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Abstract

Outbreaks of tuberculosis (TB) – such as the large isoniazid- resistant outbreak centred on London, UK, which originated in 1995 
– provide excellent opportunities to model transmission of this devastating disease. Transmission chains for TB are notoriously 
difficult to ascertain, but mathematical modelling approaches, combined with whole- genome sequencing data, have strong 
potential to contribute to transmission analyses. Using such data, we aimed to reconstruct transmission histories for the out-
break using a Bayesian approach, and to use machine- learning techniques with patient- level data to identify the key covariates 
associated with transmission. By using our transmission reconstruction method that accounts for phylogenetic uncertainty, we 
are able to identify 21 transmission events with reasonable confidence, 9 of which have zero SNP distance, and a maximum 
distance of 3. Patient age, alcohol abuse and history of homelessness were found to be the most important predictors of being 
credible TB transmitters.

DATA SUMMARY
Raw data are available in the European Nucleotide Archive 
with accession number ERP003508. The beast xml file is 
provided in supplementary information for this article that 
can be found on Figshare (https:// figshare. com/) at: 10.6084/
m9.figshare.12413012.

INTRODUCTION
Analyses of chains of transmission – i.e. who infected whom – 
are critical tools within outbreak control. In tuberculosis (TB), 
transmission analysis is particularly challenging, because 
TB has the potential for dormancy in infected individuals 
many years after transmission, making it hard to distinguish 
recent transmission from reactivation. Additionally, in low- 
incidence, wealthier nations, the disease is often concentrated 
in populations that are under- served by traditional health- 
care models, resulting in infectious individuals taking many 
months to be diagnosed. Within the public- health process 

for patients with infectious respiratory disease, it can be chal-
lenging to identify an individual’s contacts over long periods 
of time, particularly within under- served population groups, 
who may have unstable housing and mistrust traditional 
systems of authority.

Since the advent of next- generation sequencing technologies 
has made this feasible [1], whole- genome sequencing (WGS) 
data are increasingly gathered in efforts towards TB control, 
and there have been high hopes that WGS technologies will 
greatly facilitate outbreak reconstruction. In high- income 
countries, WGS data and demographic and epidemiological 
data are now often gathered for TB. National TB control 
programmes following World Health Organization guide-
lines collect a standard set of data, including demographic 
and clinical data, along with data on treatment outcomes 
and bacteriology [2, 3], some of which are likely to be related 
to transmission. Local programmes may collect further 
variables, which can be crucial in controlling and elimi-
nating outbreaks [3]. In 2017, England was the first country 
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worldwide to roll out routine WGS for TB cases [4]. It is 
not clear to what extent WGS data will reveal transmission 
events, though it is now established that sequences alone, at 
least with current bioinformatics analysis pipelines, are insuf-
ficient to reliably determine precisely who infected whom 
[5–8]. But the context of increased availability of WGS data, 
together with demographic and clinical covariates, provides 
researchers with new challenges – to what extent can incor-
porating demographic and clinical data with WGS aid in 
understanding transmission?

Within London, particularly the north of the city, a long- 
standing outbreak of isoniazid (INH)- monoresistant TB, 
first defined by a shared RFLP cluster and later defined by a 
shared identical 24- loci MIRU- VNTR type (mycobacterial 
interspersed repetitive units- variable number tandem repeat 
type), has existed since 1995 [6, 9–11]. By 2013, there were 
501 cases in total in the UK. Extensive contact tracing and 
transmission analysis were done in the first years following 
detection of the outbreak in 2000 [10, 11]. The outbreak has 
been of particular concern; there have been hundreds of cases 
and it has contributed to rising INH resistance in England 
[10]. The outbreak has showed signs of high transmissibility 
– with only brief contact sufficient for transmission [6, 11] – 
and a high proportion of smear- positive cases [6, 9]. During 
and after the outbreak, retrospective outbreak questionnaires 
and patient interviews were completed by TB clinic nurses, 
gathering information such as drug and alcohol use, history 
of homelessness or imprisonment, and treatment history. 
Recently, isolates from the outbreak cluster were sequenced 
with WGS to aid in resolving the transmission network, but 
due to low levels of detectable variation, individual transmis-
sion events could not be reliably inferred [6].

Here, we combine WGS data, data on times of sampling, 
and demographic, clinical and other host data to analyse 
this complex outbreak. We first reconstruct timed phyloge-
netic trees using WGS data together with sampling times. 
We introduce a new approach to reconstructing individual 
transmission events, jointly analysing a posterior collection 
of timed phylogenetic trees while sharing key model param-
eters. This takes phylogenetic uncertainty into account, while 
constraining reconstructed transmission events on different 
posterior phylogenies to have the same underlying epidemio-
logical parameters. This analysis allows us to estimate how 
many unsampled cases there were, how long individuals 
took from original infection to infecting others, and the time 
between initial infection and sampling, taking phylogenetic 
and parameter uncertainty into account. Finally, we relate the 
extended demographic and clinical data to transmission by 
training machine- learning tools to predict which individuals 
were likely transmitters, using the covariate data alone.

