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Objectives: To examine predictors of state-level COVID-19 vaccination rates during the first nine months
of 2021.
Methods: Using publicly available data, we employ a robust, iteratively re-weighted least squares multi-
variable regression with state characteristics as the independent variables and vaccinations per capita as
the outcome. We run this regression for each day between February 1 and September 21, the last day
before vaccine booster rollout.
Results: We identify associations between vaccination rates and several state characteristics, including
health expenditure, vaccine hesitancy, cost obstacles to care, Democratic voting, and elderly population
share. We show that the determinants of vaccination rates have evolved: while supply-side factors were
most clearly associated with early vaccination uptake, demand-side factors have become increasingly
salient over time. We find that our results are generally robust to a range of alternative specifications.
Conclusions: Both supply and demand-side factors relate to vaccination coverage and the determinants of
success have changed over time.
Policy Implications: Investing in health capacity may improve early vaccine distribution and administra-
tion, while overcoming vaccine hesitancy and cost obstacles to care may be crucial for later immunisation
campaign stages.

� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

As vaccination efforts against COVID-19 unfolded across the
globe, it became increasingly apparent that developing and autho-
rising effective vaccines is only half the battle of achieving broad
immunisation [1]. To a large extent, between-country differences
can be explained by the disparate access to vaccine doses, as a
small number of countries successfully secured agreements with
manufacturers for large amounts of vaccines [2]. Still, diverging
local trajectories within larger countries suggest that national sup-
plies are just one component of a successful immunisation cam-
paign. In the United States (US), certain states decidedly
outpaced their neighbours in terms of per capita vaccinations
despite proportional vaccine allocations.

While numerous studies have examined individual-level corre-
lates of vaccine hesitancy [3,4], very few ecological studies have
analysed determinants of COVID-19 vaccination rates in the United
States. Notable exceptions include studies by Brown et al. [5] and
Stewart et al. [6], who found that US county-level vaccination rates
as of May 2021 were associated with health system capacity and
population density, as well as Lindemer et al. [7], who found that
county uninsurance rates predicted vaccination coverage in early
March 2021. However, there is a gap in the literature concerning
analysis at the state level. Because state governments influence
some of the most important policy levers under the American fed-
eral system, identifying state-level patterns may inform current
and future vaccination campaigns.

Appendix A includes an overview of the delivery process from
the point a vaccine leaves the manufacturer to the point it is
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administered to a patient . Since population immunity is ultimately
the outcome of interest for vaccination campaigns, we focus on
investigating the relationship between state-level vaccine admin-
istration rates and salient state characteristics. As the public health
adage goes: ‘‘vaccines do not save lives, vaccinations do”.
1.1. Data

We utilise public state-level data on state characteristics and
vaccination rates the first nine months of 2021; see appendix B
for a full list of sources. The most notable drawback of our data
is that data on health care expenditure are not available after
2014, posing a limitation to our analysis of that variable insofar
as relative expenditure levels between states may have changed
in the seven years since then. All other data used are from 2019
or later. We restrict the analysis to the 50 states given data limita-
tions. However, in light of the historical disenfranchisement of
non-state territories and entailing health disparities [8], further
research would do well to shed light on vaccination outcomes in
non-state US territories.

Our primary outcome is the number of vaccinations per capita
(with the total state population as the denominator), without dis-
tinguishing between first and second doses. If, for example, a state
has administered 1.0 vaccinations per capita, this could correspond
to every resident having received one dose, half of the residents
receiving two doses, or some other combination. While this per
capita measure of vaccination uptake does not perfectly corre-
spond to the eligible adult population at any point in time, it can
more readily be compared to other variables that are similarly
measured per capita. To highlight changes over time, we selected
three points to analyse cross-sectional associations: February 1,
June 1, and September 21; the latter date was chosen to restrict
the analysis to the initial campaign for first and second doses, as
the use of booster doses was authorised on September 22, 2021.

The selection of explanatory variables is based on a priori
hypotheses as well as on findings in the existing literature
[3,5,6,9]. The variables included in the main model are a subset
of all the variables we considered. As a rule, we include a variable
in the main model if it meets one of the following three conditions:
(1) it is independently associated with vaccination rates, (2) it
appears to considerably confound the magnitude of the association
between another variable and administration rates, as measured
Exhibit 1. Variables in
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by how much its inclusion moves other coefficient estimates, or
(3) it seems a priori to be important, such that even a null-result
would be of interest. Exhibit 1 describes the variables included in
the main model, while appendix B features an overview of all vari-
ables that were considered but not included in the final regression
analysis.

We include healthcare expenditure (e.g., hospital care, physi-
cian services, and drugs but excluding public health) and public
health expenditure (e.g., preventive programmes and information
campaigns) as proxies of state health system capacity and infras-
tructure quality, which we hypothesise are important for facilitat-
ing the supply of vaccines [5,6]. For demand-side factors, we
include the measures of COVID-19 vaccine hesitancy and whether
adults have not seen a physician due to cost obstacles. We include
the share of the population in poverty to ensure that the cost
obstacles variable captures a phenomenon relating to healthcare
costs, specifically, rather than to poverty more broadly. Finally,
we include population density [5], elderly population share [9],
and political leanings as measured by the Democratic vote margin
in the 2020 elections in net percentage points of the vote [3]. Exhi-
bit 2 visualises the spatial distribution of the included state charac-
teristics. Note that the scales and units of measurement differ
across the different maps and each one should be carefully inter-
preted in its own context.
1.2. Statistical analysis

In this ecological study, we use a robust, iteratively re-weighted
least squares regression [10], where the dependent variable is vac-
cinations per capita for a state at a given point in time and the
explanatory variables include state characteristics. Our main
model does not include a measure of how many vaccines have
been distributed to a state at a given point in time, as we consider
vaccine distribution to be on the causal pathway to vaccine admin-
istration. In a sensitivity analysis, we further include a variable for
vaccines distributed per capita at a given point in time.

