time is colonising approximately 20% of humans [17]. Previous work 

suggests that all S. aureus carry integrated prophage [18], and at least 50% of 

individuals colonised by S. aureus also carry free phage capable of generalised 

transduction [19], the main mechanism of horizontal gene transfer for S. aureus [18]. 

This is particularly relevant for methicillin-resistant S. aureus (MRSA), a group of S. 

aureus present in both the ESKAPE list and the World Health Organization priority list 

of antibiotic-resistant bacteria due to its large clinical burden [20–22]. In vitro, the 

generation rate of generalised transducing MRSA phage carrying an AMR gene has 

been estimated to be approximately one per 108 new phage produced, sufficient to 

consistently generate bacteria resistant to multiple antibiotics in less than 24h [23], 

and in vivo transduction rates are likely to be even higher [24]. 

 

Understanding the dynamics of bacteria, antibiotics, phage and transduction is 

especially important in the context of phage therapy, which aims to use phage as 

antibacterial agents, generally in combination with antibiotics [4]. Phage therapy is 

currently investigated as a solution to counter the threat of AMR, with ongoing clinical 

trials against MRSA infection [6,25–29]. Phage therapy guidelines recommend that 

only phage with a limited ability to perform transduction should be used [15,30,31], yet 

to our knowledge there is currently no technique to prevent phage from accomplishing 

generalised transduction, which is fundamentally a mispackaging and thus a biological 

error similar to a mutation. Hence, as previous reviews have highlighted, it is essential 

to explore the importance of this mechanism, and identify conditions under which it 

could affect the outcome of therapy and lead to multidrug resistance evolution [14,30–

32]. 
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In this study, we aim to investigate the potential combined effect of antibiotics and 

phage capable of generalised transduction on bacteria. Making conclusions about this 

multidimensional chequerboard space of potential combinations and timings is difficult 

when using data from time-consuming, single-scenario, in vitro experiments. Instead, 

we generate hypotheses to guide future experimental work by simulating these 

conditions. We adapt a previously published mathematical model of phage-bacteria 

dynamics, including generalised transduction, to incorporate the effect of antibiotics 

on bacteria [23]. This model is parameterised using in vitro data from the same 

environment and set of conditions as when it was originally developed [23], making it 

a reliable tool to infer the dynamics governing this system.  

 

We hypothesise that, depending on the timing and concentration at which they are 

added, phage and antibiotics can either act to eradicate bacteria synergistically, or to 

create and select for multidrug-resistant bacteria. We explore this in our model and 

generate guidelines to minimise the risk of generating double-antibiotic-resistant S. 

aureus when two single-resistant strains are exposed to antibiotics and phage, whilst 

maximising bacterial eradication. 

 

4.5 Materials and Methods 

4.5.1 Laboratory methods 

4.5.1.1 Bacterial strains and phage 

Two Staphylococcus aureus strains were obtained from the Nebraska transposon 

library in the MRSA USA300 background [33]. These were NE327, with the ermB gene 

conferring resistance to erythromycin, and NE201KT7, a modified NE201 strain with a 

kanamycin resistance cassette replacing the ermB gene and a plasmid carrying the 

tetK gene conferring resistance to tetracycline. Horizontal gene transfer can only 

happen between these two strains via generalised transduction. When co-cultured 

with 80α phage, these give rise to double-resistant progeny (DRP) bacteria resistant 

to both erythromycin and tetracycline [23]. In the experiments conducted here, we 

used the double-resistant strain DRPET1, a DRP strain with a NE327 background 
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generated during previous NE327, NE201KT7 and 80α co-cultures, containing both 

ermB and tetK genes [23]. Note that although 80α is a temperate phage, we have 

previously shown that lysogeny does not occur at a detectable level in our 

experiments, with a lysogenic frequency detection limit of 3.3 x 10-8 per non-lysogenic 

bacteria after 24h of co-culture, and that specialised transduction is unlikely to be 

responsible for horizontal gene transfer, due to the location of tetK on a plasmid and 

a ~1Mbp distance between ermB and the 80α integration site on the bacterial 

chromosome [23]. Hence the only interactions we consider between phage and 

bacteria in our environment are lysis and generalised transduction. 

4.5.1.2 Time-kill curves 

The growth conditions are identical to the ones previously used to generate data on 

lysis and transduction with these bacteria and phage [23]. Pre-cultures of each S. 

aureus bacterial strain (NE327, NE201KT7 and DRPET1) were separately generated 

overnight in 50mL conical tubes containing 10mL of brain-heart infusion broth (BHIB, 

Sigma, UK). Unless otherwise stated, liquid cultures were incubated in a warm shaking 

water bath (37°C, 90 rpm). Each pre-culture was then diluted in phosphate-buffered 

saline (PBS) and mixed with 10mL of fresh BHIB in a 50mL conical tube to reach a 

starting concentration of 104 colony-forming units (cfu)/mL. The new culture was 

incubated for 2h to allow the bacteria to reach log-growth phase, following standard 

protocol for time-kill experiments [34]. Erythromycin or tetracycline was then added to 

the culture, at a concentration of either 0 (control), 0.25, 0.5, 1, 2, 4, 8, 16, or 32 mg/L. 

At 0, 1, 2, 3, 4, 6 and 24h after antibiotic addition, 30μl were sampled from the 

incubated culture, diluted in PBS, and plated on plain brain-heart infusion agar. The 

plates were incubated overnight at 37°C. Colonies on the plates were then counted to 

derive the concentration of bacteria in cfu/mL at the corresponding time point. 

 

The experiment was repeated 3 times for each strain (NE327, NE201KT7 and 

DRPET1) and each antibiotic (erythromycin and tetracycline). 

4.5.1.3 Minimum inhibitory concentration 

We measured the minimum inhibitory concentrations (MIC) of erythromycin and 

tetracycline for NE327, NE201KT7 and DRPET1 by microbroth dilution [35]. Briefly, 
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pre-cultures of each strain were generated overnight in Mueller-Hinton broth (MHB-II, 

Sigma, UK). Antibiotic stocks were generated in 50% ethanol at concentrations 

doubling from 0.25 to 256 mg/L, and 10µL of each dilution were added to separate 

wells on a 96-well plate. The overnight pre-cultures were diluted to a concentration of 

105 cfu/mL, and 90µL were mixed with each antibiotic dilution in the 96-well plate. The 

plate was incubated overnight at 37°C, and the MIC were then determined by eye, 

identifying the lowest concentration of antibiotic which did not allow bacterial growth 

(i.e. the contents of the well were not turbid). 

 

4.5.2 Modelling methods 

All analyses were conducted in the R statistical analysis software [36]. The underlying 

code and data are available in a GitHub repository: 

https://github.com/qleclerc/phage_antibiotic_dynamics.  

4.5.2.1 Mathematical model 

We adapted a previously published mathematical model of phage-bacteria dynamics, 

including generalised transduction [23]. This model was previously parameterised 

using the same bacterial and phage strains as in this study. Our three S. aureus strains 

are represented: BE (erythromycin-resistant, corresponding to in vitro strain NE327), 

BT (tetracycline-resistant, corresponding to NE201KT7), and BET (resistant to both 

erythromycin and tetracycline, corresponding to double-resistant bacteria) (Figure 

4.1). The model also contains 80α lytic phage (PL), which can give rise to transducing 

phage carrying either the erythromycin (PE) or tetracycline (PT) resistance gene. The 

transducing phage can give rise to BET bacteria via generalised transduction (Figure 

4.1). 

 

We added two compartments to the model to track the concentration of antibiotics: CE 

for erythromycin, and CT for tetracycline. The concentrations are expressed in mg/L. 

We can simulate the addition of a chosen concentration of antibiotic at any given time, 

and the antibiotics decay at a constant rate γE and γT for erythromycin and tetracycline, 

respectively (Figure 4.1, Equations 4.1-2). A similar constant rate γP is used for phage 

decay (Equations 4.7-9). Note that these decay rates are all set to 0 in our analysis, 

https://github.com/qleclerc/phage_antibiotic_dynamics
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as we were not able to parameterise these using our in vitro data, but we explore the 

effect of changing their values between biologically plausible limits in the sensitivity 

analysis (see Results). 

 

𝑑𝐶𝐸

𝑑𝑡
=  −𝛾𝐸 ∗ 𝐶𝐸 (4.1) 

𝑑𝐶𝑇

𝑑𝑡
=  −𝛾𝑇 ∗ 𝐶𝑇 (4.2) 

 

The antibiotic concentrations are then used to calculate εi,j, the effect of each antibiotic 

i (i ∈ {E, T}) on each bacterial strain j (j ∈ {E, T, ET}), according to a pharmacodynamic 

relationship parameterised through Hill equations [34,37] (Equation 4.3). This 

commonly used function calculates the effect of an antibiotic using four parameters: 

the maximum effect (εmax
i,j), current concentration (Ci), half maximal effective 

concentration (EC50i,j), and a Hill coefficient (Hi,j). Note that εmax
i,j is relative to the 

maximum growth rate of the corresponding strain j (µmax
j, see below and Equation 

4.10). 

 

𝜀𝑖,𝑗 = 𝜇𝑗
𝑚𝑎𝑥 ∗ 𝜀𝑖,𝑗

𝑚𝑎𝑥 ∗
𝐶𝑖

(𝐻𝑖,𝑗)

𝐸𝐶50𝑖,𝑗
(𝐻𝑖,𝑗)

 +𝐶𝑖
(𝐻𝑖,𝑗) (4.3) 
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Figure 4.1: Mathematical model diagram. This model is an extension of our original 

model presented in [23], with the inclusion of antibiotic effects. Each bacteria strain 

(BE resistant to erythromycin, BT resistant to tetracycline, or BET resistant to both) can 

replicate (purple). The lytic phage (PL) multiply by infecting a bacterium and bursting it 

to release new phage (gold). This process can create transducing phage (PE or PT) 

carrying a resistance gene (ermB or tetK respectively) taken from the infected 

bacterium (dashed, green). These transducing phage can then generate new double-

resistant progeny (BET) by infecting the bacteria strain carrying the other resistance 

gene (solid, green). The antibiotics, erythromycin (CE) and tetracycline (CT), decrease 

the growth rate of each bacteria strain to varying extents, depending on their 

concentration and the resistance level of the strain (dotted, red and orange). Phage 

and antibiotics can decay at a fixed rate (dotted, grey and black). 

 

 

The complete model equations can be found below. 

 

𝑑𝐵𝐸

𝑑𝑡
= 𝜇𝐸 ∗ 𝐵𝐸 − 𝐵𝐸 ∗ 𝐹(𝑃𝐿) − 𝐵𝐸 ∗ 𝐹(𝑃𝑇) − (𝜀𝐸,𝐸 + 𝜀𝑇,𝐸) ∗  𝐵𝐸  (4.4) 

{Change in BE = growth of BE – infections by PL – infections by PT - ery killing - tet 

killing} 

𝑑𝐵𝑇

𝑑𝑡
= 𝜇𝑇 ∗ 𝐵𝑇 − 𝐵𝑇 ∗ 𝐹(𝑃𝐿) − 𝐵𝑇 ∗ 𝐹(𝑃𝐸) − (𝜀𝐸,𝑇 + 𝜀𝑇,𝑇) ∗ 𝐵𝑇 (4.5) 

{Change in BT = growth of BT – infections by PL – infections by PE - ery killing - tet 

killing} 

𝑑𝐵𝐸𝑇

𝑑𝑡
= 𝜇𝐸𝑇 ∗ 𝐵𝐸𝑇 − 𝐵𝐸𝑇 ∗ 𝐹(𝑃𝐿) + 𝐵𝑇 ∗ 𝐹(𝑃𝐸) + 𝐵𝐸 ∗ 𝐹(𝑃𝑇) − (𝜀𝐸,𝐸𝑇 + 𝜀𝑇,𝐸𝑇) ∗  𝐵𝐸𝑇

 (4.6) 

{Change in BET = growth of BET – infections by PL + infections of BT by PE + 

infections of BE by PT - ery killing - tet killing} 

𝑑𝑃𝐿

𝑑𝑡
= [𝐹(𝑃𝐿) ∗ 𝐵𝐸](𝑡 − 𝜏) ∗ 𝛿𝐸 ∗ (1 − 𝛼) + 

[𝐹(𝑃𝐿) ∗ 𝐵𝑇](𝑡 − 𝜏) ∗ 𝛿𝑇 ∗ (1 − 𝛼)  + 
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[𝐹(𝑃𝐿) ∗ 𝐵𝐸𝑇](𝑡 − 𝜏) ∗ 𝛿𝐸𝑇 ∗ (1 − 2 ∗ 𝛼 )  − 

𝜆 ∗ 𝑃𝐿 − 𝛾𝑃 ∗ 𝑃𝐿   (4.7) 

{Change in PL = new PL phage from BE + new PL phage from BT + new PL phage 

from BET – 

 PL phage infecting bacteria – PL decay} 

𝑑𝑃𝐸

𝑑𝑡
= [𝐹(𝑃𝐿) ∗ 𝐵𝐸](𝑡 − 𝜏) ∗ 𝛿𝐸 ∗ 𝛼 + 

[𝐹(𝑃𝐿) ∗ 𝐵𝐸𝑇](𝑡 − 𝜏) ∗ 𝛿𝐸𝑇 ∗ 𝛼 − 

𝜆 ∗ 𝑃𝐸 − 𝛾𝑃 ∗ 𝑃𝐸   (4.8) 

{Change in PE = new PE phage from BE + new PE phage from BET – 

 PE phage infecting bacteria – PE decay} 

𝑑𝑃𝑇

𝑑𝑡
= [𝐹(𝑃𝐿) ∗ 𝐵𝑇](𝑡 − 𝜏) ∗ 𝛿𝑇 ∗ 𝛼 + 

[𝐹(𝑃𝐿) ∗ 𝐵𝐸𝑇](𝑡 − 𝜏) ∗ 𝛿𝐸𝑇 ∗ 𝛼 − 

𝜆 ∗ 𝑃𝑇 − 𝛾𝑃 ∗ 𝑃𝑇   (4.9) 

{Change in PT = new PT phage from BT + new PT phage from BET – 

 PT phage infecting bacteria – PT decay} 

 

The bacterial growth rate µθ (θ ∈ {E, T, ET}, N = BE+BT+BET) is modelled using 

logistic growth, with a maximum growth rate of µmax
θ and carrying capacity Nmax. 

 

𝜇𝜃 =  𝜇𝜃
𝑚𝑎𝑥 ∗ (1 −

𝑁

𝑁𝑚𝑎𝑥) (4.10) 

 

Phage predation is modelled as a saturated process. Previous work has suggested 

that this interaction is more biologically realistic than the more commonly used linear 
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interaction, as it accounts for multiple phage binding to the same bacterium at high 

phage concentration, leading to a sublinear increase in predation [23]. This is 

represented using a Hill equation, with F(Pθ) (θ ∈ {L, E, T}) equal to 

 

𝐹(𝑃𝜃) = 𝑃𝜃 ∗  
𝛽

(1+
𝑃𝜃

𝑃50
)
  (4.11) 

 

with β representing the maximum rate of successful phage adsorption leading to 

bacterial lysis and P50 corresponding to the phage concentration at half saturation, 

where the adsorption rate is equal to half the maximum. The latent period τ 

corresponds to the delay between bacterial infection and burst, and the transduction 

probability α corresponds to the proportion of new phage released upon burst which 

are transducing phage carrying the erythromycin or tetracycline resistance gene. 

 

In the model, phage burst size decreases as bacterial growth decreases. This happens 

as bacteria enter stationary phase when the population approaches carrying capacity 

Nmax (as demonstrated previously [23,38,39]), but here the additional effect of 

antibiotics must be included. To capture this, we use the same effective scaling as the 

bacterial growth rate (Equations 4.10 and 4.4-4.6) with inclusion of the relative effect 

of antibiotics εE,θ and εT,θ in the phage burst size estimation. Since antibiotics can kill 

bacteria, leading to a net negative growth rate, we limit the multiplier value to 0 as a 

minimum, to prevent a negative burst size. The phage burst size δθ for each bacteria 

strain θ (θ ∈ {E, T, ET}) is then calculated as a fraction of the maximum phage burst 

size δmax (Equation 4.13). 

𝛿𝜃 = 𝛿𝑚𝑎𝑥 ∗ 𝑚𝑎𝑥 (0, 1 −
𝑁

𝑁𝑚𝑎𝑥 −
𝜀𝐸,𝜃

𝜇𝜃
𝑚𝑎𝑥  −

𝜀𝑇,𝜃

𝜇𝜃
𝑚𝑎𝑥)  (4.13) 

4.5.2.2 Parameter estimation 

Parameters for bacterial growth and phage predation were originally obtained by fitting 

our model to in vitro data for the same bacteria and phage strains as in this study [23]. 

Parameters for antibiotic effect were obtained in two steps using the least squares 

methods for model fitting, which aims to minimise the squared difference between data 

and model output, calculated for n points as 
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∑ (𝑑𝑖 − 𝑚𝑖)2𝑛
𝑖=1   (4.14) 

 

with di representing data points and mi representing model points. 

 

Firstly, the reduction in bacterial growth caused by a specific concentration of antibiotic 

(έ) was obtained by fitting a deterministic growth model (Equation 4.15) to the bacterial 

concentration B over time, estimated as the mean of three in vitro replicates.  

 

𝑑B

𝑑𝑡
= μ ∗ (1 −

𝐵

𝑁𝑚𝑎𝑥)  ∗ B − �́� ∗ 𝐵   (4.15) 

 

έ was then scaled to growth (ε = έ/µ), to represent the relative impact of the antibiotic 

on bacterial growth rather than an absolute value. Since we obtained growth curve 

time series data for 8 concentrations for each strain, we generated 8 estimates of 

antibiotic effect for each strain. 

 

Secondly, the three parameters of the Hill equation [34,37] (maximum effect εmax, Hill 

coefficient H, and half maximum effective concentration EC50), which calculates the 

antibiotic effect as a function of concentration, were estimated by fitting Equation 4.3 

to the 8 antibiotic effects for each strain. 

 

4.5.3 Model scenarios considered 

4.5.3.1 Antibiotics alone  

We start with an environment containing both single-resistant strains at stationary 

phase (109 cfu/mL). This mirrors the within-host diversity we could expect to see during 

bacterial infections [19], and the fact that bacteria most often live at stationary phase 

in the environment [40]. We first investigate the effect of the presence of either or both 

erythromycin and tetracycline at concentrations of 1 mg/L, similar to antibiotic 

concentrations measured in vivo during treatment [41,42]. 
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4.5.3.2 Antibiotic and phage 

We then consider scenarios where phage are present. We first artificially inactivate 

transduction, by setting the corresponding model parameter to 0. We add 109 pfu/mL 

of phage, similar to a concentration that could be added during phage therapy, and 

equivalent to a multiplicity of infection (ratio of phage to bacteria) of 1, similar to what 

could be found naturally in the environment [1]. We consider scenarios where the 

phage are present alone, alongside only one antibiotic, or alongside both antibiotics. 

Phage and antibiotics are assumed to be introduced concurrently at the start, and the 

simulations run for 24h.  

 

We then repeat these scenarios, but with transduction enabled to levels that were 

previously observed in vitro, with approximately 1 transducing phage carrying an AMR 

gene generated for each 108 new lytic phage [23].  

 

We repeat the analyses above with either single-resistant strain present at 109 cfu/mL, 

and the other at 106 cfu/mL (0.1%). This could correspond to a scenario where 

bacterial diversity is underestimated, with only one type of resistance detected [19]. 

4.5.3.3 Antibiotic and phage level and timing variation  

To further investigate the scenario where transduction is enabled and both single-

resistant bacterial strains have a starting concentration of 109 cfu/mL, we vary the 

timing of introduction for antibiotic and phage, with up to 24h delay between their 

respective additions, as well as varying the concentration of antibiotics between 0.25, 

0.5, 1 and 2 mg/L, and phage between 107, 108, 109, 1010 pfu/mL, chosen to reflect 

realistic ranges [1,41,42]. We run these simulations for 48h after the introduction of 

antibiotics or phage (whichever is added first).  

4.5.3.4 Phage and bacteria parameters variation  

Finally, we vary the probability for phage to perform generalised transduction to 

identify threshold values which dictate whether multidrug-resistant bacteria appear 

above detectable levels within 24h. To explore the sensitivity of our results to the 

parameter values estimated from this single environment, we also conduct a partial 

rank correlation to assess the effect of varying phage predation parameters 
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(adsorption rate, phage concentration at half saturation, latent period, burst size), 

bacteria growth rates, and antibiotic and phage decay on total bacteria remaining after 

48h, and maximum double-resistant bacteria generated. This allows us to generalise 

our conclusions as these parameters likely vary for different combinations of phage, 

antibiotics and bacteria. The ranges evaluated are shown in Table 4.1, and are either 

derived from our initial parameterisation of the model [23], or from other studies 

[43,44].  

 

4.6 Results 

4.6.1 In vitro pharmacodynamics of erythromycin and 

tetracycline 

Erythromycin at all concentrations caused a decrease in erythromycin-sensitive 

NE201KT7 numbers over 6h, but only slowed down growth for erythromycin-resistant 

NE327 and double-resistant DRPET1, even at 32 mg/L (Figure 4.2). Tetracycline 

caused a decrease in bacterial numbers over 6h at concentrations greater than 0.5 

mg/L for tetracycline-sensitive NE327, 8 mg/L for tetracycline-resistant NE201KT7, 

and 4 mg/L for DRPET1 (Figure 4.2). As a comparison, the minimum inhibitory 

concentrations (MICs) of erythromycin measured by microbroth dilution were 0.25, 

>256 and >256 mg/L for NE201KT7, NE327 and DRPET1 respectively. For 

tetracycline, the MICs were 32, 0.25 and 32 mg/L for NE201KT7, NE327 and DRPET1 

respectively. 
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Figure 4.2: Growth curves of NE201KT7 (tetracycline-resistant, left), NE327 

(erythromycin-resistant, middle) and DRPET1 (double-resistant, right), exposed 

to varying concentrations of erythromycin (top) or tetracycline (bottom). Solid 

lines show in vitro data, with error bars indicating mean +/- standard deviation, from 3 

replicates. Dashed lines show model output after fitting. Values indicate the 

percentage of model points that fall within the range of the corresponding in vitro data 

point +/- standard deviation. cfu: colony-forming units. Note that cfu per mL are shown 

on a log-scale. 

 

The Hill equations fitted well to the effect of varying concentrations of antibiotics on 

the bacteria (Figure 4.2, Supplementary Figure 4.1). The corresponding parameter 

values are presented in Table 4.1. The antibiotic effect curves for the DRPET1 are 

similar to the one for NE201KT7 for tetracycline and NE327 for erythromycin 

(Supplementary Figure 4.1), which was expected since DRPET1 contains both 

antibiotic-resistance genes from NE201KT7 (tetK) and NE327 (ermB). 
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Table 4.1: Model parameter values. Parameters with no units are dimensionless. All 

estimates were obtained by fitting the model to in vitro data, except those marked with 

a * which are assumed. 

Name (unit) Symbol Estimate Range for 
sensitivity 
analysis 

Reference 

Bacterial 
growth 
parameters 

Carrying capacity (bacteria.mL-1) Nmax
 2.76 x 109 - [23] 

BE growth rate (h-1) µmax
E 1.61 1.59 - 1.63 

BT growth rate (h-1) µmax
T 1.51 1.49 - 1.53 

BET growth rate (h-1) µmax
ET 1.44 1.42 - 1.47 

Phage 
parameters 

Phage adsorption rate (phage-

1.bacteria-1.h-1) 
β 2.3 x 10-10 2.1 x 10-10 - 

2.7 x 10-10 

Phage concentration at half 
saturation (phage.mL-1) 

P50 1.19 x 1010 1.02 x 1010 - 
1.29 x 1010 

Phage burst size (phage) δmax 50 43 - 54 

Phage latent period (h) τ 0.60 0.60 - 0.61 

Transduction probability (phage-1) α 1.19 x 10-8 1.11 x 10-8 - 
1.31 x 10-8 

Phage decay rate (h-1) γP 0* 0 - 0.1 [43] 

Antibiotic 
parameters 

Erythromycin decay rate (h-1) γE 0* 0 - 0.1 [44] 

Tetracycline decay rate (h-1) 
 

γT 0* 0 - 0.1 

Effect of 
erythromycin 
on BE 

Max effect (h-1) εmax
E,E 1.10 - This study 

Half maximal effective 
concentration (mg.L-1) 

EC50E,E 3.42 - 

Hill coefficient 
 

HE,E 0.67 - 

Effect of 
erythromycin 
on BT 

Max effect (h-1) εmax
E,T 3.91 - 

Half maximal effective 
concentration (mg.L-1) 

EC50E,T 9.26 - 

Hill coefficient 
 

HE,T 0.22 - 

Effect of Max effect (h-1) εmax
E,ET 0.95 - 
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erythromycin 
on BET 

Half maximal effective 
concentration (mg.L-1) 

EC50E,ET 2.47 - 

Hill coefficient 
 

HE,ET 0.79 - 

Effect of 
tetracycline 
on BE 

Max effect (h-1) εmax
T,E 5.40 - 

Half maximal effective 
concentration (mg.L-1) 

EC50T,E 81.43 - 

Hill coefficient 
 

HT,E 0.30 - 

Effect of 
tetracycline 
on BT 

Max effect (h-1) εmax
T,T 1.66 - 

Half maximal effective 
concentration (mg.L-1) 

EC50T,T 7.27 - 

Hill coefficient 
 

HT,T 2.41 - 

Effect of 
tetracycline 
on BET 

Max effect (h-1) εmax
T,ET 1.58 - 

Half maximal effective 
concentration (mg.L-1) 

EC50T,ET 4.42 - 

Hill coefficient HT,ET 1.70 - 

 

 

4.6.2 Model-predicted antibacterial effect of concurrent 

erythromycin, tetracycline and bacteriophage presence 

When simulating the dynamics of two single-resistant S. aureus strains in our 

mathematical model, as expected, the presence of only one antibiotic at 1 mg/L (4 x 

MIC for susceptible strains) leads to a decrease in the susceptible strain, while the 

resistant strain does not decrease (Figure 4.3a, top row). On the other hand, the 

presence of both antibiotics, or of only phage without transduction, causes a decrease 

in both bacterial strains (Figure 4.3a, top and middle rows). The presence of phage 

and one antibiotic leads to a decrease in both bacterial strains, with the antibiotic-

susceptible strain decreasing faster (Figure 4.3a, middle row). Out of all the conditions 

shown here, the presence of phage and both antibiotics leads to the fastest decrease 

in both bacterial strains (Figure 4.3b). For comparison, to replicate the combined effect 

of 109 pfu/mL of phage, 1 mg/L of erythromycin, and 1 mg/L of tetracycline, we would 
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need 1.94mg/L of erythromycin and 1.08 mg/L of tetracycline in the absence of phage 

(Supplementary Figure 4.2).  

 

Transduction does not appear to affect the antibacterial activity of antibiotics and 

phage when phage are either present alone, alongside erythromycin, or alongside 

tetracycline (Figure 4.3a, bottom row). Double-resistant progeny bacteria (BET) 

appear, but only reach a maximum concentration of 30 cfu/mL, and do not remain 

higher than 1 cfu/mL for more than 8h (Figure 4.3a, bottom row). However, when both 

erythromycin and tetracycline are present alongside phage capable of transduction, 

there is a steady increase in the number of BET throughout 24h, reaching 80 cfu/mL 

after 24h (Figure 4.3a, bottom row & Figure 4.3b). It is important to note here that when 

both antibiotics are present, phage numbers do not increase throughout the 24h 

period, regardless of transduction ability (Figure 4.3a, middle and bottom rows & 

Figure 4.3b, right). 
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Figure 4.3: a) Model-predicted dynamics with two single-resistant strains 

starting at carrying capacity (109 colony-forming units (cfu)/mL), in the presence 

of no antibiotics (1st column), erythromycin only (2nd column), tetracycline only 

(3rd column), or both erythromycin and tetracycline (4th column), combined 

with either no phage (top row), phage incapable of transduction (middle row), or 

phage capable of generalised transduction (bottom row). The starting strains are 

either erythromycin-resistant (BE) or tetracycline-resistant (BT). Antibiotics and/or 

phage (PL) are present at the start of the simulation, at concentrations of 1 mg/L (4 x 

MIC for susceptible strains) and 109 plaque-forming units (pfu)/mL respectively. 
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Double-resistant bacteria (BET) can be initially generated by generalised transduction 

only, and then by replication of existing BET. Dashed line indicates the detection 

threshold of 1 cfu or pfu/mL. b) Change in bacteria (single-resistant to 

erythromycin, single-resistant to tetracycline, or double-resistant) and phage 

numbers depending on the antibiotic exposure, in the presence of phage 

capable of generalised transduction. Dashed line indicates the detection threshold 

of 1 cfu or pfu/mL. 

 

 

With a reduced starting concentration of either S. aureus strain to 106 cfu/mL, while 

the other remains at 109 cfu/mL, the conclusions are similar as described above, 

regardless of which strain is in the minority. Figure 4.4 shows the scenario where 

tetracycline-resistant bacteria are in minority, and Supplementary Figure 4.3 shows 

the scenario where erythromycin-resistant bacteria are in minority. When 

erythromycin, tetracycline, and phage capable of generalised transduction are all 

present, BET are still generated, although they do not reach a concentration higher 

than 1 cfu/mL within 24h, instead of 11h above (Figure 4.4, Figure 4.3). 
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Figure 4.4: a) Model-predicted dynamics with one single-resistant strains 

starting at carrying capacity (109 colony-forming units (cfu)/mL) and the second 

in minority (106 cfu/mL), in the presence of no antibiotics (1st column), 

erythromycin only (2nd column), tetracycline only (3rd column), or both 

erythromycin and tetracycline (4th column), combined with either no phage (top 

row), phage incapable of transduction (middle row), or phage capable of 

generalised transduction (bottom row). Erythromycin-resistant bacteria (BE) are 

initially present at a concentration of 109 cfu/mL, and tetracycline-resistant bacteria 

(BT) at 106 cfu/mL. Antibiotics and/or phage (PL) are present at the start of the 
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simulation, at concentrations of 1 mg/L (4 x MIC for susceptible strains) and 109 

plaque-forming units (pfu)/mL respectively. Double-resistant bacteria (BET) can initially 

be generated by generalised transduction only, and then by replication of existing BET. 

Dashed line indicates the detection threshold of 1 cfu or pfu/mL. b) Change in 

bacteria (single-resistant to erythromycin, single-resistant to tetracycline, or 

double-resistant) and phage numbers depending on the antibiotic exposure, in 

the presence of phage capable of generalised transduction. Dashed line indicates 

the detection threshold of 1 cfu or pfu/mL. 

