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Background 

Time-series studies of the short-term association between daily temperature and mortality are 

usually adjusted for seasonal confounding by functions of time in the regression analyses.1–3 This 

adjustment aims to effectively separate seasonal patterns in mortality series from the exposure–

response association.4–6 While such practice has become common, a recent Global Burden of 

Disease Study argued that “seasonal adjustments are not epidemiologically sound” and assessed 

the short-term risk of non-optimum temperature on mortality without adjusting for seasonal 

confounding.7,8  

In this commentary, we aim to provide an insight into the practice of seasonal adjustment in 

time-series regression models for the short-term relationship between temperature and mortality 

by illustrating statistical reasoning and discussing the underlying epidemiologic rationales.  

Throughout, we will illustrate concepts and discussions through two examples based on real 

datasets. R code to reproduce our analyses are available on a GitHub repository (see Data 

availability). 

Illustrative examples 

We use data from two cities with distinct climate zones as examples. We collected daily counts 

of non-external mortality (International Classification of Diseases [ICD]-9 0-799, ICD-10 A00-

R99) and daily mean temperature in two US cities, Detroit and Miami, in the periods 1985-2006. 

Detroit is a continental city with very cold winters and warm summers, while Miami is a tropical 

city with warm temperatures all year round. These datasets have been used in previous studies.3,9 

Here, temperature and mortality in both cities show a repeating seasonal pattern and a long-term 

trend (Figure 1), although the strength of these patterns is different between the two cities. 
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Furthermore, Detroit shows a greater range in daily mean temperature than Miami 

(−24.4℃ 𝑡𝑜 31.4℃ in Detroit and 3.3℃ 𝑡𝑜 31.4℃ in Miami). 

Time-series studies in environmental epidemiology 

The time-series regression is widely used to quantify short-term associations of exposures with 

outcomes in environmental epidemiology. It usually assumes a log-additive model to decompose 

the variation in the outcome variable at various timescales to isolate short-term variations that 

can be associated with a time-varying exposure. In the example datasets, we decomposed the 

time-series data on mortality into three components: long-term trend, seasonality, and random 

variation (eFigure 1 http://links.lww.com/EDE/C10). The long-term trend can be caused by 

demographic shifts or other slow changes. The seasonality, on the other hand, can be driven by a 

collection of factors which show seasonal variations, such as meteorology, influenza, Vitamin D 

levels, and socio-behavioral factors.10 To guide our discussion, we use season to represent these 

seasonal factors in this paper, although season has many meanings in different settings. 

As our interest in the time-series analysis is in short-term associations, the aim is to remove (i.e., 

control or adjust for) the first two components (i.e., long-term trend and seasonality) from 

mortality series and examine whether temperature explains some of the remaining short-term 

variations in mortality. Otherwise, these two components can bias the short-term associations of 

interest and also lead to residual autocorrelation underestimating the standard errors of the 

parameters.5 Thus, in a modern regression context, data analyst usually considers calendar time 

as a covariate and includes smooth functions of calendar time in models to remove long-term 

trend and seasonality, either separately by two functions or together by a single spline of time 

with enough flexibility to allow for both.5  
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By using our example datasets, we illustrated the short-term temperature–mortality association 

before and after controlling for the long-term trend and seasonality. We fitted a standard time-

series Poisson regression model allowing for overdispersion. A cross-basis function was used to 

assess the short-term association between temperature and mortality.6,11 Specifically, the cross-

basis function is composed of two spline functions: one quadratic B-spline for the exposure–

response association with three internal knots placed at the 10th, 75th, and 90th percentiles of 

location-specific temperature distribution, and one natural cubic spline for the lag–response 

association over lags days 0-21, with an intercept and three internal knots placed at equally 

spaced values in the log scale. We first assessed the temperature–mortality association without 

any adjustments. Then we included a natural cubic spline of date with 2 degrees of freedom (df) 

to control for long-term trends only and assessed the association. Finally, we updated the natural 

cubic spline of date with 8 df per year to control for long-term trend and seasonality 

simultaneously3 and obtained a fully adjusted temperature–mortality association.  We also 

examined the residual autocorrelation before and after the adjustments. Modeling choices were 