METHODS
Data
The London INH- resistant TB outbreak is characterized 
by Public Health England as cluster E1244 (strain type 
424332431515321236423–52 and including an untypeable 

3690 locus). Previous work documents the data collection, 
surveys and questionnaires, contact tracing and WGS used 
as part of outbreak investigations [6, 9–11]. The cluster was 
first identified using IS6110 RFLP analysis, by a screening 
method based on PCR and then using a unique 24- locus 
MIRU- VNTR type [6]. In the work by Maguire et al. [9], cases 
were defined as part of the outbreak if the patients had an 
INH- monoresistant strain, were diagnosed between 1995 and 
2006, had the RFLP or MIRU- VNTR pattern matching the 
outbreak, and were either a resident of London or had epide-
miological links with London. The outbreak then continued 
after 2006 and was described with sequencing data by Casali 
et al. [6].

Covariates (sex, age, region, born in the UK, occupation, 
ethnic group, sputum smear status, previous TB diagnosis, 
history of drug use, alcohol, presence of mental health 
concerns, homeless, history of homelessness, prison status 
and prison link) were obtained from the patient surveys, 
questionnaires and interviews, along with medical records; 
we visualize some of these data in Fig.  1(c). We took the 
following approach to missing data: for categorical variables 
with two strata (e.g. ‘yes’ and ‘no’; this describes most of our 
variables), if a variable was missing more than 40 % of its data, 
then the missing values were replaced by ‘unknown’. For all 
other variables, the R package Mice was used for multivariate 
imputation. In doing so, we had assumed that the missing data 
was missing at random. The decision to replace rather than 

Impact Statement

Improvements in sequencing technology have enabled 
rapid sequencing of pathogen genomes from infected 
individuals in an infectious disease outbreak. The high 
volumes of data generated, e.g. through whole- genome 
sequencing (WGS), have been used by researchers to 
help elucidate person- to- person transmission events. 
However, WGS data alone may not be sufficient to recon-
struct transmission events, especially when there is a 
lack of variability in the sequences. Conversely, patient 
covariate data is a rich source of information for outbreak 
investigation. Hence, combining WGS with epidemiolog-
ical data and patient covariates should yield improved 
understanding of transmission. In this paper, we explore 
retrospectively how sequence data, combined with epide-
miological, clinical, demographic and patient behavioural 
data, can help improve our understanding of transmis-
sion events in a large tuberculosis outbreak in London, 
England, and to identify covariates that may contribute 
to transmission. We combine phylogenetic estimation, 
Bayesian transmission inference and machine- learning 
tools. Through this integrative analysis, we are able to 
identify more transmission events with reasonable confi-
dence than previously studied, identify credible transmit-
ters and associate transmission to covariates.
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impute the missing data is based on the observation that if 
many entries are missing, there may not be enough informa-
tion for imputation, and so the result could be far from the 
truth. However, discarding the variable completely will result 
in a loss of information, and we wish to use the data that are 
available.

SNP calling and phylogenetic reconstruction
Isolates were cultured and then whole- genome sequenced 
[6] on an Illumina HiSeq system with a read length of 

100 bp at the Wellcome Trust Sanger Institute (Hinxton, 
UK); the raw data are available in the European Nucleotide 
Archive under the accession number ERP003508. Samples 
in this study were excluded from the analysis if any issues 
were recorded with their culturing in the lab, such as lack 
of growth, contamination or other reasons potentially 
impacting quality. An assessment of sequence quality was 
initially carried out using FastQC (version 0.11.2). Raw 
fastq reads were then filtered for length and trimmed for 
low- quality trailing base pairs using Trim Galore (version 