To mitigate reverse causality, we consider only baseline state
characteristics before the beginning of the immunisation campaign;
for example, we utilise vaccine hesitancy as of January 2021. (It is
worth noting that vaccine hesitancy is a dynamic phenomenon that
may evolve over the course of an outbreak’s epidemic and endemic
phases, and consequently should be interpreted in the specific
the main model.



Exhibit 2. Spatial distribution of select state characteristics.
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context of when it was measured and analysed.) To demonstrate
changing associations over time, we present results from rolling lin-
ear regressions in which the cumulative vaccinations per capita are
measured at different points in time. Additionally, we examine the
role of omitted variable bias [11]; and test robustness to dropping
6530
states one at a time as well as to an alternative definition of the out-
come in the form of monthly, rather than cumulative, vaccination.
See appendix C for the full model specification as well as model
diagnostic tests focusing on heteroscedasticity, the distribution of
residuals, and multicollinearity.
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2. Limitations

Findings from any observational study should be interpreted
with caution, particularly with respect to causal inference. While
our robustness analysis based on Oster [11] suggests that selection
on unobservables would have to be very severe to nullify most of
our headline results, endogeneity remains an important limitation
for our study. Moreover, given our focus on the state level, readers
should avoid ecological fallacies – i.e., making inferences about
individuals based on data aggregated data for a group – when
interpreting the observed associations [12].

Our study did not account for state-specific policies influencing
vaccine uptake. States differed considerably in how they priori-
tized vaccinations for certain populations, in their timelines for
expanding vaccine eligibility, and in their incentive and informa-
tion schemes to increase vaccine uptake [13–15]. These differences
may have substantially influenced vaccination trajectories across
states. However, our multivariable regression method is not well
suited for analysing the effects of these policies due to being highly
susceptible to endogeneity arising from bidirectional causality. For
example, while a broad eligibility policy may increase vaccination
coverage, a causal effect in the opposite direction is equally plausi-
ble, thus complicating the interpretation of any association
between eligibility policies and vaccinations per capita. In theory,
this issue can be mitigated by carefully linking policy changes to
subsequent vaccination rates, for example by using a difference-
Exhibit 3. Cumulative vaccination
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in-differences framework. While we did not conduct such analysis
here due to the multitudes and complexity of unique state policies,
further research should examine the important role of policy in
vaccination campaigns. Indeed, quantitative studies already indi-
cate that such differences may have impacted vaccine uptake
[14,16]. Many of these differences between state policies, such as
West Virginia’s use of local pharmacies to supply nursing and
long-term care facilities, may be better explored qualitatively.
Qualitative studies can also shed more nuanced light on idiosyn-
cratic differences between states that precede the pandemic, for
instance relating to distrust of the healthcare system and attitudes
towards vaccination [17].
3. Study results

Main results

Exhibit 3 shows vaccinations administered per capita over time
by state.

Vaccination rates varied considerably across states throughout
the immunisation campaign and some states that did particularly
well in the first months of the campaign have since lagged behind.
For example, Massachusetts had the 16th fewest vaccinations by
February 1 but the 2nd highest by September 21, while West Vir-
ginia ranked 2nd by February 1 but last by September 21. The
s per capita over time, 2021.
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diverging trajectories across states raise the questions: why did
some states have higher vaccine uptake early on, and why did vac-
cination trends change over time?

Exhibit 4 reports results from three regressions aiming to shed
light on these questions. As of early February, both healthcare and
public health expenditure were positively associated with vaccina-
tion rates. The coefficient on healthcare expenditure implies that
an increase of USD 10,000 in spending per capita was associated
with 0.069 more vaccinations per capita; an increase of USD 100
in public health spending was associated with 0.18 more vaccina-
tions per capita. These expenditure associations are more unclear
in June and September. For public health expenditure, the data
do not suggest an association in June (p = 0.238) or in September
(p = 0.839). For healthcare expenditure, there is evidence for an
Exhibit 4. Correlates of cumulat

Exhibit 5. Rolling regression coefficients of
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association in both June (p = 0.051) and September (p = 0.046)
and the b-coefficients were greater in both months, but the 99 %-
confidence intervals include zero, suggesting greater variance in
the relationship than in February.

The results from June 1 and September 21 reveal a negative
association between vaccinations and the fraction of census
respondents who said in January 2021 that they would "probably”
or "definitely” not receive a COVID-19 vaccine. The coefficient from
September implies that a 10 percentage point increase in vaccine
hesitancy (as measured in January) was associated with a decrease
in vaccinations of 0.14 per capita. Given that states differed by as
much as 20 percentage points in the January poll – i.e., a predicted
difference of 0.28 vaccinations per capita in September – and that
states had administered an average of 1.13 vaccines per capita as of
ive vaccinations per capita.

variables, February 1 to September 21.
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September 21, the magnitude of this association is of practical rel-
evance. In June and September, there is also evidence for positive
associations between vaccinations and the Democratic vote margin
in the 2020 elections, as well as the share of the population above
65 years.