based on a previous study.3  

The results suggested that the short-term temperature–mortality association can be affected by 

the adjustment of long-term trends and seasonality, especially the effect estimates of cold 

temperature (Figure 2 and eTable 1 http://links.lww.com/EDE/C10). However, this impact may 

depend on study locations and the length of the study period. Notably, the confidence intervals 

are narrower before adjustments. Also, there is initially large residual autocorrelation which is 

minimized after the adjustment of both long-term trend and seasonality (eFigure 2 

http://links.lww.com/EDE/C10).  In addition, the quasi-Akaike information criterion favored the 

adjusted model (eTable 1 http://links.lww.com/EDE/C10).  
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Causal structures between season and temperature  

The statistical rationale for removing seasonality in time-series regression studies is well 

accepted, whereas epidemiologic reasoning has not been explicitly stated. As noted above, 

seasonality is one of the time components in time-series data, driven by a collection of seasonal 

factors. Therefore, the removal of seasonality in time-series regressions can be interpreted as the 

adjustments of seasonal effects in epidemiology.  Here, we use directed acyclic graphs 

(DAG)12,13 to discuss three potential causal structures for the relationship among temperature 

(T), season (S), and mortality (M). To reiterate, season here is used to represent the collection of 

seasonal factors driving the seasonality of mortality. It should be noted that the DAGs in Figure 

3 are simplified depictions of potentially complicated causal relationships between temperature, 

season, and mortality. The relationships of the season with temperature may be very complex: 

some factors and temperature may affect each other (e.g., humidity), while some might be 

affected by temperature (e.g., influenza). 

The rationale for the adjustment of season has been described as a concern about potential 

confounding.4,6 Figure 3A illustrates a causal structure where season is a confounder of the 

temperature–mortality association. Then it would be necessary to adjust for season to obtain an 

unconfounded estimate of the temperature–mortality association. Figure 3B, on the other hand, 

presents a causal structure where temperature affects both season and mortality. Here, season is 

on an intermediate pathway between temperature and mortality. Thus, season is not a confounder 

of the temperature–mortality association since season does not affect temperature. In this case, 

adjusting for the season would give the direct effect of temperature unmediated by season, and 

the logic behind it is questionable if the interest is to assess the total effect of temperature. Figure 

3C illustrates a causal structure where season lies upstream of the causal pathway from 
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temperature and mortality, and all the effects of the season are mediated through temperature. 

There would be no need for seasonal adjustment; otherwise, it may diminish the statistical power 

and reduce precision in the estimates of the temperature effect.14 

What causal structures between temperature and season would justify the adjustment for the 

season in time-series studies of short-term effect of temperature then? The answer to this 

question should be dictated by hypotheses on how the season is causally related to temperature 

and mortality. As noted above, season is a proxy for unmeasured variables that show seasonal 

patterns (e.g., infectious diseases, air pollution, and changes in dietary and behavioral patterns) 

and that can be risk factors on mortality; however, their mechanism as risk factors are not solely 

via temperature. Therefore, Figure 3C is not likely plausible. How do we choose between 

Figures 3A and 3B? Temperature and season are correlated: some seasonal variables, such as the 

changes in tropospheric ozone concentrations, influenza activity, and behavioral patterns, might 

be impacted by temperature, whereas some others (e.g., intensity and duration of sunlight) may 

impact temperature in turn. The data can also shed light on this. We assessed seasonality in 

mortality in Detroit and Miami before and after the adjustment of temperature over lag days 0-21 

described above, while the seasonality of mortality was assessed using a cyclic spline function 

with 4 df.15 Here, we observed a reduction though not elimination in seasonality after the 

adjustment (Figure 4), suggesting that temperature can be a partial mediator (Figure 3B) or a 

confounder (Figure 3A) for the season-mortality association. It also suggests that Figure 3C is 

not plausible since the seasonality in mortality did not eliminate after temperature adjustment. 