 

4.6.3 Effect of variation in antibiotic and phage timing and 

concentration on bacterial populations 

Under conditions where both erythromycin and tetracycline are present, the timing and 

concentration of antibiotics and phage capable of generalised transduction drives 

substantial variation in dynamics, with failure to clear all bacteria after 48h being a 

possibility (Figure 4.5a-b, top row).  

 

With a phage concentration of 109 cfu/mL and for any antibiotics concentration 

between 0.25 and 2 mg/L (Figure 4.5a), the optimal conditions to clear bacteria within 

48h are when phage are initially present, and antibiotics are introduced at least 2h 

later (Figure 4.5a, top row). However, this systematically leads to BET
 appearance, with 

a peak concentration of up to 30 cfu/mL (Figure 4.5a, middle row), and a presence 

time (hours when cfu/mL > 1) of up to 8h (Figure 4.5a, bottom row). The presence of 

antibiotics at the same time or shortly before phage leads to failure to clear bacteria 

within 48h (up to 5.5 x 107 cfu/mL remaining after 48h - top row), and substantial BET 

appearance (maximum concentration up to 6 x 107 cfu/mL - middle row; presence time 

up to 47h - bottom row). Regardless of timings, the addition of at least 2 mg/L of 

antibiotics guarantees bacterial clearance within 48h (top row, lightest green line), and 

no detectable BET if the antibiotics are added at the same time as or before the phage 

(bottom row, lightest green line). 

 

When keeping the antibiotic concentrations at 1 mg/L, but varying the phage 

concentration, the impact of the delay between phage and antibiotic presence on the 
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bacterial population is strongly dependent on phage concentration (Figure 4.5b). We 

again see that bacteria are not cleared within 48h if antibiotics are present at the same 

time as or shortly before a concentration of phage between 107 and 109 pfu/mL (Figure 

4.5b, top row). However, we now note that this also occurs if antibiotics are introduced 

after a concentration of phage between 107 or 108 pfu/mL (Figure 4.5b, top row). 

Regardless of timing, the presence of a phage concentration of 1010 pfu/mL 

guarantees bacterial clearance within 48h (top row, lightest blue line), but leads to BET 

if the antibiotics are introduced after the phage (maximum concentration up to 30 

cfu/mL - middle row, red line; presence time up to 7h - bottom row, lightest blue line). 
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Figure 4.5: a-b) Varying timing (x-axis) and dose of antibiotic and phage (y-axis)  

affects total bacterial count after 48h (top), maximum concentration of double-

resistant bacteria (BET) (middle), and time when the concentration of BET is 

greater than 1 colony-forming unit (cfu) per mL (bottom). a) Adding 108 plaque-

forming units (pfu) per mL of phage, and between 0.2 and 2.2 mg/L of both 

erythromycin and tetracycline. b) Adding 1 mg/L of both erythromycin and tetracycline, 

and between 105 and 1010 pfu/mL of phage. The x-axis indicates the time when 

antibiotics were added, relative to when phage were added. For example, the value 
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“4” indicates that phage were present at the start of the simulation, and antibiotics were 

introduced 4h later. The segments with black borders correspond to the dynamics 

shown in c). c) Phage and bacteria dynamics over 48h for 4 conditions taken from 

panel b. In all 4 conditions, indicated by the black rectangles, phage are initially 

present at a concentration of 108 pfu/mL, while erythromycin and tetracycline are both 

introduced at concentrations of 1 mg/L after either 0h, 3h, 5h or 15h, stated on the 

plots, with the timing indicated by the vertical dashed lines. Horizontal dotted lines 

indicate bacteria remaining after 48h (corresponding to the top row of a-b) and 

maximum double-resistant bacteria (BET) concentration (middle row of a-b). Solid line 

indicates the detection threshold of 1 cfu or pfu/mL. The concentrations of single-

resistant bacteria (BE, blue, and BT, green) overlap and cannot be distinguished. 

 

 

To investigate the dynamics behind these results, we selected four conditions from 

Figure 4.5b (points indicated by the 4 shapes) with varying antibiotic addition times 

and plotted the underlying phage and bacteria dynamics over 48h for each (Figure 

4.5c). In all four conditions the starting concentrations are 108 pfu/mL for phage and 1 

mg/L for antibiotics, but antibiotics are introduced either 0h (circle), 3h (square), 5h 

(star) or 15h (triangle) after phage. These plots show that if phage are increasing, they 

stop immediately following antibiotic addition (Figure 4.5c, star and square). If 

antibiotics are added too soon after phage (Figure 4.5c - circle, square), phage do not 

reach a high enough number to exert a sufficient killing pressure on bacteria. In that 

case BET, which are not substantially affected by either antibiotic, replicate faster than 

they are killed by phage. After more than 35h, the BET population reaches a sufficiently 

high number such that the phage population increases, and the resulting pressure is 

enough to lead to a net negative bacterial growth rate. If antibiotics are added 15h or 

later after phage (Figure 4.5b, Figure 4.5c - triangle), BET generation will not change, 

as during this period they will have already arisen by transduction and been removed 

by phage predation. The presence of antibiotics 5h after phage is optimal to ensure 

the lowest maximum number of BET (Figure 4.5c - star, compare horizontal dotted 

lines). This timing allows phage to initially increase to a concentration of almost 5 x 

109, sufficiently high to exert a strong killing pressure on bacteria, while the added 

effect of antibiotics prevents further BET generation by decreasing the single-resistant 

strains. 
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These results also apply to a scenario where one of the two bacterial strains is in the 

minority (starting concentration of 106 instead of 109 cfu/mL), regardless of which strain 

is in the minority (Supplementary Figures 4.4 & 4.5). However, BET peak, presence 

time, and total bacteria remaining after 48h decrease faster with a higher dose of 

antibiotic or phage, or with a higher delay between phage and antibiotics, suggesting 

that phage and antibiotics are able to exert a greater killing pressure and generate 

fewer BET when one strain is in the minority. 

 

4.6.4 Effect of variation in phage and bacteria parameters 

on multidrug resistance evolution 

Our results above rely on parameters estimated from phage and bacteria interactions 

in vitro, but these may vary depending on the bacteria, phage, and environment. We 

can explore these different conditions using our model to quantify the dynamics under 

varying values for parameters governing phage-bacteria interactions (see Table 1 for 

the ranges used) to determine whether our results would hold.  

 

We first examine the impact of varying the transduction probability on our results 

(corresponding to the probability that a transducing phage carrying an AMR gene is 

released instead of a lytic phage during bacterial burst) as this is a vital and yet poorly 

quantified parameter. When 109 cfu/mL of each single-resistant strain are 

simultaneously exposed to 109 pfu/mL of phage and 1 mg/L of erythromycin and 

tetracycline, varying the transduction probability between 10-10 and 10-6 leads to a 

similar log-fold increase in double-resistant bacteria numbers (BET, Figure 4.6a). 

Decreasing the probability only delays the appearance of BET in the model, and does 

not prevent it. However, a probability lower than 10-11 may prevent the appearance of 

BET in reality, since the single-resistant strains become almost undetectable (< 1 

cfu/mL) before the BET become detectable. If antibiotics are added more than 10h after 

phage, BET will have already started declining due to phage predation, hence the 

antibiotics only contribute to further increasing the decline in bacterial numbers (Figure 

4.5, Figure 4.6b). Under these conditions, a transduction probability lower than 10-9 is 

necessary to prevent BET from increasing past the detection threshold (1 cfu/mL) 



170 
 

(Figure 4.6b). If antibiotics are introduced 10h before phage, the resulting decline in 

single-resistant bacteria prevents any BET from reaching a detectable level before 

single-resistant bacteria are eradicated (< 1 cfu/mL), even with the highest 

transduction probability of 10-6 (Figure 4.6c). 

 

Looking at how changes in other phage and bacteria parameters may affect our 

results, partial rank correlation shows that an increase in phage predation either 

through an increase in phage adsorption rate (β), phage concentration at half 

saturation (P50) or phage burst size (δmax) correlates with a decrease in maximum BET 

detected over 48h (Figure 4.6d, blue). For example, the correlation coefficient of -0.95 

between β and maximum BET implies that a 100% increase in adsorption rate is 

correlated with a 95% decrease in maximum double-resistant bacteria detected over 

48h. An increase in these parameters is also correlated with a decrease in bacteria 

remaining after 48h (Figure 4.6d, red). An increase in latent period (τ), equivalent to a 

decrease in predation since phage will take longer before lysing the bacteria, is weakly 

correlated with an increase in maximum BET, but is not substantially correlated with 

bacteria remaining after 48h. Finally, in this partial rank correlation analysis the 

transduction probability α was not significantly correlated with either bacteria numbers 

remaining after 48h or maximum BET, likely since the range investigated was too small 

(Table 1). 

 

Although we were not able to parameterise our model for antibiotic decay, our 24h 

time-kill curves suggest that antibiotics no longer decrease bacterial numbers after 

24h (Supplementary Figure 4.6). Although decay is only one possible explanation for 

this effect (see Discussion), we have chosen to include it in our partial rank correlation 

analysis, as the inclusion of this effect in the model did not require substantial 

modifications such as additional compartments.  Phage may also be affected by decay 

in the environment, therefore we also included this parameter. An increase in phage 

or antibiotic decay (γP, γE, γT) is correlated with an increase in maximum BET (Figure 

4.6d, blue), but unexpectedly with a decrease in bacteria remaining after 48h (Figure 

4.6d, red). This is explained by the fact that such an increase leads to a weakened 

killing pressure on BET, which are able to increase faster. This translates to a shorter 

time before the phage population is able to increase again due to enough bacteria 

being available for predation, and thus a shorter time before BET start decreasing due 
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to phage killing (Supplementary Figure 4.7). Finally, single-resistant bacterial growth 

rates (µmax
E, µmax

T) are not substantially correlated with either maximum BET or 

remaining bacteria, while double-resistant growth rate (µmax
ET) is only weakly positively 

correlated with maximum BET, and negatively with remaining bacteria. 

 

 

 

Figure 4.6: Sensitivity of phage-bacteria dynamics to changes in model 

parameters. Effect of varying the transduction probability between 10-11 and 10-

6 when a) antibiotics and phage are present at the start of the simulation, b) 

phage are present at the start, antibiotics are introduced 10h later, and c) 

antibiotics are present at the start, phage are added 10h later. Transduction 
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probability is defined as the probability that a transducing phage carrying an AMR gene 

is released instead of a lytic phage during bacterial burst. The dashed lines for single-

resistant bacteria overlap and cannot be distinguished. Vertical dashed lines indicate 

timing of addition of antibiotics or phage. Cfu/mL: colony-forming units per mL. d) 

Partial rank correlation between model parameters, and remaining bacteria after 

48h (pink) or maximum double-resistant bacteria (BET) concentration (blue). 

Information on the parameter ranges investigated can be found in Table 4.1. β: 

adsorption rate, P50: phage concentration at half saturation, δmax: burst size, τ: latent 

period, α: transduction probability, γP: phage decay, γE: erythromycin decay, γT: 

tetracycline decay, µmax
E: BE growth rate, µmax

T: BT growth rate, µmax
ET: BET growth rate. 

 

 

4.7 Discussion 

4.7.1 Summary of results 

In this work, we reconcile the existing literature suggesting either that phage and 

antibiotics can synergistically kill bacteria, or that antibiotics reduce the efficacy of 

phage predation, whilst also considering the joint effect of phage and antibiotics on 

antimicrobial resistance (AMR) evolution. We showed that although phage replication 

is limited in the presence of antibiotics, which negatively affect bacterial growth, phage 

are still able to exert a strong killing pressure on bacteria to complement the action of 

antibiotics. Under such conditions, the concentration and timing of antibiotics and 

phage are essential: phage introduced after antibiotics at a low concentration may not 

be able to replicate and hence not contribute to killing the bacterial population. Phage 

and antibiotics can drive AMR evolution when phage generate multidrug-resistant 

bacteria by transduction, and antibiotics act as a selection pressure. This is again 

exacerbated by the reduction in phage replication caused by antibiotics: a low 

concentration of phage capable of transduction introduced after antibiotics will not 

exert a strong killing pressure on bacteria, and instead generate multidrug-resistant 

bacteria at a background rate which are then selected for by the antibiotics. 
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4.7.2 Optimal conditions to clear bacteria and minimise 

AMR evolution 

The best conditions to guarantee bacterial eradication within 48h whilst minimising the 

risk of multidrug-resistant bacteria evolution in our system are when antibiotics are 

present before phage, and either when erythromycin and tetracycline are present at a 

concentration of at least 2 mg/L (8 x MIC for susceptible strains), or phage at a 

concentration of at least 1010 pfu/mL (Figure 4.5a-b). Multidrug-resistant bacteria 

generation is also restricted if phage are introduced at least 10h after antibiotics 

(Figure 4.5a-b). This may be particularly relevant in the context of antibacterial 

treatment, further discussed below. The worst outcome in which antibiotics and phage 

fail to rapidly clear all bacteria and instead drive AMR evolution is a combination of a 

low antibiotic dose (< 1 mg/L) with a low phage dose (< 109 pfu/ml), introduced around 

the same time (Figure 4.5a-b). Unfortunately, this may correspond to values seen in 

natural environments where phage are commonly found and antibiotics are residually 

present due to pollution [2,3]. 

 

4.7.3 Importance of transduction in the environment and 

during phage therapy 

Our results highlight the necessity to better understand the role of transduction in AMR 

spread and evolution, and not assume by default that it is too rare to be relevant 

compared to other mechanisms of horizontal gene transfer such as conjugation and 

transformation. We found that multidrug resistance evolution remained possible even 

at the lowest probability we considered here of a transducing phage carrying an AMR 

gene being released instead of a lytic phage during burst (1 transducing phage per 

1011 lytic phage). Additionally, in this work we assumed that transduction rates are 

constant, but previous research has shown that sub-MIC antibiotic exposure can lead 

to an increase in transducing phage, but not lytic ones [45]. Hence, our results may 

still underestimate the relative impact of transduction versus predation by phage when 

antibiotics are present. However, our findings are encouraging for conditions under 

which AMR evolution is limited, since even with a high risk of transduction (1 

transducing phage per 106 lytic phage), if phage are only introduced to an environment 
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more than 10h after antibiotics, multidrug-resistant bacteria do not reach detectable 

levels before single-resistant strains are eradicated (Figure 4.6c). 

 

To the best of our knowledge, our model is the first to consider the potential 

consequences of transduction in a system where concentrations of bacteria, phage, 

and antibiotic are similar to those we may see during phage therapy. We echo the 

conclusions from previous studies which highlighted that the timing of antibiotics and 

phage introduction during phage therapy can affect the rate at which bacteria are 

cleared [6–9], but extend these to show that timing may also impact the risk for 

multidrug-resistant bacteria to be generated. Here, we suggest that, although both 

sequential treatments can ultimately lead to bacterial eradication, the timing leads to 

a trade-off between a slower clearing rate of bacteria (if antibiotics are added before 

phage), and a higher risk of multidrug resistance evolution (if phage are added before 

antibiotics). Future studies and clinical trials of phage therapy should investigate 

varying timings of phage and antibiotics, instead of only investigating their 

simultaneous application, and consider the risk of transduction during treatment. 

 

In any case, our ability to measure the impact of transduction as a driver of AMR 

evolution in vivo is currently limited since individuals are not routinely screened for 

phage. A first step to measure this despite the limitation may be to investigate evidence 

for within-patient changes in the resistance profile of S. aureus isolates, as these would 

likely be caused by transduction [18]. In the case of antibiotic treatment, the natural 

presence of phage capable of transduction may explain instances of treatment failure, 

if these generate multidrug-resistant strains which are then selected for by the 

antibiotics. Future studies monitoring therapeutic outcomes of antibacterial treatment 

in patients where phage are also detected will be essential to better understand how 

our findings translate to in vivo settings.  

 

4.7.4 Limitations  

The major limitation of our work is the deterministic nature of our model. While it does 

not account for stochastic events which would play a large role when bacterial 

numbers are low, the deterministic model is useful for analysis purposes, as it 
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represents the average scenario we would observe. In reality, we would likely see 

either bacterial clearance or unexpected increases at low numbers of bacteria. We 

only generated model predictions for up to 48h, as our parameter values were obtained 

using data from experiments over 24h. Beyond this time, bacteria and phage may be 

affected negatively due to resource depletion, depending on the environment. 

 

Our model does not include some dynamics which may be present in vivo, as we do 

not currently have robust data available to parameterise these features, and would 

instead have had to rely on assumptions or previously estimated parameter values 

from different settings. Firstly, bacteria in vivo may be present at lower concentrations 

and display a lower growth rate than in the in vitro conditions studied here [40]. The 

corresponding model parameter values (carrying capacity and maximum growth rate) 

could be adjusted to better capture these conditions, but this would require further 

growth data. We have not included the effect of the immune system, which may limit 

the number of multidrug-resistant bacteria generated as it could suppress both 

bacteria and phage populations in vivo [46,47]. If the model was extended to include 

the immune system, it would also have to consider potential detrimental effects of large 

doses of phage and antibiotics, which would restrict these concentrations to prevent 

side effects in vivo [48,49]. In addition, we assume that all the bacteria in our 

environment are equally susceptible to phage infection, and have not considered the 

possibility for any further evolution (e.g. adaptation mutation, resistance to phage). 

This could include the evolution of antibiotic tolerance in bacteria, which could be an 

alternative explanation to the lack of antibiotic effect we observed after 24h 

(Supplementary Figure 4.6) instead of antibiotic decay and is currently being 

investigated in our research group. Such evolution may allow multidrug-resistant 

bacteria to overcome any fitness cost and persist for longer durations in the 

environment, hence further highlighting the necessity to minimise the risk of their initial 

appearance. 

 

Although we varied the concentration of antibiotics in our results, we have consistently 

added erythromycin and tetracycline in equal amounts. Our model would allow us to 

change this, yet we have chosen not to for simplicity and because the antibacterial 

effect curves look similar for these two antibiotics in our setting (Supplementary Figure 

4.1). However, for other antibiotics it may be necessary to revisit this assumption and 
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investigate concentrations which may better reflect those to which bacteria are 

exposed to in the environment or during antibacterial treatment. In addition, while we 

observed the effect of two antibiotics with two contrasting mechanisms of resistance 

in our strains (target modification for erythromycin, and efflux pump for tetracycline), 

this work should be repeated using antibiotics with different resistance mechanisms. 

For example, if the mechanism involves active degradation of the antibiotic, this 

resulting antibiotic decay may affect the dynamics of our system. 

 

4.7.5 Generalisability 

Our model is extensively parameterised using data from a single phage and three S. 

aureus strains, making it a robust tool to study the dynamics of these organisms, as it 

relies on a minimum number of assumptions [23]. However, the parameters we have 

estimated (adsorption rate, phage concentration at half saturation, burst size, latent 

period and transduction probability) will likely vary depending on the phage, bacteria, 

and environment studied. Our sensitivity analysis shows that the model outputs are 

reasonable with alternative parameter values, predicting for example that phage with 

a higher predation capacity (higher adsorption rate, phage concentration at half 

saturation or burst size, or lower latent period) would clear more bacteria within 48h, 

and reduce the maximum number of multidrug-resistant bacteria generated. This 

model has been developed as part of an interdisciplinary project alongside in vitro 

experiments, hence it could be easily re-parameterised using data for other strains of 

bacteria and phage showing similar dynamics of lysis and generalised transduction. 

The structure of the model is generalisable to other systems of generalised 

transducing phage and bacteria, as it captures the relevant biological characteristics 

of phage predation and generalised transduction [23]. 

 

4.7.6 The unique dynamics of phage, bacteria, and 

antibiotics 

We suggest that transduction and the effect of antibiotics should be considered in the 

context of the previously described unique dynamics of phage and bacteria. These 

imply that phage must first reach a certain concentration (previously referred to as 
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“inundation threshold”) before they can offset bacterial growth and decrease the 

bacterial population, and bacteria must first reach a certain concentration 

(“proliferation threshold”) before the phage population can increase [9]. Generalised 

transduction and antibiotics affect the size of the bacterial population, and therefore 

how phage interact with bacteria to clear them and generate multidrug-resistant 

bacteria. Thus, multidrug-resistant bacteria are able to increase in our model if phage 

are initially present at a concentration lower than the inundation threshold (Figure 

4.5c). This also explains our counterintuitive observation that higher decay rates may 

lead to less bacteria remaining after 48h (Figure 4.6d), as this would allow bacteria to 

reach the proliferation threshold sooner, and therefore allow phage to increase up to 

the inundation threshold sooner (Supplementary Figure 4.7). Importantly, our results 

similarly suggest that higher decay rates for antibiotics present alongside phage would 

reduce bacteria remaining after 48h, at the cost of a higher peak concentration of 

multidrug-resistant bacteria, since this decay would allow bacteria to reach the 

proliferation threshold sooner (Figure 4.6c, Supplementary Figure 4.7). This 

knowledge may be further useful in the context of phage therapy, to select the 

antibiotics that will be given alongside phage [44]. 

 

4.7.7 Conclusions 

Our results demonstrate the complex interactions between phage and antibiotics to kill 

bacteria synergistically, and drive the evolution of AMR. We suggest this interaction 

leads to a trade-off between a slower clearing rate of bacteria (if antibiotics are added 

before phage), and a higher risk of multidrug resistance evolution (if phage are added 

before antibiotics), further exacerbated by low concentrations of either phage or 

antibiotics. Interdisciplinary frameworks such as ours combining in vitro data and 

mathematical models are key to understanding both fundamental AMR evolution, and 

new interventions like phage therapy or screening for phage in patients. Our 

conclusions form hypotheses to guide future experimental and clinical work, notably 

for studies of phage therapy which should consider the risk for multidrug resistance 

evolution by transduction, and investigate varying timings and concentrations of phage 

and antibiotics instead of only their simultaneous use. 
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5 Examining the potential of routinely 

collected hospital data to reveal within-host 

diversity and dynamics of antimicrobial 

resistance in Staphylococcus aureus 

5.1 Overview 

Through the work conducted in the previous Chapters, I explored the dynamics of 

phage predation and generalised transduction of AMR in S. aureus. Although this was 

informed by in vitro data, I began to explore the potential in vivo implications of these 

dynamics by simulating conditions we might expect to see in within-host bacterial 

populations, with phage, antibiotics and bacteria jointly present. My next objective was 

to find evidence that transduction shapes in vivo AMR evolution in S. aureus, which I 

aimed to do by obtaining data on within-host S. aureus AMR diversity, and how this 

diversity changes over time. 

 

Previous experiments in gnotobiotic piglets showed that phage can generate 

substantial within-host S. aureus diversity via transduction, but these experiments 

cannot be conducted in humans for ethical reasons. Instead, studies which attempted 

to quantify within-host S. aureus diversity in humans have relied on detailed genomic 

data, sampled at one time-point from a relatively small number of individuals (10-

1000), and focused mostly on MRSA. Although these studies identified frequent 

genotypic diversity in S. aureus within-host populations, there is currently a knowledge 

gap regarding how often this diversity may occur in larger populations, and how this 

diversity may change over time, with bacteria gaining and losing resistance genes. 

Routinely collected data is a major source of epidemiological information, allowing the 

observation of AMR trends over large scales. However, this type of data has never 

been used previously to examine within-host S. aureus AMR diversity. Here, I 

hypothesised that due to the frequent occurrence of genotypic diversity in S. aureus 

populations, I could detect this diversity using routinely collected phenotypic data from 

a hospital diagnostics laboratory, by comparing isolates from multiple samples of the 
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same patients. Frequent changes in diversity may be partly driven by movement of 

genes via transduction, further highlighting the importance of this mechanism to drive 

AMR evolution in vivo. 

 

In this Chapter, I used pseudonymised routinely collected patient data obtained from 

Great Ormond Street Hospital in London, UK. By analysing the antibiograms in this 

large dataset, which includes more than 20,000 patients and 70,000 S. aureus isolates 

collected over 20 years, I identified evidence of within-host AMR phenotypic diversity 

and changes in this diversity which may be caused by horizontal gene transfer. I also 

examined S. aureus AMR trends at the hospital level, highlighting variability over time, 

with implications for epidemiological analyses of AMR which may be using this type of 

routinely collected data. 

 

This work represents an ongoing collaboration with clinicians from Great Ormond 

Street Hospital, and is not yet published or publicly available as a preprint. This 

Chapter is presented in a research paper style for consistent formatting across the 

thesis. We obtained a Collaboration Agreement between LSHTM and GOSH to 

download the data from GOSH on 10/03/2022. We have discussed preliminary 

analysis in April and May 2022 with the following collaborators at GOSH: Dr Louis 

Grandjean (consultant in paediatric infectious diseases), Dr Helen Dunn (consultant 

nurse infection prevention & control, and director of infection prevention & control), 

and Dr James Hatcher (consultant in microbiology and virology). 

 

 

  



185 
 

5.2 Abstract 

Staphylococcus aureus populations in individuals can be diverse, composed of several 

subpopulations of bacteria carrying different antimicrobial resistance (AMR) genes. 

The structure of these populations may be flexible, with the prevalence of these 

resistances changing over time. Understanding this within-host diversity of AMR and 

how it changes over time is essential as this will affect the prevalence of infections by 

antibiotic-resistant bacteria, particularly as individuals are more likely to be infected by 

the strains of S. aureus they are colonised with. Previous studies examining within-

host diversity have mostly sampled relatively small groups of patients at one time point 

only, separating isolates based on the resistance genes they carry, which may not 

always translate to clinically-relevant differences in phenotypic resistances. As these 

previous studies frequently identified AMR diversity in S. aureus, we hypothesised that 

we could also detect such diversity using exclusively phenotypic data. Here, we used 

antibiograms from pseudonymised data routinely collected from more than 20,000 

patients and 70,000 isolates over 20 years at Great Ormond Street Hospital (GOSH, 

London, UK) to estimate the AMR phenotypic diversity in within-host S. aureus 

populations, and how this changes over time. We also aimed to use data on hospital 

admission and antibiotic exposure to suggest explanations for changes in diversity, 

including hospital practices, antibiotic selection pressures, between-host transmission, 

and within-host horizontal gene transfer. 

 

Although the incidence of S. aureus isolates at GOSH remained constant over time, 

the proportion of isolates resistant to different antibiotics varied, with methicillin-

resistant (MRSA) isolates consistently carrying more resistances than methicillin-

susceptible (MSSA) isolates. 45.61% of all patients had more than one isolate 

recorded in the dataset. 2.00% of all patients in the dataset had at some point both 

MSSA and MRSA isolates detected on the same day, and 4.28% of all patients carried 

at some point multiple MSSA or MRSA isolates with different antibiograms on the 

same day (i.e. diverse populations). Although MRSA within-host populations were 

more likely to be diverse than MSSA, when this occurred the estimated phenotypic 

diversity was similar between MRSA and MSSA populations (2-3 unique antibiograms 

detected, 1-3 differences between antibiograms). This detected within-host diversity 

changed over time, with changes from detection of MSSA only to MRSA (0.35% of all 
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patients), and changes in the antibiograms reported (2.32% of all patients). These 

changes were equally likely to represent increases in resistance or susceptibility to 

antibiotics, and could not be fully explained by concurrent antibiotic consumption or 

between-patient transmission, suggesting instead that horizontal gene transfer may 

play an important role in shaping within-host AMR evolution. 

 

S. aureus AMR phenotypic diversity within-host can be detected using antibiograms 

from routinely collected hospital data. This detected diversity changes over time, which 

may impact the success of infection treatment. Sampling strategies in diagnostic labs 

are not currently designed to fully capture this diversity, limiting our ability to use 

historical routine surveillance data for this purpose, and hence to broadly study within-

host AMR evolution. Future work with longitudinal sampling of patients should be 

conducted to understand the relative importance of antibiotic use, between-patient 

transmission, and horizontal gene transfer to drive within-host evolution of AMR, and 

identify opportunities to reduce AMR prevalence. 

 

5.3 Introduction 

Antimicrobial resistance (AMR) represents a major public health threat, complicating 

the treatment of infections and leading to severe long term health consequences for 

patients [1]. A population of a single species of bacteria in a single environment (e.g. 

in a human host) can be composed of diverse subpopulations, carrying different 

antibiotic resistance genes [2]. Understanding this within-host bacterial diversity is 

essential, both during bacterial colonisation and infection, as it will shape the 

prevalence of AMR [3,4]. AMR diversity is of particular interest in Staphylococcus 

aureus, which are both commensal bacteria colonising the nose of 20% of the human 

population [5], and major nosocomial pathogens responsible for skin and blood 

infections [6]. S. aureus carry many antibiotic resistance genes on mobile genetic 

elements (MGEs) [7]. The presence of these MGEs is highly variable, leading to 

substantial diversity in S. aureus populations [8–12]. We currently have a limited 

understanding of how common S. aureus AMR within-host diversity is, how it changes 

over time, and how this may impact the treatment of infections, as previous studies 
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have mostly focused on genotypic diversity, quantified in a limited number of 

individuals at a single time point. 

 

When talking about S. aureus diversity, it’s first important to distinguish between 

methicillin-susceptible and -resistant S. aureus (MSSA and MRSA). While MSSA 

isolates tend to only be resistant to penicillin, MRSA carry an SCCmec cassette which 

grants them broad resistance to all beta-lactam antibiotics [13]. Current evidence 

suggests that SCCmec movement is rare in S. aureus isolates [14–16]. Hence, 

detection of MRSA in a patient is generally attributed to acquisition of MRSA from an 

external source, as opposed to gain of SCCmec by MSSA already present in the 

patient. This also applies to MSSA, which is generally attributed to acquisition from an 

external source, as opposed to loss of the SCCmec element in MRSA already present. 

In addition to SCCmec, MRSA isolates generally carry more resistance genes than 

MSSA, which leads us to expect more unique combinations of resistances in MRSA 

than MSSA subpopulations [17]. The risk of MRSA differs between groups of 

individuals, with MRSA incidence found to be higher in non-white patients [18]. Other 

risk factors for MRSA infection include previous antibiotic use, admission to an 

intensive care unit, and prolonged hospitalisation [19]. 

 

Previous studies found that within-host S. aureus diversity is common, both in terms 

of dual MSSA-MRSA carriage and variations in the unique combination of antibiotic 

resistances and susceptibilities displayed by bacteria [8–12]. This included estimates 

of 21% of patients carrying both MRSA and MSSA at the same time, and between 

6.6% to 30% of patient carrying multiple subpopulations. However, these studies 

mostly focused on diversity within MRSA populations only, and sampled a limited 

number of individuals (10-1000), at one time point only. In addition, they relied on the 

presence or absence of resistance genes (genotypic data) to quantify diversity. While 

this captures the full spectrum of diversity accurately, the presence of a resistance 

gene may not always correlate with actual resistance displayed by bacteria 

(phenotypic resistance), as seen in multiple bacteria including S. aureus [20,21]. 