Fig. 1. (a) Number of sequences in our dataset by year. (b) Frequency of pairwise SNP distance. (c) Illustration of some of the covariates in 
an alluvial plot showing how many individuals are in each category and how many share categories from one column to another. Colours 
correspond to homelessness history: Y (yes), red; N (no), green; unknown, blue. As an example of the interpretation of the plot, nearly all 
those who have a yes for a history of homelessness (red) either also have yes or unknown for a history of drug use (red bands reaching 
from Y and unknown in the ‘HistDrugUse’ column up to the Y category for ‘HistHomeless’).
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0.4.1); any trimmed reads that were shorter than 70 bp were 
discarded. Reads were aligned to the H37Rv NC000962.3 
reference genome using the BWA (Burrows- Wheeler 
Aligner - version 0.7.15) MEM (maximal exact match) 
algorithm, with duplicate reads removed using Picard’s 
(version 2.6.0) MarkDuplicates tool. SNPs in hypervariable 
regions, repeat regions and mobile elements were excluded. 
Local realignment round insertions and deletions (indels) 
was carried out using the gatk (version 3.6) IndelRealigner 
tool. SNPs were identified using FreeBayes (version 1.1.0) 
with a minimum mapping quality of 30 and minimum 
base quality score of 20. Isolates with a high proportion of 
apparent mixed or heterozygous SNP calls (i.e. those with 
more than 20 % reads supporting the reference allele) were 
excluded from the analysis. A variable- site alignment was 
created as a fasta- format multiple sequence alignment that 
excluded non- variant bases, along with an index mapping 
the base number of the alignment to the corresponding loca-
tion on the reference genome. Calls made with a read depth 
of less than 30 across all the samples in the study were also 
excluded.

The phylogenetic tree- building software beast2 (version 
2.6.1) [12] was used to build timed phylogenetic trees. A 
preliminary check using TempEst [13] showed positive 
correlation between genetic divergence and sampling time 
(Fig. S1, available with the online version of this article), 
and a moderate level of temporal signal (TempEst R2=0.21). 
Because of moderate temporal signal in the SNP data, we 
adopted a strict molecular clock, supplying the tip dates, and 
we used a fixed rate parameter of 1.0×10−7 per site per year, 
corresponding to 0.44 substitutions per genome per year 
[14]. We used a coalescent constant population model with 
a log- normal [0, 200] prior [15, 16] for the population size. 
Because the K3Pu model of nucleotide substitution was not 
available in beast2, we used the generalized time reversible 
(GTR) substitution model [17], which had the next lowest 
Bayesian information criterion (BIC) score (Δ6910.964) on 
the basis of model testing using iq- tree [18]. The GTR model 
with prior rates having a gamma distribution with rates in [0, 
∞] and prior frequencies (estimated) in [0, 1] were applied, 
along with 0 proportion of invariant sites. We used the beast2 
correction for ascertainment bias, specifying the number of 
invariant A, C, G and T sites as 758 511 1 449 901 1 444 524 
758 336. Note that this must be manually added to the xml 
and may not appear when the xml is loaded into the BEAUti2 
(version 2.6.1) software. We ran the Markov chain Monte 
Carlo (MCMC) method for 100 000 000 iterations, sampling 
every 10 000th iteration. We verified chain convergence (by 
confirming multiple independent chains converged to the 
same posterior values) as well as good mixing and an effective 
sample size (ESS) of greater than 200 for all parameters using 
Tracer (version 1.7.1) [19]. A maximum clade credibility 
(MCC) tree was created using TreeAnnotator (version 2.6.0) 
[20], with 10 % of the chain discarded as burn- in, resulting in 
a posterior collection of 9000 trees. Instead of trying to obtain 
a single optimal timed phylogenetic tree from this posterior 
set, we sampled a collection of 50 of them at random. This 

ensures that we capture as much diversity as possible from the 
beast posterior, to achieve robust uncertainty quantification 
in our subsequent analysis.

Transmission inference
We performed Bayesian inference of transmission trees given 
a timed tree using the TransPhylo package in R [8], but we 
extended the approach to simultaneously infer transmissions 
on a subsample of beast trees rather than using just one. We 
based all downstream analysis on a combined set of posterior 
transmission trees inferred from these distinct phylogenetic 
trees. We also allowed the flexibility of sharing model param-
eters across different input phylogenetic trees, so that only a 
single parameter set is updated instead of N sets for N timed 
phylogenetic trees. This results in better mixing for the under-
lying MCMC algorithm than not sharing parameters.

Since TransPhylo assumes that sequences are from unique 
hosts and is not designed to handle multiple sequences from 
the same host, in order to avoid confusion of a host infecting 
itself, we kept only the earliest sequence from each host in 
the input phylogenetic trees. A treespace [21] analysis did 
not suggest any multi- modality in the posterior beast trees 
(Fig. S2), but the posterior trees are discordant, with many 
nodes with low support (see Fig. 2). For this reason, rather 
than summarizing the posterior with just one MCC tree (as is 
standard), we opted to use a sample of 50 phylogenies to better 
capture phylogenetic uncertainty. We randomly sampled 50 
trees from a subsample of the beast posterior, excluding the 
burn- in. This choice reflects a trade- off between TransPhylo 
computational burden and being representative of the full 
beast posterior. TransPhylo was run on the joint tree space of 
these 50 posterior phylogenetic trees, with parameter sharing, 
for 105 iterations. Output transmission trees were collected 
every 50 iterations, to reduce correlation between subse-
quent trees in the sample. Simultaneous analysis on multiple 
phylogenetic trees, with parameter sharing between them, is 
a new addition to TransPhylo here. It allows the transmis-
sion inference to incorporate phylogenetic uncertainty, and 
unlike an analysis using TransPhylo separately on a set of 
input phylogenies, parameter sharing yields one estimate over 
50 input trees as opposed to 50 estimates, one per input tree. 
The multi- tree capability used here is available in TransPhylo 
at  github. com/ xavierdidelot/ TransPhylo [22].