Similar results were reported in our previous multi-country multi-city study.9 Thus, Figures 3A 

and 3B are plausible. 
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In time-series regression studies of the short-term association between temperature and mortality, 

it is of interest to adjust for those seasonal confounders. However, these seasonal confounders 

are usually difficult to identify and measure. Thus, the data analyst adjusts the confounding 

effect of the season by using a function of calendar time (e.g., day-of-year, week, and 

month).5,6,16 In other words, such a function is used to represent those seasonal variables which 

are on the open back-door pathway between temperature and mortality (Figure 3A). Such a 

causal model is justifiable. For a variable to be a confounder, it needs not actually cause the 

exposure to introduce bias.17 One firm requirement, however, is that it must not be on the causal 

pathway between exposure and outcome. Time can predict but cannot be caused by the variation 

in daily mean temperature or daily mortality. Thus, a function of time cannot be on the causal 

pathway as a mediator. In that case, the practice of using a function of time to adjust the 

confounding effect of season is reasonable, and the absence of such an adjustment is 

questionable. 

In our example, our assessment in Detroit and Miami shows that the adjustment of seasonal 

confounding by a function to time reduced estimates of cold effect but increased estimates of 

heat effect in both cities (Figure 1 and eTable 1 http://links.lww.com/EDE/C10). Thus, ignoring 

seasonal confounding in time-series analysis of the short-term effect of temperature may 

overestimate the cold effect while underestimate the heat effect. Such a bias may be more 

substantial when the exposure of interest is extreme temperature events because, by not 

conditioning on seasonal time scales, we are comparing deaths on event days to deaths on all 

other days, including in the other seasons. 
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Conclusion 

This commentary illustrates the importance of epidemiologic reasoning in the adjustment of 

seasonal confounding in time-series studies for the short-term relationship between temperature 

and mortality. However, the practice of the adjustment depends on the specific exposure and 

outcome, the study design being applied, and the covariates being measured. In case–crossover 

studies, for example, the adjustment of seasonal confounding can be omitted, as it is controlled 

for by design.18 Further thinking about seasonal adjustment is merited in panel studies of 

temperature effect where health outcomes are usually measured for a short time period but across 

different seasons.   

Adjustment for seasonal confounding typically is warranted when estimating an unconfounded 

effect estimates of temperature on mortality. Otherwise, investigators should clarify their 

assumptions on causal relationships for omitting seasonal confounding in their analysis. This will 

help the readers to interpret the effect estimates properly.  

Lina Madaniyazi is an Assistant Professor at the School of Tropical Medicine and Global 

Health, Nagasaki University. Her research area includes assessing seasonality of health 

outcomes and the impact of environmental stressors on human health. The co-authors of this 

commentary have a well-recognized expertise in the field of environmental epidemiology, 

contributing to the development of methodology for time-series regression and collaborating in 

relevant studies on the health effects of air pollution, temperature, and climate change for three 

decades. AT, AVC, JJ, YH, YG, JS, AZ, MB, BA, KK, AG, MH are members of the Multi-Country, 

Multi-City (MCC) Collaborative Research Network. 
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Figure legends 

Figure 1. Daily time series of mean temperature (top) and non-external mortality (bottom) in 

Detroit (left) and Miami (right) from 1985 to 2006  

Figure 2. The association between temperature and non-external mortality and after the 

adjustment of the long-term trend and seasonality in Detroit and Miami 

Short-dashed line: temperature–mortality association without any adjustments 

Long-dashed line: temperature–mortality association with adjustment of long-term trend by 

using a natural cubic spline of date with 2 degrees of freedom (df)  

Solid line: temperature–mortality association with adjustment of long-term trend and seasonality 

simultaneously by using a natural cubic spline of date with 8 df per year  

Figure 3. Directed acyclic graphs for the relationship between temperature (T), seasona (S), and 

mortality (M). 

a  Season is a surrogate or placeholder for any number of factors that vary seasonally. 

Figure 4. Seasonal variation in non-external mortality before (solid) and after (dashed) removing 

temperature effect  

The relative risk (RR) is the ratio of mortality estimates on the day-of-year x to daily minimum 

mortality estimates at the trough day with 95% confidence intervals (95% CI): 

 

 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑖𝑠𝑘 =
𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑛 𝑡ℎ𝑒 𝑑𝑎𝑦 − 𝑜𝑓 − 𝑦𝑒𝑎𝑟 𝑥

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑟𝑜𝑢𝑔ℎ
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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