As of June 1, there was a negative association with the percent-
age of adults who in 2019 reported not having seen a doctor in the
past year due to costs. However, there is no clear evidence for this
relationship in February or September. Finally, neither population
density nor the share of the adult population living in poverty
are associated with vaccination coverage at any of the three points
in time.

To better illustrate associations over time, we conducted the
same multivariable linear regressions for cumulative vaccinations
per capita for each of the 233 days from February 1 to September
21 and plot the coefficients from each of these 233 regressions.
Exhibit 5 presents these rolling regression coefficients for select
variables; appendix D includes plots for the remaining variables.

For the variables on vaccine hesitancy and Democratic voting,
the regressions show a clear trend in the association between the
two factors at baseline and vaccination rates. Whereas the coeffi-
cients for both variables were close to zero between February
and April, they have since steadily diverged from zero in opposite
directions. As of September 21, the regression analysis suggests a
strong positive association between 2020 Democratic vote margin
and vaccinations per capita and a negative association for the share
of state population that reported not wanting a COVID-19 vaccine
as of January 2021. For public health expenditure, there was an
association on February 1 that subsequently disappears but with
a less clear trend. For the elderly population share, a positive asso-
ciation appears to increase in strength over time, though the 99 %
confidence interval generally includes zero. For the remaining four
independent variables, there was no clear trend over time.

Sensitivity analyses

Appendix E reports several sensitivity analyses supporting the
overall robustness of our findings while shedding light on impor-
tant nuances. First, several of the main findings are robust to using
an alternative measure of vaccination in the form of new monthly,
rather than cumulative, vaccinations per capita. However, the
slowdown in vaccinations during the fall of 2021 makes it difficult
to observe associations with new vaccinations in September. Sec-
ond, when we include a time-varying measure for the number of
vaccines distributed to each state on a given day, the positive asso-
ciations with expenditure disappear, suggesting that the relation-
ship between expenditure levels and vaccination rates could be
driven by the ability of states to effectively distribute vaccines to
administration sites. In contrast, the demand-side associations
are generally robust to the inclusion of the distribution variable.
Third, following Oster [11], we find that the results generally are
unlikely to be explained by omitted variable bias, in the sense that
it would require a very high degree of selection on unobservables
to nullify our observed associations. We also find that adding a
selection of potential confounding variables does not significantly
change our main findings. Finally, we find that the observed asso-
ciations are robust to dropping individual states from the
regression.

4. Discussion

4.1. Interpreting the observed associations

Our findings show that the cumulative number of vaccinations
administered per capita was positively associated with both public
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health- and healthcare expenditure early in the United States
COVID-19 vaccination campaign. Although this association was
hypothesised a priori, higher health expenditure is generally no
guarantee of improved outcomes, as expenditure may also reflect
higher morbidity, prices, or system inefficiencies. Consequently,
the interpretation of these associations is limited by the fact that
expenditure is only an imperfect proxy for health infrastructure
quality.

Further analysis suggests that the association between expendi-
ture and vaccine administration rates may operate through vaccine
distribution. Expenditure is correlated with vaccine distribution,
and the association between expenditure and administration dis-
appears once distribution is included in the model (see appendix
E). One causal interpretation of this pattern is that, at least around
February, states with higher expenditure levels administered more
vaccines primarily because they were more successful at establish-
ing vaccination sites to which they could order the vaccine distri-
butions required for doses to ultimately be administered.

While public health expenditure might seem like a better proxy
for health system capacity with relevance for an epidemic immuni-
sation campaign, regular healthcare capacity has also played a role
in the COVID-19 immunisation campaign. In particular, hospitals
and other inpatient clinics have been instrumental in implement-
ing vaccination efforts within states, especially given the need for
vaccines to be stored at ultra-low temperatures and administered
by trained health professionals. In light of this, one interpretation
of the data is that states with stronger healthcare infrastructure,
in the form of well-funded and well-staffed hospitals and clinics,
were better able to launch vaccination sites through which doses
could be ordered, distributed, and administered.

It seems plausible that health system capacity plays a role in
allowing states to distribute, and hence administer, larger volumes
of vaccines. This hypothesis is consistent with findings from
Davila-Payan and colleagues, who found that state-level vaccina-
tion rates during the 2009 A/H1N1 influenza epidemic in the US
were positively associated health system factors, such as the num-
ber of vaccination sites [18,19], and those of Brown et al. [5], who
found that US county-level health system vulnerabilities were neg-
atively associated with vaccination coverage as of May 25. Simi-
larly, a systemic review by Brien et al. [20] identified education
status and previous influenza vaccination among individual-level
predictors of A/H1N1 vaccination status in twelve countries, while
Archibong and colleagues find that state-level vaccination rates in
Nigeria are associated with health infrastructure quality [21].