The epidemiological generation time and time- to- sampling 
are both described by gamma densities with fixed parameters. 
For the generation time, the shape and scale parameters 
used are 1.3 (unitless) and 2.5 years, respectively; and for the 
time between infection and sampling, the shape and scale 
parameters used are 1.1 (unitless) and 6.0 years. These time 
quantities are known to be widely variable for TB outbreaks, 
but our parameter values were informed by previous TB 
outbreaks in well- resourced settings (for example [23, 24]). 
The offspring distribution in TransPhylo is a negative bino-
mial distribution NB(r, p), with the second parameter, p, fixed 
to be 0.5. The mean is, therefore, equal to the first parameter, r, 
which is also the basic reproduction number R0. We fixed the 

https://github.com/xavierdidelot/TransPhylo


5

Xu et al., Microbial Genomics 2020;6

within- host coalescent parameter Neg at 100/365. Neg is the 
product of the coalescent in- host effective population size Ne 
and the within- host generation time g [25]. The within- host 
generation time is a different parameter than the epidemio-
logical (between- host) generation time. The epidemiological 
(between- host) generation time denotes the time between an 
individual becoming infected and infecting another, whereas 
the within- host generation time is the time between effec-
tive bacterial generations within a host. A prior belief that an 
effective approach to active case finding was implemented 
during this outbreak [26] was reflected in TransPhylo with an 
informative beta prior for the sampling probability denoted 
π, with the two parameters being eight and two. The date 

of the last sample was June 2012. TransPhylo was run with 
date T=∞, i.e. the finished outbreak scenario, because to our 
knowledge, cases matching the outbreak criteria were not 
identified subsequently.

Patient-level prediction from metadata
The ‘ground truth’ answers to many questions in an outbreak 
reconstruction – who infected whom and when – are typically 
not known. We used the posterior transmission trees from 
TransPhylo as a proxy for this ground truth. For example, 
suppose that we are interested in predicting whether a host 
has transmitted TB. We can describe whether an individual is 
a ‘credible transmitter’ by setting a binary variable to be true if 

Fig. 2. MCC tree of the beast analysis under a coalescent constant population model on a dataset consisting of 351 TB outbreak genomes 
sampled from patients in the UK. Branch colours correspond to different posterior probabilities: minimum, purple; midpoint, blue; 
maximum, green; undefined, black.
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more than half of the posterior transmission trees suggest that 
the host infects at least one other; while the true transmission 
events are unknown this allows us to capture variation in the 
likelihood that an individual transmitted to another during 
the outbreak. We could also be more stringent by assigning 
a true label only when over 80 % of transmission trees imply 
that the host infects someone else; in this case, the resulting 
true positives will more closely reflect the TransPhylo esti-
mates of who is a transmitter, but false negatives will likely 
increase as well.

Once we have extracted a host- level variable of interest from 
the posterior transmission trees produced by TransPhylo, we 
can then train a machine- learning algorithm to predict this 
target variable, using either (i) both the metadata and other 
predictors extracted from TransPhylo such as the generation 
time and time- to- sampling for each host, or (ii) the metadata 
alone. Here, we chose the latter because we are interested in 
assessing whether the covariates in the metadata have predic-
tive power for identifying credible transmitters.

We explored two machine- learning tasks: predicting whether 
an individual is (likely) a transmitter of TB, and predicting 
whether an individual is estimated to have a longer- than- usual 
generation time. Accordingly, in the first task, the response 
was chosen to be a binary variable that is true if the posterior 
probability that the individual in question infects at least one 
other individual is greater than 0.5, and false otherwise. A 
random forest classifier was trained with fivefold cross vali-
dation, so that each model was used to predict data that it 
had not seen during training. In the second task, we created 
a new binary variable (‘long’ generation time or not). The 
generation time was estimated from the TransPhylo posterior 
transmission trees by subtracting the mean infection time 
of a host from the mean first transmission time of that host 
(Fig. 3c). The mean was taken over all posterior transmission 
trees in which the host ever infects another (regardless of who 
they infect, and even if they have low posterior probability of 
infecting anyone). Naturally, generation times are censored 
by the end time of the data; individuals infected very recently 