Measured diversity in phenotypic resistances is likely to be lower than genotypic, as 

bacteria of the same species displaying resistance to the same antibiotics will be 

considered identical, even if the resistance genes they carry are different. However, 

phenotypic resistance is more relevant clinically, as this corresponds to what is 
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generally measured in the context of bacterial infections, and what matters to 

determine treatment success. 

 

In hospitals, samples are routinely collected from patients for various monitoring and 

clinical purposes, and analysed in diagnostic laboratories to identify any bacteria 

present. Antibiograms summarising the phenotypic resistances of these bacteria may 

also be generated, to determine which antibiotic should be used to treat an infection 

caused by these bacteria. This type of routine surveillance is the main source for 

epidemiological data, as the alternative to conduct new trials to collect specific data is 

more expensive, time-consuming, and does not allow for retrospective analysis of past 

trends. Routinely collected data is extremely useful for analysis of resistance trends 

over time, both retrospectively and for forecasting purposes, to estimate the impact of 

interventions against AMR [22], and to identify factors contributing to the spread of 

AMR [23]. If routinely collected data could be used to detect AMR phenotypic diversity, 

this would substantially improve our ability to monitor this diversity at a local scale, 

understand its potential causes and implications, and tailor local interventions to 

address this rapidly changing problem. To the best of our knowledge however, the 

feasibility of this analysis using data already available is currently unknown. 

 

In this study, we search for evidence of phenotypic AMR diversity in within-host S. 

aureus populations using 20 years of routinely collected pseudonymised data from 

Great Ormond Street Hospital (GOSH) in London, UK. This hospital specialises in 

paediatric care, receiving between 30,000 and 40,000 inpatients per year, and has 

more than 383 beds spread out across 39 wards (including 44 beds in three intensive 

care units) [24,25]. GOSH possesses a unique processing system for their routinely 

collected data, managed by the Digital Research, Informatics and Virtual 

Environments unit (DRIVE). This system enables easy access to a wide range of 

pseudonymised data on patients, notably dates of admittance to the hospital, wards 

occupied, antibiotics prescribed, isolates detected from samples, and the antibiotic 

resistances and susceptibilities of these isolates. As multiple samples are often 

routinely collected repeatedly for patients, and antibiograms generated for several 

isolates detected, this data could allow us to see potential changes in the phenotypic 

resistances detected in within-host S. aureus populations.  
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However, appropriate usage of this routine data requires an understanding of how it 

was collected, and how this might have changed over time. For example, if a dataset 

only contains information on isolates collected from severely ill patients, this might bias 

the data towards reporting higher rates of resistance than reality [26]. Therefore, it’s 

first necessary to examine trends in antibiotic resistance at the hospital level over time, 

and any changes in policy or testing which occurred and might have impacted these 

trends. In addition, it’s important to bear in mind that this routinely collected data was 

not collected for the purpose we are interested in here. From a clinical perspective, 

the aim of analysing bacteria in patient samples is to detect any resistances present, 

not necessarily to identify all the different subpopulations. At GOSH, patient samples 

are generally plated on selective agar to identify different bacterial species, then a 

small (typically less than 3) number of colonies on these plates are collected, 

subcultured, and tested for resistance to antibiotics via disk diffusion. Guidelines only 

state that representative colonies should be subcultured, therefore multiple colonies 

are separately subcultured only when they are visually different on the plate (e.g. 

different sizes or colours) [27]. We therefore expect that our estimates of diversity 

using this routinely collected data will be lower than those in previous studies which 

collected data specifically for this purpose. 

 

Although our primary objective is to determine whether we can detect diversity and 

changes in this diversity over time in patients using this routinely collected dataset, our 

secondary objective is to explore potential explanations for these changes which we 

may be able to identify using this same data. We expect that antibiotic consumption in 

patients will drive many of the changes in detected diversity, as a subpopulation of 

resistant bacteria may only be initially present in minority in a patient and not detected, 

but may increase and become dominant following antibiotic exposure [28]. As 

information on antibiotic usage is included in our routinely collected dataset, we expect 

to see events where resistance is only detected following antibiotic exposure. 

Nosocomial transmission between patients may explain other changes in detected 

diversity, if a patient acquires a new subpopulation of bacteria from another patient 

present in the same ward, at the same time. However, this is known to occur only 

rarely with S. aureus, as most patients testing positive for MRSA in hospitals acquired 

the bacteria before hospitalisation, as opposed to during hospitalisation [29–31]. We 
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may still be able to detect such rare events using our dataset, by comparing S. aureus 

isolates collected from patients who stayed in the same ward at the same time. 

 

An important possible explanation for any changes in diversity we may detect is 

frequent horizontal gene transfer between bacteria, since many AMR genes in S. 

aureus are carried on MGEs [7]. Transduction, mediated by bacteriophage, is likely 

the dominant mechanism of gene transfer in S. aureus, and can consistently lead to 

multidrug resistance in vitro, even in the absence of antibiotics to act as a selection 

pressure [9,32–34]. Previous work to estimate rates of gene movement in vivo in 

gnotobiotic piglets found that S. aureus strains frequently gained MGEs via 

transduction, but also lost them equally rapidly, leading to changes in detected 

diversity in just a few hours [35]. Note that a detected loss of resistance can either 

happen as an MGE carrying this resistance gene is randomly segregated during 

bacterial replication and lost in some daughter cells [36], or if the subpopulation 

carrying the resistance gene decreases and no longer becomes detectable, either due 

to stochastic events or a fitness cost resulting from this resistance [37]. To the best of 

our knowledge, this shuffling of genes over short periods of time in S. aureus has never 

been measured in humans, yet is likely to happen frequently since approximately 20% 

of individuals are asymptomatically colonised by S. aureus at any given time, and 

phage capable of transduction are present in at least 50% of these individuals [5,9]. In 

addition to resistance genes moving, some resistances in S. aureus arise via 

mutations, such as ciprofloxacin or rifampicin resistance [38]. Overall, these genetic 

events may change the prevalence of different subpopulations over time, leading to 

changes in detected diversity. In that case, we would expect to see many changes in 

resistances known to be carried on MGEs, known to arise via mutations, or known to 

impose a fitness cost on the bacteria. 

 

In this work, we aim to explore the potential of routinely collected data to observe S. 

aureus within-host diversity over a large scale, with more than 20,000 patients and 

70,000 isolates included in our analysis. At the hospital level, we hypothesise that 

there is substantial variation over time in the proportion of isolates resistant to various 

antibiotics. This variation may be linked to changes in testing strategy, with important 

implications regarding analyses using this type of routinely collected data to derive 

epidemiologically-meaningful trends in AMR. Despite of the challenges highlighted 
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above leading us to expect that phenotypic resistances diversity will be rarer than 

genotypic, we hypothesise that we can still detect diversity and changes in this 

diversity over time relying exclusively on this routinely collected data, since substantial 

genotypic diversity has previously been reported in S. aureus. Finally, we aim to 

explore possible explanations for this diversity, again using exclusively this routinely 

collected dataset.  

 

5.4 Methods 

All the analyses and data processing were conducted in the R software [39]. The raw 

datasets are the property of GOSH and cannot be shared publicly. The processed 

datasets and the code to run the analyses presented in this paper are publicly available 

in a GitHub repository (https://github.com/qleclerc/gosh_mrsa). 

 

5.4.1 Ethics approval 

Ethics approval for this study was obtained both from GOSH (under ethical approval 

17/LO/0008 for use of routine GOSH data for research), and the London School of 

Hygiene & Tropical Medicine (reference 26692). 

 

5.4.2 Data processing 

We accessed pseudonymised routinely collected data from all patients at GOSH who 

tested positive for S. aureus infection or colonisation at any point between 01/02/2000 

and 30/11/2021, as determined by the GOSH diagnostic laboratory. Each isolate was 

assigned a unique identification number. We included all isolates labelled 

“Staphylococcus aureus” or “Methicillin-Resistant Staphylococcus aureus”. We 

excluded isolates labelled “Staphylococcus sp.” (41 isolates), as this may have 

included Staphylococcus species other than S. aureus. For each isolate, we had 

access to information on the date that the sample was collected, the sample source 

(wound, urine etc.), and antibiogram data. The antibiogram data listed isolates as 

resistant to an antibiotic with the label “R”, or susceptible with the letter “S”. 

https://github.com/qleclerc/gosh_mrsa
https://github.com/qleclerc/gosh_mrsa
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Although some isolates were already labelled as “Methicillin-Resistant 

Staphylococcus aureus” (MRSA), we manually applied this label to any isolate 

resistant to either cefoxitin, oxacillin, or flucloxacillin [40]. All other isolates were 

assumed to be methicillin-susceptible (MSSA), including 10,031 isolates with no 

susceptibility information recorded for any of these three antibiotics.  

 

We then obtained routinely collected data for patients from whom these S. aureus 

isolates had been sampled. The resulting dataset included both in- and outpatients, 

and each patient was assigned a unique identification number. The routinely collected 

data included information on ethnicity for each patient (16 unique ethnicities). We 

regrouped these ethnicities in three categories: “White British” (which only included 

the “White British” ethnicity), “Other groups” (all other ethnicities recorded), and “None 

reported” (patients with no recorded ethnicity, labelled “Prefer Not To Say” or blank, 

3,932 patients). 

 

The routinely collected data also included information on dates when patients visited 

the hospital, and information on any hospital admission (for each ward occupied by 

the patient: start date, end date, ward name). Note that a single hospitalisation period 

was defined as a stay in a single ward. If a patient moved from one ward to another 

on the same day, this was counted as a new hospitalisation in the data. 

 

Finally, the dataset included information on any antibiotics received by patients (date 

and time when each antibiotic was received and name of antibiotic). We further 

extended this information by matching the antibiotics to their class (e.g. methicillin was 

matched to the “penicillin” class) using information available online [41] (see 

Supplementary Table 5.1 for the matching information). 

 

5.4.3 Statistical analyses 

Linear regression was used to test if the number of isolates per patient followed a 

consistent trend over time (years) and significantly differed depending on the type of 

isolate (MRSA or MSSA). Linear regression was used to test if the number of antibiotic 

resistances detected in isolates increased linearly with the number of susceptibility 
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tests conducted for those isolates. Linear regression was used to test if the number of 

susceptibility tests conducted and resistances detected per isolate at the hospital level 

followed a consistent trend over time (years) and significantly differed depending on 

the type of isolate (MRSA or MSSA). 

 

Spearman’s correlation was used to test the correlation between the proportion of 

isolates resistant to different antibiotics over time. The association between colonising 

or non-colonising isolates and absence of any susceptibility test conducted was 

estimated using a Chi-square test. For this analysis, we considered that colonising 

isolates were only those originating from nose or throat swabs, as these are the sites 

most likely to correspond to colonisations rather than infections [42]. The association 

between antibiotic exposure and changes in diversity was estimated using a Chi-

square test.  

 

5.4.4 Within-patient diversity 

5.4.4.1 MRSA and MSSA diversity 

For each patient, we chronologically ordered the isolates collected, and identified 

instances where the type of isolate changed from MSSA to MRSA or vice versa. We 

then considered the recorded date when each isolate was collected. If a patient had 

at least one MRSA and one MSSA isolate detected on the same day, we considered 

that this indicated within-host methicillin resistance diversity in their S. aureus 

population. 

 

We then focused on patients for whom MSSA and MRSA isolates were detected on 

different days, and notably on events where an MSSA isolate was initially identified, 

followed later by an MRSA isolate. We further filtered these events, keeping only those 

that occurred within a single hospitalisation period. These were identified if both the 

dates of the initial MSSA isolate and the follow-up MRSA isolate were within the time 

interval of a single hospitalisation period for the corresponding patient, defined by the 

recorded start and end dates of that hospitalisation period in the data, and if the MRSA 
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isolate was detected more than 2 days after the MSSA, a commonly used threshold 

to distinguish from already present MRSA versus acquisition [43].  

 

In the events found to occur in a single hospitalisation period, potential nosocomial 

transmission of MRSA was identified by considering the ward in which the patient was 

located when the MRSA-positive swab was collected, and checking if any positive 

MRSA swab had been reported for any other patient present in that same ward at the 

same time as the patient, in the interval between the previous MSSA-positive only 

swab collected for the patient and the MRSA-positive swab. 

 

Finally, to identify changes within a single hospitalisation period which may have been 

induced by antibiotic selection, we noted if patients had been exposed to any antibiotic 

in the interval between the MSSA-positive and MRSA-positive swab. 

5.4.4.2 Detected phenotypic resistances diversity 

We then searched for within-host diversity in detected phenotypic resistances. For this, 

we compared MRSA and MSSA isolates separately. We removed 10,029 isolates 

which did not have any antibiotic susceptibility test result recorded. Antibiograms of 

chronologically subsequent isolates within patients were compared, and we noted a 

difference if the antibiograms of these isolates differed by at least one susceptibility 

reported (i.e. the value for at least one antibiotic changed from susceptible to resistant, 

or vice-versa). Note that we do not consider that a change in an antibiotic susceptibility 

occurred if only one of the isolates had a recorded result for that antibiotic, and the 

other had not been tested for that antibiotic. 

 

The same filtering methodology was used as described above to identify differences 

in antibiograms which occurred on the same day, on different days, and within a single 

hospitalisation period. 

 

To identify changes within single hospitalisation periods which may have been induced 

by antibiotic selection, we noted if i) the patient was exposed to any antibiotic in the 

interval between two differing antibiograms, and ii) if the patient was exposed to an 

antibiotic of the same class as that of the change in resistance. 
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5.5 Results 

5.5.1 Antibiotic resistance trends in S. aureus isolates 

5.5.1.1 Incidence of MSSA and MRSA isolates 

Altogether, we obtained information on 72,207 unique S. aureus isolates (51,020 

MSSA, 21,187 MRSA) from 22,206 unique patients at Great Ormond Street Hospital 

(GOSH) between 01/02/2000 and 30/11/2021. Of these patients, 18,700 (84.21%) 

only ever tested positive for MSSA, 2,429 (10.94%) only for MRSA, and 1,077 (4.85%) 

tested positive for both MSSA and MRSA (although not necessarily at the same time). 

The isolates came from a range of sources (nose, wound, blood etc.), and therefore 

represented both colonising and infecting isolates. 

 

Although the total number of S. aureus isolates did not increase or decrease over time 

(Figure 5.1a), we note a progressive increase in the proportion of MRSA isolates over 

time, with a peak in January 2018 (50% of S. aureus isolates, Figure 5.1b). The 

number of S. aureus isolates decreased sharply in April 2020, aligned with the first UK 

lockdown during the COVID-19 pandemic (Figure 5.1a). Since then, the total number 

of S. aureus isolates has increased back to pre-2020 levels, and the proportion of 

MRSA isolates has stabilised around 30% (Figure 5.1a-b).  

 

These values are not directly equivalent to the number and proportion of individual 

patients testing positive for MRSA and/or MSSA, since multiple isolates are frequently 

recorded per patient (Figure 5.1c). More MRSA isolates were always obtained per 

patient than MSSA (regression coefficient = 1.91, p value < 0.001), and this sampling 

frequency varied negligibly over time (coeff. = -0.00009, p < 0.001) (Figure 5.1c), 

hence this does not explain variations in the number of MRSA and MSSA isolates 

seen at the hospital level. To identify a possible explanation, following 

recommendations from GOSH consultants and previous work which found that MRSA 

incidence was higher in non-white patients [18], we observed patient ethnicities over 

time and found that the increase in proportion of MRSA isolates aligned with an 

increase in the proportion of patients with an ethnicity other than “White British” 

admitted to GOSH (Supplementary Figure 5.1). 
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Figure 5.1: Trends in methicillin-resistant (MRSA) and -susceptible (MSSA) 

Staphylococcus aureus isolates at Great Ormond Street Hospital. a) Incidence 

of S. aureus isolates. b) Proportion of S. aureus isolates which are MRSA or 



197 
 

MSSA. Isolates are grouped by calendar month of date of isolation. Vertical green 

dashed line shows the date when lockdown began in the UK during the first wave of 

the COVID-19 pandemic (29/03/20). c) Number of MRSA or MSSA isolates per 

patient per year. Bold lines show the median, box limits show the interquartile range, 

line limits show the largest value within 1.5 interquartile range above the 75th 

percentile and smallest value within 1.5 interquartile range below the 25th percentile. 

Outliers are not shown on the figure.  

 

5.5.1.2 Overview of antibiotic susceptibility testing and 

resistance detection 

We obtained antibiogram information for 51 unique antibiotics or combinations of 

antibiotics (e.g. joint amikacin and flucloxacillin resistance) for our S. aureus isolates. 

The number of antibiotic resistances detected was higher in MRSA than MSSA 

isolates (coeff. = 2.79, p < 0.001) and increased slightly with the number of 

susceptibility tests conducted (coeff. = 0.12, p < 0.001), yet this linear correlation does 

not explain all the variability seen in the number of resistances detected (R2 = 0.572) 

(Figure 5.2a). 

 

Until 2011, more susceptibility tests were conducted for MRSA than for MSSA isolates 

(Figure 5.2b, coeff. = 4.04, p < 0.001). After 2010, the number of susceptibility tests 

for MRSA isolates decreased, with a smaller difference compared to MSSA isolates 

(Figure 5.2b, coeff. = 1.78, p < 0.001). This explains the points on the dashed line in 

Figure 5.2a, which correspond mostly to isolates from 2011 onwards with 4-5 

susceptibility tests conducted, and an equal amount of resistances detected 

(Supplementary Figure 5.2). The number of antibiotic resistances detected in isolates 

did not substantially change over time (Figure 5.2c, coeff. = 0.0002, p < 0.001), but 

was always higher in MRSA than in MSSA isolates (Figure 5.2c, coeff. = 2.86, p < 

0.001). Resistances in MRSA isolates were often correlated with each other, while 

resistances in MSSA isolates were generally independent (Supplementary Figures 5.3 

and 5.4). The most common antibiotic susceptibility tests conducted across the entire 

time period were similar between MRSA and MSSA isolates (Figure 5.3), although 

MRSA were more frequently resistant, consistent with Figure 5.2c. 
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Figure 5.2: Numbers of susceptibility tests and antibiotic resistances in S. 

aureus isolates. a) Number of susceptibility tests conducted versus antibiotic 

resistances detected for each S. aureus isolate in our dataset. Each point 

corresponds to an isolate in the dataset, with the position of the points jittered on the 

figure to prevent the overlap of isolates with the same number of susceptibility tests 

and antibiotic resistances detected. The dashed line shows the maximum number of 

resistances that can be detected (equal to the number of susceptibility tests 

conducted). The blue and yellow solid lines show the linear regression trendline 

between these variables for MSSA and MRSA isolates respectively. b) Median 

number of susceptibility tests conducted per isolate, by year. Error bars show the 

25th and 75th quantiles (note these can overlap). c) Median number of antibiotic 

resistances detected per isolate, by year. Error bars show the interquartile range. 
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Figure 5.3: Fifteen most common antibiotic susceptibility tests conducted in 

methicillin-resistant (a) and -susceptible (b) S. aureus isolates, across the entire 

dataset. Transparent bars indicate the proportion of isolates that were tested for the 

corresponding antibiotic, and solid bars indicate the proportion of isolates that were 

resistant. Note that flucloxacillin is the indicator for MRSA, and that we would expect 

most MSSA isolates to be resistant to penicillin. 

 

 

Interestingly, no susceptibility tests were recorded for 10,029/72,207 (13.89%) 

isolates. Removing these isolates removes 5,064/22,206 (22.80%) patients from our 

dataset, suggesting that these isolates are not only from repeated samples in patients, 

where only one isolate would have been tested for antibiotic susceptibility. The 

majority of these isolates were taken from nose or throat swabs (75.01%), likely 

corresponding to colonisation events, as opposed to wound or blood samples, likely 

corresponding to infections. This is higher than the percentage of isolates with at least 

one susceptibility test result reported which were taken from nose or throat swabs 
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(18.97%), indicating that colonising isolates are less likely to be tested for antibiotic 

susceptibility than infecting isolates (X2 = 13,837, degrees of freedom = 1, p < 0.001). 

5.5.1.3 Trends in antibiotic resistances detected in S. aureus 

isolates 

We then observed trends in the proportion of S. aureus isolates tested for an antibiotic 

which were found to be resistant to that antibiotic. Only 12 of the 51 antibiotics in the 

dataset showed a substantial change at any point in time in that value, with changes 

not always consistent between MRSA and MSSA populations (see Supplementary 

Figure 5.5 for all antibiotics). 

 

We found that the proportions of MRSA isolates resistant to amikacin (alone or joint 

with flucloxacillin), gentamicin (alone or joint with ciprofloxacin), and rifampicin were 

correlated, with simultaneous peaks in 2005 and 2007 (Figure 5.4a, Supplementary 

Figure 5.3). For both MRSA and MSSA isolates, ciprofloxacin resistance showed an 

overall decreasing trend since 2007 (more pronounced for MRSA), mupirocin 

resistance sharply decreased in 2004-2006, and clindamycin resistance increased 

since 2017 (Figure 5.4b). Erythromycin resistance showed a decreasing trend for 

MRSA isolates, but an increasing one for MSSA isolates (Figure 5.4c). Trimethoprim 

resistance sharply declined for MSSA isolates in 2002, but remained stable for MRSA 

isolates (Figure 5.4c). Cotrimoxazole resistance is practically only reported between 

2010 and 2011 at low levels, while fosfomycin resistance is only reported between 

2015 and 2018 at high levels (Figure 5.4d). 
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Figure 5.4: Change in proportion of S. aureus isolates resistant to antibiotics 

over time, out of those tested for resistance to the corresponding antibiotic. 

These were subjectively grouped in four categories to facilitate visualisation. a) 

Strongly correlated antibiotic resistances. Amik.Fluclox: joint amikacin and 

flucloxacillin resistance, Gent.Cipro: joint gentamicin and ciprofloxacin resistance. b) 

Antibiotic resistances with similar trends between MRSA and MSSA isolates. c) 

Antibiotic resistances with differing trends between MRSA and MSSA isolates. 

d) Antibiotic resistances detected over a short time period only. Missing lines 

indicate that no susceptibility testing for the corresponding antibiotic was conducted at 

that time. 
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5.5.1.4 Trends in antibiotic susceptibility testing of S. aureus 

isolates 

We then checked if changes in resistances detected could be explained by changes 

in susceptibility testing frequency. Only 11 of the 51 antibiotics in the dataset showed 

a substantial change in the number of susceptibility tests conducted at any point in 

time (Figure 5.5, see Supplementary Figure 5.6 for all antibiotics). Mupirocin was the 

only antibiotic for which we could see a probable link between the proportion of isolates 

tested, and the proportion resistant. Mupirocin testing was always common in MRSA, 

but only became common for MSSA in 2007 (Figure 5.5a), which may explain the 

sharp decrease in the proportion of MSSA isolates found to be resistant to mupirocin 

in 2007 (Figure 5.4b).  

 

The short intervals where cotrimoxazole and fosfomycin resistance were detected 

align with periods where testing for these antibiotics was conducted (Figure 5.4d, 

Figure 5.5b). Clindamycin and cefoxitin testing began in 2017, alongside more 

consistent cotrimoxazole testing (Figure 5.5c). Chloramphenicol and tetracycline 

testing were always at low levels for MSSA isolates, but decreased for MRSA isolates 

from 75% to 25% between 2012 and 2015 (Figure 5.5d). 

 

Linezolid testing began in 2003, but was mostly reserved for MRSA isolates until 2011, 

after which the proportion of MSSA isolates tested for linezolid increased to the level 

of MRSA isolates (Figure 5.5e). Interestingly, this increase in 2011 aligned with a 

decrease in testing for syncercid (quinupristin and dalfopristin), teicoplanin and 

vancomycin, which affected both MRSA and MSSA isolates (Figure 5.5e). These 

decreases, combined with the decrease in chloramphenicol and tetracycline 

mentioned above, explained the lower median number of tested resistances for MRSA 

isolates seen in Figure 5.2b. 
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Figure 5.5: Change in proportion of S. aureus isolates tested for different 

antibiotic susceptibilities over time. These were subjectively grouped in five 

categories to facilitate visualisation. a) Antibiotic with a change in susceptibility 

testing potentially responsible for a change in resistance detected. b) 

Antibiotics for which susceptibility testing was conducted over a short time 

period only. c) Antibiotics for which susceptibility testing began in 2017. d) 

Antibiotics with a decrease in susceptibility testing in MRSA. e) Antibiotics with 

aligned changes in susceptibility testing in 2011. Missing lines indicate that no 

susceptibility testing for the corresponding antibiotic was conducted at that time. 

 

5.5.2 Within-host S. aureus diversity 

Across the entire dataset, 10,128/22,206 (45.61%) patients had more than one isolate 

recorded, allowing us to explore diversity. Note that we cannot control for sampling 

intensity in this study, since the dataset does not contain information on negative 

samples, hence we cannot distinguish between a patient with only one positive 

sample, and a patient with one positive sample and one or more negative samples. 
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We considered diversity in two stages. Firstly, we focused on patients with both MRSA 

and MSSA detected on the same day. Then, we searched for patients for which 

multiple, different antibiograms were recorded on the same day, indicating phenotypic 

resistances diversity. A summary of our filtering process to identify diversity is 

presented in Figure 5.6. 

 

 

Figure 5.6: Data filtering process to identify within-host AMR phenotypic 

diversity. Arrows indicate the categories which are subsets of each other. Filtering for 

methicillin-susceptible S. aureus (MSSA) is shown in blue, and in yellow for methicillin-

resistant (MRSA). A difference in MMSA or MRSA isolates corresponds to at least one 

difference in the antibiograms of these isolates. Categories may not be mutually 

exclusive (e.g. a patient could have both multiple MRSA isolates and multiple MSSA 

isolates recorded). Filtered changes: changes where both isolates where sampled 

during a single hospitalisation period, with at least 3 days between the isolates. 
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5.5.2.1 MRSA and MSSA diversity 

We identified 1,077/22,206 (4.85%) patients for which both MRSA and MSSA isolates 

were reported at any point in time. In 445 of these patients (41.32%, 2.00% of all 

patients), MRSA and MSSA isolates were detected on the same day, and in most 

cases (84.24%) from the same sample source (e.g. nose), suggesting within-host 

diversity. The proportion of all patients positive for S. aureus who had within-host 

MRSA and MSSA diversity varied annually between 0.038 (2002) and 0.008 (2014) 

(Figure 5.7a).  

5.5.2.2 Detected phenotypic resistances diversity 

We separately analysed patients with more than one MSSA or more than one MRSA 

isolate recorded on the same day, comparing the isolates to identify within-host 

diversity in phenotypic resistances, defined as isolates with different antibiograms 

(regardless of the number of differences between antibiograms). In total, we identified 

950 unique patients (4.28% of all patients) with multiple unique MSSA or MRSA 

antibiograms recorded on the same day. These included 690 patients (3.49% of 

patients ever tested positive for MSSA, 3.11% of all patients) with within-host diversity 

in the phenotypic resistances of their MSSA populations, and 298 patients (8.50% of 

patients ever tested positive for MRSA, 1.34% of all patients) with diversity in their 

MRSA populations. The isolates with different antibiograms were generally sampled 

from the same source (63.80%). 

 

The percentage of patients with phenotypic resistances diversity was greater for 

patients with MRSA than for patients with MSSA (Figure 5.7b). In 90% of instances 

where diversity in within-patient populations was found, the number of unique 

antibiograms recorded was 2 (Figure 5.7c), and in 90% of instances less than 4 

resistances differed between the antibiograms (Figure 5.7d). Surprisingly, these 

values did not substantially differ between MRSA and MSSA populations (Figure 5.7c-

d). The most common differing resistance between MRSA isolates was erythromycin, 

and other differences were relatively homogeneously distributed amongst several 

antibiotics (Figure 5.7e). On the other hand, differences in MSSA isolates occurred 

predominantly in five antibiotics only: fucidin, penicillin, erythromycin, ciprofloxacin, 

and trimethoprim (Figure 5.7f). 
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Figure 5.7: Within-host S. aureus phenotypic diversity detected in single 

patients on the same day. a) Annual proportion of patients for which both MRSA 

and MSSA isolates were detected on the same day, out of all patients positive 

for S. aureus in that same period. b) Annual proportion of patients for which 

diverse MRSA (yellow) or MSSA (blue) populations were detected on the same 
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day, out of all patients positive for MRSA or MSSA in that same period. c) 

Number of unique antibiograms recorded for patients with diverse MRSA or 

MSSA populations on the same day. d) Number of differing resistances between 

antibiograms recorded for patients with diverse MRSA or MSSA populations on 

the same day. e) Most common differing resistances between MRSA isolates 

detected within the same patient on the same day. f) Most common differing 

resistances between MSSA isolates detected within the same patient on the 

same day.  

 

5.5.3 Changes in within-host S. aureus diversity 

5.5.3.1 Potential nosocomial acquisition of MRSA 

In the 1,077 patients for which both MRSA and MSSA isolates were reported, after 

excluding the cases where these were identified on the same day, we identified 883 

events (648 patients) where an MRSA isolate was first detected, followed later by an 

MSSA isolate, and 896 events (593 patients) where an MSSA isolate was first 

detected, followed later by an MRSA isolate. 

 

We further focused on changes from MSSA to MRSA, which represent more clinically 

worrying events. We excluded 723 events where the change did not happen within a 

single hospitalisation period, and 72 events where the MRSA isolate was detected 

within 2 days of the MSSA isolate, as this threshold is commonly used to distinguish 

between community- and nosocomial-acquired MRSA, and reduces the risk that we 

are capturing diversity present at baseline instead of a true change [43]. This left 101 

events (77 patients). The median delay between the detection of the MSSA and MRSA 

isolates was 8 days (Figure 5.8a), and almost all delays were shorter than 30 days. 

As a comparison, the distribution of delays between any two subsequent isolates 

recorded for patients in a single hospitalisation (excluding delays shorter than 2 days) 

more frequently included delays between 30 and 120 days (Figure 5.8b). Patients in 

this group had substantially higher lengths of stay in ward (median: 72 days, 

interquartile range: 23-188) compared to the lengths of stay of all patients in our 

dataset (median: 6 days, IQR: 4-13, excluding stays shorter than 2 days). 
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We identified 34 changes from MSSA to MRSA in 30 patients which were preceded 

by exposure to any antibiotic. Compared to events filtered in the same way, but where 

the change was from MRSA to MSSA, we found no statistically significant link between 

the proportion of patients who were exposed to any antibiotic and the type of change 

after exposure (0.34 for MSSA to MRSA events, 0.28 for MRSA to MSSA; X2 = 0.54, 

degrees of freedom = 1, p = 0.46). 

 

We identified 30 potential nosocomial acquisitions of MRSA, in 28 patients, with an 

incidence varying over the years (Figure 5.8c). These were defined as events where 

a patient initially only positive for MSSA shared a ward with a patient positive for MRSA 

before themselves testing positive for MRSA. 