The results from June and September suggest a clear negative
association between vaccine hesitancy and vaccinations per capita.
Our robustness analyses imply that this relationship is not driven
by any individual states. Having established this association empir-
ically, the question for policymakers, then, is what are the causes of
vaccine hesitancy itself? There is a burgeoning literature dedicated
to the determinants of vaccine attitudes [22], and recent research
is shedding light on the phenomenon in the context of COVID-19
[3,4].

As of June 1 – but not in February or September –, cost obstacles
to care appear negatively associated with cumulative vaccinations.
This result corroborates similar previously reported associations
observed in the context of 2009 pandemic H1N1 vaccination cov-
erage [9,19], as well as studies highlighting socioeconomic vulner-
abilities as determinants of US county-level COVID-19 vaccination
coverage as of May 2021 [5,6]. While this result may appear puz-
zling considering that the COVID-19 vaccine is offered free of
charge to anyone in the US, there are several potential explana-
tions. First, many individuals do not know, or refuse to believe, that
the vaccine is truly administered free of charge. One April 2021 poll
found that 32 % of unvaccinated respondents cited concerns about
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having to pay out-of-pocket costs among their reasons for not hav-
ing received the vaccine yet [23]. While this concern may be factu-
ally unwarranted given that vaccines nominally have been freely
available, it is neither surprising nor irrational in a health system
where out-of-pocket expenses can be financially ruinous and diffi-
cult to anticipate. For instance, some patients have been met with
surprise bills for thousands of dollars for COVID-19 diagnostic tests
that were supposed to be freely available under federal law [24].
The fact that some vaccination providers ask patients to bring their
insurance card, as well as isolated incidents of patients being mis-
takenly billed, have contributed to widespread confusion about the
true costs of vaccination [25]. The people who have not seen a doc-
tor for at least a year due to costs are also more likely to be gener-
ally disconnected from the health system and thus unaware that
the vaccines are freely available.

Another explanation for why a high prevalence of cost obstacles
to care predicts state-level vaccination rates is found with the indi-
rect financial costs associated with vaccination. In the same poll
cited above, 15 % of respondents mentioned difficulties around
transportation to a vaccination site among the reasons for not
being vaccinated yet and 20 % voiced concerns about having to take
time off from work to go and receive the vaccine [23]. That these
concerns were more common among black and hispanic than
among white respondents is yet another piece of evidence shed-
ding light on racial and ethnic vaccine inequity in the US [26].
Moreover, each of the COVID-19 vaccines is associated with
mild-to-moderate side effects that may interfere with work.
Another poll from June 2021 found that workers were more likely
to be vaccinated if their employers provided paid time off to get
vaccinated and recover from side-effects, or simply encouraged
vaccination [27]. These results highlight that demand-side barriers
to vaccination are far more complex than mere hesitancy concern-
ing the vaccine. To support vaccine uptake, governments should
consider providing additional information and financial support
to those who are the most marginalised by the healthcare system.

In both June and September, there is clear evidence of a positive
association between cumulative vaccinations per capita and the
Democratic vote margin in the 2020 US elections. One interpreta-
tion of this association is that Democratic voting is related to
demand-side factors such as vaccine attitudes; initial evidence
strongly suggests that vaccine uptake is greater among Democratic
voters [3]. Despite vaccine hesitancy already being in the model as
a separate variable, there are two reasons this could still explain
the association. First, the hesitancy variable was selected as a mea-
sure of attitudes before any potential influence by the outcomes of
the immunisation campaign. Vaccine attitudes have evolved in the
months since January 2021 [23], and it seems plausible that this
development followed partisan lines, As such Democratic voting
could explain variation in the demand for vaccines that was not
captured in the early January poll. Second, the sample-based cen-
sus poll may be an imperfect measure of vaccination attitudes. If
so, the Democratic voting variable could be capturing variation in
vaccination attitudes that was imperfectly measured by the hesi-
tancy variable.

The June 1 and September 21 results suggest a positive associ-
ation between vaccinations per capita and the population share
above 65 years, which is unsurprising considering the increased
vulnerability to COVID-19 among the elderly. However, it is worth
noting that the relationship is among the identified associations
that is the most heavily influenced by dropping individual states,
particularly those with especially young (e.g., Alaska) or old (e.g.,
Maine) populations (see appendix E). It should also be recognised
that the elderly population faces distinct challenges to accessing
vaccines, such as mobility difficulties, and that even maintaining
high vaccination rates in the most vulnerable age groups often
requires targeted efforts [28].
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4.2. Evolving determinants of state-level vaccination rates

One of the more striking patterns revealed by this analysis is
that the determinants of state-level COVID-19 vaccination rates
have evolved over time. As Exhibit 4 shows, some variables had a
clear relationship with the outcome in February but less so or
not at all in September, and vice versa for other variables. By plot-
ting the rolling coefficients from 233 regressions between February
1 and September 21, we visualise the evolution of each determi-
nant (Exhibit 5 and appendix D). The clearest pattern is that the
associations between vaccination outcomes and vaccine hesitancy,
as well as Democratic vote margin, have grown stronger over time.
It also appears that the association for public health expenditure
has gotten weaker, though this trend is noisier.