Fig. 3. (a) Scatter plot of times of infection and sampling. Each dot corresponds to an individual host. A smooth line (blue) has been fitted, 
and a reference line (red) of y=x has been added to aid inspection. (b) Interval in years between times of infection and sampling in (a), 
overlaid with the prior gamma density used in TransPhylo (shape 1.1 and scale 6 years; dashed line). The few cases in the upper tail of 
the histogram correspond to cases earlier in the outbreak when sampling was poor. (c) Scatter plot of time of infection and generation 
time in years, each dot corresponds to an individual host. The individual cases are coloured by their probability of infecting others, with 
darker colour indicating a higher probability. In (a) and (c), a smoother has been fitted in order to better see the relation between the 
variables, using local polynomial regression fitting, or ‘loess’; the shaded area indicates 0.95 confidence interval level.
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have had less opportunity to infect others, and any secondary 
cases we do have in the data will have happened rapidly. We 
considered the generation time to be long if it was greater 
than 2 years, and short otherwise. We trained a random forest 
classifier as in the first task, using the same set of training 
and validation data. Using 0.5 as a threshold of probability 
of transmission, TransPhylo predicted that 205 (62 %) cases 
were transmitters and 124 (38 %) cases were non- transmitters. 
A total of 64 (19 %) cases had generation times above 2 years 
and 265 (81 %) below 2 years.

RESULTS
beast2 analysis of 351 genomes resulted in an estimated 
substitution rate of 6.603×10−8 (95 % highest posterior density 
(HPD) 5.546–7.745×10−8) substitutions per site per year and 
an estimated time of the most recent common ancestor 
(tMRCA) of 1989 (95 % HPD 1986 to 1991), with ESS scores 
of 1131.9 and 2621.2 on the MCC tree, respectively. The MCC 
tree generated under a coalescent constant population model 
is shown in Fig. 2.

Of the 351 sequences in the final dataset, 94 were identical 
(that is, they were the same one sequence); Casali et al. [6] 
also found a high number of identical sequences. We used 329 
of the sequences, among which there were 269 variable sites, 
for the transmission analysis. This restriction was because 
some individuals had multiple isolates in the data, and the 
TransPhylo model assumes that each tip in the phylogeny 
corresponds to one host. Accordingly, we used only the 
earliest sequence from each host. In Fig. 1(a), we show the 
total number of sequenced isolates per year between 1998 and 
2012. The frequency of all pairwise SNP distances is shown in 
Fig. 1(b). Among other patterns, we note that if a patient had 
a history of homelessness, then they tended to also have used 
drugs; most patients were between age 20 and 40, with more 
males than females (Fig. 1c). There are missing data, which is 
to be expected, as patients may be unwilling to disclose some 
of this information, and record- keeping over a long period 
across multiple sites can be prone to error and loss.

In order to have a picture of the overall transmission network, 
we show in Fig. 4 the maximum a posteriori (MAP) trans-
mission tree from the combined TransPhylo posterior. Of all 
transmission trees sampled, this is the one with the highest 
posterior probability. One advantage of TransPhylo is its 
ability to model unsampled cases and estimate their numbers; 
here, we estimated a mean of 29 unsampled cases (Fig. S3) 
compared to 329 sampled, resulting in a relatively high case 
finding rate of 91.2 %. This somewhat reflects our beta (8,2) 
prior sampling probability which has a mean of 0.8. Fig. S4 
shows the MCMC trace plot of the model parameters, which 
are shared between all 50 simultaneously inferred transmis-
sion trees. We discarded the first 50 % of transmission trees 
as burn- in (to be confident that the MCMC algorithm had 
reached equilibrium) and sampled only every 50th tree to 
reduce correlation between successive samples. The final 
50 % of the transmission trees (sampled every 50 itera-
tions) corresponding to each of the 50 timed phylogenetic 

trees were joined together in a combined posterior [of size 
(105/50)×0.5×50=50 000 trees] that was used for downstream 
analysis. We calculated the ESS (with an auto- correlation 
threshold of 0.05) of r to be 880 and of π to be 51, both above 
the usually accepted minimum size of 30. Because they share 
parameters, the mean of r, or equivalently R0, for any timed 
tree is 1.09; and the mean sampling probability π is 0.849. 
Recall that the within- host coalescent time unit (Neg) was 
fixed to be 0.27 (100/365).