 

Interestingly, this left 51 events (38 patients) for which we cannot easily explain the 

incidence of MRSA following the identification of MSSA only. These are events where 

the change happened within the same hospitalisation period, but where no MRSA 

isolate was detected in the same ward immediately before the change, and no 

antibiotic exposure was recorded for the patients preceding the change. 
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Figure 5.8: Changes in within-host S. aureus phenotypic diversity over time. a) 

Delay between detection of an MSSA and MRSA isolate in patients where the 

change happened within a single hospitalisation period. The dashed line shows 
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the median delay (8 days). Bin size is 7 days. Delays smaller than 2 days are not 

considered in this analysis. b) Delay between detection of any two subsequent 

isolates in patients. The dashed line shows the median delay (4 days). Bin size is 7 

days. Delays smaller than 2 days are not considered in this analysis. We excluded 

8,744 delays (32.49%) greater than 130 days from the figure for ease of comparison. 

c) Potential MRSA nosocomial transmission events. These are events from panel 

a) where an MRSA isolate was identified in another patient in the same ward 

immediately before the change. d) Delay between detection of two isolates with a 

different antibiogram. The dashed line shows the median delay (8 days). Bin size is 

7 days. Delays smaller than 2 days are not considered in this analysis. We excluded 

7 delays greater than 130 days from the figure. e) Proportion of patients with 

differences in the antibiograms of their subsequent isolates over time. MSSA 

and MRSA isolates are separated. f) Most common changes detected in within-

host MRSA populations. g) Most common changes detected in within-host 

MSSA populations. Proportion of changes shown by antibiotic, type of change (R: 

susceptible to resistant, S: resistant to susceptible), and exposure to an antibiotic of 

the same class anytime between the original isolate, and the changed isolate 

(transparent: no, solid: yes). Amik.fluclox: joint amikacin and flucloxacillin resistance, 

gent.cipro: joint gentamicin and ciprofloxacin resistance. 

 

 

5.5.3.2 Changes in detected phenotypic resistances diversity 

We applied the same filtering process to identify events where the phenotypic 

resistances diversity in MSSA or MRSA populations within-host changed, defined as 

differences in subsequent antibiograms recorded for single patients over time 

(regardless of the number of differences between the antibiograms). We only included 

changes which occurred within a single hospitalisation period, with a delay between 

the two differing antibiograms greater than 2 days. 

 

We identified a total of 906 events in 516 unique patients (2.32% of all patients). These 

included 652 events in 399 patients (2.02% of patients ever tested positive for MSSA, 

1.80% of all patients) where the antibiograms of MSSA populations changed, and 254 

events in 132 patients (3.76% of patients ever tested positive for MRSA, 0.59% of all 
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patients) where the antibiograms of MRSA populations changed. The median delay 

between differing antibiograms was 8 days (Figure 5.8d). These events occurred more 

frequently in patients with MRSA than with MSSA, although this varied over the years 

(Figure 5.8e). In 19.88% of all these events, the identification of a new subpopulation 

in a patient was immediately preceded by this patient being in the same ward as 

another patient positive for this subpopulation. 

 

We found some overlap between the changes in resistances most commonly detected 

(Figure 5.8f-g) and the antibiotic susceptibility tests most commonly conducted (Figure 

5.3). These changes almost equally represented gains and losses of resistance, 

regardless of the antibiotic (Figure 5.8f-g). In total, only 10.04% of all the changes we 

detected were preceded by patient exposure to an antibiotic of the same class as that 

of the change in the interval between the two differing antibiograms (Figure 5.8f-g). 

Interestingly, we noted several changes from resistance to susceptibility following 

antibiotic exposure (Figure 5.8f-g). The frequency of change detected for antibiotics 

did not align with the proportion of all patients exposed to antibiotics of the same class 

(Supplementary Figure 5.7).  

 

We found no evidence for a causative link between antibiotic exposure and any 

change in resistance, as in fact the proportion of all patients exposed to antibiotics who 

had a change detected (0.08) was slightly lower than those who were not exposed to 

antibiotics and still had a change detected (0.10; X2 = 34.95, degrees of freedom = 1, 

p < 0.001). Resistance genes for all of the antibiotics for which changes were most 

commonly detected can be found on MGEs in S. aureus (see [7] for a complete list of 

MGEs carrying antibiotic resistance genes in S. aureus), except for ciprofloxacin and 

rifampicin, which are resistances occurring via mutations [38]. 

 

Overall, we identified 678 events (74.83%) where a change in phenotypic diversity 

occurred without previous exposure to antibiotics, nor apparent between-patient 

transmission.   
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5.6 Discussion 

5.6.1 Summary of results 

Analysis of more than 70,000 isolates collected routinely for 20 years from 20,000 

patients at Great Ormond Street Hospital (GOSH) revealed that the proportions of S. 

aureus resistant to different antibiotics varied over time. Susceptibility testing 

strategies changed at various points, which affected rates of antibiotic resistance. As 

multiple isolates were frequently recorded per patient, this data also revealed that S. 

aureus populations within-host are frequently diverse, with patients carrying both 

MRSA and MSSA bacteria, and carrying diverse MRSA and MSSA populations. 

Thanks to the longitudinal aspect of this dataset, with multiple antibiograms generated 

per patient, we found that the phenotypic resistances detected in patients can change 

over time. These changes could occur even within single hospitalisation periods, and 

equally included gains and losses of antibiotic resistance. Although some of these 

changes may be due to limitations in our ability to fully detect within-patient diversity 

in the diagnostic laboratory, they suggest that there is a frequent shuffling of antibiotic 

resistances in S. aureus populations. 

 

5.6.2 Trends at the hospital level 

We identified multiple ways in which antibiotic resistance and susceptibility testing can 

vary at the hospital level. Mupirocin is an example where the proportion of isolates 

resistant to this antibiotic decreased as a consequence of a substantial increase in the 

proportion of isolates tested for susceptibility to this. This is a well-known type of bias 

whereby, if testing is only conducted for the minority of patients more severely ill, this 

may lead to an over-representation of resistant isolates [26]. 

 

Importantly, the decrease in ciprofloxacin resistance demonstrates that policies to 

reduce antibiotic usage can successfully lead to a decrease in resistance over time. 

In 2006, a UK-wide policy was introduced to control the incidence of Clostridium 

difficile infections by limiting fluoroquinolone usage in all hospitals [44,45]. This aligns 

with the start of the decrease in ciprofloxacin resistance measured in our S. aureus 
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isolates, particularly for MRSA isolates as 90% were resistant to ciprofloxacin before 

2007, down to 40% now (Figure 5.4). We are currently in the process of obtaining 

complete antibiotic usage data from GOSH to confirm the association between 

decrease in fluoroquinolone usage and ciprofloxacin resistance. 

 

The large time period covered by the dataset allowed us to see slow changes in 

tetracycline and teicoplanin testing, and in erythromycin resistance, which would 

otherwise be missed if the analysis only included shorter time periods of even a couple 

of years. We also noted amikacin, gentamicin and rifampicin as examples of rare but 

highly correlated resistances. To the best of our knowledge, although joint amikacin 

and gentamicin resistance is well-known as both are aminoglycoside antibiotics 

[46,47], the biological mechanism explaining the correlation with rifampicin resistance 

is unknown. 

 

Discussions with clinicians from GOSH were required to shed light on some of these 

trends. Fosfomycin was pointed out as an example where testing was conducted to 

assess if a new antibiotic may be useful to treat infections, as it was licensed in the 

UK in 2015, which aligns with the brief period where susceptibility testing was 

conducted. As almost all S. aureus isolates were found to be resistant, routine 

susceptibility testing for fosfomycin was rapidly halted, as this did not bring any 

additional useful clinical information. The short testing period for cotrimoxazole in 2011 

on the other hand was linked to the investigation of an outbreak, where the causative 

bacterial strain was unusually resistant to this antibiotic. 

 

During these discussions, it was also suggested that a link may exist between the 

increase in MRSA isolates between 2014 and 2020, and the ethnicity of patients 

admitted at GOSH, since non-white individuals are at higher risk of carrying MRSA 

[18]. We did find that increases in the proportion of patients with an ethnicity other than 

“White British” were aligned with increases in the proportion of S. aureus isolates which 

were MRSA, suggesting that this link does exist in our data. In addition, since patients 

from outside the UK were no longer admitted to GOSH during the first COVID-19 

lockdown in March 2020, this may also explain the decrease in MRSA isolates seen 

at that time. 



214 
 

The comparison between the number of susceptibility tests conducted per isolates and 

number of resistances detected suggests that the testing strategy at GOSH is 

potentially optimal, in the sense that relatively few isolates are under-tested 

(corresponding to isolates with few susceptibility tests conducted, and an equal 

number of resistance detected) or over-tested (isolates with many susceptibility tests 

conducted, but much less resistances detected). To the best of our knowledge, this 

type of analysis is not commonly reported, and may be useful to determine if a wide 

range of antibiotic resistances is captured in routine surveillance datasets. The 

multiple changes in testing strategy we identified in 2011 were confirmed by the GOSH 

staff as being linked to a change in the head of infection prevention and control. We 

were also informed that following identification of MRSA in a patient, it is common to 

swab multiple other potential colonisation sites to identify the presence of S. aureus. 

However, any isolate subsequently identified through these additional swabs would 

not undergo complete antibiotic susceptibility testing. This explains the higher number 

of isolates since 2011 with fewer antibiotic susceptibility testing conducted, as well as 

the 10,029 isolates in our data with no antibiotic susceptibility results. 

 

Overall, our analysis showed the multitude of factors which might affect AMR trends 

in routinely collected data. All of these factors should be considered in studies which 

attempt to reuse these datasets for epidemiological purposes, as they may introduce 

several types of biases. Crucially, some of these changes could only be understood 

following discussions with the clinicians at GOSH, highlighting the importance of 

continuous collaboration at all stages of the data analysis. Improved sharing of 

information on data collection to accompany the public release of these routinely 

collected datasets will be beneficial to the scientific community more broadly. 

 

5.6.3 Within-host diversity 

We found that within-host MRSA populations were more likely to be diverse compared 

to MSSA populations. This could be explained by more MRSA samples being taken 

per patient than MSSA, consistent with UK testing guidelines, and hence increasing 

the probability to detect diverse subpopulations [40]. However, this prevalence of 

diversity changed over time whilst the number of isolates recorded per patient did not, 
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suggesting there are other currently unknown factors affecting diversity over time. 

Surprisingly, when diversity was detected, the number of differences was similar 

regardless of whether they occurred in MSSA or MRSA populations (two unique 

antibiograms detected, with less than four differences between antibiograms). As 

MRSA isolates carry more resistances, we expected to see both i) more instances 

where diversity was detected than in MSSA, which we did, and ii) a greater amount of 

diversity, which we did not. This could firstly be due to detection limits, as sampling in 

the diagnostic laboratory relying on plating may not be powerful enough to detect 

profiles representing only small proportions of the total S. aureus population [10] 

(further discussed in the Limitations and Strength section). Alternatively, the previous 

study of S. aureus diversity in piglets found evidence of simultaneously high rates of 

gain and loss of MGEs in S. aureus, which may explain why not more diversity is 

detected here, as some subpopulations of S. aureus carrying different resistance 

genes may only be present at small proportions and therefore not detected [35].  

 

Our estimates for diversity are lower than those reported in previous studies. Whilst 

we report 2.00% of all patients ever detected positive for S. aureus carried both MSSA 

and MRSA simultaneously at some point, a previous study estimated this value to be 

21% in children sampled before surgery [11]. This same study identified multiple S. 

aureus genotypes in 30% of patients, while our estimate of diversity (defined as 

detection of multiple MSSA or MRSA isolates with different antibiograms on the same 

day in a patient with at least one MSSA or MRSA isolate detected) was 3.49% for 

patients with MSSA detected, and 8.50% for patients with MRSA detected. On the 

other hand, a second study found that 6.6% of individuals colonised by S. aureus 

carried more than one strain, defined using pulsed field gel electrophoresis [12]. 

However, the definitions and measures of diversity varied between these studies and 

ours. Finally, a study in patients colonised with MRSA found that 24% were colonised 

by more than one phenotypically distinct isolate [9]. Interestingly, this study identified 

a maximum of three distinct isolates in a single patient, and two in the remaining eight 

patients with diversity. This is consistent with our result that, in patients with diversity, 

we generally detected only two MSSA or MRSA subpopulation (i.e. with only two 

unique antibiograms), although we were able to detect up to five unique antibiograms 

within a single patient on the same day (Figure 5.7c). 
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These differences may be explained by our use of antibiotic susceptibility data to 

determine phenotypic resistances diversity, as opposed to these previous studies 

which used genotypic data. Whilst the genotypic data captures more diversity, from a 

clinical perspective phenotypic resistance is more meaningful, as this is what will 

ultimately determine treatment success or failure. In addition, while these studies were 

specifically designed to capture as much diversity as possible, we relied on data 

routinely collected for clinical purposes (further discussed in the Limitations and 

Strength section). On the other hand, these previous studies may have also 

overestimated diversity, by sampling a small number of patients belonging to specific 

groups at higher risk of severe infections (surgery patients or drug users). 

 

5.6.4 Changes in within-host diversity over time 

We identified 101 events (77 patients) which we believe correspond to patients 

acquiring MRSA during their hospitalisation period. These are events where patients 

initially tested positive for MSSA only, then at least 3 days later for MRSA, within the 

same hospitalisation period. Of these 101 events, 30 (29.70%, 28 patients) 

represented probable instances of nosocomial-acquired MRSA. These are events 

where the patient who acquired MRSA was in the same ward as another patient who 

was positive for MRSA immediately before the new MRSA-positive sample was 

reported. This likely represents a lower estimate of nosocomial-acquired MRSA, since 

we have not considered instances where patients initially tested negative for any S. 

aureus initially, and subsequently positive for MRSA. Arguably, this distinction means 

we are more confident that the events we have identified are true nosocomial-acquired 

MRSA, since in cases where nothing was initially detected we cannot be as confident 

that testing was properly conducted, and there is therefore a higher chance that MRSA 

was already present initially but not detected. However, we are left with 71 MRSA 

acquisition events (70.30%, 55 patients) where the patients did not share a ward with 

any other patient positive for MRSA immediately before the acquisition was reported. 

In such cases, the patients may have acquired MRSA from a source not monitored in 

our data, such as healthcare workers or environmental surfaces, or these events may 

represent instances where MRSA was incorrectly undetected in the first sample. While 

this again suggests that our number of nosocomial acquired MRSA may be an 
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underestimate, our results still indicate that we can identify at least some of such 

events using routinely collected data only.  

 

To the best of our knowledge, this work is the first attempt to estimate changes in S. 

aureus AMR within-host diversity over time in a large routinely collected dataset with 

more than 20,000 hospital patients. We identified 906 events (652 in MSSA, 254 in 

MRSA, 516 unique patients in total, 2.32% of all patients) where a change in at least 

one phenotypic resistance was detected within a single hospitalisation period, with a 

delay between the two differing isolates greater than 2 days. We considered several 

hypotheses to explain these changes. Firstly, these may be due to limitations in the 

data, further discussed in the next section. The second possibility is selection for 

resistance following antibiotic exposure, where a subpopulation resistant to an 

antibiotic was initially present in minority and not detected, but became dominant 

following exposure to that antibiotic, and was detected in a subsequent swab. 

However, we only identified evidence supporting this for 10.04% of all changes, and 

we have not found that patients with a change in resistance were significantly more 

likely to have been exposed in hospital to antibiotics of the same class as that of the 

change than patients with no change. Furthermore, some detected losses in 

resistance counterintuitively occurred following exposure to antibiotics belonging to 

the same class. Since some resistances are co-located on plasmids, antibiotic 

consumption selecting for one resistance may have incidentally selected for other 

resistances present on the same plasmid [7], but we could not estimate this here due 

to lack of genetic data. 

 

The third explanation is acquisition of new subpopulations from an external source, 

which we tried to rule out by focusing on changes which occurred within single 

hospitalisation periods only, reducing the risk of patients having acquired new 

subpopulations from a variety of external sources. We found that between-patient 

transmission in the hospital does not explain all our changes detected, with only 180 

events (19.88%) where the detected changes in phenotypic resistances occurred after 

the patients shared a ward with another patient for which an isolate with the same 

antibiogram had previously been detected. Movement of single MGEs carrying 

antibiotic resistance between patients is possible, but a previous study which 

measured this using detailed genomic data from more than 2,000 isolates of various 
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bacteria species over 18 months only found a single instance where this may have 

occurred [48]. 

 

The majority of changes in phenotypic diversity (678 events, 74.83%) could not be 

explained by either antibiotic exposure or between-patient transmission. We therefore 

consider a fourth explanation to be frequent gain and loss of antibiotic resistance 

genes in within-host S. aureus populations. This type of frequent shuffling was 

previously seen in vivo in gnotobiotic piglets, and could explain changes for some 

resistances which are known to be located on MGEs [35]. However, we also saw 

changes in resistance to ciprofloxacin and rifampicin, which are gained via mutations 

instead of acquisition of an MGE [38]. We also failed to see changes in resistances 

we might have expected to move frequently, such as clindamycin, tetracycline, and 

chloramphenicol, which are present on many MGEs in S. aureus [7]. This may indicate 

varying rates of gain and loss for different genes. The varying rates of loss may be 

due to varying fitness costs between resistances. For example, a subpopulation of S. 

aureus resistant to rifampicin resistance may not persist long in absence of antibiotic 

selection pressure, due to the high fitness cost of this resistance [49]. As for rates of 

gain, we suggest that transduction (horizontal gene transfer mediated by 

bacteriophage) may play a substantial role this process, as it is known to be the major 

mechanism for horizontal gene transfer in S. aureus [9,32–34]. Importantly, 

generalised transduction is a type of transduction where any bacterial gene may be 

transferred by the phage, not only MGEs. In addition, previous work suggested that 

different genes may not be transferred at the same rate by this process, which may 

explain the variations we have seen here [34,35]. 

 

Overall, we found evidence of changes in diversity over time, but cannot explain these 

changes using a single hypothesis. These changes may be due to a combination of 

factors occurring at variable rates in the population (e.g. transfer of resistance genes 

by transduction, selection by antibiotics etc.).  
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5.6.5 Limitations and strengths 

The major limitation of our work is that all the antibiotic resistances and susceptibilities 

for our isolates were determined routinely in the GOSH diagnostics laboratory. The 

sampling strategy has therefore not been designed to fully capture diversity in within-

host S. aureus populations. Microbiologists at GOSH have confirmed that, although 

efforts are made to test multiple colonies from those initially grown after plating the 

patient sample, this process has never been audited, and that generally only 2-3 

colonies are selected for subculture and antibiotic susceptibility testing. Previous work 

has shown that different strains may coexist at various proportions within a single S. 

aureus population, and that strains in minority may be missed if less than 18 colonies 

are sampled, much more than routinely done [9]. Crucially, this means that some of 

the changes we report may simply represent the variability of sampling in the 

laboratory. Consider an example where a patient is colonised by both erythromycin-

resistant and -susceptible S. aureus. If only part of this diversity is detected, then it is 

possible that in a first sample only the resistant subpopulation is identified, whilst in a 

second sample only the susceptible subpopulation is identified, despite no real change 

in the within-host S. aureus population structure having occurred between the two 

samples. Although we tried to account for this by restricting our analysis to changes in 

samples collected at least 3 days apart, this limitation is an inevitable consequence of 

our attempt to use routinely collected diagnostics laboratory data. 

 

In addition, not all isolates identified in the diagnostic lab are tested for all antibiotics. 

Here, we did not consider that a change from no test to resistant or susceptible was a 

valid change in resistance, which means that we may potentially have missed some 

changes. This suggests that our results for diversity are underestimated, which we 

also find by comparing our numbers to those of previous studies, as highlighted above. 

However, this limitation likely applies less to our results on MSSA-MRSA diversity, as 

we can confidently assume that detection of MSSA and MRSA is always more 

accurate than detection of phenotypic resistances. This is notably due to the policy of 

screening all patients upon admission to the hospital for S. aureus colonisation, and 

the systematic and accurate testing for MRSA as part of this process.  
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Susceptibility testing in the diagnostics laboratory is conducted using disk diffusion or 

gradient methods. As these methods rely on breakpoints to classify isolates as 

susceptible or resistant, there may be some subjectivity in the classification. However, 

through discussions with clinical microbiologists at GOSH we confirmed that all the 

antibiotics were equally likely to be affected by this subjectivity, hence this potential 

bias is homogeneously distributed in our data. This suggests that differences in the 

frequency of diversity seen between antibiotic resistances are real (Figure 5.7e-f). 

 

Despite the previous points which show the limitations of our analysis, we argue that 

phenotypic resistances are more meaningful to compare than the presence or 

absence of resistance genes, as previous studies have done [9]. This is because 

phenotypic resistance is what truly matters with regards to the health burden of 

infections by antibiotic resistant pathogens. Genotypic traits of antibiotic resistance 

may not always translate to phenotypic resistance, as the expression of antibiotic 

resistance genes is affected by other genes and environmental conditions [20]. In that 

sense, the fact that we are still able to see evidence of diversity in S. aureus 

populations using phenotypic data only is a strong argument to support the importance 

of this diversity, and that it is likely to have consequences on the health burden of 

infections. In the eventuality that the sampling limitations listed above are really 

responsible for all the changes in phenotypic resistances we detected, that would 

clearly indicate that the testing strategy in diagnostics laboratories frequently misses 

resistant subpopulations in patient samples. This would have important implications 

for treatment, as failure to identify resistance may lead to inappropriate antibiotic 

choices, treatment failures, and worse health outcomes for patients. 

 

To the best of our knowledge, this is the first time that such a large dataset, with more 

than 70,000 isolates taken from 20,000 patients over 20 years, is used to search for 

evidence of AMR diversity in S. aureus. This large sample size is a key strength of our 

analysis, notably due to its longitudinal nature. In addition, our dataset included both 

colonising and invasive isolates. This allowed us to capture a more complete picture 

of diversity, as opposed to previous studies which typically focused only on one of the 

two types, and only on MRSA subpopulations. However, as GOSH specialises in 

paediatric care, the patients in our analysis belong to a group which may not be 

representative of the entire population. S. aureus infections are typically less severe 
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in children than adults, with substantially lower mortality [50]. S. aureus colonisation 

may be more prevalent in children [51], yet the proportion of children with MRSA 

versus MSSA is likely similar as in adults [52]. This limits the generalisability of our 

diversity estimates. 

 

5.6.6 Implications and next steps 

Our results illustrate the many ways in which datasets of routinely collected information 

in hospital can contain changes in antibiotic resistance detected over time that do not 

correspond to true epidemiological trends, but rather are linked to changes in testing 

strategy. As this type of data is frequently used in secondary analyses to derive 

epidemiological trends in AMR prevalence, future studies should bear this important 

limitation in mind. Discussions with hospital staff should be encouraged, as they may 

provide explanations for unexpected changes in reported rates of AMR at the local 

level. This includes consultants who know which antibiotics are used to treat patients, 

infection control staff who are aware of the testing policies and events which might 

have changed these over time (e.g. outbreaks), and clinical microbiologists who can 

provide information on how susceptibility testing is performed in the diagnostics 

laboratory. 

 

We have shown here the value of routinely collected data both from a clinical 

perspective, to understand how hospital policies can affect AMR over time (e.g. linked 

decrease in fluoroquinolone usage and ciprofloxacin resistance), but also from a 

microbiology perspective, to reveal AMR diversity within-host. This was only made 

possible thanks to the framework developed by GOSH to store and make this data 

easily accessible for research purposes. Other healthcare institutions should develop 

systems like the GOSH DRIVE to record and analyse routinely collected data, as this 

may benefit these institutions directly, and allow new analyses to further improve our 

understanding of AMR. 

 

Building upon the previous point, this work should be repeated in other hospitals. S. 

aureus incidence can vary substantially within and between countries, and population 

structures such as dominant lineages vary geographically [54]. Expanding the settings 
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in which this analysis is conducted is therefore essential. This would also allow the 

study of different populations than here, including adults to overcome the 

generalisability limitation of our work which focused on children. Building upon existing 

evidence [55], there is ongoing work to investigate how the burden of AMR varies 

between age groups, hence this may provide further relevant insights by revealing how 

within-host diversity changes over the lifetime of individuals. 

 

Although we found evidence of changes in detected diversity over time, our exploration 

of potential explanations for these changes was limited by the nature of the data. To 

explain these changes, further studies with longitudinal sampling of patients should be 

conducted. These studies could include measurements of both genotypic and 

phenotypic AMR diversity, to understand how these values are linked. For example, 

the correlation between several resistances we observed in MRSA (Supplementary 

Figure 5.3) could be explained by linkage of multiple resistance genes on the same 

mobile genetic elements, or reflect the distribution of resistance profiles between 

different clonal complexes [56]. In addition, linked to the importance of transduction 

we have mentioned and the role it may play in diversity, these studies could test patient 

samples for the presence of phage, as was done previously at a small scale [9]. These 

further analyses should also examine the link between diversity and patient outcomes, 

to determine for example if patients with more diversity are at higher risk of infections 

by multidrug-resistant bacteria, which we did not do here due to the high number of 

variables potentially affecting this link which we could not disentangle using the data 

available to us alone. We are currently in the process of obtaining routinely collected 

genomic information for our S. aureus isolates and wider antibiotic usage data across 

all patients in the hospital, which we will use to refine our analyses. 

 

AMR diversity is likely relevant for other clinically important pathogens than S. aureus 

[57]. Examples include Streptococcus pneumoniae [58] Pseudomonas aeruginosa 

[59], and recently in Klebsiella pneumoniae [60]. In a first instance, our analysis could 

easily be repeated using the same routinely collected dataset from GOSH, looking at 

different bacterial species. To control the important public health threat of AMR, we 

must understand how it arises, and design efficient interventions preventing this. 

Understanding within-host AMR diversity in clinically relevant pathogens is therefore 
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essential, as changes in this diversity are directly linked to the frequency of AMR 

evolution. 

 

5.6.7 Conclusion 

In conclusion, we have shown that routinely collected data can be used to reveal 

within-host AMR diversity in S. aureus. Unlike previous studies, this work focused on 

detected phenotypic diversity, as this is more clinically relevant. In addition, to the best 

of our knowledge this is the first time that evidence of diversity changing over time was 

obtained at such a large scale. Changes in detected diversity are likely affected by 

multiple factors, including antibiotic selection pressures, between-host transmission, 

and frequent gain and loss of resistance genes in bacteria. We notably suggest that 

generalised transduction may play an important role in the shuffling of resistances in 

in vivo S. aureus populations. Future studies with longitudinal sampling of patients 

should be conducted to identify the relative importance of these factors, clarify the 

implication of this diversity on patient health, and identify opportunities to reduce AMR 

prevalence. 
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6 General Discussion 

6.1 Summary of findings 

Understanding the dynamics of HGT of AMR is essential to design appropriate 

interventions reducing the health burden of AMR. In Chapter 2, I identified a research 

gap in our understanding of the dynamics of transduction of AMR, and how to best 

represent them mathematically (Leclerc, Lindsay and Knight, 2019). Before this thesis, 

three studies attempted to model transduction of AMR, yet only made theoretical 

conclusions regarding this process, and were not robustly parameterised as they relied 

on parameter values from multiple sources and did not generate their own data to 

inform their model parameters (Volkova et al., 2014; Fillol-Salom et al., 2019; Arya et 

al., 2020). This lack of fundamental understanding of the dynamics of transduction of 

AMR is particularly worrying for the nosocomial pathogen S. aureus, in which 

antibiotic-resistance is a major threat and transduction is the main driver of HGT of 

resistance genes. I suggested that this research gap is notably due to limited 

availability of appropriate experimental data to inform the design of mathematical 

models. The optimal solution to overcome this was therefore to create a framework to 

study transduction of AMR that encompassed both laboratory and modelling work, to 

design a validated mathematical model of transduction. This model is essential to 

substantially drive our understanding of this process forward, building upon in vitro 

data to explore phage-bacteria dynamics under many different conditions, and 

generating hypotheses to guide further lab work. This knowledge can then be used to 

identify conditions where phage spread AMR genes in a bacterial population via 

transduction, and inform the design of potential interventions targeting transducing 

phage to prevent this. 

 

In Chapter 3, by successfully generating in vitro data on phage predation and 

generalised transduction of AMR in S. aureus, I was able to represent these dynamics 

in a mathematical model (Leclerc et al., 2022). I estimated using the model that 1 

transducing phage carrying an AMR gene was generated for 108 lytic phage. While 

this was consistent with previous attempts to estimate this (Jiang and Paul, 1998; 

Mašlaňová et al., 2016), I showed here for the first time that this proportion is sufficient 
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for multidrug-resistant bacteria to be generated consistently via generalised 

transduction in S. aureus, even in the absence of antibiotics to act as a selection 

pressure. I also identified surprising equilibria in phage and bacterial numbers, which 

varied depending on the starting phage concentration. These in vitro findings could 

only be replicated by representing phage predation as a saturated process, and 

modelling phage burst size as dependent on bacterial growth. To the best of my 

knowledge, these two elements had been previously described separately (Schrag 

and Mittler, 1996; Weld, Butts and Heinemann, 2004; Roach et al., 2017), but never 

before successfully combined in a single mathematical model. My model has therefore 

significant improved our understanding of phage predation and transduction 

dynamics, and how to best represent them. 