Together, these results support a compelling narrative about the
trajectory of the vaccination campaign. Early on while vaccine eli-
gibility was limited, demand-side factors such as vaccine hesitancy
and (perceived) cost obstacles to care were not strong determi-
nants of outcomes, as vaccinations were limited by both manufac-
turing capacity and the ability of states to distribute allocated
doses. Consequently, supply-side dimensions of health system
capacity, as proxied by expenditure, were better predictors of
state-level immunisation success. States like Alaska and West Vir-
ginia, which have some of the highest per capita (public) health
expenditures, were able to distribute vaccines well and achieved
the highest vaccination rates around February and March. How-
ever, as supply constraints were gradually relaxed and states
depleted the pool of the most willing vaccinees and expanded their
eligibility policies, population demand mattered more. As of April,
differences in vaccine hesitancy became increasingly predictive of
vaccination outcomes. Further, since vaccine attitudes are mark-
edly partisan, the greater role of demand allowed for a divergence
along party lines. Alaska and West Virginia, the two Republican
states that had vaccinated at the fastest rates in February, started
lagging. As of September, 22 of the 25 states with the fewest vac-
cinations per capita had voted Republican in 2020. The fact that
this pattern only arose several months into the vaccination cam-
paign suggests that it is differences in population demand, not
state ability to supply, that explain the partisan divergence in
immunisation outcomes.

Beyond policy implications, this pattern of results can inform
methodology for future research on immunisation campaigns dur-
ing public health emergencies. Most research on epidemic vaccina-
tion rates analyse determinants of coverage at a single point in
time, typically several months into the campaign [5,6,18,19]. Such
analyses can be misleading for infectious disease outbreaks where
both the nature of the epidemic and the vaccination effort change
rapidly over time. Researchers should consider utilising time-series
data for a more comprehensive analysis.
5. Conclusion

In this examination of the United States pandemic vaccination
campaign, we have provided evidence for the critical role of both
supply-side factors, such as healthcare- and public health infras-
tructure, and demand-side factors, such as vaccination attitudes
and cost obstacles to care. We have shown that the determinants
of COVID-19 vaccine administration have evolved over time. In
particular, we have provided evidence consistent with the idea that
while supply-side factors initially constrained immunisation
efforts, the demand for vaccines ultimately has become the differ-
entiating factor between states with low and high vaccination
coverage.

While this study has limitations, particularly when it comes to
causal interpretation, the findings presented here suggest clear
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policy implications. For one thing, the results may inform the
COVID-19 vaccination campaigns in the United States, including
the administration of booster doses. The clear partisan picture that
emerges even after adjusting for vaccine hesitancy suggests a cru-
cial role for political messaging in regions where coverage remains
limited. Moreover, the apparent role of cost obstacles to care
underscores the need for greater efforts to increase information
and access for marginalised communities.

While certain factors undoubtedly are limited to the United
States, some aspects of this analysis may be instructive for other
countries undertaking vaccination efforts, particularly as they seek
to bolster population immunity in the face of seasonal forcing and
emerging viral variants [27–30]. The analysis also holds policy les-
sons for preparedness efforts before the next pandemic: investing
in (public) health infrastructure and proactively working to
improve vaccine uptake can pay dividends for future epidemic vac-
cination campaigns, in addition to any health gains that can be rea-
lised immediately.

Finally, while states are often ranked by the speed at which they
achieve vaccination coverage, it must be stressed that vaccination
rates alone are not the sole indicator of a successful vaccination
campaign. Measures like vaccinations per capita do not reveal
information about other fundamental objectives of public health,
such as protecting at-risk populations and promoting health equity
[31,32]. Indeed, highlighting crude vaccination rates can poten-
tially have the adverse consequence of incentivising policymakers
Exhibit 6. The vaccine
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to prioritise speed above all other outcomes. Consequently, it is
vital to analyse and highlight the extent to which states have
achieved more fundamental ends of public health, such as equity
[33].
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Appendix A. The vaccine campaign process: From factories to
arms

The US Department of Health & Human Services breaks this pro-
cess into three distinct stages: allocation, distribution, and adminis-
tration [34]. Exhibit 6 provides an overview of these three stages.
delivery process.

https://osf.io/8vgks/
https://osf.io/8vgks/
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Allocation of doses across states

On a weekly basis, authorised manufacturers indicate to the
federal government how many vaccines they have available for
distribution [34]. The government then allocates the majority of
those doses across state- and territory health departments in pro-
portion to the share of the national adult population residing in
each area. In addition to this pro rata allocation, a share of the
available doses are allocated directly to federally supported pro-
grammes. These include the Federal Retail Pharmacy Program,
through which more than 40,000 retail pharmacies such CVS and
Walgreens administered about a third of all doses given by late
June 2021; the Rural Health Clinic COVID-19 Vaccine Distribution
Program, which aimed to increase the vaccine availability in rural
communities through about 4,600 rural health clinics; the Health
Center COVID-19 Vaccine Program, in which less than 1,000
community-based health centres provide vaccinations for particu-
larly vulnerable and poor families; the mass-vaccination sites
managed by the Federal Emergency Management Agency begin-
ning in March 2021; and the Indian Health Service, which supports
tribal health programmes as well as the urban indigenous commu-
nities in the United States.