Investigating the sensitivity of the results to our prior assump-
tions (see Table S1) revealed that the results are robust to 
changes in the prior for Neg, as well as r being robust to 
changes in the generation time and sampling time. Outcomes 
involving sampling of individuals, in particular the sampling 
proportion π and accordingly the number of credible, 
sampled transmission pairs, were quite strongly influenced by 
the generation time and sampling time priors. However, the 
priors selected in our main analysis are consistent with those 
used in other analyses of TB outbreaks in well- resourced 
settings, and do allow for considerable variability in the 
generation and sampling times.

In contrast to credible TB infectors (see Methods), we sought 
credible transmission pairs, namely transmission pairs from 
individual i to j that have posterior probability greater than 
0.5. There are 21 such transmission pairs: 9 with no SNPs, 
7 with 1 SNP, 3 with 2 SNPs and 2 with 3 SNPs between 
the host isolates. We identified no transmission pairs with 
posterior probability greater than 0.5 in which the infector 
is unsampled. Previous analysis of this outbreak (see figure 3 
in the work by Casali et al. [6]) using WGS data identified 5 
transmission events (compared to 21 here), though consider-
able uncertainty remains. There was a maximum of four SNPs 
in two of the transmission events suggested by WGS in the 
work by Casali et al. [6], in contrast to a maximum of three 
SNPs in the transmission events identified by our approach. 
In the 21 pairs we identified, there are 9 pairs where both 
individuals were treated in the same hospital, 11 pairs where 
both were of the same ethnicity, 6 pairs where both had been 
drug users and 5 pairs where both had links with prison. We 
also note that there is one pair that simultaneously shared all 
these attributes. One of our identified pairs is in agreement 
with known reported contacts, but contact data are not avail-
able for the majority of our cases.

Even if highly likely pairs are not revealed by WGS data, we 
can interrogate the Bayesian transmission trees to obtain 
information that can be useful in outbreak control and case 
finding. In particular, we explored the relationship between 
host covariate data and whether hosts are inferred to have 
infected, or been infected by, unsampled cases.

Because a host can have many infectees but can only have 
one infector, we computed the mean number of unsampled 
infectees over the set of posterior transmission trees in which 
the host infects at least one other host, and the probability 
of having an unsampled infector, conditioned on the host 
not being the index case. We grouped the estimates by four 
covariates, shown in Figs 5 and 6. We found that an individual 
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tended to infect more unsampled cases if they had been 
affected by alcohol or drugs, or had a history of homeless-
ness. Based on our data, we cannot conclude whether having a 
prison link is connected to having more unsampled infectees, 
because the categories in our prison data are ‘yes’ or ‘NA’ 
(unknown). The plot of the probability that an individual’s 
infector is unsampled shows a similar pattern, i.e. an indi-
vidual is more likely to have an unsampled infector if he or 
she has used drugs or alcohol or has been homeless, though 
the distinction is less pronounced.

Our outbreak reconstruction with WGS data can also help 
interrogate the timing of transmission and sampling in 
reconstructions consistent with genomic data [27], despite 
the fact that individual transmission events and their timing is 
uncertain. The relationship between posterior times of infec-
tion and times of sampling is shown in Fig. 3(a). There is 
an approximately 2 year gap between becoming infected and 
getting sampled (Fig. 3b). Sensitivity analysis (see Table S1) 

revealed that this is not particularly driven by the generation 
time and sampling time priors.

Fig. 3(c) shows how the estimated generation time varies 
over time. A large proportion of cases had a generation time 
below 2 years, consistent with previous estimates in similar 
settings and in this outbreak [8, 23, 27, 28] The estimated 
mean generation time was lowest in and around 2004. 
However, not all posterior trees support the assumption that 
a given individual has infected someone else; in other words, 
there could be no transmission events between infection and 
sampling. Each point in Fig. 3(c) is coloured by the prob-
ability of the corresponding host ever infecting others. We 
see that many cases infected recently have a low probability 
of having infected others and, even if they do, the generation 
times tend to be short. This is in part due to censoring, as 
the sampling period ended. However, there were quite a few 
early cases that are very likely to be transmitters, and their 
generation times were often long (over 3 years). We note that 

Fig. 4. MAP transmission tree of the combined TransPhylo posterior. Nodes (hosts) are coloured by time of infection, with the initial 
infection coloured in grey. Sampled cases are shown as circles, unsampled cases are shown as squares, and those cases identified as 
transmission pairs in over 50 % of posterior transmission are shown as triangles. Note that it is not guaranteed that all such transmission 
pairs will occur as a pair in the MAP tree; here, one identified pair is not in the MAP tree. Shorter edge lengths denote smaller SNP 
distances.
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due to the selection of closely related isolates for inclusion in 
the study, individuals who reactivated with TB strains that 
are not considered part of the outbreak are not shown here, 
and neither are infected individuals who did not become 
symptomatic before sampling ended. The times to sampling 
and to onward infection events reflect the censoring and case 
selection processes.