 

I then extended this analysis of phage-bacteria interactions in Chapter 4, to examine 

the joint dynamics of antibiotics, phage, and S. aureus, as these likely often coexist in 

various environments (Leclerc, Lindsay and Knight, 2022). I extended my model to 

represent the effect of antibiotics on bacteria, and generated further in vitro data to 

parameterise this. Antibiotics can act alongside phage both as a selection pressure 

for double antibiotic-resistant bacteria generated by transduction, and as killers of 

susceptible bacteria. In this work I reconciled the conflicted existing literature on the 

joint effect of phage and antibiotics, showing that they although they act in synergy to 

kill bacteria, by inhibiting bacterial growth the antibiotics also inhibit phage growth. I 

generated new insights into these complex interactions by introducing the importance 

of transduction of AMR. I showed that if phage are stuck at a low concentration due to 

the effect of the antibiotics inhibiting their replication, and are hence unable to exert a 

strong killing pressure on bacteria, they may instead mostly affect the bacterial 

population by generating multidrug-resistant bacteria via transduction, which can then 

replicate to high concentrations as they are given a selective advantage by the 

antibiotics. Overall, the joint effect of the phage and antibiotics on the bacterial 

population varied depending on their starting concentration and presence timing, with 

a trade-off between a higher risk of generating multidrug-resistant bacteria (if phage 

are introduced before antibiotics), and a slower bacterial killing rate (if antibiotics are 

introduced before phage). This forms an important hypothesis to guide future in vitro 

experiments and clinical trials of phage therapy, which currently aim to combine phage 

and antibiotics to treat bacterial infections. 
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Finally, in Chapter 5 I explored how these experimental and modelling findings may 

translate to in vivo settings by quantifying within-host S. aureus AMR diversity and 

discussing how this may be shaped by multiple factors, including transduction. While 

previous studies on within-host S. aureus diversity have been specifically designed for 

this purpose and relied on genomic data, but only sampled individuals at one time 

point (Cespedes et al., 2005; Mongkolrattanothai et al., 2011; Knight et al., 2012; 

Stanczak-Mrozek et al., 2015; Muenks et al., 2016), here I showed for the first time 

that within-host AMR diversity in S. aureus and changes in that diversity over time 

could be detected using routinely collected hospital data only. Importantly, this 

diversity was detected using antibiograms only, and therefore corresponds to 

phenotypic AMR diversity, which is likely to have clinical implications and affect the 

treatment of bacterial infections. Of the 906 events where I detected a change in 

phenotypic resistances in within-host S. aureus populations, 74.83% could not be 

explained by either concurrent antibiotic use selecting for resistant subpopulations, or 

between-patient transmission of bacteria. In addition, the range of individual 

resistances which changed suggests that the mechanism driving this evolution can 

affect all resistances, although not at equal rates. I therefore suggest that generalised 

transduction may be responsible for this, as it can lead to the transfer of any bacterial 

gene, with variable rates depending on the gene (Stanczak-Mrozek, Laing and 

Lindsay, 2017), and has previously been shown to drive substantial within-host 

evolution in S. aureus (McCarthy et al., 2014). More generally, my work in Chapter 5 

highlighted the importance of maintaining ongoing discussions with clinicians when 

attempting to use routinely collected hospital data to support epidemiological analyses, 

as some trends in AMR may be attributable to changes in testing strategies at the 

hospital level. 

 

6.2 Strengths and implications 

6.2.1 Importance of transduction as a mechanism of AMR 

spread 

My results highlight the necessity to better understand the role of transduction in AMR 

spread and evolution, and not assume by default that it is too rare to be relevant 



233 
 

compared to other mechanisms of HGT such as conjugation and transformation, as 

previous work suggested (Volkova et al., 2014). My estimate of 1 transducing phage 

carrying an AMR gene per 108 lytic phage is coherent with previous attempts to 

quantify this (Jiang and Paul, 1998; Mašlaňová et al., 2016), but the added value of 

my modelling approach in Chapter 3 is that I have shown this value is sufficient to 

consistently lead to multidrug-resistant S. aureus appearing in vitro in less than 8h in 

the absence of antibiotics, hence without the need for a selection pressure. I further 

highlighted the importance of transduction in Chapter 4, where I found that multidrug 

resistance evolution remained possible even at a lower hypothetical transduction 

probability of 1 transducing phage per 109 lytic phage. Finally, I suggested that the 

absence of a substantial link between antibiotic usage and changes in detected AMR 

diversity within-host (Chapter 5) implies that this diversity must be shaped by other 

factors in vivo, including frequent generalised transduction. 

 

6.2.2 Improved understanding of phage predation dynamics 

The model I developed combines two aspects of phage predation that have only been 

previously considered separately: a saturated interaction between phage and bacteria, 

and a link between phage burst size and bacterial growth. This type of saturated 

interaction was originally suggested in (Roach et al., 2017), and appears to better 

represent the biology of phage predation over a wide range of bacteria and phage 

concentrations than the traditionally used linear interaction, since over one time step 

multiple phage may bind to the same bacteria (Abedon and Katsaounis, 2018). The 

link between phage predation and bacterial growth has been previously seen in 

several settings, but to the best of my knowledge never successfully represented using 

the same logistic function as the one used to represent bacterial growth, reducing burst 

size as the bacterial population approaches carrying capacity. This is an interesting 

insight since, in the environment, including in persistent infections, bacteria may spend 

most of their time in stationary phase (Gefen et al., 2014). These modelling results 

offer a biological explanation as to how bacteria and phage can coexist for prolonged 

periods of time across a broad range of environments, without the phage 

systematically eradicating the bacteria. 
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6.2.3 Reconciling evidence on the joint effect of phage and 

antibiotics 

I reconciled existing conflicted evidence on the joint effect of phage and antibiotics on 

bacteria, showing that faster killing of bacteria by phage and antibiotics together is not 

incompatible with an inhibition of phage replication by antibiotics (Leclerc, Lindsay and 

Knight, 2022). If the initial concentration of phage is already sufficiently high, this can 

generate a killing pressure on bacteria to complement the action of antibiotics, without 

the need for the phage to replicate. This observation is consistent with previous work 

which described these concentration thresholds governing the interactions between 

phage and bacteria (Payne and Jansen, 2001). However, this inhibition becomes a 

problem if the phage concentration is too low and is unable to increase because 

antibiotics prevent replication, and if we consider the impact of transduction. In that 

scenario, the multidrug-resistant bacteria initially generated by transduction will 

replicate to high concentrations, as they will not be affected by antibiotics, and the 

phage will be at a concentration too low to kill the bacteria faster than they replicate. 

This creates an opportunity for multidrug-resistant bacteria to persist for potentially 

long periods of time, during which they may further evolve to gain resistance to phage 

predation for example, or spread to other individuals or environments without phage, 

where they may freely replicate. My results are in agreement with experimental work 

in S. aureus exploring the joint effect of phage and antibiotics, which suggested that 

(Berryhill et al., 2021). However, the novelty of my approach here is that I explored a 

wide range of possible timings and concentrations, instead of only 30 minutes and 

fixed concentrations in (Berryhill et al., 2021), and included transduction in these 

dynamics. My conclusions form an interesting hypothesis regarding the joint role of 

phage and antibiotics to drive AMR evolution, which is currently being investigated 

through novel in vitro experiments by other members of the research group. 

 

6.2.4 Implications for phage therapy 

The results highlighted above on phage predation and the joint effect of antibiotics and 

phage on bacteria also have important implications for phage therapy. Firstly, as for 

antibiotics, correct pharmacodynamics representation of the action of phage on 
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bacteria is important, as this understanding is required to design efficient phage 

therapies. Consequently, ensuring that phage predation is appropriately represented 

is essential. For example, failing to account for potential reductions in phage predation 

that may occur when bacteria are at stationary phase could lead to unsuccessful 

treatment, if the initial dose of phage is too low to clear the bacterial population. 

Additionally, since phage and antibiotics are generally given together to patients during 

phage therapy (Brives and Pourraz, 2020), understanding their joint effect on bacteria 

is essential. My results can inform the design of phage therapy, by helping to identify 

optimal timings, concentrations and pairing with antibiotics. These elements should be 

considered in future clinical trials of phage therapy, as robust data to directly translate 

these findings from in vitro to in vivo is not currently available. These trials could 

include multiple treatment arms, with antibiotics only, antibiotics and phage 

simultaneously, antibiotics followed by phage, and phage followed by antibiotics, 

measuring the clearance rate of bacteria. 

 

From a transduction perspective, my results confirm that generalised transduction can 

consistently lead to the spread of AMR genes, yet to the best of my knowledge there 

have not been any attempts to evaluate the potential consequences of this process 

during phage therapy. As highlighted in the Introduction, generalised transduction 

remains a possibility during phage therapy, as even exclusively lytic phage are 

capable of this, therefore only excluding temperate phage would not guarantee the 

absence of transduction, as this would only exclude specialised transduction. Echoing 

recommendations from previous reviews (Raj and Karunasagar, 2019; Hassan et al., 

2021), I suggest that future studies of phage therapy should acknowledge the risk of 

generalised transduction and evaluate the impact of this on in vivo bacterial evolution 

during therapy, by monitoring the diversity of the bacterial population during treatment 

to detect potential transduction events. Overall, future studies and clinical trials of 

phage therapy should investigate varying timings of phage and antibiotics, instead of 

only investigating their simultaneous application, and consider the risk of transduction 

during treatment. 
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6.2.5 Implications for S. aureus AMR diversity 

The results presented in this thesis highlight the biological dynamics underpinning 

HGT of AMR by generalised transduction, and suggest that these dynamics may 

shape S. aureus AMR diversity in vivo. Understanding this process is essential to 

understand how new resistances may arise in S. aureus populations, and vary in 

prevalence over time. This in turn will have implications for the incidence of infections 

by antibiotic-resistant bacteria, and the treatment of these infections. These are 

questions that span years, if not decades, hence the importance of studying these 

evolutionary dynamics at that scale, which requires the appropriate data. As part of 

this thesis, I have shown that routinely collected data can be used to detect phenotypic 

AMR diversity in S. aureus populations within-host. This complements previous 

studies on this topic, which identified frequent diversity in S. aureus populations, but 

only focused on genotypic diversity (Cespedes et al., 2005; Mongkolrattanothai et al., 

2011; Knight et al., 2012; Stanczak-Mrozek et al., 2015; Muenks et al., 2016). The fact 

that I was able to detect phenotypic diversity on the other hand suggests more clearly 

that this diversity may have direct clinical implications. This changing diversity 

highlights the flexible nature of the public health threat of AMR, which requires 

constant surveillance. Overall, it is encouraging to see that large datasets obtained 

from routine surveillance can be used to study within-host AMR diversity, as these are 

more readily available than genotypic data, and can therefore substantially improve 

our ability to study diversity and its implications for AMR prevalence. 

  

6.3 Limitations and next steps 

6.3.1 The impact of antibiotic resistance fitness costs 

The results presented in this thesis give rise to many subsequent questions, and could 

be enriched by further work. Firstly, although here I found that there was no substantial 

fitness cost to AMR genes carried by my S. aureus bacteria, it may still be relevant to 

explore these, to better understand conditions under which multidrug-resistant 

bacteria generated by transduction may or may not persist. Previous work has shown 

that many antibiotic resistance genes in S. aureus do not carry a substantial fitness 
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cost (Knight, Budd and Lindsay, 2013), yet this may vary depending on the 

environment and the genes (see (Wichelhaus et al., 2002) for an example with 

rifampicin resistance genes). In addition, fitness costs may be more relevant for other 

bacteria than S. aureus (Melnyk, Wong and Kassen, 2015), which is important to bear 

in mind when trying to extend the results from this thesis to other species (further 

discussed below). 

 

6.3.2 Transduction of multiple AMR genes 

My experimental and modelling work only focused on tracking two antibiotic resistance 

genes: ermB, granting erythromycin resistance, and tetK, granting tetracycline 

resistance. Although this relative simplicity was necessary to robustly parameterise 

the model, in reality, S. aureus and particularly MRSA carry multiple AMR genes which 

may be transferred independently, as well as single MGEs carrying multiple resistance 

genes, such as plasmids (Haaber, Penadés and Ingmer, 2017). The nature of these 

plasmids should also be considered, as two closely related plasmids will not co-exist 

stably in a single bacterium (Novick, 1987). This complexity will eventually have to be 

captured for us to truly understand the importance of transduction in shaping bacterial 

diversity. Simply extending the models developed as part of this thesis would not be 

an appropriate solution, as these are compartmental models and so would require an 

exponential increase in the number of bacteria and phage compartments included for 

each additional resistance gene represented. In this case, it would rapidly become 

unfeasible to keep track of all the interactions between the compartments, ensure they 

are properly included in the equations, and parameterise them all. Instead, agent-

based models may allow for greater flexibility in the way the different combinations of 

resistances are represented. Although an agent-based model would be more 

computationally expensive, hence simulating a population of 109 bacteria would not 

be feasible, this may still allow us to generate at least an initial description of the rapid 

shuffling of AMR genes by transduction. 
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6.3.3 Further experimental work on the joint effect of phage 

and antibiotics on S. aureus 

The work conducted in Chapter 4 has given rise to multiple hypotheses regarding the 

dynamics of antibiotics, phage and bacteria. Further experiments should be conducted 

to examine how these model hypotheses translate to in vitro. This could be done by 

combining the experimental methods presented in Chapter 3 with those in Chapter 4 

by co-culturing the two single-resistant S. aureus strains with phage, adding antibiotics 

at varying concentrations and timepoints during the co-cultures, and counting bacteria 

and phage over time. These experiments are now being conducted by other members 

of the research group. Similarities and differences between model-predicted and 

observed bacteria and phage numbers would allow us to further refine our 

understanding of the joint effect of phage and antibiotics on bacteria. For example, 

recent work has found that aminoglycosides directly inhibit phage replication (Kever 

et al., 2022). This differs from my approach, as I only considered that antibiotics inhibit 

phage replication indirectly, by inhibiting the bacterial machinery required by phage to 

replicate. Linked to this, it is important to highlight that I only focused on the effect of 

two antibiotics: erythromycin and tetracycline, as these were the resistance genes in 

the bacteria I used in my experiments. Further experiments should also use other 

antibiotics, as these may interact with phage differently. 

 

6.3.4 The direct impact of antibiotics on transduction 

Throughout this thesis, I have only considered that antibiotics interact with bacteria by 

killing the susceptible and selecting for resistant ones, and with phage by limiting 

phage growth via the reduction in bacterial growth. However, recent work suggests 

that antibiotics can directly modify transduction dynamics in S. aureus, by inducing a 

higher proportion of transducing phage relative to lytic phage (Stanczak-Mrozek, Laing 

and Lindsay, 2017). However, there is still limited data on this interaction, hence I was 

not able to include it in my model. This effect might vary depending on which antibiotic 

is added, and the concentration at which it is added. This could be implemented in the 

model I developed in Chapter 4 by including an additional parameter to increase or 

decrease the proportion of new phage released upon burst which are transducing 
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phage carrying an AMR gene, depending on the concentration of antibiotic. However, 

as for the joint killing effect of phage and antibiotics mentioned in the previous section, 

new in vitro data to parameterise this would still be required. 

 

6.3.5 Decay of bacteria, phage and antibiotics 

A notable exclusion in my model is bacteria, phage, and antibiotic decay, as I did not 

generate data to parameterise these values. However, I included phage and antibiotic 

decay in the equations for sensitivity testing in Chapters 3 and 4. Bacteria decay could 

be added in a similar method using a linear decay rate, but would not be easily 

distinguishable from growth in vitro and would hence be difficult to parameterise. 

Exploring these effects using parameter values obtained from other sources may be 

acceptable in a first instance, but limits the robustness of the resulting conclusions. 

These decay rates would likely vary between different in vitro and in vivo 

environments. As these would affect phage and antibiotics, they would affect the 

pressures exerted by these on bacteria, and may therefore affect conditions under 

which multidrug-resistant bacteria can appear via transduction and be selected for by 

the antibiotics, as seen in the Supplementary Material of Chapter 4. 

 

6.3.6 The role of the immune system 

In addition, I have not included the potential effect of the immune system in my 

mathematical model. This was because the main focus here was on an in vitro setting, 

where the immune system was absent. Interestingly, previous work has shown that 

immune cells can target both bacteria and phage (Hodyra-Stefaniak et al., 2015). This 

may mean that the immune system overall prevents the appearance of new multidrug-

resistant bacteria via transduction, by removing them while they are only present at 

low numbers, but also by neutralising phage and hence preventing transduction. In a 

therapy setting, it would be necessary to consider the role of the immune system, as 

previous work has shown that this can be crucial to guarantee bacterial eradication 

during phage therapy (Roach et al., 2017). My model could be extended to include 

this, since previous compartmental models have already been designed for this 

purpose and could hence be integrated here (Banuelos et al., 2021), but the data to 
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parameterise this would require further, complex microbiological work in consultation 

with immunologists. Finally, previous work in piglets found that transduction occurred 

at higher rates in vivo than in vitro (McCarthy et al., 2014). Although the mechanisms 

behind these higher rates are currently unknown, the immune system may play a role 

in this, by acting as a stress mechanism and leading to more frequent release of phage 

from the bacteria. 

 

6.3.7 Bacterial resistance to phage 

In this work, I assumed that all the bacteria in my environment were equally susceptible 

to phage infection. This is because I have not seen evidence of resistance appearing 

in my in vitro experiments presented in Chapter 3. However, as mentioned in the 

Introduction of this thesis, it is well-known that phage and bacteria are actively 

engaged in a constant arms race, each co-evolving to overcome the actions of the 

other (Koskella and Brockhurst, 2014; Hampton, Watson and Fineran, 2020). 

Resistance to phage would likely facilitate the appearance of multidrug-resistant 

bacteria, as these would be able to replicate more freely instead of remaining at low 

concentrations and being rapidly cleared by phage. This type of further evolution would 

likely matter over longer periods of time than the 24-48h periods I have considered in 

my analyses. Mathematical models have been previously used to understand how this 

co-evolution can lead to bacterial resistance to phage (Cairns et al., 2009), therefore 

these components could be integrated in my own model. 

 

6.3.8 Stochasticity 

All the models I used in this thesis are deterministic. I made this choice as my aim was 

to capture the fundamental dynamics of generalised transduction and phage 

predation, and deterministic models can be fitted to data at a lesser computational cost 

than stochastic models. However, in reality stochasticity may be important to 

determine if multidrug-resistant bacteria can persist over time, since these are initially 

present at low numbers only and are therefore at risk of stochastic fade-out (Arya et 

al., 2020). This variability could be implemented in the model by rewriting the equations 

to be solved discreetly instead of continuously, and converting rates to probabilities. 
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However, the parameter values may change, as deterministic models unrealistically 

allow for fractions of bacteria to be present at any time, hence a small transduction 

rate can still easily lead to the appearance of multidrug-resistant bacteria over time. 

On the other hand, once this rate is converted to a probability in a stochastic model, 

multidrug-resistant bacteria may no longer appear as consistently as seen in vitro. 

 

6.3.9 The need for future in vivo work 

My ability to measure the impact of transduction as a driver of AMR evolution in vivo 

was restricted in this work due to the limited availability of appropriate data. Generating 

new, detailed data to study evolution of AMR in vivo typically requires longitudinal 

sampling of patients, with substantial costs and resources required. As shown in 

Chapter 5, I can detect evidence of within-host AMR diversity in routinely collected 

data from a hospital diagnostics laboratory, but this approach is not powerful enough 

to fully capture this diversity, understand how it evolves, and identify the drivers of this 

evolution. In addition, individuals are not routinely screened for phage, hence it is 

difficult to identify instances where transduction occurred in vivo. I think that extending 

the coverage of routinely collected data to better capture diversity (e.g. by 

systematically subculturing multiple isolates per patient sample, and screening 

samples for phage) may represent an interesting opportunity to strengthen this 

research, whilst still generating data that will be clinically relevant. In the case of 

antibiotic treatment for example, the natural presence of phage capable of 

transduction may explain instances of treatment failure, if these generate multidrug-

resistant strains which are then selected for by the antibiotics. Naturally, this extension 

of routine surveillance would require substantial investments, but would also reduce 

the gap between the research and clinical domains, and may therefore lead to a more 

efficient and cost-effective process to generate interventions improving the health of 

patients.  
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6.3.10 Transduction in other bacteria, phage, and 

environments 

Finally, it is important to note that all the questions answered in this thesis have 

focused on S. aureus. Transduction is known to occur in other bacterial species and 

with other phage, but it is unclear to what extent the findings here apply to these other 

organisms. In E. coli, transduction of AMR is currently considered as negligible, due 

to the previous modelling study which suggested that it happens 1000 times less than 

conjugation (Volkova et al., 2014). However, as pointed out repeatedly in this thesis I 

believe that this study lacks data to support this conclusion, as it was not robustly 

parameterised. In any case, even if transduction in E. coli really does occur 1000 times 

less than conjugation, this may still be sufficient to consistently lead to AMR spread 

under various conditions, and should therefore be studied. Although the general 

principles of the experimental framework I developed to study transduction may be 

applicable to other bacteria (co-culture two single-resistant strains with phage, observe 

double-resistant bacteria generated by transduction, count phage and bacteria over 

time), the exact experimental methods have been designed for S. aureus and 80α 

phage specifically, and will certainly be different for other organisms. On the other 

hand, the structure of the model I developed is generalisable to other systems of 

generalised transducing phage and bacteria, as it captures what I believe to be the 

generalisable, relevant biological characteristics of phage predation and generalised 

transduction, and could therefore be adapted to focus on other strains of bacteria and 

phage showing similar dynamics of lysis and generalised transduction. However, the 

parameter values I have estimated for bacterial growth and phage predation will most 

likely vary depending on the phage, bacteria, and environment studied. 

 

Differences in the biological characteristics of the interaction between bacteria and 

phage may impact the results presented here. For example, repeating my experiments 

using a phage which frequently undergoes lysogeny, as opposed to 80α for which I 

could not detect lysogeny in my system, may lead to a greater concentration of 

multidrug-resistant bacteria, as these may be protected from killing by phage via 

lysogenic immunity. This has been previously suggested by the observation of auto-

transduction (Haaber et al., 2016). On the other hand, a more lytic phage may 

minimise the importance of transduction, as multidrug-resistant bacteria generated by 
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transduction may be rapidly killed by phage before they can replicate to reach high 

concentrations. Changes in phage burst size may impact these dynamics more 

unpredictably, since a higher burst size would simultaneously lead to more lytic and 

transducing phage, generating simultaneously a higher killing pressure on bacteria, 

and a higher incidence of transduction. 

 

Overall, the biology of phage and bacteria can substantially vary depending on the 

organisms and the environment. Although understanding the dynamics of transduction 

across species and environments will require further work, I have shown in this thesis 

that these invisible dynamics can be revealed by combining mathematical modelling 

and in vitro work. My work focusing on S. aureus therefore forms an important basis 

which future studies in other species can build upon. 

 

6.4 Conclusion 

In conclusion, the work presented in this thesis further highlighted the importance of 

generalised transduction as a key mechanism of AMR spread in S. aureus, capable 

of consistently leading to multidrug-resistant bacteria. By combining in vitro work and 

mathematical models, this work has revealed the invisible dynamics of generalised 

transduction, but also the dynamics of phage predation in S. aureus. This extended 

modelling work has reconciled conflicted literature on the joint effect of phage and 

antibiotics on bacteria, whilst considering the added complexity of transduction, with 

implications for future research on this topic and phage therapy. Finally, this work 

suggests that transduction may contribute to frequent evolution of AMR in S. aureus 

populations within-host, by shaping the substantial diversity I detected using 

phenotypic data from routine hospital surveillance. 

 

Overall, through interdisciplinary investigations combining mathematical modelling, in 

vitro work and analysis of routinely collected data, I generated novel insights into the 

contribution of phage predation dynamics and generalised transduction to the 

evolution of antimicrobial resistance in Staphylococcus aureus.  



244 
 

7 References  

Abedon, S.T. (2019) ‘Phage-Antibiotic Combination Treatments: Antagonistic Impacts 
of Antibiotics on the Pharmacodynamics of Phage Therapy?’, Antibiotics, 8(4), p. 182. 
Available at: https://doi.org/10.3390/antibiotics8040182. 

Abedon, S.T., Danis-Wlodarczyk, K.M. and Wozniak, D.J. (2021) ‘Phage Cocktail 
Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity 
Breadth and Depth’, Pharmaceuticals, 14(10), p. 1019. Available at: 
https://doi.org/10.3390/ph14101019. 

Abedon, S.T. and Katsaounis, T.I. (2018) ‘Basic Phage Mathematics’, in M.R.J. Clokie, 
A.M. Kropinski, and R. Lavigne (eds) Bacteriophages: Methods and Protocols, Volume 
3. New York, NY: Springer (Methods in Molecular Biology), pp. 3–30. Available at: 
https://doi.org/10.1007/978-1-4939-7343-9_1. 

Adaptive Phage Therapeutics, Inc. (2022) An Open-Label Multicenter Study to 
Evaluate the Safety and Efficacy of PhageBankTM Phage Therapy in Conjunction With 
Debridement, Antibiotics, and Implant Retention (DAIR) for Patients With First Time 
Culture Proven Chronic Prosthetic Joint Infection. Clinical trial registration 
NCT05269121. clinicaltrials.gov. Available at: 
https://clinicaltrials.gov/ct2/show/NCT05269121 (Accessed: 28 March 2022). 

Alibayov, B. et al. (2014) ‘Staphylococcus aureus mobile genetic elements’, Molecular 
Biology Reports, 41(8), pp. 5005–5018. Available at: https://doi.org/10.1007/s11033-
014-3367-3. 

Alonso, A. et al. (2004) ‘Overexpression of the multidrug efflux pump SmeDEF impairs 
Stenotrophomonas maltophilia physiology’, The Journal of Antimicrobial 
Chemotherapy, 53(3), pp. 432–434. Available at: https://doi.org/10.1093/jac/dkh074. 

Anderson, R.M. and May, R.M. (2010) Infectious diseases of humans: dynamics and 
control. Reprinted. Oxford: Oxford Univ. Press. 

Andersson, D.I. and Hughes, D. (2010) ‘Antibiotic resistance and its cost: is it possible 
to reverse resistance?’, Nature Reviews Microbiology, 8(4), pp. 260–271. Available at: 
https://doi.org/10.1038/nrmicro2319. 

Arya, S. et al. (2020) ‘A generalised model for generalised transduction: the 
importance of co-evolution and stochasticity in phage mediated antimicrobial 
resistance transfer’, FEMS Microbiology Ecology, 96(fiaa100). Available at: 
https://doi.org/10.1093/femsec/fiaa100. 

Bacaër, N. (2011) ‘Lotka, Volterra and the predator–prey system (1920–1926)’, in N. 
Bacaër (ed.) A Short History of Mathematical Population Dynamics. London: Springer, 
pp. 71–76. Available at: https://doi.org/10.1007/978-0-85729-115-8_13. 

Baird, R.M. and Lee, W.H. (1995) ‘Media used in the detection and enumeration of 
Staphylococcus aureus’, International Journal of Food Microbiology, 26(1), pp. 15–24. 
Available at: https://doi.org/10.1016/0168-1605(93)E0028-P. 



245 
 

Banuelos, S. et al. (2021) ‘Investigating the Impact of Combination Phage and 
Antibiotic Therapy: A Modeling Study’, in R. Segal, B. Shtylla, and S. Sindi (eds) Using 
Mathematics to Understand Biological Complexity: From Cells to Populations. Cham: 
Springer International Publishing (Association for Women in Mathematics Series), pp. 
111–134. Available at: https://doi.org/10.1007/978-3-030-57129-0_6. 

Barber, M.Y.R. (1964) ‘Naturally Occurring Methicillin-Resistant Staphylococci’, 
Microbiology, 35(2), pp. 183–190. Available at: https://doi.org/10.1099/00221287-35-
2-183. 

Barrangou, R. et al. (2007) ‘CRISPR Provides Acquired Resistance Against Viruses 
in Prokaryotes’, Science, 315(5819), pp. 1709–1712. Available at: 
https://doi.org/10.1126/science.1138140. 

Beck, W.D., Berger-Bächi, B. and Kayser, F.H. (1986) ‘Additional DNA in methicillin-
resistant Staphylococcus aureus and molecular cloning of mec-specific DNA.’, Journal 
of Bacteriology, 165(2), pp. 373–378. 

Berryhill, B.A. et al. (2021) ‘Evaluating the potential efficacy and limitations of a phage 
for joint antibiotic and phage therapy of Staphylococcus aureus infections’, 
Proceedings of the National Academy of Sciences, 118(10). Available at: 
https://doi.org/10.1073/pnas.2008007118. 

Bierowiec, K., Płoneczka-Janeczko, K. and Rypuła, K. (2016) ‘Is the Colonisation of 
Staphylococcus aureus in Pets Associated with Their Close Contact with Owners?’, 
PLoS ONE, 11(5), p. e0156052. Available at: 
https://doi.org/10.1371/journal.pone.0156052. 

Birkegård, A.C. et al. (2018) ‘Send more data: a systematic review of mathematical 
models of antimicrobial resistance’, Antimicrobial Resistance & Infection Control, 7(1), 
p. 117. Available at: https://doi.org/10.1186/s13756-018-0406-1. 

Bondy-Denomy, J. et al. (2013) ‘Bacteriophage genes that inactivate the CRISPR/Cas 
bacterial immune system’, Nature, 493(7432), pp. 429–432. Available at: 
https://doi.org/10.1038/nature11723. 

Brives, C. and Pourraz, J. (2020) ‘Phage therapy as a potential solution in the fight 
against AMR: obstacles and possible futures’, Palgrave Communications, 6(1), pp. 1–
11. Available at: https://doi.org/10.1057/s41599-020-0478-4. 

Brockhurst, M.A. and Harrison, E. (2021) ‘Ecological and evolutionary solutions to the 
plasmid paradox’, Trends in Microbiology, 0(0). Available at: 
https://doi.org/10.1016/j.tim.2021.11.001. 

Brooks, R.J. and Tobias, A.M. (1996) ‘Choosing the best model: Level of detail, 
complexity, and model performance’, Mathematical and Computer Modelling, 24(4), 
pp. 1–14. Available at: https://doi.org/10.1016/0895-7177(96)00103-3. 

Bruinsma, N. et al. (2004) ‘Trends of penicillin and erythromycin resistance among 
invasive Streptococcus pneumoniae in Europe’, Journal of Antimicrobial 



246 
 

Chemotherapy, 54(6), pp. 1045–1050. Available at: 
https://doi.org/10.1093/jac/dkh458. 

Cairns, B.J. et al. (2009) ‘Quantitative Models of In Vitro Bacteriophage–Host 
Dynamics and Their Application to Phage Therapy’, PLOS Pathogens, 5(1), p. 
e1000253. Available at: https://doi.org/10.1371/journal.ppat.1000253. 

Casjens, S.R. and Gilcrease, E.B. (2009) ‘Determining DNA Packaging Strategy by 
Analysis of the Termini of the Chromosomes in Tailed-Bacteriophage Virions’, 
Methods in molecular biology (Clifton, N.J.), 502, pp. 91–111. Available at: 
https://doi.org/10.1007/978-1-60327-565-1_7. 

Cassini, A. et al. (2019) ‘Attributable deaths and disability-adjusted life-years caused 
by infections with antibiotic-resistant bacteria in the EU and the European Economic 
Area in 2015: a population-level modelling analysis’, The Lancet Infectious Diseases, 
19(1), pp. 56–66. Available at: https://doi.org/10.1016/S1473-3099(18)30605-4. 

Catalán, P. et al. (2022) ‘Seeking patterns of antibiotic resistance in ATLAS, an open, 
raw MIC database with patient metadata’, Nature Communications, 13(1), p. 2917. 
Available at: https://doi.org/10.1038/s41467-022-30635-7. 

Centre Hospitalier Universitaire de Nīmes (2022) Comparison of the Efficacy of 
Standard Treatment Associated With Phage Therapy Versus Standard Treatment Plus 
Placebo for Diabetic Foot Ulcers Monoinfected by Staphylococcus Aureus: a 
Randomized, Multi-centre, Controlled, 2-parallel-group, Double-blind, Superiority 
Trial. Clinical trial registration NCT02664740. clinicaltrials.gov. Available at: 
https://clinicaltrials.gov/ct2/show/NCT02664740 (Accessed: 28 March 2022). 