Distribution of vaccines to the states

Although the federal government manages the allocation of
vaccines, the states themselves have played an active role in the
distribution process [34]. Crucially, state health departments are
responsible for placing orders for the doses that were allocated
directly to them and are not able to place an order for doses unless
there is a confirmed destination site to which the vaccines can be
delivered, which poses a particular challenge given the cold chain
Exhibit 7. Data sources for var

Exhibit 8. Exclud
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requirements and expiration date of the vaccines. States that suc-
cessfully launched more vaccination sites were able to place larger
orders, meaning that despite the pro rata allocation, actual distri-
bution rates have varied dramatically between states, particularly
during the first months of the campaign. As of February 15 2021,
Alaska had distributed more than twice as many vaccines per cap-
ita as Nevada.
Administration of vaccines to the population

Once distributed, vaccines are administered to eligible recipi-
ents by qualified healthcare professionals in a wide range of inpa-
tient and outpatient settings (Exhibit 6), including hospitals,
pharmacies, and long-term care facilities.
Appendix B. Data

Sources

The main data sources are the US Centers for Disease Control
(US CDC), the Kaiser Family Foundation (KFF), the US Census
Bureau, Americas Health Rankings (AHR), and Cook Political. All
data are publicly available (Exhibit 7).

Healthcare expenditure is defined as:”all privately and publicly
funded personal healthcare services and products (hospital care,
physician services, nursing home care, prescription drugs, etc.)
(. . .). Hospital spending is included and reflects the total net rev-
enue (gross charges less contractual adjustments, bad debts, and
charity care). Costs such as insurance program administration,
research, and construction expenses are not included in this total.”
[35].
iables in the main model.

ed variables.
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Public health expenditure is defined by Americas Health Rank-
ings as”State dollars dedicated to public health and federal dollars
directed to states per person by the Centers for Disease Control and
Prevention and the Health Resources Services Administration”
[36].
Considered variables not included in the regression analysis

Exhibit 8 presents the variables that were considered in regres-
sion analyses but were excluded from the model that they did not
meet any of these three conditions: (1) the variable was indepen-
dently associated with vaccination rates, (2) it appeared to consid-
erably confound the magnitude of the association between another
variable and administration rates, or (3) it seemed a priori to be
vitally important, such that even a null-result would be of interest.
Appendix C. Methods

Model specification

Our multivariable linear regression can be specified as:

Yit ¼ b0 þ b1X1i þ :::þ bkXki þ ei ð1Þ
Where the outcome variable Yit represents the vaccinations per

capita for a state i among N states at time t; X1 through Xk are a set
of time-invariant regressors; b1 through bk are the regression coef-
ficients for these variables, b0 is the intercept; and �it is the error
term. While the meaning of each b simply is the linear change in
Yit associated with a one-unit increase in Xk, the interpretation of
each coefficient depends on the scale of the respective explanatory
variable.
Diagnostic tests

This appendix provides further detail on the three diagnostic
tests conducted for the primary cross-sectional regressions with
vaccinations per capita on February 1, June 1, and September 21
regressions. In summary, we find that the validity of our results
does not appear to be threatened by neither excessive collinearity
of explanatory variables nor heteroscedasticity of errors, but that
the skewed distribution of residuals recommend mitigating the
influence of outliers using re-weighted least squares instead of
ordinary least squares regression.
Post-estimation test for heteroskedasticity
A key assumption of ordinary least squares regression is that

the error term has the same variance for any value of the explana-
tory variables [37], i.e. that the errors are homoscedastic. If this
assumption is violated, coefficient standard errors – and hence
confidence intervals and p-values – may be unreliable. To assess
potential heteroscedasticity, we conducted the Breusch-Pagan
Exhibit 9. Breusch-Pagan/Cook-Weisberg test for main regressions. Exhibit 10. Quantile-quantile plots.
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Exhibit 12. Rolling regression coefficients of

Exhibit 13. New monthly vaccinations per

Exhibit 11. Variance inflation factors test for explanatory variables.
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post-estimation test for the three main regressions. Exhibit 9
reports v2 and p-values.

The fact that all p� 0.167 suggests that the errors are not exces-
sively heteroscedastic for any of the three regressions.
Quantile-quantile plots for residuals
The validity of confidence intervals and p-values based on ordi-

nary least squares regression is sensitive to whether the residuals
are normally distributed [37]. Consequently, the standard inferen-
tial techniques for ordinary least squares may be inappropriate for
data with highly influential outliers. Exhibit 10 contains quantile–
variables, February 1 to September 21.

capita, February, June, and September.
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quantile plots for our three primary cross-sectional regressions,
each of which (moderately) suggests that the residuals are not nor-
mally distributed. To mitigate the influence of outliers with large
residuals, we employed iteratively re-weighted least squares
regression (IRLS) using the rlm() package in R, which down-
weights cases with large residuals [10].
Post-estimation test for multicollinearity
Another important assumption of least squares regression is

that there is no perfect collinearity between included explanatory
Exhibit 14. Vaccine distribution and a

Exhibit 15. Correlates of cumula

6539
variables, i.e. that no variable is an exact linear combination of the
other explanatory variables [37]. To assess potential multi-
collinearity, we estimated the variance inflation factor (VIF) for
all variables included in our primary cross-sectional regression
using the vif command in Stata [38], see Exhibit 11. Although the
variance inflation factor is an incomplete way of assessing multi-
collinearity [39], the fact that VIF 3.14 for all explanatory variables
provides some reassurance that the variables are not excessively
collinear, as a VIF threshold of 10 is a commonly used heuristic
for the collinearity of variables [38].
dministration, February 10, 2021.

tive vaccinations per capita.