We sought to relate the covariate data to two outcomes from 
the outbreak reconstruction: whether an individual is likely 
to have transmitted TB, and whether an individual has a rela-
tively long or short generation time (time between becoming 
infected and infecting others). Table 1 shows the aggregated 
performance of the unoptimized random forest classifiers in 
a confusion matrix. This compares the predictions from the 
random forest classifier to the ground truth (which here is 
assumed from TransPhylo as the ground truth is unknown). 
In the first task (identifying likely transmitters), we obtained 
an accuracy of 0.71, precision 0.72 and recall 0.87. A high 
recall rate is often desirable, because it means that the prob-
ability of detecting cases that have infected others will be high. 
In this case, we obtained a false positive rate of 0.28, which 
means that one in three or four predicted positives will likely 
be a false alarm. This could still be helpful to case finding, as 
overall TB prevalence is low and so false positives may not be 
a significant burden. Fig. S5(a) shows the receiver operating 
characteristic (ROC) curve for the first task, with an area 
under curve (AUC) of 0.72.

Fig. 7(a) shows feature importance from the random forest 
classifier. The importance of a variable is measured by the 
mean decrease of node impurity, in this case the Gini index, 
from splitting on that variable in the decision tree. If splitting 
on variable A reduces misclassification more than splitting 
on variable B, then A is considered to be more important 
than B. We found that the age of the patient is the most 
important variable by this measure, outweighing the other 
variables by a substantial margin. The importance findings 
may be interesting to epidemiologists, offering insights into 
variables that may affect the likelihood of transmission. 
However, we should not be too confident, because the clas-
sifier’s performance is not particularly strong (although it is 
better than random guessing). Including additional covariates 
may improve classification. Our machine- learning results also 
suggest that sputum smear status is not particularly important 
in predicting whether an individual transmitted TB in this 
outbreak. This may be explained by the fact that concentrated 
smear testing usually performed in higher- income countries 
is not as good a marker of infectivity as other approaches.

Partial dependence plots can be used to visualize the marginal 
effect of some predictors on the response variable, by aver-
aging out the effects of all other variables. For non- categorical 
features, we can explore whether the relationship between a 
feature and the response is monotonic, linear or otherwise. 
In Fig. 7(b–d), we show the partial dependence on age, alco-
holism and ethnic group, the three most important predictors, 

Fig. 5. Mean number of unsampled infectees of hosts in different categories defined by four covariates, conditioned on the host infecting 
at least one other host in the posterior transmission trees. N, No; Y, yes.
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as log- odds. There is a sharp decrease in the likelihood of 
transmitting TB (according to the fitted model) after age 40; 
the odds increase somewhat in people over 60. We also note 
that the log- odds of transmitting TB is a little higher for those 
who are affected by alcohol than those who are not. The log- 
odds is largest if the alcoholism variable’s value is unknown, 
suggesting that there are more positive (Y; i.e. affected by 
alcohol) than negative (N) cases among those patients who 
had not reported their alcoholism history. We also observe 
that individuals of black Caribbean and white heritage are 
more likely to appear as credible TB transmitters than other 
ethnic groups in our inference. Partial dependence plots 
do not reveal whether feature importance is causal or due 
to residual confounding, so further investigation would be 
advised.

We also attempted to predict from the metadata whether 
an individual would have a long or short generation time. 
Treating the case where the generation time is more than 
2 years as the ‘positive’ category, this classifier does not 
perform as well as trying to predict whether the host has 
transmitted TB, using the same set of covariates. The confu-
sion matrix of this classifier is shown in Table 1 in (b), the 
ROC curve in Fig. S5(b), and the feature importance/partial 
dependence on variable age in Fig. S6.

DISCUSSION
We have demonstrated how transmission reconstruction 
from WGS data can be approached using Bayesian statistical 
inference of transmission trees, with data from a large TB 
outbreak in London. We have used a modified version of the 
TransPhylo approach to simultaneously infer transmission 
events on multiple trees, sharing parameters between them. 
This allows us to incorporate tree uncertainty into the trans-
mission inference. The ways in which individuals live, work 
and interact is one of the driving forces for TB transmission 
[29]. Understanding the relationship between the covariates 
and transmission gives us insights into factors driving TB 
transmission, and could provide guidance on effective control 
mechanisms to public- health authorities.

Although WGS can be insufficient to resolve transmission 
chains due to lack of detectable variation between cases 

Fig. 6. Probability of a host having unsampled infector in different categories defined by four covariates, conditioned on the host not 
being the index case in the posterior transmission trees. N, No; Y, yes.