Cespedes, C. et al. (2005) ‘The Clonality of Staphylococcus aureus Nasal Carriage’, 
The Journal of Infectious Diseases, 191(3), pp. 444–452. Available at: 
https://doi.org/10.1086/427240. 

Chae, C. et al. (2020) ‘Effect of Pediatric Influenza Vaccination on Antibiotic 
Resistance, England and Wales’, Emerging Infectious Diseases, 26(1), pp. 138–142. 
Available at: https://doi.org/10.3201/eid2601.191110. 

Chambers, H.F. and DeLeo, F.R. (2009) ‘Waves of Resistance: Staphylococcus 
aureus in the Antibiotic Era’, Nature reviews. Microbiology, 7(9), pp. 629–641. 
Available at: https://doi.org/10.1038/nrmicro2200. 

Chen, J. et al. (2018) ‘Genome hypermobility by lateral transduction’, Science, 
362(6411), pp. 207–212. Available at: https://doi.org/10.1126/science.aat5867. 

Clinical and Laboratory Standards Institute (2022) M100 Performance Standards for 
Antimicrobial Susceptibility Testing. 32nd edn. Available at: 
https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (Accessed: 26 
May 2022). 

Clokie, M.R.J. et al. (2011) ‘Phages in nature’, Bacteriophage, 1(1), pp. 31–45. 
Available at: https://doi.org/10.4161/bact.1.1.14942. 



247 
 

Collignon, P. et al. (2018) ‘Anthropological and socioeconomic factors contributing to 
global antimicrobial resistance: a univariate and multivariable analysis’, The Lancet 
Planetary Health, 2(9), pp. e398–e405. Available at: https://doi.org/10.1016/S2542-
5196(18)30186-4. 

Couderc, C. et al. (2014) ‘Fluoroquinolone Use Is a Risk Factor for Methicillin-
Resistant Staphylococcus aureus Acquisition in Long-term Care Facilities: A Nested 
Case-Case-Control Study’, Clinical Infectious Diseases, 59(2), pp. 206–215. Available 
at: https://doi.org/10.1093/cid/ciu236. 

Coyte, K.Z. et al. (2022) ‘Horizontal gene transfer increases microbiome stability’, 
bioRxiv, p. 2022.02.25.481914. Available at: 
https://doi.org/10.1101/2022.02.25.481914. 

Dale, G.E. et al. (1995) ‘Characterization of the gene for the chromosomal 
dihydrofolate reductase (DHFR) of Staphylococcus epidermidis ATCC 14990: the 
origin of the trimethoprim-resistant S1 DHFR from Staphylococcus aureus?’, Journal 
of Bacteriology, 177(11), pp. 2965–2970. 

Dalen, R. van, Peschel, A. and Sorge, N.M. van (2020) ‘Wall Teichoic Acid in 
Staphylococcus aureus Host Interaction’, Trends in Microbiology, 28(12), pp. 985–
998. Available at: https://doi.org/10.1016/j.tim.2020.05.017. 

Davies, N.G. et al. (2019) ‘Within-host dynamics shape antibiotic resistance in 
commensal bacteria’, Nature Ecology & Evolution, 3(3), pp. 440–449. Available at: 
https://doi.org/10.1038/s41559-018-0786-x. 

Davis, M.F. et al. (2012) ‘Household transmission of meticillin-resistant 
Staphylococcus aureus and other staphylococci’, The Lancet Infectious Diseases, 
12(9), pp. 703–716. Available at: https://doi.org/10.1016/S1473-3099(12)70156-1. 

Dawson, M.H. and Hobby, G.L. (1944) ‘The Clinical Use of Penicillin: Observations in 
One Hundred Cases’, Journal of the American Medical Association, 124(10), pp. 611–
622. Available at: https://doi.org/10.1001/jama.1944.02850100001001. 

Deghorain, M. and Van Melderen, L. (2012) ‘The Staphylococci Phages Family: An 
Overview’, Viruses, 4(12), pp. 3316–3335. Available at: 
https://doi.org/10.3390/v4123316. 

Diep, B.A. et al. (2006) ‘Complete genome sequence of USA300, an epidemic clone 
of community-acquired meticillin-resistant Staphylococcus aureus’, The Lancet, 
367(9512), pp. 731–739. Available at: https://doi.org/10.1016/S0140-6736(06)68231-
7. 

Do, N.T.T. et al. (2021) ‘Community-based antibiotic access and use in six low-income 
and middle-income countries: a mixed-method approach’, The Lancet Global Health, 
9(5), pp. e610–e619. Available at: https://doi.org/10.1016/S2214-109X(21)00024-3. 

Dorado-Morales, P. et al. (2021) ‘Fitness Cost Evolution of Natural Plasmids of 
Staphylococcus aureus’, mBio, 12(1), pp. e03094-20. Available at: 
https://doi.org/10.1128/mBio.03094-20. 



248 
 

Dubois, D. et al. (2010) ‘Identification of a Variety of Staphylococcus Species by 
Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry’, 
Journal of Clinical Microbiology, 48(3), pp. 941–945. Available at: 
https://doi.org/10.1128/JCM.00413-09. 

von Eiff, C. et al. (2001) ‘Nasal Carriage as a Source of Staphylococcus aureus 
Bacteremia’, New England Journal of Medicine, 344(1), pp. 11–16. Available at: 
https://doi.org/10.1056/NEJM200101043440102. 

Enright, M.C. et al. (2000) ‘Multilocus Sequence Typing for Characterization of 
Methicillin-Resistant and Methicillin-Susceptible Clones of Staphylococcus aureus’, 
Journal of Clinical Microbiology, 38(3), pp. 1008–1015. 

EUCAST: Clinical breakpoints and dosing of antibiotics (2022). Available at: 
https://www.eucast.org/clinical_breakpoints/ (Accessed: 26 May 2022). 

European Centre for Disease Prevention and Control (2022) Surveillance Atlas of 
Infectious Diseases. Available at: 
https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 
(Accessed: 24 March 2022). 

Feil, E.J. et al. (2003) ‘How Clonal Is Staphylococcus aureus?’, Journal of 
Bacteriology, 185(11), pp. 3307–3316. Available at: 
https://doi.org/10.1128/JB.185.11.3307-3316.2003. 

Fillol-Salom, A. et al. (2019) ‘Bacteriophages benefit from generalized transduction’, 
PLOS Pathogens, 15(7), p. e1007888. Available at: 
https://doi.org/10.1371/journal.ppat.1007888. 

Fish, R. et al. (2016) ‘Bacteriophage treatment of intransigent diabetic toe ulcers: a 
case series’, Journal of Wound Care, 25(Sup7), pp. S27–S33. Available at: 
https://doi.org/10.12968/jowc.2016.25.Sup7.S27. 

Fleming, A. (1929) ‘On the Antibacterial Action of Cultures of a Penicillium, with 
Special Reference to their Use in the Isolation of B. influenzæ’, British journal of 
experimental pathology, 10(3), pp. 226–236. 

Foster, T. (1996) ‘Staphylococcus’, in S. Baron (ed.) Medical Microbiology. 4th edn. 
Galveston (TX): University of Texas Medical Branch at Galveston. Available at: 
http://www.ncbi.nlm.nih.gov/books/NBK8448/ (Accessed: 26 May 2022). 

Foster, T.J. (2017) ‘Antibiotic resistance in Staphylococcus aureus. Current status and 
future prospects’, FEMS Microbiology Reviews, 41(3), pp. 430–449. Available at: 
https://doi.org/10.1093/femsre/fux007. 

Fournier, B. and Philpott, D.J. (2005) ‘Recognition of Staphylococcus aureus by the 
Innate Immune System’, Clinical Microbiology Reviews, 18(3), pp. 521–540. Available 
at: https://doi.org/10.1128/CMR.18.3.521-540.2005. 

French, G.L. (1998) ‘Enterococci and Vancomycin Resistance’, Clinical Infectious 
Diseases, 27(Supplement_1), pp. S75–S83. Available at: 
https://doi.org/10.1086/514910. 



249 
 

Fritz, S.A. et al. (2014) ‘Contamination of Environmental Surfaces With 
Staphylococcus aureus in Households With Children Infected With Methicillin-
Resistant S aureus’, JAMA Pediatrics, 168(11), pp. 1030–1038. Available at: 
https://doi.org/10.1001/jamapediatrics.2014.1218. 

Gefen, O. et al. (2014) ‘Direct observation of single stationary-phase bacteria reveals 
a surprisingly long period of constant protein production activity’, Proceedings of the 
National Academy of Sciences, 111(1), pp. 556–561. Available at: 
https://doi.org/10.1073/pnas.1314114111. 

Gelman, A. et al. (2015) Bayesian Data Analysis. 3rd edn. New York: Chapman and 
Hall/CRC. Available at: https://doi.org/10.1201/b16018. 

Gelman, D. et al. (2021) ‘Clinical Phage Microbiology: a suggested framework and 
recommendations for the in-vitro matching steps of phage therapy’, The Lancet 
Microbe, 2(10), pp. e555–e563. Available at: https://doi.org/10.1016/S2666-
5247(21)00127-0. 

Gentry, D.R. et al. (2008) ‘Genetic Characterization of Vga ABC Proteins Conferring 
Reduced Susceptibility to Pleuromutilins in Staphylococcus aureus’, Antimicrobial 
Agents and Chemotherapy, 52(12), pp. 4507–4509. Available at: 
https://doi.org/10.1128/AAC.00915-08. 

Ghasemnejad, A., Doudi, M. and Amirmozafari, N. (2019) ‘The role of the blaKPC 
gene in antimicrobial resistance of Klebsiella pneumoniae’, Iranian Journal of 
Microbiology, 11(4), pp. 288–293. 

van Griethuysen, A. et al. (1999) ‘Rapid Slide Latex Agglutination Test for Detection 
of Methicillin Resistance in Staphylococcus aureus’, Journal of Clinical Microbiology, 
37(9), pp. 2789–2792. 

van Griethuysen, A. et al. (2001) ‘International Multicenter Evaluation of Latex 
Agglutination Tests for Identification of Staphylococcus aureus’, Journal of Clinical 
Microbiology, 39(1), pp. 86–89. Available at: https://doi.org/10.1128/JCM.39.1.86-
89.2001. 

Griffith, Fred. (1928) ‘The Significance of Pneumococcal Types’, The Journal of 
Hygiene, 27(2), pp. 113–159. 

Griffiths, A.J. et al. (2000) ‘Transduction’, in An Introduction to Genetic Analysis. 

Grundmann, H. et al. (2010) ‘Geographic Distribution of Staphylococcus aureus 
Causing Invasive Infections in Europe: A Molecular-Epidemiological Analysis’, PLOS 
Medicine, 7(1), p. e1000215. Available at: 
https://doi.org/10.1371/journal.pmed.1000215. 

Haaber, J. et al. (2016) ‘Bacterial viruses enable their host to acquire antibiotic 
resistance genes from neighbouring cells’, Nature Communications, 7(1), p. 13333. 
Available at: https://doi.org/10.1038/ncomms13333. 



250 
 

Haaber, J., Penadés, J.R. and Ingmer, H. (2017) ‘Transfer of Antibiotic Resistance in 
Staphylococcus aureus’, Trends in Microbiology, 25(11), pp. 893–905. Available at: 
https://doi.org/10.1016/j.tim.2017.05.011. 

Hadas, H. et al. (1997) ‘Bacteriophage T4 Development Depends on the Physiology 
of its Host Escherichia Coli’, Microbiology, 143(1), pp. 179–185. Available at: 
https://doi.org/10.1099/00221287-143-1-179. 

Hall, J.P.J., Brockhurst, M.A. and Harrison, E. (2017) ‘Sampling the mobile gene pool: 
innovation via horizontal gene transfer in bacteria’, Philosophical Transactions of the 
Royal Society B: Biological Sciences, 372(1735), p. 20160424. Available at: 
https://doi.org/10.1098/rstb.2016.0424. 

Hall, M.D. et al. (2019) ‘Improved characterisation of MRSA transmission using within-
host bacterial sequence diversity’, eLife, 8, p. e46402. Available at: 
https://doi.org/10.7554/eLife.46402. 

Hampton, H.G., Watson, B.N.J. and Fineran, P.C. (2020) ‘The arms race between 
bacteria and their phage foes’, Nature, 577(7790), pp. 327–336. Available at: 
https://doi.org/10.1038/s41586-019-1894-8. 

Hanssen, A.-M. and Ericson Sollid, J.U. (2006) ‘SCCmec in staphylococci: genes on 
the move’, FEMS Immunology & Medical Microbiology, 46(1), pp. 8–20. Available at: 
https://doi.org/10.1111/j.1574-695X.2005.00009.x. 

Harmsen, D. et al. (2003) ‘Typing of Methicillin-Resistant Staphylococcus aureus in a 
University Hospital Setting by Using Novel Software for spa Repeat Determination and 
Database Management’, Journal of Clinical Microbiology, 41(12), pp. 5442–5448. 
Available at: https://doi.org/10.1128/JCM.41.12.5442-5448.2003. 

Hassan, A.Y. et al. (2021) ‘The Age of Phage: Friend or Foe in the New Dawn of 
Therapeutic and Biocontrol Applications?’, Pharmaceuticals, 14(3), p. 199. Available 
at: https://doi.org/10.3390/ph14030199. 

Heesterbeek, H. et al. (2015) ‘Modeling infectious disease dynamics in the complex 
landscape of global health’, Science (New York, N.Y.), 347(6227), p. aaa4339. 
Available at: https://doi.org/10.1126/science.aaa4339. 

den Heijer, C.D.J. et al. (2013) ‘Prevalence and resistance of commensal 
Staphylococcus aureus, including meticillin-resistant S aureus, in nine European 
countries: a cross-sectional study’, The Lancet. Infectious Diseases, 13(5), pp. 409–
415. Available at: https://doi.org/10.1016/S1473-3099(13)70036-7. 

Herrell, W.E. (1944) ‘The Clinical Use of Penicillin: an Antibacterial Agent of Biologic 
Origin’, Journal of the American Medical Association, 124(10), pp. 622–627. Available 
at: https://doi.org/10.1001/jama.1944.02850100012002. 

Hodyra-Stefaniak, K. et al. (2015) ‘Mammalian Host-Versus-Phage immune response 
determines phage fate in vivo’, Scientific Reports, 5(1), p. 14802. Available at: 
https://doi.org/10.1038/srep14802. 



251 
 

Holden, M.T.G. et al. (2004) ‘Complete genomes of two clinical Staphylococcus 
aureus strains: Evidence for the rapid evolution of virulence and drug resistance’, 
Proceedings of the National Academy of Sciences of the United States of America, 
101(26), pp. 9786–9791. Available at: https://doi.org/10.1073/pnas.0402521101. 

Howard-Varona, C. et al. (2017) ‘Lysogeny in nature: mechanisms, impact and 
ecology of temperate phages’, The ISME Journal, 11(7), pp. 1511–1520. Available at: 
https://doi.org/10.1038/ismej.2017.16. 

Huang, S.S. and Platt, R. (2003) ‘Risk of methicillin-resistant Staphylococcus aureus 
infection after previous infection or colonization’, Clinical Infectious Diseases: An 
Official Publication of the Infectious Diseases Society of America, 36(3), pp. 281–285. 
Available at: https://doi.org/10.1086/345955. 

Huddleston, J.R. (2014) ‘Horizontal gene transfer in the human gastrointestinal tract: 
potential spread of antibiotic resistance genes’, Infection and Drug Resistance, p. 167. 
Available at: https://doi.org/10.2147/IDR.S48820. 

Hutchings, M.I., Truman, A.W. and Wilkinson, B. (2019) ‘Antibiotics: past, present and 
future’, Current Opinion in Microbiology, 51, pp. 72–80. Available at: 
https://doi.org/10.1016/j.mib.2019.10.008. 

Hyman, P. and Abedon, S.T. (2012) ‘Smaller Fleas: Viruses of Microorganisms’, 
Scientifica, 2012, p. e734023. Available at: https://doi.org/10.6064/2012/734023. 

International Working Group on the Classification of Staphylococcal Cassette 
Chromosome Elements (2009) ‘Classification of Staphylococcal Cassette 
Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements’, 
Antimicrobial Agents and Chemotherapy, 53(12), pp. 4961–4967. Available at: 
https://doi.org/10.1128/AAC.00579-09. 

Jacoby, G.A. (2009) ‘AmpC β-Lactamases’, Clinical Microbiology Reviews, 22(1), pp. 
161–182. Available at: https://doi.org/10.1128/CMR.00036-08. 

Jassim, S.A.A. and Limoges, R.G. (2014) ‘Natural solution to antibiotic resistance: 
bacteriophages “The Living Drugs”’, World Journal of Microbiology and Biotechnology, 
30(8), pp. 2153–2170. Available at: https://doi.org/10.1007/s11274-014-1655-7. 

Jiang, S.C. and Paul, J.H. (1998) ‘Gene Transfer by Transduction in the Marine 
Environment’, Applied and Environmental Microbiology, 64(8), pp. 2780–2787. 
Available at: https://doi.org/10.1128/AEM.64.8.2780-2787.1998. 

Joice, R. and Lipsitch, M. (2013) ‘Targeting Imperfect Vaccines against Drug-
Resistance Determinants: A Strategy for Countering the Rise of Drug Resistance’, 
PLOS ONE, 8(7), p. e68940. Available at: 
https://doi.org/10.1371/journal.pone.0068940. 

Katayama, Y., Ito, T. and Hiramatsu, K. (2000) ‘A New Class of Genetic Element, 
Staphylococcus Cassette Chromosome mec, Encodes Methicillin Resistance in 
Staphylococcus aureus’, Antimicrobial Agents and Chemotherapy, 44(6), pp. 1549–
1555. 



252 
 

Keeling, M.J. and Rohani, P. (2008) Modeling Infectious Diseases in Humans and 
Animals, Modeling Infectious Diseases in Humans and Animals. Princeton University 
Press. Available at: https://doi.org/10.1515/9781400841035. 

Kermack, W.O. and McKendrick, A.G. (1927) ‘A contribution to the mathematical 
theory of epidemics’, Proceedings of the Royal Society of London. Series A, 115(772), 
pp. 700–721. Available at: https://doi.org/10.1098/rspa.1927.0118. 

Kever, L. et al. (2022) ‘Aminoglycoside Antibiotics Inhibit Phage Infection by Blocking 
an Early Step of the Infection Cycle’, mBio, 0(0), pp. e00783-22. Available at: 
https://doi.org/10.1128/mbio.00783-22. 

Khan, S.A. and Novick, R.P. (1983) ‘Complete nucleotide sequence of pT181, a 
tetracycline-resistance plasmid from Staphylococcus aureus’, Plasmid, 10(3), pp. 
251–259. Available at: https://doi.org/10.1016/0147-619X(83)90039-2. 

Kimmig, A. et al. (2021) ‘Management of Staphylococcus aureus Bloodstream 
Infections’, Frontiers in Medicine, 7. Available at: 
https://www.frontiersin.org/article/10.3389/fmed.2020.616524 (Accessed: 26 April 
2022). 

King, S. et al. (2016) ‘Antimicrobial Stewardship’, Rand Health Quarterly, 5(3), p. 2. 

Kirkeby, C. et al. (2017) ‘Methods for estimating disease transmission rates: 
Evaluating the precision of Poisson regression and two novel methods’, Scientific 
Reports, 7, p. 9496. Available at: https://doi.org/10.1038/s41598-017-09209-x. 

van Kleef, E. et al. (2013) ‘Modelling the transmission of healthcare associated 
infections: a systematic review’, BMC Infectious Diseases, 13(1), p. 294. Available at: 
https://doi.org/10.1186/1471-2334-13-294. 

Kluytmans, J., van Belkum, A. and Verbrugh, H. (1997) ‘Nasal carriage of 
Staphylococcus aureus: epidemiology, underlying mechanisms, and associated 
risks.’, Clinical Microbiology Reviews, 10(3), pp. 505–520. 

Knight, G.M. et al. (2012) ‘Shift in dominant hospital-associated methicillin-resistant 
Staphylococcus aureus (HA-MRSA) clones over time’, Journal of Antimicrobial 
Chemotherapy, 67(10), pp. 2514–2522. Available at: 
https://doi.org/10.1093/jac/dks245. 

Knight, G.M. et al. (2019) ‘Mathematical modelling for antibiotic resistance control 
policy: do we know enough?’, BMC Infectious Diseases, 19(1), p. 1011. Available at: 
https://doi.org/10.1186/s12879-019-4630-y. 

Knight, G.M., Budd, E.L. and Lindsay, J.A.Y. 2013 (2013) ‘Large mobile genetic 
elements carrying resistance genes that do not confer a fitness burden in healthcare-
associated meticillin-resistant Staphylococcus aureus’, Microbiology, 159(Pt_8), pp. 
1661–1672. Available at: https://doi.org/10.1099/mic.0.068551-0. 

Kokjohn, T.A. and Sayler, G.S.Y. (1991) ‘Attachment and replication of Pseudomonas 
aeruginosa bacteriophages under conditions simulating aquatic environments’, 



253 
 

Microbiology, 137(3), pp. 661–666. Available at: https://doi.org/10.1099/00221287-
137-3-661. 

Kondo, K., Kawano, M. and Sugai, M. (2021) ‘Distribution of Antimicrobial Resistance 
and Virulence Genes within the Prophage-Associated Regions in Nosocomial 
Pathogens’, mSphere, 6(4), pp. e00452-21. Available at: 
https://doi.org/10.1128/mSphere.00452-21. 

Kong, E.F., Johnson, J.K. and Jabra-Rizk, M.A. (2016) ‘Community-Associated 
Methicillin-Resistant Staphylococcus aureus: An Enemy amidst Us’, PLoS Pathogens, 
12(10), p. e1005837. Available at: https://doi.org/10.1371/journal.ppat.1005837. 

Koskella, B. and Brockhurst, M.A. (2014) ‘Bacteria–phage coevolution as a driver of 
ecological and evolutionary processes in microbial communities’, FEMS Microbiology 
Reviews, 38(5), pp. 916–931. Available at: https://doi.org/10.1111/1574-6976.12072. 

Kuhl, S.A., Pattee, P.A. and Baldwin, J.N. (1978) ‘Chromosomal map location of the 
methicillin resistance determinant in Staphylococcus aureus.’, Journal of Bacteriology, 
135(2), pp. 460–465. 

Kwan, T. et al. (2005) ‘The complete genomes and proteomes of 27 Staphylococcus 
aureus bacteriophages’, Proceedings of the National Academy of Sciences, 102(14), 
pp. 5174–5179. Available at: https://doi.org/10.1073/pnas.0501140102. 

LaMarre, J. et al. (2013) ‘The Genetic Environment of the cfr Gene and the Presence 
of Other Mechanisms Account for the Very High Linezolid Resistance of 
Staphylococcus epidermidis Isolate 426-3147L’, Antimicrobial Agents and 
Chemotherapy, 57(3), p. 1173. Available at: https://doi.org/10.1128/AAC.02047-12. 

Larsen, J. et al. (2022) ‘Emergence of methicillin resistance predates the clinical use 
of antibiotics’, Nature, 602(7895), pp. 135–141. Available at: 
https://doi.org/10.1038/s41586-021-04265-w. 

Larsson, D.G.J. (2014) ‘Pollution from drug manufacturing: review and perspectives’, 
Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), p. 
20130571. Available at: https://doi.org/10.1098/rstb.2013.0571. 

Leclerc, Q.J. et al. (2020) ‘Feasibility of informing syndrome-level empiric antibiotic 
recommendations using publicly available antibiotic resistance datasets’, Wellcome 
Open Research, 4, p. 140. Available at: 
https://doi.org/10.12688/wellcomeopenres.15477.2. 

Leclerc, Q.J. et al. (2021) ‘Importance of patient bed pathways and length of stay 
differences in predicting COVID-19 hospital bed occupancy in England’, BMC Health 
Services Research, 21(1), p. 566. Available at: https://doi.org/10.1186/s12913-021-
06509-x. 

Leclerc, Q.J. et al. (2022) ‘Growth-Dependent Predation and Generalized 
Transduction of Antimicrobial Resistance by Bacteriophage’, mSystems, 0(0), pp. 
e00135-22. Available at: https://doi.org/10.1128/msystems.00135-22. 



254 
 

Leclerc, Q.J., Lindsay, J.A. and Knight, G.M. (2019) ‘Mathematical modelling to study 
the horizontal transfer of antimicrobial resistance genes in bacteria: current state of 
the field and recommendations’, Journal of The Royal Society Interface, 16(157), p. 
20190260. Available at: https://doi.org/10.1098/rsif.2019.0260. 

Leclerc, Q.J., Lindsay, J.A. and Knight, G.M. (2022) ‘Modelling the synergistic effect 
of bacteriophage and antibiotics on bacteria: killers and drivers of resistance 
evolution’, bioRxiv [Preprint]. Available at: https://doi.org/10.1101/2022.03.02.480504. 

Lehman, S.M. et al. (2019) ‘Design and Preclinical Development of a Phage Product 
for the Treatment of Antibiotic-Resistant Staphylococcus aureus Infections’, Viruses, 
11(1), p. 88. Available at: https://doi.org/10.3390/v11010088. 

Levin, B.R. et al. (1997) ‘The Population Genetics of Antibiotic Resistance’, Clinical 
Infectious Diseases, 24(Supplement_1), pp. S9–S16. Available at: 
https://doi.org/10.1093/clinids/24.Supplement_1.S9. 

Li, B. et al. (2020) ‘Colistin Resistance Gene mcr-1 Mediates Cell Permeability and 
Resistance to Hydrophobic Antibiotics’, Frontiers in Microbiology, 10. Available at: 
https://www.frontiersin.org/article/10.3389/fmicb.2019.03015 (Accessed: 6 June 
2022). 

Li, X. et al. (2021) ‘A combination therapy of Phages and Antibiotics: Two is better 
than one’, International Journal of Biological Sciences, 17(13), pp. 3573–3582. 
Available at: https://doi.org/10.7150/ijbs.60551. 

Lin, D.M., Koskella, B. and Lin, H.C. (2017) ‘Phage therapy: An alternative to 
antibiotics in the age of multi-drug resistance’, World Journal of Gastrointestinal 
Pharmacology and Therapeutics, 8(3), pp. 162–173. Available at: 
https://doi.org/10.4292/wjgpt.v8.i3.162. 

Lindsay, J.A. et al. (2006) ‘Microarrays Reveal that Each of the Ten Dominant 
Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated 
and Regulatory Genes’, Journal of Bacteriology, 188(2), pp. 669–676. Available at: 
https://doi.org/10.1128/JB.188.2.669-676.2006. 

Lindsay, J.A. (2010) ‘Genomic variation and evolution of Staphylococcus aureus’, 
International Journal of Medical Microbiology, 300(2), pp. 98–103. Available at: 
https://doi.org/10.1016/j.ijmm.2009.08.013. 

Lindsay, J.A. (2014) ‘Staphylococcus aureus genomics and the impact of horizontal 
gene transfer’, International Journal of Medical Microbiology, 304(2), pp. 103–109. 
Available at: https://doi.org/10.1016/j.ijmm.2013.11.010. 

Lipsitch, M. and Samore, M.H. (2002) ‘Antimicrobial Use and Antimicrobial 
Resistance: A Population Perspective - Volume 8, Number 4—April 2002 - Emerging 
Infectious Diseases journal - CDC’, Emerging Infectious Diseases [Preprint]. Available 
at: https://doi.org/10.3201/eid0804.010312. 



255 
 

Loh, B. and Leptihn, S. (2020) ‘A Call For a Multidisciplinary Future of Phage Therapy 
to Combat Multi-drug Resistant Bacterial Infections’, Infectious Microbes & Diseases, 
2(1), pp. 1–2. Available at: https://doi.org/10.1097/IM9.0000000000000018. 

Lopes, A., Pereira, C. and Almeida, A. (2018) ‘Sequential Combined Effect of Phages 
and Antibiotics on the Inactivation of Escherichia coli’, Microorganisms, 6(4), p. 125. 
Available at: https://doi.org/10.3390/microorganisms6040125. 

Lowy, F.D. (2003) ‘Antimicrobial resistance: the example of Staphylococcus aureus’, 
Journal of Clinical Investigation, 111(9), pp. 1265–1273. Available at: 
https://doi.org/10.1172/JCI200318535. 

Lwoff, A. (1953) ‘Lysogeny’, Bacteriological Reviews, 17(4), pp. 269–337. 

MacFadden, D.R. et al. (2019) ‘The Relative Impact of Community and Hospital 
Antibiotic Use on the Selection of Extended-spectrum Beta-lactamase–producing 
Escherichia coli’, Clinical Infectious Diseases: An Official Publication of the Infectious 
Diseases Society of America, 69(1), pp. 182–188. Available at: 
https://doi.org/10.1093/cid/ciy978. 

Mahase, E. (2020) ‘UK launches subscription style model for antibiotics to encourage 
new development’, BMJ, 369, p. m2468. Available at: 
https://doi.org/10.1136/bmj.m2468. 

Maree, M. et al. (2022) ‘Natural transformation allows transfer of SCCmec-mediated 
methicillin resistance in Staphylococcus aureus biofilms’, Nature Communications, 
13(1), p. 2477. Available at: https://doi.org/10.1038/s41467-022-29877-2. 

Mašlaňová, I. et al. (2016) ‘Efficient plasmid transduction to Staphylococcus aureus 
strains insensitive to the lytic action of transducing phage’, FEMS microbiology letters, 
363(19), p. fnw211. Available at: https://doi.org/10.1093/femsle/fnw211. 

May, R.M. and Anderson, R.M. (1987) ‘Transmission dynamics of HIV infection’, 
Nature, 326(6109), pp. 137–142. Available at: https://doi.org/10.1038/326137a0. 

McCallum, H., Barlow, N. and Hone, J. (2001) ‘How should pathogen transmission be 
modelled?’, Trends in Ecology & Evolution, 16(6), pp. 295–300. Available at: 
https://doi.org/10.1016/S0169-5347(01)02144-9. 

McCarthy, A.J. et al. (2011) ‘The Distribution of Mobile Genetic Elements (MGEs) in 
MRSA CC398 Is Associated with Both Host and Country’, Genome Biology and 
Evolution, 3, pp. 1164–1174. Available at: https://doi.org/10.1093/gbe/evr092. 

McCarthy, A.J. et al. (2014) ‘Extensive Horizontal Gene Transfer during 
Staphylococcus aureus Co-colonization In Vivo’, Genome Biology and Evolution, 
6(10), pp. 2697–2708. Available at: https://doi.org/10.1093/gbe/evu214. 

McCarthy, A.J. and Lindsay, J.A. (2012) ‘The distribution of plasmids that carry 
virulence and resistance genes in Staphylococcus aureus is lineage associated’, BMC 
Microbiology, 12(1), p. 104. Available at: https://doi.org/10.1186/1471-2180-12-104. 