Exhibit 16. Robustness of September 21 associations to unobservable selection.

Exhibit 17. Robustness of June 1 associations to unobservable selection.

Exhibit 18. Robustness of February 1 associations to unobservable selection.

Exhibit 19. Data sources for additional variables used in robustness regressions.

Exhibit 20. Correlates of cumulative vaccinations per capita with new controls.
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Exhibit 21. Comparison of rolling regression with/out new controls.
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Fig. 21 (continued)

J. Teperowski Monrad, S. Quaade and T. Powell-Jackson Vaccine 40 (2022) 6528–6548

6542



Exhibit 22. Regression robustness to excluding individual states, September 21.
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Fig. 22 (continued)
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Appendix D. Rolling regressions

Exhibit 12

Appendix E. Sensitivity analyses

Robustness to an alternative outcome measure

Although the relative pace of vaccinations between states chan-
ged over time (see Exhibit 3), the cumulative number of vaccina-
tions in a state at any point in time correlates with the
cumulative number at any subsequent point. Thus, given the high
degree of autocorrelation over time, the cross-sectional regressions
in Exhibits 4 and 5 cannot be seen as multiple pieces of entirely
independent evidence for the same associations. If certain states
had done extraordinarily well in the first few months of the cam-
paign, creating associations between vaccination rates and the
characteristics of those states, these associations would partially
persist even if the states performed poorly in subsequent months
due to the cumulative (and hence autocorrelated) nature of the
outcome measure. To see if the associations can be observed in
the absence of such autocorrelation, we ran regressions with the
increases in new vaccinations administered per capita during
February, June, and September as the dependent variable (Exhibit
13).

With this outcome measure, some key results remain
unchanged. As with the analysis of cumulative vaccinations, public
health expenditure is associated with new vaccinations in February
but not in subsequent periods. Similarly, there are initially no asso-
ciations for vaccine hesitancy and Democratic voting but these
arise in June. The results obtained with this measure depart from
the main results reported in Exhibit 4 in a few ways. First, neither
cost obstacles to care nor elderly population share are associated
with vaccination rates in June, suggesting that the relationships
that had emerged between those variables and cumulative June 1
vaccinations did not persist into the subsequent period. Second,
and more notably, the observed associations for September 21
entirely disappear when month-on-month vaccinations are con-
sidered. While one interpretation is that the relevant independent
6544
variables really no longer were associated with vaccination out-
comes in September, two other explanations merit consideration.
First, the period is limited to the three weeks of September before
as booster administration was authorised. Second, vaccination
rates were considerably slower in September relative to previous
months (see Exhibit 4). Both of these factors mean that relatively
few vaccines were administered during the September 1–22 per-
iod, meaning that the analysis of new vaccinations could be under-
powered to detect associations that would be observable with a
longer analysis window and greater vaccination rates.

The role of vaccine distribution

From early on in the campaign, states have differed markedly in
their ability to order and distribute the vaccines allocated to them.
Moreover, distribution rates have consistently explained much of
the variation in administration rates across states. Exhibit 14
shows the clear relationship (reported with Pearson’s q) between
vaccine distribution and ad- ministration as of February 10 (the
earliest date for which complete distribution data is available),
even when excluding the outlier state of Alaska.

Our main model was constructed to examine associations
between vaccination rates and time-invariant state characteristics
measured before the vaccination campaign. This model did not
include vaccine distribution rates, since distribution is causally
downstream from more fundamental supply-side factors such as
health expenditure. However, given that distribution represents a
direct measure of the vaccine supply at any given point, it is
instructive to examine whether some of the observed associations
are driven by distribution rates. Indeed, vaccines distributed per
capita on February 10 is correlated with both healthcare expendi-
ture (Pearson’s q = 0.55) and public health expenditure (q = 0.65).

To shed light on this, we ran the model for cumulative vaccina-
tions on February 10, June 1, and September 21 but this time
including a time-varying measure of vaccines distributed per cap-
ita for each of these respective dates. Exhibit 15 shows the result of
these cross-sectional regressions.

For both February and June, distribution rates are strongly asso-
ciated with vaccination rates. Further, compared to the results
from the model without distribution rates (Exhibit 4), a few things
stand out. The positive associations for both expenditure measures
disappear entirely across all three months. As noted in the Discus-
sion, this evidence is consistent with the interpretation that states
with stronger healthcare infrastructure, in the form of well-funded
and well-staffed hospitals and clinics, were better able to launch
vaccination sites through which doses could be ordered, dis-
tributed, and ultimately administered.

In contrast, the picture appears broadly unchanged for the main
demand-side factors, vaccine hesitancy and cost obstacles: despite
no association in February, there are clear negative associations
both in June and, at least for vaccine hesitancy, in September. This
is unsurprising considering that there is no clear reason why
demand-side factors such as vaccine hesitancy would affect vac-
cine administration through distribution.