Table 1. Confusion matrices of the random forest classifier on the 
validation set

Classifications: (a) credible transmitter status, True (T) or False (F); (b) 
long (L) and short (S) generation times.

(a) Credible transmitters (b) Generation times

Actual Actual

F T S L

Pred F 56 27 Pred S 262 63

  T 68 178  L 3 1
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[5, 6], our statistical approach can refine the analysis usually 
used in outbreak investigations. We identified more trans-
mission events with reasonable confidence than those that 
were suggested directly by the data [6]. When patient- level 
covariates such as demographic and clinical data are avail-
able, machine- learning algorithms can be used to predict 
individual- level variables (i.e. credible transmitter status) 
derived from transmission reconstruction, providing a means 
to assess the importance of the covariates for these quantities.

With the move to routine WGS of all TB isolates by Public 
Health England, it is important to understand the role WGS 
data can play in outbreak investigations and in understanding 
transmission. With current sequencing technology and 
variant- calling pipelines, WGS data may contain insufficient 
variation to reconstruct individual transmission events with 
high confidence. It may be that variation simply does not 
occur rapidly enough in TB to obtain much more informa-
tion about direct transmission, making the development of 
approaches to better integrate additional epidemiological 

data very important [5]. However, sequence data can still 
contribute to epidemiological analysis through the kind of 
integrative analysis we have done here, as well as through 
refuting putative direct- transmission events when the relevant 
isolates are very distinct genomically. It is possible that new 
longer- read technologies and improved variant calling may 
ultimately allow us to capture additional variation occurring 
in repeat regions and hyper- variable regions, or variation due 
to insertions and deletions; this would likely be helpful in 
epidemiological investigations of TB outbreaks in a range of 
settings.

Our approach has some significant limitations. It is a three- 
stage approach: reconstruction of timed phylogenetic trees, 
transmission analysis, followed by machine learning to 
connect the demographic and clinical data to the transmis-
sion analysis. While we have made efforts to take uncertainty 
into account at each stage by, for example, simultaneously 
analysing 50 posterior timed phylogenetic trees, joint estima-
tion of the transmission trees and phylogenetic trees together 

Fig. 7. (a) Feature importance plot of the random forest model for classifying whether a host has transmitted TB to others. Importance 
is measured by the mean decrease in Gini index from splitting on the variable. The error bars are the standard errors of the importance 
measure on five imputed datasets. (b–d) Partial dependence plots for age, alcoholism and ethnic group. These plot the variable of interest 
against the log- odds of transmission on a grid of values (age), or discrete categories (alcohol and ethnic group), by marginalizing, or 
integrating out, all other covariates. N, No; Y, yes.
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might be preferable if it could be done in a practical way. There 
would also be advantages to developing statistical and model-
ling tools to directly (and simultaneously with the phylogeny 
and transmission trees) estimate the contributions of each 
covariate to transmissibility, speed of progression of disease 
and other factors. Instead, here we assumed a ground truth, 
which was in fact estimated with TransPhylo. We were also 
limited by considerable amounts of missing data for several 
covariates including alcohol, drug use and homelessness. 
Developing the appropriate inference tools would require 
overcoming the challenge of handling unsampled cases (and 
the unknown cases they may have infected, and so on) despite 
the unknown covariate data for the unknown cases. Currently, 
the mathematics at the heart of TransPhylo does not naturally 
allow for a likelihood model that extends in this way.

It would additionally help to analyse sequence data together 
with outbreak control efforts in real time [30, 31]. In TB, with 
outbreaks lasting years, this is very feasible. Results could 
inform the outbreak investigation by directing attention 
towards individuals without a probable infector (and, thus, 
a likely contact of an unknown case), by informing public- 
health bodies as to how quickly cases need to be found to 
interrupt transmission and towards communities or sub- 
groups with higher numbers of estimated unsampled cases 
nearby in the transmission tree. To take these actions would 
require relatively rapid WGS and analyses, but this is now 
increasingly feasible [32]. WGS data can readily be used to 
refute transmission events, and routine sequencing has the 
potential to lead to dramatic improvements in understanding 
and treating resistant disease, particularly if genome- based 
resistance predictions can be made quickly enough to inform 
treatment [32].

One recurring message [5, 6, 8] is that WGS data alone 
are likely to be insufficient for reconstructing individual 
transmission events; however, our statistical approach can 
improve the analysis of WGS data together with covariates, 
and uncover patterns of transmission. Multiple data sources 
are required to obtain the best possible understanding of 
transmission events and transmission patterns. At least with 
current sequencing and bioinformatics pipelines, clinical, 
contact, epidemiological and demographic data cannot be 
replaced with sequencing even though WGS data can have a 
significant role to play.
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