256 
 

McCarthy, A.J. and Lindsay, J.A. (2013) ‘Staphylococcus aureus innate immune 
evasion is lineage-specific: A bioinfomatics study’, Infection, Genetics and Evolution, 
19, pp. 7–14. Available at: https://doi.org/10.1016/j.meegid.2013.06.012. 

McCarthy, A.J., Lindsay, J.A. and Loeffler, A. (2012) ‘Are all meticillin-resistant 
Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic 
comparison between animal and human MRSA’, Veterinary Dermatology, 23(4), pp. 
267-e54. Available at: https://doi.org/10.1111/j.1365-3164.2012.01072.x. 

McCarthy, A.J., Witney, A.A. and Lindsay, Jodi.A. (2012) ‘Staphylococcus aureus 
Temperate Bacteriophage: Carriage and Horizontal Gene Transfer is Lineage 
Associated’, Frontiers in Cellular and Infection Microbiology, 2. Available at: 
https://doi.org/10.3389/fcimb.2012.00006. 

McGuinness, W.A., Malachowa, N. and DeLeo, F.R. (2017) ‘Vancomycin Resistance 
in Staphylococcus aureus’, The Yale Journal of Biology and Medicine, 90(2), pp. 269–
281. 

Meka, V.G. et al. (2004) ‘Linezolid Resistance in Sequential Staphylococcus aureus 
Isolates Associated with a T2500A Mutation in the 23S rRNA Gene and Loss of a 
Single Copy of rRNA’, The Journal of Infectious Diseases, 190(2), pp. 311–317. 
Available at: https://doi.org/10.1086/421471. 

Melnyk, A.H., Wong, A. and Kassen, R. (2015) ‘The fitness costs of antibiotic 
resistance mutations’, Evolutionary Applications, 8(3), pp. 273–283. Available at: 
https://doi.org/10.1111/eva.12196. 

Metcalf, C.J.E. et al. (2015) ‘Five challenges in evolution and infectious diseases’, 
Epidemics, 10, pp. 40–44. Available at: https://doi.org/10.1016/j.epidem.2014.12.003. 

Miller, R.R. et al. (2014) ‘Dynamics of acquisition and loss of carriage of 
Staphylococcus aureus strains in the community: The effect of clonal complex’, The 
Journal of Infection, 68(5), pp. 426–439. Available at: 
https://doi.org/10.1016/j.jinf.2013.12.013. 

Miller, S.I. (2016) ‘Antibiotic Resistance and Regulation of the Gram-Negative 
Bacterial Outer Membrane Barrier by Host Innate Immune Molecules’, mBio, 7(5), pp. 
e01541-16. Available at: https://doi.org/10.1128/mBio.01541-16. 

Missiakas, D.M. and Schneewind, O. (2013) ‘Growth and Laboratory Maintenance of 
Staphylococcus aureus’, Current protocols in microbiology, CHAPTER 9, p. Unit-9C.1. 
Available at: https://doi.org/10.1002/9780471729259.mc09c01s28. 

Molina, F. et al. (2021) ‘A New Pipeline for Designing Phage Cocktails Based on 
Phage-Bacteria Infection Networks’, Frontiers in Microbiology, 12. Available at: 
https://www.frontiersin.org/article/10.3389/fmicb.2021.564532 (Accessed: 5 June 
2022). 

Mongkolrattanothai, K. et al. (2011) ‘Simultaneous carriage of multiple genotypes of 
Staphylococcus aureus in children’, Journal of Medical Microbiology, 60(3), pp. 317–
322. Available at: https://doi.org/10.1099/jmm.0.025841-0. 



257 
 

Moodley, A. et al. (2012) ‘Comparative Host Specificity of Human- and Pig- Associated 
Staphylococcus aureus Clonal Lineages’, PLOS ONE, 7(11), p. e49344. Available at: 
https://doi.org/10.1371/journal.pone.0049344. 

Morikawa, K. et al. (2012) ‘Expression of a Cryptic Secondary Sigma Factor Gene 
Unveils Natural Competence for DNA Transformation in Staphylococcus aureus’, 
PLOS Pathogens, 8(11), p. e1003003. Available at: 
https://doi.org/10.1371/journal.ppat.1003003. 

Mossong, J. et al. (2008) ‘Social Contacts and Mixing Patterns Relevant to the Spread 
of Infectious Diseases’, PLOS Medicine, 5(3), p. e74. Available at: 
https://doi.org/10.1371/journal.pmed.0050074. 

Mueller, M., de la Peña, A. and Derendorf, H. (2004) ‘Issues in Pharmacokinetics and 
Pharmacodynamics of Anti-Infective Agents: Kill Curves versus MIC’, Antimicrobial 
Agents and Chemotherapy, 48(2), pp. 369–377. Available at: 
https://doi.org/10.1128/AAC.48.2.369-377.2004. 

Muenks, C.E. et al. (2016) ‘Diversity of Staphylococcus aureus strains colonizing 
various niches of the human body’, Journal of Infection, 72(6), pp. 698–705. Available 
at: https://doi.org/10.1016/j.jinf.2016.03.015. 

Murray, C.J. et al. (2022) ‘Global burden of bacterial antimicrobial resistance in 2019: 
a systematic analysis’, The Lancet, 399(10325), pp. 629–655. Available at: 
https://doi.org/10.1016/S0140-6736(21)02724-0. 

Nepal, R. et al. (2021) ‘Prophages encoding human immune evasion cluster genes 
are enriched in Staphylococcus aureus isolated from chronic rhinosinusitis patients 
with nasal polyps’, Microbial Genomics, 7(12), p. 000726. Available at: 
https://doi.org/10.1099/mgen.0.000726. 

Nielsen, E.I. and Friberg, L.E. (2013) ‘Pharmacokinetic-Pharmacodynamic Modeling 
of Antibacterial Drugs’, Pharmacological Reviews. Edited by D. Andersson, 65(3), pp. 
1053–1090. Available at: https://doi.org/10.1124/pr.111.005769. 

Niewiadomska, A.M. et al. (2019) ‘Population-level mathematical modeling of 
antimicrobial resistance: a systematic review’, BMC Medicine, 17(1), p. 81. Available 
at: https://doi.org/10.1186/s12916-019-1314-9. 

Novick, R.P. (1987) ‘Plasmid incompatibility’, Microbiological Reviews, 51(4), pp. 381–
395. 

Ochman, H., Lawrence, J.G. and Groisman, E.A. (2000) ‘Lateral gene transfer and the 
nature of bacterial innovation’, Nature, 405(6784), pp. 299–304. Available at: 
https://doi.org/10.1038/35012500. 

O’Gara, J.P. (2017) ‘Into the storm: Chasing the opportunistic pathogen 
Staphylococcus aureus from skin colonisation to life-threatening infections’, 
Environmental Microbiology, 19(10), pp. 3823–3833. Available at: 
https://doi.org/10.1111/1462-2920.13833. 



258 
 

O’Neill, J. (2016) ‘Tackling drug-resistant infections globally: final report and 
recommendations’. The Review on Antimicrobial Resistance. 

Ooi, M.L. et al. (2019) ‘Safety and Tolerability of Bacteriophage Therapy for Chronic 
Rhinosinusitis Due to Staphylococcus aureus’, JAMA Otolaryngology–Head & Neck 
Surgery, 145(8), pp. 723–729. Available at: 
https://doi.org/10.1001/jamaoto.2019.1191. 

Opatowski, L. et al. (2011) ‘Contribution of mathematical modeling to the fight against 
bacterial antibiotic resistance’:, Current Opinion in Infectious Diseases, 24(3), pp. 279–
287. Available at: https://doi.org/10.1097/QCO.0b013e3283462362. 

Osei Sekyere, J. (2018) ‘Genomic insights into nitrofurantoin resistance mechanisms 
and epidemiology in clinical Enterobacteriaceae’, Future Science OA, 4(5), p. 
FSO293. Available at: https://doi.org/10.4155/fsoa-2017-0156. 

Otter, J.A. and French, G.L. (2010) ‘Molecular epidemiology of community-associated 
meticillin-resistant Staphylococcus aureus in Europe’, The Lancet Infectious Diseases, 
10(4), pp. 227–239. Available at: https://doi.org/10.1016/S1473-3099(10)70053-0. 

Park, J.T. et al. (1974) ‘Mutants of Staphylococci with Altered Cell Walls’, Annals of 
the New York Academy of Sciences, 236(1), pp. 54–62. Available at: 
https://doi.org/10.1111/j.1749-6632.1974.tb41481.x. 

Patel, S., Preuss, C.V. and Bernice, F. (2022) ‘Vancomycin’, in StatPearls. Treasure 
Island (FL): StatPearls Publishing. Available at: 
http://www.ncbi.nlm.nih.gov/books/NBK459263/ (Accessed: 4 June 2022). 

Payne, L.J. et al. (2021) ‘Identification and classification of antiviral defence systems 
in bacteria and archaea with PADLOC reveals new system types’, Nucleic Acids 
Research, 49(19), pp. 10868–10878. Available at: 
https://doi.org/10.1093/nar/gkab883. 

Payne, R.J.H. and Jansen, V.A.A. (2000) ‘Phage therapy: The peculiar kinetics of self-
replicating pharmaceuticals’, Clinical Pharmacology & Therapeutics, 68(3), pp. 225–
230. Available at: https://doi.org/10.1067/mcp.2000.109520. 

Payne, R.J.H. and Jansen, V.A.A. (2001) ‘Understanding Bacteriophage Therapy as 
a Density-dependent Kinetic Process’, Journal of Theoretical Biology, 208(1), pp. 37–
48. Available at: https://doi.org/10.1006/jtbi.2000.2198. 

Payne, R.J.H. and Jansen, V.A.A. (2003) ‘Pharmacokinetic Principles of 
Bacteriophage Therapy’, Clinical Pharmacokinetics, 42(4), pp. 315–325. Available at: 
https://doi.org/10.2165/00003088-200342040-00002. 

Pei, S. et al. (2018) ‘Inference and control of the nosocomial transmission of 
methicillin-resistant Staphylococcus aureus’, eLife. Edited by B. Cooper and P. Jha, 
7, p. e40977. Available at: https://doi.org/10.7554/eLife.40977. 

Périchon, B. and Courvalin, P. (2009) ‘VanA-Type Vancomycin-Resistant 
Staphylococcus aureus’, Antimicrobial Agents and Chemotherapy, 53(11), pp. 4580–
4587. Available at: https://doi.org/10.1128/AAC.00346-09. 



259 
 

Petrovic Fabijan, A. et al. (2020) ‘Safety of bacteriophage therapy in severe 
Staphylococcus aureus infection’, Nature Microbiology, 5(3), pp. 465–472. Available 
at: https://doi.org/10.1038/s41564-019-0634-z. 

Pinho, M.G., de Lencastre, H. and Tomasz, A. (2001) ‘An acquired and a native 
penicillin-binding protein cooperate in building the cell wall of drug-resistant 
staphylococci’, Proceedings of the National Academy of Sciences of the United States 
of America, 98(19), pp. 10886–10891. Available at: 
https://doi.org/10.1073/pnas.191260798. 

Powers, T. and Noller, H.F. (1991) ‘A functional pseudoknot in 16S ribosomal RNA.’, 
The EMBO Journal, 10(8), pp. 2203–2214. 

Price, L. et al. (2018) ‘Effectiveness of interventions to improve the public’s 
antimicrobial resistance awareness and behaviours associated with prudent use of 
antimicrobials: a systematic review’, Journal of Antimicrobial Chemotherapy, 73(6), 
pp. 1464–1478. Available at: https://doi.org/10.1093/jac/dky076. 

Rahman, M. et al. (2011) ‘Characterization of induced Staphylococcus aureus 
bacteriophage SAP-26 and its anti-biofilm activity with rifampicin’, Biofouling, 27(10), 
pp. 1087–1093. Available at: https://doi.org/10.1080/08927014.2011.631169. 

Raj, J.R.M. and Karunasagar, I. (2019) ‘Phages amid antimicrobial resistance’, Critical 
Reviews in Microbiology, 45(5–6), pp. 701–711. Available at: 
https://doi.org/10.1080/1040841X.2019.1691973. 

Rice, L.B. (2008) ‘Federal Funding for the Study of Antimicrobial Resistance in 
Nosocomial Pathogens: No ESKAPE’, The Journal of Infectious Diseases, 197(8), pp. 
1079–1081. Available at: https://doi.org/10.1086/533452. 

Roach, D.R. et al. (2017) ‘Synergy between the Host Immune System and 
Bacteriophage Is Essential for Successful Phage Therapy against an Acute 
Respiratory Pathogen’, Cell Host & Microbe, 22(1), pp. 38-47.e4. Available at: 
https://doi.org/10.1016/j.chom.2017.06.018. 

Robinson, D.A. and Enright, M.C. (2004) ‘Evolution of Staphylococcus aureus by 
Large Chromosomal Replacements’, Journal of Bacteriology, 186(4), pp. 1060–1064. 
Available at: https://doi.org/10.1128/JB.186.4.1060-1064.2004. 

Rodriguez-Gonzalez, R.A. et al. (2020) ‘Quantitative Models of Phage-Antibiotic 
Combination Therapy’, mSystems, 5(1), pp. e00756-19. Available at: 
https://doi.org/10.1128/mSystems.00756-19. 

Rosenbach, A.J.F. (1884) Mikro-organismen bei den Wund-Infections-Krankheiten 
des Menschen. J.F. Bergmann. 

Rouch, D.A. et al. (1987) ‘The aacA-aphD gentamicin and kanamycin resistance 
determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide 
sequence analysis’, Journal of General Microbiology, 133(11), pp. 3039–3052. 
Available at: https://doi.org/10.1099/00221287-133-11-3039. 



260 
 

Ryu, S. et al. (2014) ‘Colonization and Infection of the Skin by S. aureus: Immune 
System Evasion and the Response to Cationic Antimicrobial Peptides’, International 
Journal of Molecular Sciences, 15(5), pp. 8753–8772. Available at: 
https://doi.org/10.3390/ijms15058753. 

Salton, M.R.J. and Kim, K.-S. (1996) ‘Structure’, in S. Baron (ed.) Medical 
Microbiology. 4th edn. Galveston (TX): University of Texas Medical Branch at 
Galveston. Available at: http://www.ncbi.nlm.nih.gov/books/NBK8477/ (Accessed: 26 
May 2022). 

Santos, S.B. et al. (2014) ‘Population Dynamics of a Salmonella Lytic Phage and Its 
Host: Implications of the Host Bacterial Growth Rate in Modelling’, PLoS ONE, 9(7), 
p. e102507. Available at: https://doi.org/10.1371/journal.pone.0102507. 

Sauvage, E. et al. (2008) ‘The penicillin-binding proteins: structure and role in 
peptidoglycan biosynthesis’, FEMS Microbiology Reviews, 32(2), pp. 234–258. 
Available at: https://doi.org/10.1111/j.1574-6976.2008.00105.x. 

Scharn, C.R., Tenover, F.C. and Goering, R.V. (2013) ‘Transduction of Staphylococcal 
Cassette Chromosome mec Elements between Strains of Staphylococcus aureus’, 
Antimicrobial Agents and Chemotherapy, 57(11), pp. 5233–5238. Available at: 
https://doi.org/10.1128/AAC.01058-13. 

Schmitz, F.-J. et al. (2000) ‘Prevalence of macrolide-resistance genes in 
Staphylococcus aureus and Enterococcus faecium isolates from 24 European 
university hospitals’, Journal of Antimicrobial Chemotherapy, 45(6), pp. 891–894. 
Available at: https://doi.org/10.1093/jac/45.6.891. 

Schrag, S.J. and Mittler, J.E. (1996) ‘Host-Parasite Coexistence: The Role of Spatial 
Refuges in Stabilizing Bacteria-Phage Interactions’, The American Naturalist, 148(2), 
pp. 348–377. Available at: https://doi.org/10.1086/285929. 

Sender, R., Fuchs, S. and Milo, R. (2016) ‘Revised Estimates for the Number of 
Human and Bacteria Cells in the Body’, PLOS Biology, 14(8), p. e1002533. Available 
at: https://doi.org/10.1371/journal.pbio.1002533. 

Shallcross, L.J. et al. (2013) ‘The role of the Panton-Valentine leucocidin toxin in 
staphylococcal disease: a systematic review and meta-analysis’, The Lancet 
Infectious Diseases, 13(1), pp. 43–54. Available at: https://doi.org/10.1016/S1473-
3099(12)70238-4. 

Shkoporov, A.N., Turkington, C.J. and Hill, C. (2022) ‘Mutualistic interplay between 
bacteriophages and bacteria in the human gut’, Nature Reviews Microbiology, pp. 1–
13. Available at: https://doi.org/10.1038/s41579-022-00755-4. 

Shrestha, P. et al. (2018) ‘Enumerating the economic cost of antimicrobial resistance 
per antibiotic consumed to inform the evaluation of interventions affecting their use’, 
Antimicrobial Resistance and Infection Control, 7, p. 98. Available at: 
https://doi.org/10.1186/s13756-018-0384-3. 



261 
 

Silverman, R.B. and Holladay, M.W. (2014) The Organic Chemistry of Drug Design 
and Drug Action. Academic Press. 

Singh-Moodley, A. et al. (2020) ‘Diversity of SCCmec elements and spa types in South 
African Staphylococcus aureus mecA-positive blood culture isolates’, BMC Infectious 
Diseases, 20(1), p. 816. Available at: https://doi.org/10.1186/s12879-020-05547-w. 

Smith, D.R., Temime, L. and Opatowski, L. (2021) ‘Microbiome-pathogen interactions 
drive epidemiological dynamics of antibiotic resistance: A modeling study applied to 
nosocomial pathogen control’, eLife, 10, p. e68764. Available at: 
https://doi.org/10.7554/eLife.68764. 

Smith, T.C. (2015) ‘Livestock-Associated Staphylococcus aureus: The United States 
Experience’, PLOS Pathogens, 11(2), p. e1004564. Available at: 
https://doi.org/10.1371/journal.ppat.1004564. 

Spicknall, I.H. et al. (2013) ‘A Modeling Framework for the Evolution and Spread of 
Antibiotic Resistance: Literature Review and Model Categorization’, American Journal 
of Epidemiology, 178(4), pp. 508–520. Available at: 
https://doi.org/10.1093/aje/kwt017. 

Spiegelhalter, D.J. et al. (2002) ‘Bayesian measures of model complexity and fit’, 
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), pp. 
583–639. Available at: https://doi.org/10.1111/1467-9868.00353. 

Stanczak-Mrozek, K.I. et al. (2015) ‘Within-host diversity of MRSA antimicrobial 
resistances’, Journal of Antimicrobial Chemotherapy, 70(8), pp. 2191–2198. Available 
at: https://doi.org/10.1093/jac/dkv119. 

Stanczak-Mrozek, K.I., Laing, K.G. and Lindsay, J.A. (2017) ‘Resistance gene 
transfer: induction of transducing phage by sub-inhibitory concentrations of 
antimicrobials is not correlated to induction of lytic phage’, Journal of Antimicrobial 
Chemotherapy, 72(6), pp. 1624–1631. Available at: 
https://doi.org/10.1093/jac/dkx056. 

Tacconelli, E. et al. (2018) ‘Discovery, research, and development of new antibiotics: 
the WHO priority list of antibiotic-resistant bacteria and tuberculosis’, The Lancet 
Infectious Diseases, 18(3), pp. 318–327. Available at: https://doi.org/10.1016/S1473-
3099(17)30753-3. 

Tanwar, J. et al. (2014) ‘Multidrug Resistance: An Emerging Crisis’, Interdisciplinary 
Perspectives on Infectious Diseases, 2014, p. 541340. Available at: 
https://doi.org/10.1155/2014/541340. 

Taylor, T.A. and Unakal, C.G. (2022) ‘Staphylococcus Aureus’, in StatPearls. Treasure 
Island (FL): StatPearls Publishing. Available at: 
http://www.ncbi.nlm.nih.gov/books/NBK441868/ (Accessed: 26 May 2022). 

Tedijanto, C. et al. (2018) ‘Estimating the proportion of bystander selection for 
antibiotic resistance among potentially pathogenic bacterial flora’, Proceedings of the 



262 
 

National Academy of Sciences, 115(51), pp. E11988–E11995. Available at: 
https://doi.org/10.1073/pnas.1810840115. 

Tekle, Y.I. et al. (2012) ‘Controlling Antimicrobial Resistance through Targeted, 
Vaccine-Induced Replacement of Strains’, PLOS ONE, 7(12), p. e50688. Available at: 
https://doi.org/10.1371/journal.pone.0050688. 

The National Institute for Health and Care (2022a) Daptomycin. BNF: British National 
Formulary - NICE. NICE. Available at: https://bnf.nice.org.uk/drug/daptomycin.html 
(Accessed: 26 April 2022). 

The National Institute for Health and Care (2022b) Vancomycin. BNF: British National 
Formulary - NICE. NICE. Available at: https://bnf.nice.org.uk/drug/vancomycin.html 
(Accessed: 26 April 2022). 

Thomas, C.M. and Nielsen, K.M. (2005) ‘Mechanisms of, and Barriers to, Horizontal 
Gene Transfer between Bacteria’, Nature Reviews Microbiology, 3(9), pp. 711–721. 
Available at: https://doi.org/10.1038/nrmicro1234. 

Tong, S.Y.C. et al. (2015) ‘Staphylococcus aureus Infections: Epidemiology, 
Pathophysiology, Clinical Manifestations, and Management’, Clinical Microbiology 
Reviews, 28(3), pp. 603–661. Available at: https://doi.org/10.1128/CMR.00134-14. 

Tran, T.T., Munita, J.M. and Arias, C.A. (2015) ‘Mechanisms of Drug Resistance: 
Daptomycin Resistance’, Annals of the New York Academy of Sciences, 1354, pp. 32–
53. Available at: https://doi.org/10.1111/nyas.12948. 

Trzcinski, K. et al. (2000) ‘Expression of resistance to tetracyclines in strains of 
methicillin-resistant Staphylococcus aureus’, The Journal of Antimicrobial 
Chemotherapy, 45(6), pp. 763–770. Available at: https://doi.org/10.1093/jac/45.6.763. 

Uhlemann, A.-C. et al. (2011) ‘The Environment as an Unrecognized Reservoir for 
Community-Associated Methicillin Resistant Staphylococcus aureus USA300: A 
Case-Control Study’, PLOS ONE, 6(7), p. e22407. Available at: 
https://doi.org/10.1371/journal.pone.0022407. 

Valério, N. et al. (2017) ‘Effects of single and combined use of bacteriophages and 
antibiotics to inactivate Escherichia coli’, Virus Research, 240, pp. 8–17. Available at: 
https://doi.org/10.1016/j.virusres.2017.07.015. 

Vasala, A., Hytönen, V.P. and Laitinen, O.H. (2020) ‘Modern Tools for Rapid 
Diagnostics of Antimicrobial Resistance’, Frontiers in Cellular and Infection 
Microbiology, 10, p. 308. Available at: https://doi.org/10.3389/fcimb.2020.00308. 

Ventola, C.L. (2015) ‘The Antibiotic Resistance Crisis’, Pharmacy and Therapeutics, 
40(4), pp. 277–283. 

Verheust, C. et al. (2010) ‘Contained use of Bacteriophages: Risk Assessment and 
Biosafety Recommendations’, Applied Biosafety, 15(1), pp. 32–44. Available at: 
https://doi.org/10.1177/153567601001500106. 



263 
 

Versporten, A. et al. (2018) ‘Antimicrobial consumption and resistance in adult hospital 
inpatients in 53 countries: results of an internet-based global point prevalence survey’, 
The Lancet Global Health, 6(6), pp. e619–e629. Available at: 
https://doi.org/10.1016/S2214-109X(18)30186-4. 

Vila, J., Moreno-Morales, J. and Ballesté-Delpierre, C. (2020) ‘Current landscape in 
the discovery of novel antibacterial agents’, Clinical Microbiology and Infection, 26(5), 
pp. 596–603. Available at: https://doi.org/10.1016/j.cmi.2019.09.015. 

Vlazaki, M., Huber, J. and Restif, O. (2019) ‘Integrating mathematical models with 
experimental data to investigate the within-host dynamics of bacterial infections’, 
Pathogens and Disease, 77(8), p. ftaa001. Available at: 
https://doi.org/10.1093/femspd/ftaa001. 

Volkova, V.V. et al. (2014) ‘Modeling the Infection Dynamics of Bacteriophages in 
Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial 
Gene Spread’, Applied and Environmental Microbiology, 80(14), pp. 4350–4362. 
Available at: https://doi.org/10.1128/AEM.00446-14. 

Wagenlehner, F. et al. (2022) ‘A global perspective on improving patient care in 
uncomplicated urinary tract infection: expert consensus and practical guidance’, 
Journal of Global Antimicrobial Resistance, 28, pp. 18–29. Available at: 
https://doi.org/10.1016/j.jgar.2021.11.008. 

Waldron, D.E. and Lindsay, J.A. (2006) ‘Sau1: a Novel Lineage-Specific Type I 
Restriction-Modification System That Blocks Horizontal Gene Transfer into 
Staphylococcus aureus and between S. aureus Isolates of Different Lineages’, Journal 
of Bacteriology, 188(15), pp. 5578–5585. Available at: 
https://doi.org/10.1128/JB.00418-06. 

Walsh, L. et al. (2021) ‘Efficacy of Phage- and Bacteriocin-Based Therapies in 
Combatting Nosocomial MRSA Infections’, Frontiers in Molecular Biosciences, 8. 
Available at: https://www.frontiersin.org/article/10.3389/fmolb.2021.654038 
(Accessed: 5 June 2022). 

Wang, R. et al. (2018) ‘The global distribution and spread of the mobilized colistin 
resistance gene mcr-1’, Nature Communications, 9, p. 1179. Available at: 
https://doi.org/10.1038/s41467-018-03205-z. 

Waxman, D.J. and Strominger, J.L. (1983) ‘Penicillin-Binding Proteins and the 
Mechanism of Action of Beta-Lactam Antibiotics’, Annual Review of Biochemistry, 
52(1), pp. 825–869. Available at: 
https://doi.org/10.1146/annurev.bi.52.070183.004141. 

Weld, R.J., Butts, C. and Heinemann, J.A. (2004) ‘Models of phage growth and their 
applicability to phage therapy’, Journal of Theoretical Biology, 227(1), pp. 1–11. 

Wheat, P.F. (2001) ‘History and development of antimicrobial susceptibility testing 
methodology’, Journal of Antimicrobial Chemotherapy, 48(suppl_1), pp. 1–4. Available 
at: https://doi.org/10.1093/jac/48.suppl_1.1. 



264 
 

Wichelhaus, T.A. et al. (2002) ‘Biological Cost of Rifampin Resistance from the 
Perspective of Staphylococcus aureus’, Antimicrobial Agents and Chemotherapy, 
46(11), pp. 3381–3385. Available at: https://doi.org/10.1128/AAC.46.11.3381-
3385.2002. 

Winstanley, C., O’Brien, S. and Brockhurst, M.A. (2016) ‘Pseudomonas aeruginosa 
Evolutionary Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections’, 
Trends in Microbiology, 24(5), pp. 327–337. Available at: 
https://doi.org/10.1016/j.tim.2016.01.008. 

von Wintersdorff, C.J.H. et al. (2016) ‘Dissemination of Antimicrobial Resistance in 
Microbial Ecosystems through Horizontal Gene Transfer’, Frontiers in Microbiology, 7. 
Available at: https://doi.org/10.3389/fmicb.2016.00173. 

World Health Organization (2015) Global action plan on antimicrobial resistance. 
Geneva: World Health Organization. Available at: 
https://apps.who.int/iris/handle/10665/193736 (Accessed: 23 March 2022). 

World Health Organization (2021) Global tuberculosis report 2021. Geneva: World 
Health Organization. Available at: https://apps.who.int/iris/handle/10665/346387 
(Accessed: 26 May 2022). 

Wulf, M. and Voss, A. (2008) ‘MRSA in livestock animals—an epidemic waiting to 
happen?’, Clinical Microbiology and Infection, 14(6), pp. 519–521. Available at: 
https://doi.org/10.1111/j.1469-0691.2008.01970.x. 

Wyllie, D., Paul, J. and Crook, D. (2011) ‘Waves of trouble: MRSA strain dynamics 
and assessment of the impact of infection control’, Journal of Antimicrobial 
Chemotherapy, 66(12), pp. 2685–2688. Available at: 
https://doi.org/10.1093/jac/dkr392. 

Xia, G. and Wolz, C. (2014) ‘Phages of Staphylococcus aureus and their impact on 
host evolution’, Infection, Genetics and Evolution, 21, pp. 593–601. Available at: 
https://doi.org/10.1016/j.meegid.2013.04.022. 

Yoshida, H. et al. (1990) ‘Nucleotide sequence and characterization of the 
Staphylococcus aureus norA gene, which confers resistance to quinolones.’, Journal 
of Bacteriology, 172(12), pp. 6942–6949. 

Zwanzig, M. et al. (2019) ‘Mobile Compensatory Mutations Promote Plasmid Survival’, 
mSystems, 4(1), pp. e00186-18. Available at: 
https://doi.org/10.1128/mSystems.00186-18. 

 
  



265 
 

8 Appendix 

8.1 Supplementary Material for Chapter 2 

 

Supplementary Table 2.1: Summary table of the elements recorded in the 43 

studies included in our review. E. coli: Escherichia coli; S. marcescens: Serratia 

marcescens; A. vinelandii: Azotobacter vinelandii; K. pneumonia: Klebsiella 

pneumonia; B. subtilis: Bacillus subtilis; E. blattae: Escherichia blattae; E. fergusonii: 

Escherichia fergusonii; E. chrysantemi: Erwinia chrysantemi; P. fluorescens: 

Pseudomonas fluorescens; P. putida: Pseudomonas putida; P. koreensis: 

Pseudomonas koreensis; S. mathophilia: Stenotrophomonas mathophilia; P. 

plecoglossicida: Pseudomonas plecoglossicida; P. veronii: Pseudomonas veronii; O. 

tritici: Ochrobactrum tritici; E. adhaerens: Ensifer adhaerens.  
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Aim of the 
study 
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Antibiotic 
effect 
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Multiple 
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cost of 
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Source of model 
parameters 
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model 
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(continued) 

Type of 
model 

Type of 
parameter 

values 

Sensitivity 
analysis 

performed 

POSSIBLE 
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- - 

Conjugation 
OR 

Transformation 
OR 

Transduction 
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Evolutionary 
OR Public 
health OR 

Both 

- Yes OR No Yes OR No Yes OR No 

Experimental 
AND/OR 
External 
AND/OR 
Assume 

Number of 
external 

sources used 

Deterministi
c OR 

Stochastic 
OR Both 

Constant OR 
Sampled 

Yes OR No 

A high-
throughput 
approach to the 
culture-based 
estimation of 
plasmid transfer 
rates. 