Robustness to omitted variable bias

General approach
As an observational study, any causal interpretation of these

findings is threatened by omitted variable bias. Indeed, notwith-
standing the inclusion of some important controls, our lack of a
strong causal identification strategy makes it highly likely that
the provided estimates are, to some extent, biased by selection



Exhibit 23. Regression robustness to excluding individual states, June 1.
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Fig. 23 (continued)
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on unobserved factors. The relevant question, then, is whether the
magnitude of potential bias is likely to be large enough to threaten
our overall conclusions. Oster [11] discusses how to evaluate
whether selection on unobservables poses a severe threat to valid-
ity. She notes that looking at the difference between the coeffi-
cients of uncontrolled (bivariate) and controlled (multivariable)
regressions is not sufficient to evaluate robustness to omitted vari-
able bias without further assumptions about the relationship
between selection on observables and selection on unobservables.
For example, even if the estimated b-coefficients move very little
between an uncontrolled and a controlled regression, omitted vari-
able bias could still invalidate the results if unobserved factors
accounted for enough of the variation in the outcome. To address
this, Oster extends prior work by Altonji et al. [40] to provide a
method that considers not only coefficient movements but also
changes in R2. She presents a measure, d, of the relative amount
of selection on unobservables compared to selection on observ-
ables it would take to nullify the observed association. Oster pro-
poses a threshold of 1 for d to determine whether results should
be considered robust. In other words, she argues that results are
robust if d is greater than 1, i.e., if selection on unobservables
would have to be greater than the selection on included observ-
ables to yield a b-coefficient of zero. We consider the associations
from Exhibit 4 for which we obtained p-values below 0.05 and use
the psacalc Stata module to estimate d; see [11] for the mathemat-
ical formula. The arbitrary a-threshold of 0.05 was chosen based on
what the psacalc module uses.

Exhibits 16-18 present this analysis for the February, June, and
September regressions. Because the analysis of d relies on the psa-
calc module, it is based on regressions conducted with the reg
command and the,robust option in Stata. Consequently, coeffi-
cients and p-values differ very slightly from those obtained with
the rlm() command in R reported elsewhere.

For the June and September regressions, all but one d are above
1. This implies that even if selection on unobservables was as great
as selection on the included explanatory variables, the main asso-
ciations would remain significantly different from zero (again
using the arbitrary a = 0.05).

For the February regression, the d less than 1 suggests that even
if selection on unobservables was less in magnitude than selection
on observables, the results could be nullified by including all unob-
served factors. In other words, the associations do not appear as
robust to omitted variable bias as the June and September
associations.
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Empirical exploration of omitted variable bias

While the analysis based on Oster suggests that most of our
main findings are robust to even a substantial degree of potential
selection on unobservables, the omission of particular variables
may raise concerns about confounding. As an additional robustness
check for omitted variable bias, we reproduce our primary regres-
sion analysis results including a series of additional variables that
control for four particularly salient potential confounding factors.
The additional variables included are summarized in Exhibit 19.
Exhibit 20 reports the results from including the additional con-
trols in the regression model that was estimated to produce the
results in Exhibit 4, while Exhibit 21 displays side-by-side the evo-
lution of the variable coefficients over time in the original (left pan-
els) and new (right panels) regression model.

The new results provided in Exhibits 20 and 21 suggest that our
main results are not substantially changed by the inclusion of these
variables. In the new regressions, healthcare expenditure and pub-
lic health expenditure are associated with vaccination in February
(p = 0.003 and p = 0.002, respectively) but not in June (p = 0.308;
p = 0.163) or September (p = 0.699; p = 0.606). As such, the inclu-
sion of the new variables accord with our original interpretation
that ‘‘supply-side” factors became less significantly associated with
vaccination rates over time.

Similarly, cost obstacles to care are not associated with vaccina-
tion rates in February (p = 0.122) but is in June (p = 0.013) and, to a
lesser extent, in September (p = 0.054). These results are consistent
with the trends observed in our original regressions, although the
inclusion of the new variables does produce a clearer association
between cost obstacles to care and vaccination rates in June and
September. This finding also supports our suggestion that
demand-side factors became more influential over time.

We note that poverty is not associated with vaccination rates in
February (p = 0.163) and June (p = 0.208), but is in September
(p = 0.07). The September finding somewhat differs from our orig-
inal results, although the direction of the correlation remains the
same. Furthermore, although the trend line exhibited by the
regression coefficient over time does appear qualitatively different
from the original trend line, they are within the error margins of
one another.

The estimated coefficients and confidence intervals for Demo-
cratic voting, vaccine hesitancy, share of population over 65, and
population density do not seem to meaningfully change as a result
of the inclusion of the new variables.

Robustness to dropping individual states

Given the small sample size available for state-level regressions
(N = 50), a potential threat to the validity of this study would be if
the findings were driven by the influence of a single outlying state.
Because of this concern, we ran the main regressions while drop-
ping one state a time to see how the results from Exhibit 4 are
affected by this step-wise exclusion. Exhibits 19-21 show the
results for the September, June, and February regressions, respec-
tively. In general, these figures reveal that the observed associa-
tions (or absences of any association) are not affected by
dropping individual states from anal- ysis, though with a few nota-
ble exceptions: the February relationship with public health
expenditure is highly influenced by the exclusion of Alaska and
New Mexico; the September relationship with the elderly share
of the population is considerably influenced by dropping states
such as Alaska, Florida, and Maine; and the lack of association with
population density is strongly influenced by excluding New Jersey.
Notwithstanding these influential data points, this robustness
analysis shows that the main results generally are not driven by
the outcomes in any individual state (Exhibits 22-24).



Exhibit 24. Regression robustness to excluding individual states, April 1.
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Fig. 24 (continued)
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