Kneis, David; 
Hiltunen, 
Teppo; Hess, 
Stefanie 2019 Conjugation 

E. coli, S. 
marcescens Evolutionary Culture No No Yes Experimental - Deterministic Constant Yes 

A kinetic model 
for horizontal 
transfer and 
bacterial 
antibiotic 
resistance 

Knopoff, 
Damian A; 
Sanchez 
Sanso, Juan 
M 2017 Conjugation None specified Evolutionary 

None 
specified Yes No No Assume - Deterministic Constant No 

A kinetic model 
of gene transfer 
via natural 
transformation 
of Azotobacter 
vinelandii 

Lu, Nanxi; 
Massoudieh, 
Arash; Liang, 
Xiaomeng; 
Kamai, 
Tamir; Zilles, 
Julie L; 
Nguyen, 
Thanh H; 
Ginn, 
Timothy R 2015 Transformation A. vinelandii Evolutionary Culture No No No Experimental - Deterministic Constant Yes 

A model of 
antibiotic-
resistant 
bacterial 
epidemics in 
hospitals. 

Webb, Glenn 
F; D'Agata, 
Erika M C; 
Magal, 
Pierre; Ruan, 
Shigui 2005 Conjugation None specified Public health Human Yes No Yes Assume - Deterministic Sampled Yes 
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A network-
based approach 
for resistance 
transmission in 
bacterial 
populations 

Gehring, 
Ronette; 
Schumm, 
Phillip; 
Youssef, 
Mina; 
Scoglio, 
Caterina 2010 Conjugation None specified Evolutionary 

None 
specified Yes No Yes Assume - Both - Yes 

Accounting for 
mating pair 
formation in 
plasmid 
population 
dynamics 

Zhong, Xue; 
Krol, 
Jarosław E; 
Top, Eva M; 
Krone, 
Stephen M 2010 Conjugation E. coli Evolutionary Culture No No No Experimental - Deterministic Constant Yes 

Antibiotics as a 
selective driver 
for conjugation 
dynamics. 

Lopatkin, 
Allison J 
Huang, 
Shuqiang 
Smith, 
Robert P 
Srimani, 
Jaydeep K; 
Sysoeva, 
Tatyana A; 
Bewick, 
Sharon; 
Karig, David 
K; You, 
Lingchong 2016 Conjugation 

E. coli, K. 
pneumonia Evolutionary Culture Yes No Yes Experimental - Deterministic Constant Yes 

Effects of nano-
TiO2 on 
antibiotic 
resistance 
transfer 
mediated by 
RP4 plasmid 

Qiu, 
Zhigang; 
Shen, 
Zhiqiang; 
Qian, Di; Jin, 
Min; Yang, 
Dong; Wang, 
Jingfeng; 
Zhang, Bin; 
Yang, 
Zhongwei; 
Chen, Zhaoli;  
Wang, 
Xinwei; Ding, 
Chengshi; 
Wang, 2015 Conjugation E. coli Evolutionary Culture No No No Experimental - Deterministic Constant No 
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Daning; Li, 
Jun-Wen 

Episodic 
selection and 
the 
maintenance of 
competence 
and natural 
transformation 
in Bacillus 
subtilis 

Johnsen, P J; 
Dubnau, D; 
Levin, B R 2009 Transformation B. subtilis Evolutionary Culture Yes No Yes 

Experimental, 
assume - Stochastic - No 

Estimating the 
rate of plasmid 
transfer: an 
end-point 
method 

Simonsen, 
L.; Gordon, 
D. M.; 
Stewart, F. 
M.; Levin, B. 
R. 1990 Conjugation E. coli Evolutionary Culture No No Yes Experimental - Deterministic Constant Yes 

Evaluating 
targets for 
control of 
plasmid-
mediated 
antimicrobial 
resistance in 
enteric 
commensals of 
beef cattle: a 
modelling 
approach 

Volkova, V 
V; Lu, Z; 
Lanzas, C; 
Grohn, Y T 2013 Conjugation E. coli Public health 

Beef 
feedlot's 
pen Yes No Yes 

External, 
assume 12 Deterministic Sampled Yes 

Evaluating the 
effect of 
horizontal 
transmission on 
the stability of 
plasmids under 
different 
selection 
regimes 

Peña-Miller, 
Rafael; 
Rodríguez-
González, 
Rogelio; 
MacLean, R 
Craig; San 
Millan, 
Alvaro 2015 Conjugation P. aeruginosa Evolutionary Culture Yes No Yes 

External, 
assume 1 Deterministic Constant Yes 
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Experimental 
and 
mathematical 
models of 
Escherichia coli 
plasmid transfer 
in vitro and in 
vivo. 

Freter, R; 
Freter, R R; 
Brickner, H 1983 Conjugation E. coli Evolutionary 

Culture, 
mice No No Yes Experimental - Deterministic Constant No 

Fate of 
sulfadiazine 
administered to 
pigs and its 
quantitative 
effect on the 
dynamics of 
bacterial 
resistance genes 
in manure and 
manured soil 

Heuer, 
Holger; 
Focks, 
Andreas; 
Lamshoeft, 
Marc; 
Smalla, 
Kornelia; 
Matthies, 
Michael; 
Spiteller, 
Michael 2008 Conjugation None specified Evolutionary Manure Yes No Yes Experimental - Deterministic Constant Yes 

Genetic Drift 
Suppresses 
Bacterial 
Conjugation in 
Spatially 
Structured 
Populations 

Freese, 
Peter D; 
Korolev, 
Kirill S; 
Jimenez, 
Jose I; Chen, 
Irene A 2014 Conjugation E. coli Evolutionary Culture No No Yes Experimental - Both - Yes 

Implications of 
stress induced 
genetic 
variation for 
minimizing 
multidrug 
resistance in 
bacteria 

Obolski, Uri; 
Hadany, 
Lilach 2012 Conjugation None specified Public health Human Yes Yes No Assume - Deterministic Sampled Yes 

Mathematical 
model for the 
transport of 
fluoroquinolone 
and its resistant 
bacteria in 
aquatic 
environment. 

Gothwal, 
Ritu; 
Thatikonda, 
Shashidhar 2018 Conjugation None specified Evolutionary River Yes No Yes 

Experimental, 
external 14 Deterministic Constant No 
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Mathematical 
model of 
plasmid-
mediated 
resistance to 
ceftiofur in 
commensal 
enteric 
Escherichia coli 
of cattle 

Volkova, 
Victoriya V; 
Lanzas, 
Cristina; Lu, 
Zhao; Gröhn, 
Yrjö Tapio 2012 Conjugation E. coli Evolutionary Cattle Yes No Yes 

External, 
assume 13 Deterministic Sampled Yes 

Mathematical 
modeling of 
bacterial 
resistance to 
antibiotics by 
mutations and 
plasmids 

Ibargueen-
Mondragon, 
Eduardo; 
Romero-
Leiton, 
Jhoana P; 
Esteva, 
Lourdes; 
Mariela 
Burbano-
Rosero, 
Edith 2016 Conjugation M. tuberculosis Both Human Yes No Yes 

External, 
assume 8 Deterministic Constant No 

Mathematical 
modelling of 
antimicrobial 
resistance in 
agricultural 
waste highlights 
importance of 
gene transfer 
rate 

Baker, 
Michelle; 
Hobman, 
Jon L; Dodd, 
Christine E 
R; Ramsden, 
Stephen J; 
Stekel, Dov J 2016 Conjugation E. coli Evolutionary 

Slurry 
tank Yes No Yes External 12 Deterministic Constant Yes 

Mobile 
Compensatory 
Mutations 
Promote 
Plasmid Survival 

Zwanzig, 
Martin; 
Harrison, 
Ellie; 
Brockhurst, 
Michael A; 
Hall, James P 
J; 
Berendonk, 
Thomas U; 
Berger, Uta 2019 Conjugation None specified Evolutionary 

None 
specified Yes No Yes External 12 Deterministic Sampled Yes 

Modeling the 
Evolutionary 
Dynamics of 

Connelly, 
Brian D; 
Zaman, Luis; 2011 Conjugation None specified Evolutionary 

None 
specified Yes No Yes Assume - Stochastic - Yes 



271 
 

Plasmids in 
Spatial 
Populations 

McKinley, 
Philip K; 
Ofria, 
Charles 

Modeling the 
infection 
dynamics of 
bacteriophages 
in enteric 
Escherichia coli: 
estimating the 
contribution of 
transduction to 
antimicrobial 
gene spread 

Volkova, 
Victoriya V; 
Lu, Zhao; 
Besser, 
Thomas; 
Gröhn, Yrjö 
T 2014 Transduction E. coli Evolutionary Cattle No No Yes 

External, 
assume 13 Deterministic Sampled Yes 

Modelling 
dynamics of 
plasmid-gene 
mediated 
antimicrobial 
resistance in 
enteric bacteria 
using stochastic 
differential 
equations 

Volkova, 
Victoriya V; 
Lu, Zhao; 
Lanzas, 
Cristina; 
Scott, H 
Morgan; 
Gröhn, Yrjö 
T 2013 Conjugation E. coli Evolutionary Cattle Yes No Yes External 1 Stochastic Sampled Yes 

Modelling the 
spatial 
dynamics of 
plasmid transfer 
and persistence. 

Krone, 
Stephen M; 
Lu, Ruinan; 
Fox, Randal; 
Suzuki, 
Haruo; Top, 
Eva M 2007 Conjugation 

E. coli, 
Ochrobactrum Evolutionary Culture No No Yes Experimental - Stochastic - No 

Monte Carlo 
simulations 
suggest current 
chlortetracyclin
e drug-residue 
based 
withdrawal 
periods would 
not control 
antimicrobial 
resistance 
dissemination 

Cazer, Casey 
L.; Ducrot, 
Lucas; 
Volkova, 
Victoriya V.; 
Gröhn, Yrjö 
T. 2017 Conjugation E. coli Evolutionary Cattle Yes No Yes External 42 Deterministic Sampled Yes 
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from feedlot to 
slaughterhouse 

On the meaning 
and estimation 
of plasmid 
transfer rates 
for surface 
associated and 
well-mixed 
bacterial 
populations 

Zhong, Xue; 
Droesch, 
Jason; Fox, 
Randal; Top, 
Eva M.; 
Krone, 
Stephen M. 2012 Conjugation E. coli Evolutionary Culture No No Yes 

Experimental, 
external 3 Stochastic - No 

Optimal dosing 
strategies 
against 
susceptible and 
resistant 
bacteria 

Khan, 
Adnan; 
Imran, 
Mudassar 2018 Conjugation None specified Public health Culture Yes No Yes Assume - Deterministic Constant No 

Plasmids spread 
very fast in 
heterogeneous 
bacterial 
communities. 

Dionisio, 
Francisco; 
Matic, Ivan; 
Radman, 
Miroslav; 
Rodrigues, 
Olivia R; 
Taddei, 
François 2002 Conjugation 

E. coli, E. 
blattae, E. 
fergusonii, E. 
chrysantemi Evolutionary Culture No No Yes 

Experimental, 
assume - Deterministic Constant No 

Predictive 
Modeling of a 
Batch Filter 
Mating Process 

Malwade, 
Akshay; 
Nguyen, 
Angel; 
Sadat-
Mousavi, 
Peivand; 
Ingalls, Brian 
P 2017 Conjugation E. coli Evolutionary Culture No No Yes Experimental - Deterministic Constant Yes 
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Resource 
competition 
may lead to 
effective 
treatment of 
antibiotic 
resistant 
infections 

Gomes, 
Antonio L C; 
Galagan, 
James E; 
Segrè, 
Daniel 2013 Conjugation None specified Both 

Culture, 
human Yes Yes Yes 

External, 
assume 2 Deterministic Constant Yes 

Simulating 
Multilevel 
Dynamics of 
Antimicrobial 
Resistance in a 
Membrane 
Computing 
Model 

Campos, 
Marcelino; 
Capilla, 
Rafael; 
Naya, 
Fernando; 
Futami, 
Ricardo; 
Coque, 
Teresa; 
Moya, 
Andrés; 
Fernandez-
Lanza, Val; 
Cantón, 
Rafael; 
Sempere, 
José M.; 
Llorens, 
Carlos; 
Baquero, 
Fernando 2019 Conjugation 

E.coli, K. 
pneumonia, E. 
faecium, P. 
aeruginosa Both Human Yes Yes Yes Assume - Stochastic - No 

Source-sink 
plasmid transfer 
dynamics 
maintain gene 
mobility in soil 
bacterial 
communities 

Hall, James P 
J; Wood, A 
Jamie; 
Harrison, 
Ellie; 
Brockhurst, 
Michael A 2016 Conjugation 

P. fluorescens, 
P. putida Evolutionary Culture No No Yes 

Experimental, 
external 2 Deterministic Constant Yes 

Static recipient 
cells as 
reservoirs of 
antibiotic 
resistance 
during 
antibiotic 
therapy 

Willms, Allan 
R; Roughan, 
Paul D; 
Heinemann, 
Jack A 2006 Conjugation None specified Evolutionary Culture Yes No Yes Assume - Deterministic Sampled No 
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The dominance 
of bacterial 
genotypes leads 
to susceptibility 
variations under 
sublethal 
antibiotic 
pressure. 

Xu, Shilian; 
Yang, Jiaru; 
Yin, Chong; 
Zhao, 
Xiaohua 2018 Conjugation None specified Evolutionary 

None 
specified Yes No Yes Assume - Deterministic Constant Yes 

The evolution of 
plasmid-carried 
antibiotic 
resistance 

Svara, 
Fabian; 
Rankin, 
Daniel J 2011 Conjugation None specified Evolutionary Culture Yes No Yes Assume - Deterministic Constant Yes 

The Impact of 
Different 
Antibiotic 
Regimens on 
the Emergence 
of 
Antimicrobial-
Resistant 
Bacteria 

D'Agata, 
Erika M. C.; 
Dupont-
Rouzeyrol, 
Myrielle; 
Magal, 
Pierre; 
Olivier, 
Damien; 
Ruan, Shigui 2008 Conjugation E. coli Evolutionary Human Yes Yes Yes 

External, 
assume 5 Deterministic Constant No 

The IncI1 
plasmid carrying 
the blaCTX-M-1 
gene persists in 
in vitro culture 
of a Escherichia 
coli strain from 
broilers 

Fischer, Egil 
AJ; Dierikx, 
Cindy M; van 
Essen-
Zandbergen, 
Alieda; van 
Roermund, 
Herman JW; 
Mevius, Dik 
J; Stegeman, 
Arjan; 
Klinkenberg, 
Don 2014 Conjugation E. coli Evolutionary Culture No No Yes Experimental - Deterministic Constant No 

The influence of 
horizontal gene 
transfer on the 
mean fitness of 
unicellular 
populations in 
static 
environments. 

Raz, Yoav; 
Tannenbau
m, 
Emmanuel 2010 Conjugation None specified Evolutionary 

None 
specified Yes No Yes Assume - Both - Yes 
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The population 
biology of 
bacterial 
plasmids: a 
hidden Markov 
model 
approach. 

Ponciano, 
José M; De 
Gelder, 
Leen; Top, 
Eva M; 
Joyce, Paul 2007 Conjugation 

P. putida, P. 
koreensis, S. 
mathophilia, P. 
plecoglossicida
, P. veronii, O. 
tritici, E. 
adhaerens Evolutionary Culture No No Yes Experimental - Both - Yes 

The Population 
Biology of 
Bacterial 
Plasmids: A 
PRIORI 
Conditions for 
the Existence of 
Conjugationally 
Transmitted 
Factors. 

Stewart, F 
M; Levin, B R 1977 Conjugation None specified Evolutionary 

None 
specified Yes No Yes Assume - Deterministic Constant Yes 

Transitory 
derepression 
and the 
maintenance of 
conjugative 
plasmids 

Lundquist, 
Peter D; 
Levin', Bruce 
R 1986 Conjugation E. coli Evolutionary Culture No No Yes 

Experimental, 
assume - Deterministic Constant Yes 

Within-Host and 
Population 
Transmission of 
bla(OXA-48) in 
K. pneumoniae 
and E. coli 

Haverkate, 
Manon R 
Dautzenberg
, Mirjam J D; 
Ossewaarde, 
Tjaco J M; 
van der Zee, 
Anneke; den 
Hollander, 
Jan G; 
Troelstra, 
Annet; 
Bonten, 
Marc J M; 
Bootsma, 
Martin C J 2015 Conjugation 

E. coli, K. 
pneumonia Public health Human No No No 

External, 
assume 1 Deterministic Constant Yes 
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8.2 Supplementary Material for Chapter 3 

 

 

Supplementary Figure 3.1: Confirmation of double-resistant progeny by 

polymerase-chain reaction. Five single colonies were sampled from a double 

antibiotic plate (1-5), containing bacteria plated after 24h of co-culture started only with 

single-resistant parent strains (E and T) and exogenous phage. L: ladder; E: 

erythromycin resistance gene (ermB); T: tetracycline resistance gene (tetK). 
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Supplementary Figure 3.2: Growth curves for bacteria in the absence of 

exogenous phage. BE: bacteria resistant to erythromycin, BT: bacteria resistant to 

tetracycline, BET: bacteria resistant to both erythromycin and tetracycline. Solid lines 

correspond to in vitro data, and dashed lines to the model output generated using the 

median values of the parameter distributions obtained by model fitting. Shaded areas 

indicate error obtained by resampling the model results from a Poisson distribution ten 

times. 
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Supplementary Figure 3.3: Transduction co-culture datasets overlaid. The 

starting concentration of both single-resistant S. aureus parent strains (BE to 

erythromycin & BT to tetracycline) is 104 colony-forming units (cfu) per mL. The starting 

concentration of exogenous phage 80α (PL) is either 103 (solid lines), 104 (dashed) or 

105 (dotted) plaque-forming units (pfu) per mL. Error bars indicate mean +/- standard 

error, from 3 experimental replicates. There is no data for the time period 9h-15h. 
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Supplementary Figure 3.4: Model results are not affected by phage decay rate 

over a wide range of values. Previous estimates of phage decay rate per hour are 

between 10-3 in vitro and up to 10-1 in vivo (see reference 44 from Chapter 3). Phage 

predation in the models is either linear or saturated, with either or both the phage 

adsorption rate and burst size linked to bacterial growth. 
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Supplementary Figure 3.5: Model performance in reproducing the 24h data 

values for different starting concentrations of phage with different links between 

phage predation and bacterial growth rate: A) Phage adsorption rate decreases 

as bacterial growth rate decreases. B) Phage burst size and adsorption rate 

decrease as bacterial growth rate decreases. Phage predation is either linear or 

saturated in the models. Model parameters are those estimated for the corresponding 

model as shown in Table 3.1. In the co-culture used to generate the data, each single-

resistant parent strain (BE and BT) is added at a starting concentration of 106 cfu/mL, 

and no double-resistant progeny (BET) are initially present. The starting concentration 

of lytic phage (PL) varies (x axis).  



281 
 

 

Supplementary Figure 3.6: Convergence and posterior distributions for the best-

fitting model (with a saturated interaction and a link between phage burst size 

and bacterial growth). (a-d) Parameter convergence plots. Fitting was performed 

using two chains (black and red). (e-h) Posterior distributions. The prior distributions 

for the burst size and latent period are shown in blue. The prior distributions for other 

parameters were uninformative and not shown. 
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8.3 Supplementary Material for Chapter 4 

 

 

Supplementary Figure 4.1: Antibacterial effect of erythromycin and tetracycline 

measured in vitro (pink) and obtained after fitting Hill equations (blue). Effect is 

relative to bacterial growth, such that a value greater than 1 indicates killing (net 

negative growth), while a value between 0 and 1 indicates only a decrease in growth 

rate. NE201KT7 contains a tetracycline-resistance gene (tetK), NE327 contains an 

erythromycin-resistance gene (ermB) and DRPET1 contains both resistance genes. 

The Hill equation is shown in Equation 4.3. 
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Supplementary Figure 4.2: a) The antibacterial effect of 1 mg/L of both 

erythromycin and tetracycline alongside 109 pfu/mL of phage is equivalent to b) 

the effect of 4.58 mg/L of erythromycin and 1.14 mg/L of tetracycline in the 

absence of phage. This was estimated by setting the concentration of phage to 0 in 

b) and fitting the concentrations of erythromycin and tetracycline to reproduce the 

decrease in bacteria numbers seen in a). cfu: colony-forming units; pfu: plaque-

forming units. 
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Supplementary Figure 4.3: a) Model-predicted bacterial dynamics in the 

presence of no antibiotics (1st column), erythromycin only (2nd column), 

tetracycline only (3rd column), or both erythromycin and tetracycline (4th 

column), combined with either no phage (top row), phage incapable of 

transduction (middle row), or phage capable of generalised transduction 

(bottom row). Tetracycline-resistant bacteria (BT) are initially present at a 

concentration of 109 colony-forming units (cfu)/mL, and erythromycin-resistant 

bacteria (BE) at 106 cfu/mL. Antibiotics and/or phage (PL) are present at the start of the 

simulation, at concentrations of 1 mg/L and 109 plaque-forming units (pfu)/mL 
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respectively. Double-resistant bacteria (BET) can be generated by generalised 

transduction only. Dashed line indicates the detection threshold of 1 cfu or pfu/mL. b) 

Change in bacteria (single-resistant to erythromycin, single-resistant to 

tetracycline, or double-resistant) and phage numbers depending on the 

antibiotic exposure, in the presence of phage capable of generalised 

transduction.  
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Supplementary Figure 4.4: Effect of varying antibiotic and phage timing and 

concentration when the tetracycline-resistant bacterial strain (BT) is in minority 

(106 cfu/mL). a-b) Varying timing and dose of antibiotic and phage affects total 

bacterial count after 48h (top), maximum concentration of double-resistant 

bacteria (BET) (middle), and time when the concentration of BET is greater than 1 

colony-forming unit (cfu) per mL (bottom). a) Adding 109 plaque-forming units (pfu) 

per mL of phage, and between 0.2 and 2.2 mg/L of both erythromycin and tetracycline. 

b) Adding 1 mg/L of both erythromycin and tetracycline, and between 105 and 1010 
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pfu/mL of phage. The x-axis indicates the time when antibiotics were added, relative 

to when phage were added. For example, the value “4” indicates that phage were 

present at the start of the simulation, and antibiotics were introduced 4h later. The 

segments with black borders correspond to the dynamics shown in c). c) Phage and 

bacteria dynamics over 48h for 4 conditions taken from panel b. In all 4 

conditions, phage are initially present at a concentration of 108 pfu/mL, while 

erythromycin and tetracycline are both introduced at concentrations of 1 mg/L after 

either 0h, 3h, 5h or 15h, stated on the plots, with the timing indicated by the vertical 

dashed lines. Solid line indicates the detection threshold of 1 cfu or pfu/mL. The 

concentrations of single-resistant bacteria (BE, blue, and BT, green) overlap and 

cannot be distinguished. 
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Supplementary Figure 4.5: Effect of varying antibiotic and phage timing and 

concentration when the erythromycin-resistant bacterial strain (BE) is in 

minority (106 cfu/mL). a-b) Varying timing and dose of antibiotic and phage 

affects total bacterial count after 48h (top), maximum concentration of double-

resistant bacteria (BET) (middle), and time when the concentration of BET is 

greater than 1 colony-forming unit (cfu) per mL (bottom). a) Adding 109 plaque-

forming units (pfu) per mL of phage, and between 0.2 and 2.2 mg/L of both 

erythromycin and tetracycline. b) Adding 1 mg/L of both erythromycin and tetracycline, 



289 
 

and between 105 and 1010 pfu/mL of phage. The x-axis indicates the time when 

antibiotics were added, relative to when phage were added. For example, the value 

“4” indicates that phage were present at the start of the simulation, and antibiotics were 

introduced 4h later. The segments with black borders correspond to the dynamics 

shown in c). c) Phage and bacteria dynamics over 48h for 4 conditions taken from 

panel b. In all 4 conditions, phage are initially present at a concentration of 108 pfu/mL, 

while erythromycin and tetracycline are both introduced at concentrations of 1 mg/L 

after either 0h, 3h, 5h or 15h, stated on the plots, with the timing indicated by the 

vertical dashed lines. Solid line indicates the detection threshold of 1 cfu or pfu/mL. 

The concentrations of single-resistant bacteria (BE, blue, and BT, green) overlap and 

cannot be distinguished. 

 

 

 

 

Supplementary Figure 4.6: Growth curves of NE201KT7 (tetracycline-resistant, 

left), NE327 (erythromycin-resistant, middle) and DRPET1 (double-resistant, 

right), exposed to varying concentrations of erythromycin (top) or tetracycline 

(bottom). The minimum inhibitory concentration values for bacteria at 24h were 

identical to the ones for stock bacteria, suggesting that antibiotic decay rather than 

acquired resistance is responsible for the increase in bacteria numbers after 24h. Error 

error bars indicate mean +/- standard deviation, from 3 replicates. cfu: colony-forming 

units. Note that cfu per mL are shown on a log-scale. 
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Supplementary Figure 4.7: Impact of phage and antibiotic decay on phage and 

bacteria dynamics over 48h. The conditions shown are: no decay (a), phage decay 

(b), erythromycin decay (c), and tetracycline decay (d). In all 4 conditions, phage and 

antibiotics (erythromycin and tetracycline) are initially present at concentrations of 109 

pfu/mL and 1 mg/L respectively. Rates of decay are set to either 0 or 0.1 per hour. 
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8.4 Supplementary Material for Chapter 5 

 

 

 

 

Supplementary Table 5.1: Matching information for antibiotics and antibiotic 

classes. 

Antibiotic Class  Antibiotic Class 

Amikacin Aminoglycoside  Daptomycin Lipopeptide 

Gentamicin Aminoglycoside  Azithromycin Macrolide 

Tobramycin Aminoglycoside  Clarithromycin Macrolide 

Rifaximin Ansamycin  Erythromycin Macrolide 

Bedaquiline Bedaquiline  Metronidazole Metronidazole 

Ertapenem Carbapenem  Mitomycin Mitomycin 

Imipenem Carbapenem  Aztreonam Monobactam 

Meropenem Carbapenem  Mupirocin Mupirocin 

Cefalexin Cephalosporin  Nitrofurantoin Nitrofuran 

Cefiderocol Cephalosporin  Linezolid Oxazolidinone 

Cefixime Cephalosporin  Tedizolid Oxazolidinone 

Cefotaxime Cephalosporin  Amoxicillin Penicillin 

Cefoxitin Cephalosporin  Ampicillin Penicillin 

Ceftazidime Cephalosporin  Benzylpenicillin Penicillin 

Ceftolozane Cephalosporin  Co-Amoxiclav Penicillin 

Ceftriaxone Cephalosporin  Flucloxacillin Penicillin 

Cefuroxime Cephalosporin  Phenoxymethylpenicillin Penicillin 

Chloramphenicol Cephalosporin  Piperacillin Penicillin 

Chlorhexidine Chlorhexidine  Pivmecillinam Penicillin 

Clofazimine Clofazimine  Temocillin Penicillin 

Dapsone Dapsone  Colistin Polypeptide 

Ethambutol Ethambutol  Protionamide Protionamide 
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Ciprofloxacin Fluoroquinolone  Pyrazinamide Pyrazinamide 

Levofloxacin Fluoroquinolone  Rifampicin Rifamycin 

Moxifloxacin Fluoroquinolone  Co-Trimoxazole Sulfonamide 

Ofloxacin Fluoroquinolone  Sulfadiazine Sulfonamide 

Fosfomycin Fosfomycin  Trimethoprim Sulfonamide 

Fucidin Fucidin  Doxycycline Tetracycline 

Teicoplanin Glycopeptide  Minocycline Tetracycline 

Vancomycin Glycopeptide  Tetracycline Tetracycline 

Isoniazid Isoniazid  Tigecycline Tetracycline 

Clindamycin Lincosamide  Thalidomide Thalidomide 

 

 

 

Supplementary Figure 5.1: Proportion of all S. aureus isolates which are 

methicillin-resistant (a) and ethnicity of patients in our dataset (b). Vertical green 

dashed line shows the date when lockdown began in the UK during the first wave of 

the COVID-19 pandemic (29/03/20). Patients with no recorded ethnicity are excluded 

from the analysis. 
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Supplementary Figure 5.2: Number of susceptibility tests conducted versus 

antibiotic resistances detected for each S. aureus isolate in our dataset. Each 

point corresponds to an isolate in the dataset, with the position of the points jittered on 

the figure to prevent the overlap of isolates with the same number of susceptibility 

tests and antibiotic resistances detected. The dashed line shows the maximum 

number of resistance that can be detected (equal to the number of susceptibility tests 

conducted). a) Isolates collected between 2000 and 2010. b) Isolates collected 

between 2011 and 2021. 
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Supplementary Figure 5.3: Spearman’s correlation coefficients between 

proportions of methicillin-resistant S. aureus isolates resistant to different 

antibiotics over time. Antibiotics included are those with at least 50 susceptibility 

tests conducted over the entire time period (2000-2021). Only significant coefficients 

are shown (p value < 0.05). 
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Supplementary Figure 5.4: Spearman’s correlation coefficients between 

proportions of methicillin-susceptible S. aureus isolates resistant to different 

antibiotics over time. Antibiotics included are those with at least 50 susceptibility 

tests conducted over the entire time period (2000-2021). Only significant coefficients 

are shown (p value < 0.05). 



296 
 

 

Supplementary Figure 5.5: Change in proportion of S. aureus isolates resistant 

to antibiotics over time, out of those tested for resistance to the corresponding 

antibiotic. Amik.Fluclox: joint amikacin and flucloxacillin resistance, Gent.Ceftaz: joint 

gentamicin and ceftazidime resistance, Gent.Cipro: joint gentamicin and ciprofloxacin 

resistance, Gent.Pip.Taz: joint gentamicin and piperacillin-tazobactam resistance, 

Pip.Taz.Amik: joint piperacillin-tazobactam and amikacin resistance, Pip.Taz.Cipro: 

joint piperacillin-tazobactam and ciprofloxacin resistance. 
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Supplementary 5.6: Change in proportion of S. aureus isolates tested for 

different antibiotic susceptibilities over time. Amik.Fluclox: joint amikacin and 

flucloxacillin resistance, Gent.Ceftaz: joint gentamicin and ceftazidime resistance, 

Gent.Cipro: joint gentamicin and ciprofloxacin resistance, Gent.Pip.Taz: joint 

gentamicin and piperacillin-tazobactam resistance, Pip.Taz.Amik: joint piperacillin-

tazobactam and amikacin resistance, Pip.Taz.Cipro: joint piperacillin-tazobactam and 

ciprofloxacin resistance. 
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Supplementary Figure 5.7: Proportion of all patients with a positive S. aureus 

swab exposed to antibiotics of different classes. Patients may have been exposed 

to more than one antibiotic. 

 


